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ABSTRACT

We introduce LIA-X, a novel interpretable portrait animator streamlined to trans-
fer facial dynamics from a driving video to a source portrait, allowing for fine-
grained control. LIA-X is an autoencoder that models motion transfer as a lin-
ear navigation of motion codes in the latent space. Crucially, it incorporates a
novel Sparse Motion Dictionary that enables the model to disentangle facial dy-
namics into human interpretable motion. Deviating from previous ’warp-render’
approaches, the interpretability of the Sparse Motion Dictionary allows LIA-X to
support a highly controllable ’edit-warp-render’ strategy, enabling precise ma-
nipulation of fine-grained facial semantics in the source portrait. This is in-
strumental in mitigating differences with the driving video w.r.t. pose and ex-
pression. In addition, we demonstrate the scalability of LIA-X by successfully
training a large-scale model with approximately 1 billion parameters on exten-
sive datasets. Experimental results suggest that our proposed method outperforms
previous approaches in both self-reenactment and cross-reenactment tasks across
several benchmarks. The interpretable and controllable nature of LIA-X supports
practical applications such as fine-grained, user-guided image and video editing,
as well as 3D-aware portrait video manipulation. We provide result videos on a
visualization page index.html, included in the supplementary material.

1 INTRODUCTION

The significant advancements in deep generative models (Ho et al., 2020; Song et al., 2021; Good-
fellow et al., 2014) have led to remarkable progress in video generation. Portrait animation consti-
tutes a domain-specific video generation task aimed at transferring facial dynamics from a driving
video to a portrait image, receiving increased attention due to wide applications in entertainment,
e-education, and digital human creation. In this context, towards accurately transferring facial dy-
namics, one strategy has been to leverage pre-computed explicit representations such as facial land-
marks (Wang et al., 2019; Chang et al., 2023; Ma et al., 2024), 3DMM (Liu et al., 2019; Chen et al.,
2021), optical flow (Li et al., 2018; Ohnishi et al., 2018) and dense poses (Xu et al., 2023) as motion
guidance. Such a strategy has been widely utilized in both, GAN-based and recent diffusion-based
methods (Chang et al., 2023; Ma et al., 2024). However, the generation quality of such methods is
highly impacted by the performance of off-the-shelf feature extractors, strongly restricting usability
in more challenging, real-world scenarios.

In addition, self-supervised learning-based techniques have been proposed to tackle this problem.
Previous methods explored learning either explicit structures such as 2D/3D keypoints (Siarohin
et al., 2019; 2021; Zhao & Zhang, 2022; Wang et al., 2021a; Guo et al., 2024a) or implicit mo-
tion codes (Wang et al., 2024; 2022) in an end-to-end manner, aimed at modeling facial dynamics.
They typically follow a ‘warp-render’ strategy that conducts portrait animation based on computed
optical-flow fields. While these methods have achieved promising results in both, motion transfer-
ring and identity preservation, related performance drops significantly, in the case of large variations
between source and driving data w.r.t. head pose and facial expression.

Motivated by the above, we introduce LIA-X, a novel framework that learns interpretable motion
semantics, allowing for fully controllable ‘edit-warp-render’ animation. Deviating from standard
‘warp-render’ pipelines, LIA-X firstly leverages the learned motion representations to align source
portrait with the initial driving frame, and then proceeds to transfer the final motion, see Fig. 1.
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Figure 1: Portrait Animation. Results of three portraits animated by LIA-X using the video of Gal
Gadot (small top right). Given a source portrait (1st column), LIA-X allows for editing the source
portrait based on the learned semantics to align it with the initial driving frame w.r.t. head pose
and facial expression (2nd column). The animated sequences (2nd-5th columns) are then obtained by
applying motion transfer on the edited portraits.

Specifically, LIA-X is designed as a self-supervised autoencoder that does not necessitate explicit
structure representations. Inspired by sparse dictionary coding (Olshausen & Field, 1996), we in-
troduce a novel Sparse Motion Dictionary - a set of motion vectors in the autoencoder that capture
the underlying motion distribution. The sparsity constraint encourages the model to utilize a mini-
mal set of motion vectors, in order to reconstruct the training images, endowing the motion vectors
with enhanced interpretability as opposed to dense motion dictionaries (Wang et al., 2024; 2022).
The animation process is then modeled as a linear navigation of these motion codes, in order to
obtain optical-flow fields for warping the source portrait. Notably, our proposed interpretable mo-
tion vectors can be directly leveraged at the inference stage towards manipulating source portraits,
supporting fine-grained edits of facial attributes (e.g., eyes and mouth), as well as 3D-aware trans-
formation (e.g., yaw, pitch and roll) in both, image and video domains.

LIA-X is the first model to self-learn implicit semantic representations specifically tailored for con-
trollable portrait animation and editing, to the best of our knowledge.

Further, we analyze the scalability of proposed LIA-X framework and successfully train large-scale
models with up to 1 billion parameters using a diverse mixture of public and internal talking head
datasets. Experimental results demonstrate that scaling up LIA-X significantly improves perfor-
mance across several benchmarks. Given faster inference speed of autoencoder-based models com-
pared to diffusion-based approaches, we advocate that the scalable and interpretable design of LIA-X
can serve as a valuable complement to current state-of-the-art generative models, enabling efficient
and highly controllable video generation. In summary, key contributions of this work include the
following.

• We propose a novel portrait animator, LIA-X, an autoencoder that incorporates an inter-
pretable Sparse Motion Dictionary to enable controllable portrait animation via an ‘edit-
warp-render’ strategy.

• We analyze the scalability of LIA-X and demonstrate that our design can be scaled up to
achieve superior performance.
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Figure 2: Overview of LIA-X. LIA-X incorporates an encoder E, a generator G that includes an
optical-flow generator Gf and a rendering network Gr. LIA-X is trained using a self-supervised
learning strategy. Towards obtaining an interpretable motion dictionary Dm, a sparsity constraint is
included into the training objective. This encourages the network to utilize a minimal set of vectors
in Dm to reconstruct each driving image.

• Extensive experiments show that LIA-X outperforms state-of-the-art methods across multi-
ple datasets, while also enabling a range of applications, including image and video editing,
as well as 3D-aware portrait manipulation.

2 PRELIMINARY

Latent Image Animator (LIA) (Wang et al., 2022; 2024) was designed as an autoencoder consisting
of an encoder E, an optical-flow generator Gf and a rendering network Gr aiming to transfer mo-
tion of a talking head to a still portrait via self-supervised learning. LIA models motion as linear
navigation of motion codes in a latent space, and follows the ‘warp-render’ strategy to generate
optical-flow fields via Gf and render the animated result via Gr.

Linear Navigation. LIA models motion transferring as learning transformations from source to
driving image xs → xd. It proved that for any given image, there exists an ‘implicit reference
image’ xr, and the transformation can be modeled as xs → xr → xd in an implicit manner. The
transformation is modeled as motion code zs→d in latent space, and with the help of the reference
space, it can be represented as a linear navigation from zs→r along a path wr→d, denoted as

zs→d = zs→r + wr→d, (1)

where zs→r indicates the transformation from source image to reference image, and is obtained via
E(xs) = zs→r. To learn wr→d, a learnable motion dictionary Dm consisting of a set of orthogonal
motion vectors {d1, ...,dM} was proposed. Any linear path in the latent space can be represented
as

wr→d =

M∑
i=1

aidi, (2)

where Ar→d = {a1, ..., aM} indicates the magnitude for each motion vector, and is obtained via
FC(E(xd)) = Ar→d. The linear navigation from any xs to xd can be represented as

zs→d = zs→r +

M∑
i=1

aidi. (3)

Image Animation. Once zs→d is obtained, optical flow is generated via Gf (zs→d) = ϕs→d. The
source image xs is warped based on ϕ, and the warped features are rendered through Gr to produce
the generated image

xs→d = Gr(T (ϕs→d, xs)), (4)
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where T indicates the warping operation. In practice, multi-scale optical flow is generated to warp
multi-scale feature maps of xs.

Learning. The objective of self-supervised learning consists of three parts, an L1 reconstruction
loss, a VGG-based perceptual loss and an adversarial loss between xs→d and xd

L(xs→d, xd) = Lrecon(xs→d, xd) + λLvgg(xs→d, xd)

+ Ladv(xs→d).
(5)

Inference. LIA proposed a unified formulation for self-reenactment and cross-reenactment at the
inference stage

zs→t = (zs→r + wr→s) + (wr→t − wr→1), t ∈ {1, ..., T}. (6)

For self-reenactment, where wr→s = wr→1, Eq. 6 can be simplified as

zs→t = zs→r + wr→t, t ∈ {1, ..., T}, (7)

which is the same as the training stage.

For cross-reenactment, where wr→s ̸= wr→1, Eq. 6 can be reformulated as

zs→t = zs→s︸︷︷︸
reconstruction

+(wr→t − wr→1)︸ ︷︷ ︸
motion difference

, t ∈ {1, ..., T},
(8)

where the animation process is modeled as linearly navigating the source image along the driving
motion direction in the latent space.

3 METHODOLOGY OF LIA-X

We proceed to introduce our proposed LIA-X, including the general model architecture, the Sparse
Motion Dictionary, as well as the interpretable and controllable animation capabilities.

3.1 ARCHITECTURE

LIA-X follows the general architecture design of LIA, containing an encoder E, an optical-flow
generator Gf , and a rendering network Gr. However, deviating from previous methods (Siarohin
et al., 2019; 2021; Zhao & Zhang, 2022) that rely on simple and small-scale networks, we design
the LIA-X architecture to be more scalable by incorporating advanced residual blocks inspired by
StyleGAN-T (Sauer et al., 2023) in both, encoder and generators.

3.2 SPARSE MOTION DICTIONARY

While the original motion dictionary in LIA contains certain semantic meanings, we observed that
it is difficult to disentangle and independently control individual factors such as mouth movements,
eyebrow dynamics, etc. Multiple semantic motions are entangled and challenging to leverage for
controllable image and video editing tasks.

Drawing from sparse dictionary coding, we propose a Sparse Motion Dictionary aimed at improving
the interpretability of motion representations. Our findings indicate that this simple enhancement
greatly improves the interpretability of the motion vectors, which facilitates more precise control
over animation.

Specifically, we introduce a sparse penalty S(·) on the motion coefficients Ar→d that encourages
the model to employ a minimal number of motion vectors to reconstruct the images during self-
supervised training. The overall learning objective of LIA-X is then

L(xs→d, xd) =Lrecon(xs→d, xd) + λ1Lvgg(xs→d, xd)

+ Ladv(xs→d) + λ2S(Ar→d),
(9)

where λ1 and λ2 denote coefficients to balance the losses, and we implement S(·) as the L1 norm.
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Figure 3: Sparsity Analysis. We show a comparison of the Ar→s activations of two videos between
two models - one trained without sparse motion dictionary (top), and the other with a sparse motion
dictionary (down). It can be clearly observed that when learned without a sparsity constraint, the
model reconstructs each frame by activating nearly all motion vectors. In contrast, the model trained
with a sparsity constraint selects only a few vectors to be activated for each reconstruction.

3.3 CONTROLLABLE INFERENCE

While Eq. 8 enables successful motion transfer from the driving video to the source portrait, achiev-
ing high-quality generation necessitates a critical condition: source and initial driving frames must
exhibit similar head poses and facial expressions. However, in a number of real-world applications,
this requirement cannot be satisfied. With the interpretable Sparse Motion Dictionary, LIA-X is able
to address this issue by using an ”edit-warp-render” strategy.

Consequently, we first edit the source portrait using the corresponding motion vectors, ensuring that
the head pose and facial expression closely match those of the driving image. Then, the animation
process can be formulated as follows.

zs→t = zs→E(s)︸ ︷︷ ︸
editing

+(wr→t − wr→1)︸ ︷︷ ︸
motion difference

, t ∈ {1, ..., T}, (10)

where E(·) indicates the editing operation on the source image. This allows LIA-X to better handle
large variations between source and driving data, leading to higher-quality and more controllable
portrait animation.

4 EXPERIMENTS

In this section, we proceed to present a qualitative analysis on sparsity, interpretability, and con-
trollability of the proposed LIA-X framework. In addition, we present comparative results between
LIA-X and state-of-the-art methods such as FOMM, TPS, DaGAN, LIA, MCNet, X-Portrait, and
LivePortrait, in the setting of portrait animation. Finally, we quantitatively evaluate LIA-X and com-
pare it with prior work on two important tasks, self-reenactment and cross-reenactment. Details of
implementation and training datasets are presented in Appx. A.2 and A.3.

4.1 SPARSITY ANALYSIS

To showcase the effectiveness of our proposed Sparse Motion Dictionary, we visualize motion co-
efficient vectors Ar→s for two videos in Fig. 3. We compare the results of models with and without
sparsity constraint in the motion dictionary.

We clearly observe that the model without sparse motion dictionary activates nearly all motion
vectors, indicating a lack of selectivity for different input data. The semantics are entangled within
each motion vector. In contrast, for the model with Sparse Motion Dictionary, sparsity can be clearly
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(a) Yaw

(b) Pitch

(c) Roll

Figure 4: 3D-aware Portrait Manipulation. We illustrate 3D-aware manipulation capabilities for
a single identity. By manipulating corresponding motion vectors, LIA-X can successfully perform
(a) yaw, (b) pitch and (c) roll modifications, without necessitating additional 3D representations.

Figure 5: Image Editing. Fine-grained semantic attributes, such as open/close mouth, frown/raised
eyebrows, open/close eyes, pout, and smile can be effectively controlled by manipulating the corre-
sponding motion vectors.

observed in Ar→s, as only few vectors are active, whereas the contributions of others can be largely
omitted. These results clearly prove the effectiveness of the constraint in improving the sparsity of
the motion dictionary.
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(a) Original video

(b) Left rotation

(c) Right Rotation

Figure 6: 3D-aware Video Manipulation. We demonstrate the use of learned 3D-aware semantics
to manipulate a real-world video. The original video (a) has been successfully rotated to left (b) and
right (c) respectively, without using any explicit 3D representation, and the identity of the original
video subject has also been well-preserved throughout these manipulations.

4.2 INTERPRETABILITY AND CONTROLLABILITY ANALYSIS

While we have proven the ability to obtain a Sparse Motion Dictionary, it is crucial to understand
whether each vector in the dictionary is interpretable and controllable. To investigate the semantic
meanings of the motion vectors, we linearly manipulate the vector di by

zs→E(s) = zs→s + aidi, (11)

where we set ai as a small perturbation ranging from -0.5 to 0.5 with a step of 0.1. Surprisingly,
we find that the semantics are well-disentangled in the motion dictionary and can be easily manipu-
lated. Almost all activated vectors correspond to human-understandable motions. Fig. 4 illustrates
examples of LIA-X performing 3D-aware manipulation such as yaw, pitch and roll, without relying
on any explicit 3D representation during training or inference. We provide a comparison between
LIA and LIA-X in motion dictionary manipulation in App. A.4.

Image Editing. We further utilize Eq. 11 to manipulate more motion vectors and demonstrate the
results in Fig. 5. Besides 3D-aware semantics, LIA-X can control various fine-grained attributes
such as ‘open/close mouth’, ‘frown/raise eyebrows’, ‘open/close eyes’, ‘pout’, ‘smile’, etc. Such
interpretable vectors are automatically disentangled through self-supervised learning. With such a
powerful editing capability, LIA-X can be readily used as a portrait editing tool, allowing for linear
combination of different semantic operations, allowing for complex editing tasks.

Video Editing. Given the ability to edit a single portrait, extending the editing to the video level
becomes feasible. Given a real-world talking head video, we first apply Eq. 11 on the initial frame to
manipulate the target semantics. Then, we use Eq. 10 to transfer the motion to the edited first frame.
Fig. 6 demonstrates the results of using LIA-X to rotate the portrait in a video, where the identity is
well-preserved while the head pose is seamlessly changed.

7
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Figure 7: Qualitative Comparison on Cross-reenactment. The ability of LIA-X to edit the source
portrait using interpretable motion vectors before animation allows it to correct initial misalignments
with the driving frame. As shown here, this editing capability enables LIA-X to significantly outper-
form other approaches, particularly in cases with large variations of head pose and facial expression
between source and driving data.

Method
VoxCelebHQ TalkingHead-1KH

L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓ L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓
256× 256 resolution

FOMM 0.046 0.27 0.66 22.40 12.67 0.040 0.100 0.72 23.31 30.39
DaGAN 0.044 0.110 0.69 23.04 9.13 0.036 0.088 0.77 24.95 25.50

TPS 0.043 0.112 0.70 23.24 10.82 0.037 0.089 0.77 24.56 28.05
MCNet 0.040 0.176 0.72 23.73 18.63 0.030 0.097 0.79 25.70 28.06
LIA-X 0.036 0.095 0.73 24.82 10.74 0.035 0.086 0.78 26.26 24.71

512× 512 resolution
X-Portrait 0.110 0.302 0.56 16.99 19.92 0.058 0.134 0.63 19.46 41.19

LivePortrait 0.087 0.264 0.67 17.45 12.90 0.052 0.120 0.73 20.26 39.98
LIA 0.052 0.211 0.68 22.14 21.86 0.049 0.165 0.72 23.37 44.64

LIA-X 0.040 0.160 0.75 24.39 12.50 0.035 0.115 0.80 26.07 38.93

Table 1: Quantitative Evaluation for Self-Reenactment. We compare the performance of LIA-X
against state-of-the-art methods on two different resolutions across two datasets.

Portrait Animation. We qualitatively compare LIA-X with state-of-the-art methods on cross-
identity portrait animation, see Fig. 7. Comparison between LIA-X and LIA is portrayed in Fig. A.4.
Visualizations showcase the effectiveness of the editing stage of LIA-X, which can significantly im-
prove generated results by aligning source portrait with the initial driving frame. This editing capa-
bility allows for a more controllable animation process as opposed to previous methods. In contrast,
other state-of-the-art methods struggle in case that source and driving data encompass large varia-
tions in head pose, facial expression, as well as identity. The performance of such methods degrades
dramatically in such scenarios, whereas LIA-X maintains high-quality and controllable animation
results by leveraging its interpretable motion representations and the tailored ”edit-warp-render”
pipeline.

8
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Method ID Similarity ↓ Image Quality ↑
FOMM 0.262 37.08
DaGAN 0.272 39.30

TPS 0.216 38.27
MCNet 0.252 37.88

X-Portrait 0.217 55.41
LivePortrait 0.243 51.41

LIA-X 0.206 58.74

Table 2: Quantitative Evaluation for
Cross-Reenactment. We compare the per-
formance of LIA-X with state-of-the-art
methods on the constructed dataset for cross-
reenactment scenarios.

Model L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
TalkingHead-1KH

Base (0.05B) 0.042 0.13 0.77 24.98
Middle (0.3B) 0.035 0.113 0.79 25.84
Large (0.9B) 0.035 0.115 0.80 26.07

VoxCelebHQ
Base (0.05B) 0.043 0.171 0.72 23.62
Middle (0.3B) 0.040 0.16 0.74 24.31
Large (0.9B) 0.040 0.16 0.75 24.39

Table 3: Scalability analysis on
TalkingHead-1KH and VoxCelebHQ.
We train three variations of LIA-X with
0.05B, 0.3B, and 0.9B parameters, respec-
tively.

4.3 QUANTITATIVE EVALUATION

We quantitatively compare LIA-X with state-of-the-art (SOTA) methods on two tasks, self-
reenactment and cross-reenactment. To ensure a fair comparison, we train LIA-X at two different
resolutions, 256× 256 and 512× 512, and compare with the corresponding methods.

Self-Reenactment. We evaluate our method on the validation sets of VoxCelebHQ (Wang et al.,
2024) and TalkingHead-1KH (Wang et al., 2021a), which contain 483 and 25 videos respectively.
We reconstruct each video sequence utilizing the first frame as the source image and the entire video
as the driving data. We report results using several metrics, L1, LPIPS, SSIM, PSNR, and FID.
As shown in Tab. 1, on both high and low resolutions, LIA-X outperforms both GAN-based and
diffusion-based methods across all metrics.

Cross-Reenactment. To construct the validation set for cross-reenactment, we select 70 videos from
the HDTF dataset as driving data, and per video, we randomly select 2 images from the AAHQ
dataset (Liu et al., 2021) as the source data, resulting in a total of 140 videos. Since there is no
ground truth data for this task, we evaluate the results using two metrics, Identity Similarity and
Image Quality. While Identity Similarity indicates the average embedding difference between each
generated frame and source portrait, Image Quality is computed following (Su et al., 2020) to
indicate the generated image quality. As shown in Tab. 2, LIA-X outperforms other methods in both
metrics, proving its ability to naturally transfer motion, while preserving the original identities.

4.4 ABLATION STUDY ON SCALABILITY

Towards verifying the effectiveness of scalability, we conduct an ablation study on the model size.
We train three variations of LIA-X with 0.05B, 0.3B, and 0.9B parameters, respectively, maintaining
the same training configuration. The three models follow the same architectural design and only
differ in the number of residual blocks, channel numbers, and motion dictionary size. The results
in Tab. 3 demonstrate that scaling is effective for improving model performance. Qualitative results
can be found in App. A.5. However, we note that the improvement from 0.3 billion to 0.9 billion
parameters becomes relatively minor. We hypothesize that this may be attributed to the current
dataset size being insufficient to fully leverage the training of such large-scale model. To further
enhance LIA-X’s performance, larger and more diverse training datasets are essential.

5 CONCLUSIONS

In this work, we have introduced LIA-X, a novel portrait animator that incorporates an interpretable
Sparse Motion Dictionary. This enables LIA-X to support a highly controllable ‘edit-warp-render’
animation strategy. Furthermore, we have analyzed the scalability of the architecture of LIA-X,
demonstrating its ability to achieve outstanding results when scaling up to larger model sizes, up to
1 billion parameters. Extensive evaluations show that LIA-X outperforms SOTA methods across sev-
eral benchmarks, while also supporting diverse applications such as fine-grained image/video editing
and high-quality portrait animation. We envision our technique to serve as a valuable complement
to current generative approaches and provide a novel way for interpretable video generation.
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ETHIC STATEMENT

In this work, we aim to animate portraits using driving videos. Our designed LIA-X is an inter-
pretable and controllable image animator. Our approach can be used for digital human, online
education, and data synthesis for other computer vision tasks. We note that our framework mainly
focuses on learning how to model motion distribution in an image animator rather than directly
model appearance. Therefore, our framework is not biased towards any specific gender, race, re-
gion, or social class. It works equally well irrespective of the difference in subjects.

REPRODUCIBILITY STATEMENT

We assure that all results shown in the paper and supplemental materials can be reproduced. We
intend to open-source our code, as well as trained models.
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A APPENDIX

In this Appendix, we firstly discuss related work and outline the novelty in this work in App. A.1.
Then, we describe implementation and details pertaining the training datasets in App. A.2 and A.3.
Next, we compare LIA-X and LIA in linear manipulation of the motion dictionary, as well as quali-
tative results of portrait animation in App. A.4. We also qualitatively demonstrate the effectiveness
of scaling LIA-X to larger model size in App A.5. Finally, we discuss about limitations in current
model design and provide potential future directions in App A.7.

A.1 RELATED WORK

Portrait animation has seen significant advancements in recent years, driven by the remarkable
progress in deep generative models for video generation (Vondrick et al., 2016; Saito et al., 2017;
Tulyakov et al., 2018; Wang et al., 2020c;b; Wang, 2021; Wang et al., 2021b; Clark et al., 2019;
Brooks et al., 2022; Yu et al., 2022; Skorokhodov et al., 2022; Tian et al., 2021; Wang et al., 2023b;
Chen et al., 2023; 2024; Guo et al., 2024b; Singer et al., 2023; Ho et al., 2022; Ma et al., 2025; Wang
et al., 2023a; Blattmann et al., 2023; Menapace et al., 2024; Yan et al., 2021; Brooks et al., 2024;
Zhang et al., 2024). Previous methods have explored learning structure representations either based
on conditional generation approaches (Chan et al., 2019; Wang et al., 2018; Zakharov et al., 2019;
Wang et al., 2019; Yang et al., 2020; Zhao & Zhang, 2022) relying on off-the-shelf extractors, or
self-supervised learning strategies to learn representations such as 2D/3D keypoints (Siarohin et al.,
2019; Wang et al., 2021a; Guo et al., 2024a; Zhao & Zhang, 2022), motion regions (Siarohin et al.,
2021), and depth maps (Hong et al., 2022) in an end-to-end manner. Additionally, self-attention
mechanism (Yuan et al., 2023) has been studied to improve cross-identity generation quality.

More recent techniques (Wang et al., 2024; 2022) have proposed to model motion transfer as a
linear navigation of learned motion codes, which has proven effective in implicitly capturing 2D and
3D representations to capture complex facial dynamics. Diffusion-based models (Xie et al., 2024)
have demonstrated efficacy in portrait animation, attributed to their robust generalization capabilities
derived from pretraining on large-scale datasets.

However, one key limitation remains across all existing methods associated to the lack of an effective
mechanism to align source portrait with initial driving frame w.r.t. head pose and facial expression.
This renders their performance drop dramatically in case of large variations between source and
driving data, further limiting their usability in more general real-world scenarios. Deviating from
previous approaches, LIA-X incorporates an interpretable motion dictionary, which allows for the
source portrait to be edited before animation in a controllable manner. With this unique capacity,
LIA-X is instrumental in a number of tasks such as portrait animation, image and video editing, and
3D-aware portrait manipulation.
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(a) LIA

(b) LIA

(c) LIA-X

(D) LIA-X

Figure 8: Manipulation results between LIA and LIA-X. We show linear manipulation of two
vectors in both LIA and LIA-X, respectively. We observe that semantics in LIA’s motion dictionary
are entangled (in (a) and (b), head, eye and mouth are all altered in case that a single vector is
being manipulated), whereas LIA-X is able to disentangle various semantics very well, for example
open/close eyes (c) and yaw (d).

A.2 IMPLEMENTATION DETAILS

We build LIA-X upon the architecture of LIA (Wang et al., 2024; 2022). To scale the model to larger
sizes and prevent training instability, we design novel residual blocks for both, optical flow generator
Gf , as well as rendering network Gr. Our scaling strategy focuses on increasing the number of
channels, the depth of residual blocks, as well as using a larger motion dictionary compared to the
original LIA. With these architectural enhancements, the largest model size of LIA-X reaches around
1 billion parameters. We train the entire LIA-X model using 8 A100 GPUs, and apply gradient
accumulation to increase the effective batch size when training the larger-scale LIA-X variants.

A.3 DATASETS

To scale the training data, we mix 4 publicly available datasets, namely VoxCelebHQ (Wang et al.,
2024), TalkingHead-1KH (Wang et al., 2021a), HDTF (Zhang et al., 2021) and MEAD (Wang et al.,
2020a). Additionally, we include one internally collected dataset. In total, our training dataset con-
tains 0.5 million talking head sequences, comprising around 94 million frames and 55,000 different
identities. Experiments show that this dataset scaling strategy enables LIA-X to achieve outstanding
performance in generalizing to unseen portrait images.
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(a) Driving video

(b) LIA

(c) LIA-X

Figure 9: Comparison between LIA and LIA-X. We compare the performance of LIA and LIA-X
based on the same driving video and source image. LIA-X achieves better video quality than LIA.

A.4 COMPARISON BETWEEN LIA AND LIA-X

We firstly show linear manipulation of vectors in motion dictionary in both, LIA and LIA-X. Fig. 8
demonstrates that semantics in LIA’s motion vectors are entangled, as linear manipulation of a sin-
gle vector affects eye, mouth and head. On the other side, we observe that semantics are well-
disentangled, as manipulation of a single vector only affects one semantic (e.g., open/close eyes,
yaw), which proves the effectiveness of our proposed sparse motion dictionary.

We also qualitatively show comparison between LIA and LIA-X on image animation in Fig. 9. By
using the same driving video, LIA-X has achieved better performance than LIA w.r.t. video quality.

A.5 SCALABILITY ANALYSIS

We qualitatively show animation results of LIA-X with different model size. Fig. 10 demonstrates
that scaling LIA-X from 0.05B to 0.9B significantly improves generation quality, in particular w.r.t.
details such as improved teeth, eye-balls and facial expression.

A.6 INFERENCE SPEED AND MODEL SIZE

We make a comparison among state-of-the-art methods, as well as LIA-X on model size and infer-
ence speed on A6000 GPU in Tab 4. It can be observed that diffusion-based method (X-Portrait) is
much heavier than other methods and has the lowest inference speed. LIA-X achieves a nice balance
between inference speed and model size. Compared to LivePortrait, LIA-X (large) is 8 times larger
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Figure 10: Scalability Analysis. Scaling is effective for generating details such as teeth and eye-
balls. The large model (0.9B) outperforms the smaller model (0.05B).

Method FOMM DaGAN TPS MCNet X-Portrait LivePortrait LIA LIA-X (small) LIA-X (mid) LIA-X (large)
Size (B) 0.05 0.06 0.07 0.10 3.07 0.13 0.05 0.05 0.34 0.91
Speed (s) 0.014 0.027 0.026 0.035 4.700 0.114 0.030 0.151 0.159 0.23

Table 4: Model size and inference speed. We show model size an inference speed of current SOTA
on portrait animation. The speed indicates generation time per frame.

on model size while the inference speed is only 2 times slower, which indicates the design of LIA-X
is more efficient.

A.7 LIMITATIONS AND FUTURE WORK

While our proposed method has achieved promising performance, there remain limitations that need
to be tackled in future work. Firstly, as the current model can only be used on a fixed resolution, de-
signing novel techniques to allow dynamic resolution may further improve performance. Secondly,
our model follows the convolutional network architecture which may have limitations to further scale
up. DiT-based (Peebles & Xie, 2022) architecture will be explored in future work for scalability.

A.8 USE OF LARGE LANGUAGE MODELS

We clarify the involvement of large language models (LLMs) is only for improving and polishing
the manuscript.
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