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ABSTRACT

Federated Learning (FL) offers a collaborative training framework, allowing multi-
ple clients to contribute to a shared model without compromising data privacy. Due
to the heterogeneous nature of local datasets, updated client models may overfit
and diverge from one another, commonly known as the problem of client drift.
In this paper, we propose FedBug (Federated Learning with Bottom-Up Gradual
Unfreezing), a novel FL framework designed to effectively mitigate client drift.
FedBug adaptively leverages the client model parameters, distributed by the server
at each global round, as the reference points for cross-client alignment. Specifically,
on the client side, FedBug begins by freezing the entire model, then gradually
unfreezes the layers, from the input layer to the output layer. This bottom-up ap-
proach allows models to train the newly thawed layers to project data into a latent
space, wherein the separating hyperplanes remain consistent across all clients. We
theoretically analyze FedBug in a novel over-parameterization FL setup, revealing
its superior convergence rate compared to FedAvg. Through comprehensive experi-
ments, spanning various datasets, training conditions, and network architectures,
we validate the efficacy of FedBug. Our contributions encompass a novel FL
framework, theoretical analysis, and empirical validation, demonstrating the wide
potential and applicability of FedBug.

1 INTRODUCTION

Federated Learning (FL) is a distributed approach that enables multiple clients to collaboratively
train a shared model without disclosing their raw data. Federated Average (FedAvg) (McMahan
et al., 2017), one of the most influential FL frameworks, has served as the cornerstone for numerous
algorithms in the field. Below, we provide a concise explanation of how FedAvg operates: It involves
a central server and several clients. In each global round, the server distributes the current model to
all clients. Each client independently trains its model using its local data until convergence. Once the
local training is completed, the clients send their models back to the server. The server then averages
these models to obtain an updated global model, which is subsequently employed in the next round.

In FL, client drift refers to the inconsistency between models learned by different clients, arising
primarily due to the disparities in their private data distribution (Karimireddy et al., 2020b; Luo et al.,
2021; Li et al., 2022; Guo et al., 2022). As local models overfit to their datasets and converge to
local minima, the global model — derived from averaging client models — compromises in terms
of convergence and performance (Li et al., 2020; Zhao et al., 2018; Zhang et al., 2022). Extensive
studies have developed strategies to tackle the client drift issue. We specifically focus on those
utilizing anchors shared among clients, including gradient anchors and feature anchors. Gradient
anchors involve the use of shared gradient information to guide the update of the client model, thereby
promoting alignment and mitigating client drift (Karimireddy et al., 2020b; Xu et al., 2021; Das et al.,
2022; Karimireddy et al., 2020a; Li et al., 2019). On the other hand, feature anchors rely on shared
feature information to assist in feature alignment and regularization of the feature space (Luo et al.,
2021; Tang et al., 2022; Tan et al., 2022; Xu et al., 2023). However, these methods may necessitate
the extra transmission of gradient information or increased regularization costs (Karimireddy et al.,
2020a; Xu et al., 2021; Karimireddy et al., 2020b; Li et al., 2019) and pose privacy concerns (Luo
et al., 2021; Tan et al., 2022; Xu et al., 2023).
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To mitigate the client drift problem, another line of research has focused on leveraging model’s
own parameter as anchors. For example, FedBABU (Oh et al., 2021) proposes to fix the classifier
throughout training and update it only during evaluation. As all clients share the same fixed classifier,
a set of decision boundaries is common to all clients, serving as a shared reference for updating
the encoder. While FedBABU yields promising results in personalized FL scenarios, where models
are allowed to be fine-tuned using the client’s private data during the evaluation stage, FedBABU’s
performance in general FL settings is less optimal and lacks theoretical understanding.

In this work, we seek to extend FedBABU towards a more robust FL framework, so that improved
trainability and FL generalization can be achieved. Our approach hinges on two insights: (1) At the
start of each global round of FedAvg, all clients receive an identical model from the server, and
(2) each intermediate layer parameterizes hyperplanes that separate latent features. Taken together,
these insights suggest a strategy: By freezing the models received from the server, we can exploit the
consistency of the hyperplanes across clients to provide a common feature space for alignment.

Building on the above insights, we introduce FedBug (Federated Learning with Bottom-Up Gradual
Unfreezing), a FL framework leveraging shared parameter anchors to mitigate client drift. Unlike
FedAvg, FedBug begins local training by freezing the entire model, then gradually thaws the
layers from the input layer to the output layer. The key mechanism operates as follows: when a
layer becomes trainable (thawed) while its succeeding layers remain frozen, this thawed layer learns
to project its inputs into a shared feature space. This space is notably defined by the hyperplanes
of the still-frozen succeeding layers, providing a common reference across clients and enhancing
cross-client alignment. Then, FedBug progressively unfreezes the next layer, ensuring the layer’s
trainability after it has served as a shared reference while balancing alignment and adaptability. As
detailed later, we investigate FedBug through both theoretical analysis and empirical experiments.
The bottom-up unfreezing strategy is shown to efficiently fit data distributions across clients. Thus,
parameter updates can be performed to tackle the client drift issue. We further quantify such influence
and reveal FedBug converges faster than FedAvg. Additionally, we conduct experiments across
various datasets, training conditions, and architectures to ensure the broad applicability of FedBug.

Our contributions are three-fold:

• Novel Federated Learning Framework: We propose FedBug, a unique federated learning
framework that leverages model parameters as anchors to effectively address the challenges of
client drift in federated learning.

• Theoretical Analysis: We provide a theoretical analysis of the FedBug framework, demon-
strating its better convergence rate compared to FedAvg. Our analysis focuses on a one-layer
linear network with an orthogonal regression task, offering novel insights into federated learning
dynamics in the context of over-parameterized models.

• Empirical Validation: We extensively validate the effectiveness of FedBug through a series
of experiments on diverse datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet), varying training
conditions (label skewness, client participation rate), and different model architectures (standard
CNN, ResNet18, ResNet34). Furthermore, we assess the compatibility of the FedBug framework
with other federated learning algorithms. Our empirical findings underscore the immense potential
and wide-ranging applicability of FedBug.

2 LITERATURE REVIEW

Mitigating Client Drift Using Gradient and Feature Anchors. To address the client drift problem
in federated learning, various methods have been explored to explicitly or implicitly provide shared
reference points for client models. Gradient anchors are employed in several FL methods. For
instance, SCAFFOLD (Karimireddy et al., 2020b) incorporates server-level gradients in updates
to reduce local noise effects, while FedCM (Xu et al., 2021), FedGLOMO (Das et al., 2022),
MIME (Karimireddy et al., 2020a), and FedDANE (Li et al., 2019) leverage server-level gradient
to align clients by providing mutual update directions. While these approaches have demonstrated
effectiveness, they require sharing additional gradient information with the local clients. Feature
anchors are used in methods such as CCVR (Luo et al., 2021), VHL (Tang et al., 2022), FedProto (Tan
et al., 2022), and FedFA (Xu et al., 2023), employing outside datasets or clients’ private datasets to
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Figure 1: Comparisons of FedAvg and FedBug on the Client Side. While FedAvg updates all
network modules during local training on the client side, FedBug strategically employs a bottom-up
approach to gradually unfreeze network modules, aiming to counteract client drift. Take FedBug
(40%) for example, the first 40% of the local iterations perform gradual unfreezing (GU), while the
remaining 60% perform vanilla training. Despite maintaining the same number of training iterations
as FedAvg, FedBug updates fewer parameters, leading to enhanced learning efficiency.

produce and regularize features across different clients. However, these approaches may suffer from
privacy leakage, increased dataset or feature transmission costs, and added computation budget.

Mitigating Client Drift Using Parameter Anchor. Recent research has emphasized the prominence
of client drift in the top layers of models. Specifically, it has been shown that the penultimate
layer and classifier exhibit the lowest feature similarities among the clients (Zhao et al., 2018; Luo
et al., 2021; Li et al., 2022; Guo et al., 2022). These findings suggest that local classifiers undergo
significant changes to adapt to the local data distribution, which amplifies challenges related to class
imbalance and results in biased model predictions for specific classes (Zhang et al., 2022; Shang
et al., 2022; Lee et al., 2021; Guo et al., 2022). This phenomenon is consistent with research on
the long-tail analysis, where Yu et al. (2020) and Kang et al. (2020) demonstrated that the head is
biased in class-imbalanced environments. To explicitly address the issue of client drift, certain studies
leverage parameter anchors to align the clients. FedProx (Li et al., 2020) regularizes the L2 distance
between the client model and server model, establishing a shared reference in the parameter space.
Additionally, FedBABU (Oh et al., 2021) falls into this category as it uses a fixed classifier as the
parameter-level anchor during training. As each client’s frozen classifier parameterizes the same set
of decision boundaries in the feature space, FedBABU also serves as a hyperplane anchor in the latent
space. However, FedBABU’s performance is suboptimal and necessitates additional personalized
training (fine-tuning) on the clients’ private dataset during the evaluation stage, a process known as
personalization, to achieve satisfactory results.

3 METHOD

The core principle of FedBug is to mitigate client drift by strategically controlling the update of
model parameters. As detailed in Figure 1, FedBug divides the local training phase into two stages.
In the gradual unfreezing (GU) stage, the entire model is initially frozen (i.e., cannot be updated).
Over time, modules are progressively unfrozen, starting from the bottom layers upwards. This stage’s
duration is broken into periods, and a new module becomes trainable at the start of each period.
Afterward, in the vanilla training stage, the entire model becomes trainable, allowing updates across
all layers. Notably, the number of training iterations of FedBug matches that of FedAvg.

We first introduce the notation used in this work. The model is represented as ✓, comprising m
modules. Here, a module can refer to a single CNN layer or a ResNet block. For simplicity, we use
✓1:m to denote the first m modules of the model, with ✓1 indicating the input module. We define P as
the fraction of the GU stage and K as the total number of local training iterations. Thus, the GU stage
spans PK iterations. We denote ⌘g and ⌘l as global and local learning rates, respectively. Algorithm 1
details the FedBug framework. In line seven of the algorithm, the variable m is determined based on
the current local iteration step k, indicating which modules should be updated. For a comprehensive
comparison between FedAvg and FedBug, please refer to Appendix C.
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We now explore the underlying rationale of
FedBug, using Figure 1 for illustration. Con-
sider a four-module model trained using FedBug
(40%), represented as M = 4, and P = 0.4. In
this case, a module becomes trainable every 0.1K
local iteration. Suppose we are in the second GU
period, where all clients have just unfrozen their
second module. During this period, the clients
adapt their first and second modules and project
the data into a feature space. Notably, the sepa-
rating hyperplanes within this feature space are
parameterized by the yet-to-be-unfrozen mod-
ules (the third and fourth modules in this case).
These modules remain consistent during this pe-
riod, serving as a shared anchor among clients.
Similarly, as we progress to the subsequent third
period, this process continues, with clients map-
ping their data into decision regions defined by
the still-frozen fourth module. By leveraging the
shared reference, FedBug ensures ongoing align-
ment among the clients.

Algorithm 1 FedBug
Notation:

✓1:m: the first m modules of model ✓
R: number of global rounds
K: number of local iterations
P : gradual unfreezing stage percentage

1: Input: global model ✓ with M modules
2: for r = 1, . . . , R do
3: Sample clients S ✓ {1, ..., N}
4: for each client i 2 S in parallel do
5: Initialize local model ✓i  ✓
6: for k = 1, . . . ,K do
7: m min{M, d kMPK e}
8: // Update m modules of ✓i
9: ✓1:mi  ✓1:mi � ⌘lrFi(✓1:mi )

10: end for
11: �i  ✓i � ✓
12: end for
13: ✓  ✓ + ⌘g

|S|
P

i2S �i

14: end for

4 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis for the learning behaviors of FedAvg and FedBug.
Our goal is to show that FedBug exhibits improved convergence than FedAvg while better handling
data with client drift.

4.1 TASK SETTING AND MODEL ARCHITECTURE

Task and Evaluation. For simplicity, we consider a FL regression task with two clients denoted
as c1 and c2. Each client has different regression data, specifically T1 = {x1 = [1, 0], y1 = 1} and
T2 = {x2 = [0, 1], y2 = 1}. The objective is to minimize the L2 loss, with client c1 (c2) minimizing
L1 = kf(x1)� y1k (L2 = kf(x2)� y2k2), where f denotes the model.

Model Architecture. We start from the model architecture of a one-layer linear network f with two
nodes [a, b] (as model weights) and a bias term v. Formally, the function is described as f(x) =
x[a, b]> + v. In this setup, the task setup implies client c1 (c2) aims to minimize L1 = |a+ v � 1|2
(L2 = |b+ v � 1|2). A global solution must satisfy L1 = L2 = 0, indicating a = b.

In this setup, we employ three variables—weights (a, b) and bias v—to represent the multi-layered
relationships inherent in a neural model. Specifically, the input layers directly interface with diverse
data distributions, whereas the top layers interact indirectly, primarily engaging with the outputs from
the bottom layers. Our analysis delves into the logic behind FedBug’s bottom-up unfreezing strategy:
If the bottom layers, represented by a and b, can adeptly adapt to the dataset distribution, then using
the subsequent layers to co-adjust to data distribution could inadvertently induce overfitting and
amplify unnecessary parameter updates, leading to the client drift issue.

4.2 PRELIMINARY: FEDAVG AND FEDBUG

We review FedAvg and its notations. During the i-th global round, the server distributes parameters
[ai, bi, vi] to the clients. For example, client c1 receives the initial parameter [aic1,0, b

i
c1,0, v

i
c1,0](=

[ai, bi, vi]). Each client individually optimizes cost function using their own parameters. After k
local iterations, the parameters of client c1 are updated to [aic1,k, b

i
c1,k

, vic1,k], and upon achieving
local convergence, they become [aic1,⇤, b

i
c1,⇤, v

i
c1,⇤]. Once local convergence is reached, clients send

their learned parameters back to the server. The server then averages the received parameters to
obtain the new parameters [ai+1, bi+1, vi+1] = 1

2 ([a
i
c1,⇤, b

i
c1,⇤, v

i
c1,⇤] + [aic2,⇤, b

i
c2,⇤, v

i
c2,⇤]).
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FedBug differs from FedAvg only in the client-side update step: Clients first freeze v and update
[a, b] for Nstep local iterations. Afterward, the client unfreezes the last layer parameters and performs
gradient descent on all the parameters. In this section, we assume Nstep = 1.

With the above task, we are able to assess the associated algorithmic convergence. Instead of primarily
focusing on the speed of loss reduction towards a global minimum, we can design a surrogate metric.
At global convergence, the condition a⇤ = b⇤ must hold given a⇤ + v⇤ = 1 and b⇤ + v⇤ = 1. Thus,
the distance between ai and bi in the i-th global round serves as an indicator of its deviation from the
global minima. Furthermore, to understand the rate of this deviation contraction, we evaluate the
client discrepancy scaling. This is depicted through the subsequent definitions:
Definition 1. Client discrepancy di is the L1 distance between the server model parameters ai and
bi at the i-th global round : di = kai � bik.
Definition 2. Client discrepancy contraction ratio r: r = di+1/di.

4.3 THE CONVERGENCE RATE OF FEDAVG AND FEDBUG

We now investigate the convergence rates of FedAvg and FedBug. We aim to highlight the enhanced
convergence of FedBug compared to FedAvg. We begin by presenting our theoretical findings
regarding the convergence behavior of FedAvg.
Theorem 1. FedAvg converges with a client discrepancy contraction ratio of 3

4 .

Proof. Run FedAvg until reaching local minima, the parameter of client c1 is (aic1,⇤, b
i
c1,⇤, v

i
c1,⇤) =

( 1+(ai�vi)
2 , bi, 1�(ai�vi)

2 ), while that of client c2 is (aic2,⇤, b
i
c2,⇤, v

i
c2,⇤) = (ai,

1+(bi�vi)
2 , 1�(bi�vi)

2 ).
This is obtained because the gradient of client c1 follows aic1,k � vic1,k = ai � vi for each k local
iteration and that the minima satisfied aic1,⇤ + vic1,⇤ = 1, similarly for client c2.

Therefore, we have di+1 = ka
i+ai

c1,⇤
2 � bi+bic2,⇤

2 k = 1
2d

i + 1
2k

1
2 (a

i � bi)k = 3
4d

i.

This yields the ratio r = di+1

di = 3
4 .

Theorem 2. With a step size ⌘ < 1 during the gradient unfreezing stage, FedBug converges with a
client discrepancy contraction ratio 3�⌘

4 .

Proof. To validate Theorem 2, we divide the learning process into two stages. In stage one, we
update the parameters aic1,0 and bic2,0 for one step, while freezing the last layer parameter v. In the
succeeding stage, the parameter v is unlocked, and gradient descent is applied across all parameters
until each client reaches its local minimum.

In the first stage, we obtain aic1,1 = ai � ⌘(ai + vi � 1) and bic2,1 = bi � ⌘(bi + vi � 1).

In the second stage, the model parameter of client c1 reaches (aic1,⇤, b
i
c1,⇤, v

i
c1,⇤) =

(
1+(ai

c1,1�vi
c1,1)

2 , bi,
1�(ai

c1,1�vi
c1,1)

2 ), and that of client c2 reaches (aic2,⇤, b
i
c2,⇤, v

i
c2,⇤) =

(ai,
1+(bic1,1�vi

c1,1)

2 ,
1�(bic1,1�vi

c1,1)

2 ). This results in:

di+1 =
1

2
di +

1

2
k1
2
(aic1,1 � bic2,1)k =

1

2
di +

1

4
k(1� ⌘)(ai � bi)k = 3� ⌘

4
di

Thus, yielding the ratio r = di+1

di = 3�⌘
4 .

Insights. Given the dataset setup, the input nodes encounter distinct dataset domains directly. If
these input nodes quickly align with their respective dataset domains, the need to adapt the bias
term becomes minimal. However, with FedAvg, each client updates all parameters simultaneously,
adjusting the bias term to achieve its local minima. This gives rise to a distinct challenge: The bias
term, originally intended as a shared resource, becomes a tool for each client to achieve a tighter
fit to its dataset, thus destabilizing this shared term. As showed in the proof for theorem 1, where
kaic1,⇤�bic2,⇤k = k

1+(ai�vi)
2 � 1+(bi�vi)

2 k = ka
i�bi

2 k, the effect of vi gets neutralized. This implies
that even though clients are exploiting the bias term for fitting, its impact becomes null from a global
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perspective. In contrast, FedBug addresses this by freezing the bias term for one local iteration,
ensuring both clients update their own nodes in a manner beneficial to all.

Connection to FedBug. The rationale behind FedBug’s bottom-up unfreezing approach is un-
derscored by the behavior of multi-layer neural networks: If the initial layers alone can effectively
capture the dataset distribution, then having the subsequent layers to co-adapt to the data distribution
may inadvertently promote overfitting. Furthermore, such co-adaptation results in more pronounced
parameter shifts, amplifying disparities between clients. This understanding becomes clear when
observing that in multi-layer neural networks, the initial layers interact with diverse dataset distribu-
tions, similar to the weight nodes [a, b]. Conversely, the top layers more closely resemble the bias
term, as they do not directly engage with the input distribution.

Generalization of Analysis. Our analytical framework is adaptable to a multiple clients scenario.
This detailed discussion, along with the revised definition of Client Discrepancy and considerations
on multi-layered models, can be found in Appendix B.

5 EXPERIMENTS

We present an extensive evaluation of FedBug across various FL scenarios. We provide a brief
overview of the datasets and models, with a detailed description of our setup available in the Appendix.
The code is written in PyTorch and executed on a single GPU, either an NVIDIA 3090 or V100. All
experiments are performed with four distinct random seeds. Experimental details along with the
ablation study are deferred to Appendices A.1 and A.2, respectively.

5.1 EXPERIMENTAL SETUP

Datasets. We utilized benchmark datasets following the same train/test splits as previous
works (McMahan et al., 2017; Li et al., 2020; Acar et al., 2021). These datasets include CIFAR-10,
CIFAR-100, and Tiny-ImageNet. We randomly assigned data to the clients for the IID label distri-
bution split (McMahan et al., 2017; Acar et al., 2021). As for the non-IID label distribution, we
followed the Dirichlet distribution Dir(↵), as in Yurochkin et al. (2019) and Acar et al. (2021). Here,
↵ is a concentration parameter, with a smaller ↵ indicating stronger data heterogeneity. When ↵
equals1, the setting is homogeneous. We set ↵ to 0.3 for CIFAR-10 and CIFAR-100, and 0.5 for
Tiny-ImageNet (McMahan et al., 2017; Li et al., 2020; Acar et al., 2021).

Models. For standard CNN, we employ a standard convolutional neural network, similar to McMahan
et al. (2017) and Acar et al. (2021), consisting of two (three) convolutional layers followed by three
fully connected layers for CIFAR-10 and CIFAR-100 (Tiny-ImageNet) dataset. For ResNet-18 and
ResNet-34 (He et al., 2016), we change the batch normalization to group normalization (Acar et al.,
2021; Hosseini et al., 2021; Yu et al., 2021; Hyeon-Woo et al., 2021; Hsieh et al., 2020).

5.2 EXPERIMENTAL RESULTS

Improved Performance and High Compatibility With Various FL Algorithms. The FedBug
algorithm seamlessly integrates with numerous existing FL algorithms. For instance, to combine
FedBug with FedDyn, one simply needs to add the regularization term of FedDyn to the original
loss, leaving our defined gradual unfreezing schedule untouched. Results from CIFAR-100 and Tiny-
ImageNet are shown in Figures 2 and 3, respectively. Results on CIFAR-10 can be found in Figure 7
within the Appendix. These results highlight the high compatibility of the FedBug framework
when combined with different FL algorithms. Additionally, we consistently observe that FedBug
outperforms the vanilla training framework, even when the gradual unfreezing stage comprises
only ten percent of the local training process. This indicates the effectiveness and efficiency of the
FedBug approach in improving model performance. Furthermore, our FedBug training framework
exhibits a consistent synergistic effect across five distinct FL algorithms, two client participation
levels, and both IID and non-IID label distributions. This demonstrates the broad applicability of our
proposed framework in combination with existing FL training algorithms and experimental setups.

Applicability of FedBug on ResNet. When applying FedBug to larger models like ResNet, a
natural question arises: What should be the smallest unit to unfreeze during the GU stage — a ResNet
Module or a residual block? Since both ResNet-18 and ResNet-34 can be seen as having four ResNet
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Figure 2: Experiments on CIFAR-100 with standard CNN. We conduct experiments at different
client participation rates (1% and 10%), levels of heterogeneity (↵ 2 {0.3,1}), and combinations of
FL algorithms. Results are averaged across four seeds, and the error bar indicates deviation.

Figure 3: Experiments on Tiny-ImageNet with 10 clients with standard CNN. We conduct
experiments at different client participation rates (10% and 30%), levels of heterogeneity (↵ 2
{0.3,1}), and combinations of FL algorithms.

Modules or consisting of eight and sixteen residual blocks, respectively, a robust framework should
remain agnostic to the unit definition. Therefore, we evaluate the adaptability of FedBug using
two distinct unfreezing strategies: (1) progressively unfreezing one ResNet Module at a time, and
(2) progressively unfreezing one residual block at a time. Notably, we capitalize the term ResNet
"Module" to differentiate it from the general module mentioned in Algorithm 1.

The experimental results, presented in Table 2, consistently demonstrate the superiority of the
FedBug framework over the vanilla training framework across both unfreezing strategies and
different label distributions. Interestingly, we observe that both strategies perform comparably well
on the datasets, indicating the effectiveness of FedBug.

Impact of Gradual Unfreezing Percentage. We investigate the impact of the percentage of the GU
stage in CIFAR-100 and Tiny-ImageNet in the standard CNN model. The baseline framework is
FedAvg, represented by a percentage of 0%. The results are shown in Figure 4. Our experiments
reveal consistent improvements in test accuracy even with longer GU ratios. Notably, allocating a
larger percentage of the training period to GU leads to the top layers receiving less training. Thus,
the test accuracy does not necessarily increase monotonically with the GU ratio. For instance, when
training a five-layer model with FedBug using a 100% GU stage ratio, the penultimate linear layer
and the classifier are trained for only 40% and 20% of the total training iterations, respectively. In this
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Method

Tiny-ImageNet (# clients: 10; client participation rate: 10%)
IID label distribution (↵ =1) Non-IID label distribution (↵ = 0.5)

FedAvg FedProx FedDyn FedExp FedDecorr FedAvg FedProx FedDyn FedExp FedDecorr
Vanilla 26.48 26.62 31.35 26.79 28.96 25.09 25.40 29.78 24.98 26.57
FedBug (12%) 26.93 26.95 31.31 26.79 29.50 25.69 25.71 29.95 25.72 26.52
FedBug (24%) 26.94 27.15 31.54 27.10 29.43 25.82 26.02 30.05 25.62 27.49
FedBug (48%) 27.64 27.84 31.44 27.76 29.60 26.36 26.81 30.71 26.33 27.82

Method

Tiny-ImageNet (# clients: 10; client participation rate: 30%)
IID label distribution (↵ =1) Non-IID label distribution (↵ = 0.5)

FedAvg FedProx FedDyn FedExp FedDecorr FedAvg FedProx FedDyn FedExp FedDecorr
Vanilla 28.40 28.41 29.84 29.39 28.15 26.40 26.76 28.46 27.44 26.51
FedBug (12%) 28.87 28.92 30.18 29.76 28.77 27.23 27.34 28.94 27.93 26.76
FedBug (24%) 29.04 29.35 30.39 30.63 28.70 30.76 27.25 29.12 28.37 26.93
FedBug (48%) 29.58 29.67 27.78 30.42 29.29 27.65 27.83 29.45 28.44 27.75

Table 1: Experiments on Tiny-ImageNet of 10 clients with standard CNN. We conduct
experiments with different client participation rates (10% and 30%), degrees of heterogeneity
(↵ 2 {0.3,1}), and combinations of FL algorithms.

Method

CIFAR-100 (# clients: 10; client participation rate: 10%)
IID label Distribution (↵ =1) Non-IID label Distribution (↵ = 0.3)

ResNet-18 ResNet-34 ResNet-18 ResNet-34
Module(4) Block(8) Module(4) Block(16) Module(4) Block(8) Module(4) Block(16)

Vanilla 52.59 52.59 52.64 52.64 49.04 49.04 48.69 48.69
FedBug (20%) 53.25 53.05 53.01 53.42 49.70 49.64 49.20 49.17
FedBug (40%) 53.65 53.49 53.56 53.56 49.36 49.69 49.37 49.33

Method

Tiny-ImageNet (# clients: 10; client participation rate: 10%)
IID label Distribution (↵ =1) Non-IID label Distribution (↵ = 0.5)

ResNet-18 ResNet-34 ResNet-18 ResNet-34
Module(4) Block(8) Module(4) Block(16) Module(4) Block(8) Module(4) Block(16)

Vanilla 33.88 33.88 33.22 33.22 31.91 31.91 31.53 31.53
FedBug (20%) 34.25 34.31 34.28 34.36 32.29 32.32 32.33 32.31
FedBug (40%) 35.28 35.17 35.12 35.10 32.86 33.47 33.20 33.36

Table 2: Experiments on ResNet with module-wise and block-wise unfreezing strategies. Note
that two unfreezing strategies are considered: (1) unfreezing one ResNet Module at a time and
(2) unfreezing one residual Block at a time. Module (4) indicates that the model consists of four
ResNet Modules, while Block (16) signifies the model consists of sixteen residual Blocks. Consistent
improvements of FedBug with both unfreezing strategies can be observed.

extreme scenario, FedBug not only saves considerable training time but also provides improvement.
These results highlight the robustness of FedBug to the GU ratio and suggest a small portion of the
training time for gradual unfreezing may readily yield favorable results.

Ablation Study: Comparative Analysis of Freezing Strategies. To assess the impact of different
freezing strategies, we consider the following closely related methods: (1) Top-Down Gradual
Unfreezing, which is used in recent NLP literature for model fine-tuning (Howard & Ruder, 2018;
Mukherjee & Awadallah, 2019; Raffel et al., 2020; Liu et al., 2023). This approach fine-tunes the
model from the output layer to the input layer. (2) Fixing the last layer throughout training, known as
FedBABU (Oh et al., 2021); and (3) Fixing the last two Layers, i.e., the classifier and the penultimate
layer. Our baseline strategies are FedAvg and FedBug (20%), referred to as "Vanilla" and "FedBug:
Bottom-Up GU", respectively.

The results for CIFAR-10, CIFAR-100, and Tiny-ImageNet are depicted in Figure 5. These results
indicate that all alternative unfreezing or freezing methods underperform when compared to FedAvg.
In contrast, our proposed FedBug strategy consistently outperforms FedAvg, underscoring the
significance of the bottom-up sequential order for unfreezing in achieving optimal test performance.
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Figure 4: Impact of Gradual Unfreezing Percentage. We investigate the effect of the percentage
of the GU stage in CIFAR-100 and Tiny-ImageNet. The baseline framework is FedAvg (i.e., GU
percentage of 0.0). Our experiments reveal consistent improvements in test accuracy even with longer
GU ratios, where the top layers are relatively under-trained compared to FedAvg.

Figure 5: Comparative Analysis of Freezing Strategies. FedBug consistently outperforms other
freezing strategies across three datasets, including FedBABU of Oh et al. (2021).

Figure 6: Batch computation time ac-
celeration using FedBug with varying
Gradual Unfreezing ratios.

Reduced Running Clock Time with FedBug. Despite
both FedBug and FedAvg using equal number of local
iterations in the client side, FedBug showcases enhanced
training efficiency. This is attributed to its unique freezing-
unfreezing mechanism which updates fewer parameters,
thus hastening early local iterations. We measured the
clock time needed for gradient computations and param-
eter updates on individual batches (using Pytorch 1.12
on NVIDIA GeForce RTX 3090), deploying a standard
CNN model on CIFAR-100 with a 1% client participation
rate. Figure 6 presents these results, averaged over 10,000
batches. Remarkably, the FedBug design significantly
expedites batch computation time. A GU ratio of 80%
achieves a notable acceleration of 119% per batch. Even
at modest GU percentages, the speeds of 102% and 105%
are noteworthy, leading to substantial time and resource
savings in extensive experiments.

6 CONCLUSION

In this work, we introduce FedBug, a novel FL framework designed to mitigate client drift. By
leveraging model parameters as anchors, FedBug aligns clients while improving learning efficiency.
We perform theoretical analysis in an over-parameterized setting, revealing that FedBug achieves a
faster convergence rate compared to the widely adopted FedAvg framework. To empirically validate
the effectiveness, we conduct extensive experiments on various datasets, training conditions, and
network architectures, consistently demonstrating the superiority and compatibility of FedBug.
Overall, our contributions include the introduction of a novel FL framework, theoretical analysis, and
comprehensive empirical validation, highlighting the broad potential and applicability of FedBug.
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