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Abstract

The generalization capabilities of vision-language-action (VLA) models to unseen
tasks are crucial to achieving general-purpose robotic manipulation in open-world
settings. However, the cross-task generalization capabilities of existing VLA
models remain significantly underexplored. To address this gap, we introduce
AGNOSTOS, a novel simulation benchmark designed to rigorously evaluate zero-
shot cross-task generalization in manipulation. AGNOSTOS comprises 23 unseen
manipulation tasks for test, which are distinct from common training task distribu-
tions, and incorporates two levels of generalization difficulty to assess robustness.
Our systematic evaluation reveals that current VLA models, despite being trained
on diverse datasets, struggle to generalize effectively to these unseen tasks. To
overcome this limitation, we propose Cross-Task In-Context Manipulation (X-
ICM), a method that conditions large language models (LLMs) on in-context
demonstrations from seen tasks to predict action sequences for unseen tasks. Addi-
tionally, we introduce a dynamics-guided sample selection strategy that identifies
relevant demonstrations by capturing cross-task dynamics. On AGNOSTOS, X-
ICM significantly improves zero-shot cross-task generalization performance over
leading VLA models, achieving improvements of 6.0% over 7o [1] and 7.9% over
VoxPoser [2]. We believe AGNOSTOS and X-ICM will serve as valuable tools
for advancing general-purpose robotic manipulation. Project page: https://jiaming+
zhou.github.io/AGNOSTOS/.

1 Introduction

Vision-Language-Action (VLA) models [3 4} 5,16 [7} 12| [8, 9} [1} [10] have motivated a new era of
robotic manipulation by integrating visual perception, language understanding, and action generation.
Through large-scale pre-training on diverse data, including human videos [[11}[12], real or simulated
cross-embodiment robotic demonstrations [3, |13} [14], VLA models can effectively generalize across
visual variations within known tasks (i.e., within-task generalization of seen tasks), such as handling
objects in novel scenes or with altered properties. However, the true promise of VLA models lies in
their capacity to generalize across tasks: to handle previously unseen combinations of objects, goals,
and actions without prior exposure. This capability, zero-shot cross-task generalization, is essential
for real-world deployment, where robots are expected to tackle novel tasks as they arise dynamically.

Despite the rapid progress in VLA research, most prior work [3} 4, |8, 9l [1] has focused on
generalization testing in real-world environments. However, these evaluations are typically non-
reproducible, and rarely target cross-task (i.e., unseen task) zero-shot generalization. Recently, many
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Figure 1: The proposed AGNOSTOS benchmark evaluates zero-shot cross-task generalization
through two difficulty levels. Level-1 testing involves 13 unseen tasks sharing partial similarity
(objects or motions) with seen tasks. Level-2 testing has 10 unseen tasks from entirely novel scenarios,
requiring stronger generalization capabilities. We systematically assess three broad categories of
vision-language-action models, revealing critical limits in their ability to adapt to unseen tasks.

works [13} 16} 17, 18] [19} 20} 21, 22, 23], 24}, 25|, 26] have been devoted to developing comprehen-
sive simulated benchmarks, which could be utilized to evaluate the generalization of VLA models.
While promising, these efforts mainly assess within-task generalization, leaving zero-shot cross-task
generalization largely unexplored.

To address this critical gap, we present AGNOSTOS, a novel benchmark for evaluating zero-shot
cross-task generalization in robotic manipulation. Built on RLBench [18], our benchmark comprises
23 unseen tasks that are carefully curated to differ from 18 commonly used seen training tasks [27}28].
As shown in Figure[T] to probe different aspects of generalization, these unseen tasks are categorized
into two difficulty levels:

* Level-1 (13 tasks) shares partial semantics (e.g., similar objects like “cups” or motions like
“put”) with seen tasks.

* Level-2 (10 tasks) introduces entirely novel scenarios with no overlapping objects or actions.
We benchmark three broad categories of VLA models:

1. Models [11 2 [8, @] trained on large-scale real-world robotic demonstrations [29] or built on
multimodal large language models (MLLMs);

2. Models [30, pre-trained on large-scale human action video datasets ;

3. Models [33, 27, 34] trained purely on in-domain RLBench data with advanced architectures.

Our empirical findings reveal a key limitation: none of the existing models generalize effectively to
unseen tasks, highlighting the need for approaches that directly address cross-task generalization.



Motivated by the success of in-context learning [35}136,[37]] in large language models (LLMs), we
propose a Cross-task In-context Manipulation (X-ICM) method to address the challenges of zero-
shot cross-task generalization. X-ICM uses demonstrations from seen tasks as in-context examples to
prompt LLMs to generate action plans for unseen tasks. A key challenge under this setup is selecting
relevant demonstrations; irrelevant prompts fail to activate appropriate knowledge in the LLM, leading
to poor cross-task predictions. To address this, we introduce a dynamics-guided sample selection
strategy. This approach leverages learned representations of task dynamics—captured by predicting
final observations from initial states and task descriptions—to identify relevant demonstrations across
tasks. Guided by the learned dynamics, the dynamics-aware prompts can be formed that enable
X-ICM to elicit high-quality action predictions from LLMs, even for unfamiliar, unseen tasks.

Our contributions are threefold:

* We introduce AGNOSTOS, the first benchmark to systematically evaluate zero-shot cross-
task generalization in robotic manipulation for VLA models, with 23 unseen tasks spanning
two levels of generalization difficulty.

* We propose X-ICM, a novel method that combines in-context prompting and dynamics-
guided sample selection to enhance zero-shot cross-task transfer in VLA models.

* We conduct extensive evaluations of diverse VLA models on AGNOSTOS, uncovering
fundamental limitations in current approaches and demonstrating the superior generalization
of X-ICM.

2 Related Works

Vision-Language-Action Models. Generalizable robotic manipulation models [3} 14} 5} 138,39} 40,
411142, 14311441145 1461147, 148, 149, 150L 151]], designed to enable robots to understand instructions and
interact with the physical world, have largely followed two main paradigms. The first involves
modular-based approaches [2, 152} 153}154} 155,156 157} 58], where different MLLM components handle
perception, language understanding, planning, and action execution. For example, VoxPoser [2] uses
MLLMs to synthesize composable 3D value maps for manipulation. The second paradigm focuses
on end-to-end approaches [3, 29| 9], training a policy model to directly map raw sensory inputs (e.g.,
vision, language instructions) to robot actions. The success of these models heavily depends on the
scale and diversity of training data, which comes from various data sources, including large-scale
human action videos [[L1] and large-scale cross-embodiment robotic data [29}59]. Based on the data,
OpenVLA [8] is the first fully open-sourced work that significantly promotes the development of the
VLA community. 7 [1]] proposes a VLM-based flow matching architecture, which is trained on a
diverse dataset from multiple dexterous robot platforms.

Benchmarks for Vison-Language-Action Models. Evaluating the generalization capabilities of
VLA models requires robust and comprehensive benchmarks. While existing VLA models mainly
focus on real-world testing, which suffers from reproducibility issues and rarely focuses systematically
on zero-shot generalization to unseen tasks. Recently, many simulated benchmarks [[15, 164117, 18} 19,
20, 211 23] 24125 [26] have been proposed to offer a controlled environment for rigorous evaluation.
Colosseum [24] enables evaluation of models across 14 axes of perturbations, including changes
in color and texture, etc. GemBench [25] designs four levels of generalization, spanning novel
placements, rigid and articulated objects, and complex long-horizon tasks. We find that these
benchmarks have predominantly concentrated on evaluating visual variations within tasks, assessing
how well models can generalize to new scenes or altered attributes of objects within the same task.
However, these benchmarks do not focus on the more challenging aspect of zero-shot cross-task
evaluation, where models must generalize to entirely new tasks with unseen combinations of object
categories and motions. This gap in evaluation limits our understanding of the true generalization
capabilities of VLA models. Motivated by this, this work proposes the first zero-shot cross-task
manipulation benchmark, expanding the evaluation scope of the generalization capabilities of VLA
models.

In-context Learning with Large Language Models (LLMs). LLMs [60, 35,161,162} 163, 164} 65, [66]]
have demonstrated a remarkable capability known as in-context learning (ICL) [135 136, [37]], where
they can learn to perform new tasks based on a few examples provided within the prompt, without
requiring updates to parameters. The potential of ICL is being explored in robotics [67, 168, 169! [70,
71L[72]). Prior works like KAT [67]] and RoboPrompt [71] have shown that off-the-shelf LLMs can
predict robot actions directly using within-task in-context samples. By extending their paradigms to a



cross-task setting, this work specifically focuses on the zero-shot cross-task generalization problem.
Our X-ICM model uses demonstrations from seen tasks as in-context examples to prompt LLMs for
action generation in completely unseen tasks. Under the zero-shot cross-task setting, the selection
of in-context samples [[73} [74, [75, [76] is crucial for a robust generalization. Our X-ICM method
addresses this challenge by introducing a dynamics-guided sample selection strategy, ensuring that
the selected seen demonstrations are relevant to the unseen tasks, thereby stimulating the cross-task
generalization capabilities of LLMs.

3 AGNOSTOS: Zero-shot Cross-task Generalization Benchmark

To systematically assess the zero-shot cross-task generalization ability of vision-language-action
(VLA) models, we introduce AGNOSTOS, a reproducible benchmark built upon the RLBench
simulation environment. AGNOSTOS features 18 seen tasks for training and 23 unseen tasks for
rigorous generalization testing.

Training. For training, we adopt the standard set of 18 RLBench tasks that are widely used in prior
work [27, 28]. Examples of these seen tasks are shown in Figure [ATl We collect 200 language-
conditioned demonstrations per task, resulting in 3600 demonstrations in total. These demonstrations
enable VLA models to be fine-tuned to reduce the domain and embodiment gaps between pre-training
data and RLBench data.

Testing. As illustrated in Figure[I[, AGNOSTOS comprises 23 held-out unseen tasks with semantics
that are disjoint from the seen set (videos of all tasks are available in the Supplementary Materials).
We categorize the unseen tasks into two difficulty levels. Level-1: 13 tasks that share partial semantic
similarity with seen tasks—either in object types (e.g., cups) or motion primitives (e.g., stacking).
Level-2: 10 tasks that exhibit no overlap in either object categories or motion types, requiring
broader compositional reasoning and semantic extrapolation. Details on task curation and difficulty
categorization are provided in Section [AT.T] of the Appendix. For each unseen task, we perform
three test runs with different seeds, each consisting of 25 rollouts, and report the mean and standard
deviation of success rates.

To explore generalization boundaries, AGNOSTOS evaluates three broad families of VLAﬁnodels:

1. Foundation VLA models: trained on large-scale real-world cross-embodiment robotic
data [29] or built upon LLM or VLM models, including OpenVLA [8]], RDT [9], g [11,
LLARVA [77]l, SAM2Act [34], 3D-LOTUS++ [25], and VoxPoser [2].

2. Human-video VLA models: pre-trained on large-scale human action videos [[L1] to capture
rich human-object interactions for downstream robotic fine-tuning, including R3M [30],
D4R [31], R3M-Align [32], and D4R-Align [32].

3. In-domain VLA models: trained from scratch on RLBench’s 18 seen tasks with task-
specific model architectures. These serve as strong baselines without domain mismatch,
including PerAct [27], RVT [28], RVT2 [33], Sigma-Agent [[78]], and Instant Policy [69].

To ensure a fair comparison, we fine-tune all models on the same 18 seen tasks when the models
involve the embodiment gaps, following the official protocols of each method. A detailed description
of the fine-tuning process and evaluation on AGNOSTOS is provided in Section[AT.2]of the Appendix.
Table [T] compares AGNOSTOS with existing robotic manipulation benchmarks in terms of their
support for cross-task evaluation, i.e., considering test tasks that have different object categories or
motions from training tasks. While many benchmarks focus on within-task visual generalization,
few explicitly support zero-shot cross-task generalization test, and even fewer include tasks as
challenging as our Level-2 testing scenarios. Even benchmarks that include some form of cross-
task evaluatio often test on a narrow set of tasks, and typically evaluate only in-domain models,
neglecting foundation and human-video pre-trained VLA models. AGNOSTOS fills this gap by
supporting broad model coverage and introducing novel, difficult tasks in Level-2, providing a
more comprehensive and diagnostic assessment of cross-task generalization.

>We only consider evaluating the VLA models that are fully open-source.
3We carefully categorize their test tasks into our defined two-level difficulty task sets.



Table 1: Comparison of manipulation benchmarks that focuses on cross-task generalization testing.
The comparison evaluates whether each benchmark includes cross-task testing, the types of VLA
models evaluated, and the number of Level-1 and Level-2 unseen tasks included.

No. of No. of Cross-task Zero-shot Generalization Test

Benchmark Simulator ~ train  test Cross Evaluated VLA models Level-1 Level-2
tasks  tasks task 1;,_domain Human-video Foundation uUnseen tasks unseen tasks

RLBench-18Task [27] RLBench 18 18 X - - - - -
CALVIN [17] PyBullet [79] 34 34 X - - - -
Colosseum [24] RLBench 20 20 X - - - - -
VLMBench [23] RLBench 8 8 X - - - - -
Ravens [80] PyBullet [79] 10 10 v v X X 3 0
VIMA-Bench [81] Ravens 13 17 v v X X 4 0
GemBench [25] RLBench 16 44 v v X X 15 0
AGNOSTOS (Ours) RLBench 18 23 v v v v 13 10

4 X-ICM: Cross-task In-context Manipulation Method

To push the boundaries of zero-shot cross-task generalization in vision-language-action (VLA) models,
we propose a method called Cross-task In-context Manipulation (X-ICM). Leveraging the cross-task
generalization capabilities of LLMs, X-ICM utilizes demonstrations from seen tasks as in-context
examples. The dynamic characteristics of these examples are used to prompt the LLM to predict
action sequences for unseen tasks. In contrast to prior works [71,167] that apply LLMs’ in-context
learning to within-task generalization, our work is the first to extend this paradigm to a zero-shot
cross-task setting. A central challenge in this setting is that the selection of in-context demonstrations
significantly affects generalization performance. To address this, we design a dynamics-guided
sample selection module that measures similarities between dynamic representations of seen and
unseen tasks to guide the selection process, resulting in improved cross-task generalization.

4.1 Problem Definition and Method Overview

We tackle the problem of zero-shot cross-task robotic manipulation by exploiting the in-context
learning ability of off-the-shelf LLMs. We assume access to a dataset of demonstrations from seen
tasks, denoted as D° = {V;*, A3, L}V |, where N is the total number of seen demonstrations,
Ve ={viy, - viph A = {a,, -+ ,air}, and L] are the visual observation sequence, action
sequence, and language description of the ¢-th seen demonstration (7" is the sequence length, which
varies for each demonstration). For an unseen task with the given initial visual observation v*, and
language description L, our zero-shot cross-task manipulation method can be formulated as follows:

A;Ted = {CL?, e 7a7tl} = LLM(P(FSCZ(DS)a qu Lu))7 (1

where F%¢! is the cross-task in-context demonstration selection process, P is the cross-task in-context

prompt construction process, and A7, is the predicted action sequence for the tested unseen task.

Figure [2| outlines our X-ICM framework, which comprises two core modules. The Dynamics-guided
Sample Selection module introduces a dynamics diffusion model, and then retrieves effective
demonstrations based on dynamic similarities between seen and unseen demonstrations. The Cross-
task In-context Prediction module constructs the LLM prompt using retrieved demonstrations to
predict action sequences for the unseen task. Next, we describe each module in detail below.

4.2 Dynamics-guided Sample Selection module

Selecting effective in-context examples is essential for achieving robust cross-task generalization. We
propose a two-stage Dynamics-guided Sample Selection module that learns dynamic representations
from demonstrations using diffusion models, and retrieves examples that are most relevant to the
current unseen task based on the similarities between the dynamic representations of demonstrations.

Diffusion-based dynamics modeling stage. To effectively capture the dynamic representations
within each demonstration, we train a dynamics diffusion model G on all seen demonstrations. For
each demonstration (e.g., the ¢-th), the dynamics diffusion model G takes the initial visual observation
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Figure 2: X-ICM Method Overview. X-ICM employs a dynamics-guided sample selection module
to retrieve effective demonstrations from seen tasks for each tested unseen task. These demonstrations
are then used by the cross-task in-context prediction module to construct the prompt that drives the
LLM to predict the corresponding action sequence.

v; 1 and language descrlptlon L? as inputs, and predicts the future observation that matches the final
visual observation v; p. The model G is initialized from InstructPix2Pix [82]] and is optimized by:

Ingin ]Ei,z,eNN(OJ) [HE — €g (Uf,T,za 2, U;,la LZS)HQ] 3 )

where z is the diffusion timestep, € is the noise, v 1 , is the noised final observation, and €g is the
noise predictor in model G. By predicting the future, “the inherent dynamics of each demonstration
can be effectively modeled. Figure [A6]shows the generation results of our dynamics diffusion model.

Dynamics-guided retrieving stage. Once trained, we use G to extract a dynamic feature f; for the
i-th seen demonstration:
S,V & ,l 2x1024

=187 1) = G, LY) € RPPH, (©)
where f2" € R1924 is the predicted latent feature of the target visual observation, f'*™9 ¢ R1024
is the textual feature of the language description. For the unseen task, we similarly compute its feature
f*. Then, we compute cosine similarities between features and select the top- K seen demonstrations
with the highest similarity:

g
Rzzizs 1€ 1,...,N, (4)
RIEEA J
Ligew = argtopkfé{l,wN}(Ri), o)

where R; represents the cross-task dynamics similarity score between the tested unseen task and the
i-th seen demonstration. And the set 7,4, contains the indices of K seen demonstrations that achieve
the highest similarity scores. These K seen demonstrations are retrieved to construct the cross-task
in-context prompt.



4.3 Cross-task In-context Prediction module

For a tested unseen task, we use the obtained K most-relevant seen demonstrations to construct the
in-context prompt for cross-task action prediction with LLMs. Our Cross-task In-context Prediction
module follows the practices in existing within-task in-context manipulation methods [71} 167], but
we are the first to extend this paradigm to the zero-shot cross-task setting.

Textualizing key information. As shown at the bottom of Figure |2} for each selected seen demon-
stration, we extract the 3D positions of the centers of objects and the key-action sequence. For
the 3D positions of objects’ centers, we use GroundingDINO [83]] to detect the 2D positions of
objects, and then use the depth, intrinsic, and extrinsic information of the camera to obtain the 3D
coordinates of objects’ centers under the robot-base coordinate system. Additionally, we evenly
divide the workspace into 100 x 100 x 100 grids, and then normalize the 3D coordinates of the
objects’ centers into the grid’s coordinate system. Thus, for the m-th object O} in the k-th seen
demonstration, we textualize it as O} = “objectname: [z, y, 2]” (e.g., “block: [52, 50, 19]”).
For the key-action sequence, following [|84]], we select the actions when the gripper state changes
or the joint velocities are near zero. In this way, the execution process of a demonstration can be
determined by several key-actions. We use the 7-dimensional state of the end-effector to represent the
robot action, i.e., the 3D positions, the roll-pitch-yaw angles, and the gripper’s open/close. The 3D
positions of the end-effector are also normalized into the grid’s coordinate system of the workspace.
And the angles of end-effector are discretized into 72 bins, with each occupying 5 degrees. Thus, for
the ¢-th key-action AZ in the k-th seen demonstration, we textualize it as A}tC = “[x, y, 2, roll, pitch,
yaw, gripper]” (e.g., “[53, 57, 17, 0, 36, 53, 0]”).

Constructing in-context prompt. With the above textualization of object and key-action information,
for each seen demonstration (e.g., the k-th), we can textualize it as the mapping from its language
description and object context to its key-action context:

“IL3em {OR, -, O - Y] = A, - AL -] (6)

We textualize all K selected seen demonstrations in this manner, and concatenate them in
descending order based on their dynamics similarity scores to the tested unseen task. For
the tested unseen task, we textualize it using its language description and object context, i.e.,
“[Lunseen fOL ... O™, ...}] —”. Finally, the cross-task in-context prompt is formed by con-
catenating the system prompt, the textualized all seen demonstrations, and the textualized tested
unseen task (see the bottom of Figure 2]and an example in Figure [A7]of the Appendix). This prompt
will serve as the input of LLMs, which incentivizes the cross-task generalization capability of LLMs
to predict the key-action sequence for the tested unseen task.

5 Experiments

Implementation Details. For our X-ICM method on the AGNOSTOS benchmark, we use a total
of N = 3600 seen demonstrations. During in-context prompt construction, we select X = 18
demonstrations. We mainly use off-the-shelf Qwen2.5-Instruct [65] models with 7B and 72B
parameters, referred to as X-ICM (7B) and X-ICM (72B), respectively. These are deployed using two
or eight A6000 GPUs. For a fair comparison with existing zero-shot baselines (e.g., VoxPoser [2]), in
simulation we use the ground-truth positions of objects. Ablation on using different sizes of LLMs is
presented in Sec[A2.2)of the Appendix.

5.1 Benchmarking Vision-Language-Action Models

Table [2] presents the zero-shot cross-task performance of our X-ICM models on 23 unseen tasks from
the benchmark, including 13 Level-1 and 10 Level-2 tasks. These tasks are designed to evaluate the
generalization ability of VLA models under varying levels of difficulty. We compare our models
against a diverse set of baselines, including models trained on in-domain RLBench data, human
videos, and LLM/VLM-based foundations. Key observations include:

e X-ICM (7B) and X-ICM (72B) achieve average success rates of 23.5% and 30.1%, respec-
tively, outperforming all existing VLA models.

* On Level-1 tasks, X-ICM (7B) surpasses the prior SOTA 7 [1] by 6.9%. For Level-2 tasks,
performance gains are more pronounced with the 72B model.



Table 2: Cross-task zero-shot manipulation performance on 23 unseen tasks, where the column
headers show the abbreviation of each unseen task (see full task names in Table [AT). N/A indicates
that the tested tasks are removed since they overlap with the training tasks of the methods. Level-1
and Level-2 represent tasks with two different difficulty levels. The prefix * indicates second best.
Level-1 tasks
Toilet Knife Fridge Microwave Laptop Phone Seat LampOff LampOn Book Umbrella Grill Bin
PerAct 00 53 373 64.0 27 00 720 0.0 1.3 0.0 1.3 8.0 54.7
RVT 0.0 27 507 26.7 50.7 27 400 0.0 1.3 0.0 1.3 00 6.7
Sigma-Agent 00 93 56.0 9.3 307 13 653 13 00 00 0.0 1.3 4.0
RVT2 [33] 00 13 0.0 17.3 427 1.3 627 2.7 1.3 00 1.3 5.3 347
InstantPolicy 0.0 13 133 4.0 40 187 240 0.0 00 00 0.0 0.0 0.0
D4R 0.0 80 320 30.7 240 0.0 653 20.0 4.0 0.0 0.0 0.0 0.0
R3M [30] 00 00 373 22.7 253 13 627 6.7 4.0 0.0 0.0 0.0 0.0
D4R-Align [32] | 0.0 2.7 453 74.7 240 00 413 0.0 0.0 1.3 0.0 0.0 0.0
R3M-Align 0.0 40 493 25.3 213 0.0 493 0.0 53 00 0.0 13 13

OpenVLA [8] 00 53 387 40.0 573 00 533 120 1.3 1.3 0.0 10.7 0.0

methods

in-domain
training

human-video|
pretraining

z RDT [9] 0.0 0.0 46.7 133 147 0.0 50.7 0.0 00 13 0.0 8.0 0.0
% 7o [ 00 53 853 24.0 400 1.3 64.0 187 80 13 00 333 13
'g LLARVA [77] 00 0.0 12.0 0.0 6.7 00 400 0.0 00 00 0.0 0.0 0.0
£ 3D-LOTUS 0.0 6.7 N/A N/A N/A 00 67 0.0 00 00 00 133 53
5 |3D-LOTUS++ 00 53 N/A N/A N/A 93 68.0 107 00 00 00 293 133
> SAM2Act [34] 00 0.0 36.0 40.0 6.7 6.7 627 6. 00 13 1.3 9.3 0.0

VoxPoser 00 00 0.0 0.0 53 80 28.0 887 253 0.0 0.0 0.0 82.7
z X-ICM (7B) 1.3 267 227 453 333 573 48.0 587 50.7 1.3 0.0 8.0 18.7
8 X-ICM (72B) 6.7 693 12.7 58.7 340 68.0 513 86.7 747 2.0 1.3 53 187

Level-2 tasks Level-1 Level-2 All
USB Lid Plate Ball Scoop Rope Oven Buzz Plants Charger| avg (std) | avg (std) | avg (std)

PerAct 587 27 00 00 00 00 13 40 6.7 2.7 19.0(1.4) | 7.6 (1.1) | 14.0(0.9)
RVT 893 27 00 00 00 00 40 80 53 40 | 14.0(1.4) | 11.3(1.6) | 12.8 (0.2)
Sigma-Agent 880 0.0 00 00 00 00 40 80 53 1.3 13.7(1.6) | 10.7 (1.7) | 12.4 (0.4)
RVT2 [33] 227 400 00 00 00 00 00 I3 1.3 1.3 13.1(0.4) | 6.7 (1.3) | 10.3 (0.6)
InstantPolicy [69] | 26.7 13 0.0 0.0 00 0.0 0.0 13 0.0 0.0 43(42) | 29014 | 3.7(3.0)

D4R 987 00 00 00 00 00 13 13 13 4.0 | 14.1(0.3) | 10.7 (0.2) | 12.6 (0.2)
R3M [30] 48.0 00 00 00 0.0 00 80 27 27 1.3 123 (1.4) | 6.3(0.9) | 9.7 (0.6)
D4R-Align 893 13 00 00 00 00 80 6.7 0.0 1.3 14.5 (1.0) | 10.7 (0.2) | 12.8 (0.6)
R3M-Align 90.7 0.0 13 00 00 00 27 133 4.0 0.0 | 12.9(0.7) | 11.2(0.7) | 12.2(0.3)

OpenVLA [8] 773 00 0.0 00 00 00 67 53 27 0.0 |16.9(1.3) | 9.2(0.7) | 13.6 (0.8)

methods

in-domain
training

human-video
pretraining

2 RDT [9] 100.0 293 40 00 00 00 80 27 00 0.0 | 104(0.5) | 14.4(0.9) | 12.1 (0.4)
-% 0 973 00 13 0.0 00 00 147 53 1.3 0.0 |*21.7(0.4)| 12.0 (0.9) | *17.5 (0.4)
'§ LLARVA [77] 240 00 00 0.0 00 00 0.0 00 00 00 45(0.1) | 2.4(0.0) | 3.6(0.1)
£ 3D-LOTUS 853 00 13 0.0 00 00 0.0 40 00 00 3.2(0.5) | 9.1(0.7) | 6.2(0.5)
S5 [3D-LOTUS++ 90.7 30.7 00 0.0 53 13 8.0 87 6.7 0.0 | 13.6(1.0) | 15.1(1.1) | 14.4 (1.0)
> SAM2Act 920 493 00 00 00 00 13 67 40 53 | 13.1(0.4) |*15.9 (1.3)| 14.0 (0.7)
VoxPoser [2] 320 760 00 80 00 00 0.0 13 00 40 | 18.1(04) | 12.1(04) | 15.6(0.2)
z X-ICM (7B) 98.7 200 6.7 93 00 67 160 2.7 53 4.0 | 28.6(1.9) | 16.9 (1.3) | 23.5 (1.6)
8 X-ICM (72B) 98.7 133 47 360 0.7 16.0 20.7 73 2.7 2.7 |37.6(1.4) | 203 (1.7) | 30.1 (1.0)

* While some VLA foundation models show decent performance, particularly 7y on Level-1
tasks and SAM2Act [34]/3D-LOTUS++ [23] on Level-2 tasks, they fall short of the broad
generalization capabilities demonstrated by our X-ICM models.

* All prior models completely fail on at least eight of the 23 tasks. In contrast, X-ICM (7B)
fails on only two, and X-ICM (72B) succeeds on all.

5.2 Ablation Studies

Dynamics-guided sample selection. We assess the impact of the dynamics-guided sample selection
module by comparing X-ICM (72B) with and without it (denoted as w/o sel, using random sampling)
at the top-left of Table [3] Incorporating the module notably boosts performance and robustness
across both task levels. This confirms its effectiveness in identifying informative demonstrations that
enhance the LLM’s cross-task generalization ability. Further analysis, including visualizations from
the dynamics diffusion model and comparisons of dynamic features, are provided in Appendix [AZ.1]



Table 3: Effects of dynamics-guided sample selection mod- 2 6 oIR8
ule and different model sizes. 40 38 number of in-context samples

Models Level-1 Level-2 All 3 "
X-ICM (72B) w/o sel | 30.7 (4.7) | 180 (22) | 252 (3.2) 304
X-ICM (72B) 37.6 (1.4) | 203 (1.7) | 30.1 (1.0) 268 2

Table 4: Effect of using different LLM models. 219 205 207
LLMs Level-1 | Lovel2 | All % P
Deepseek-R1-Distill-Qwen-7B | 10.7 (1.1)] 7.9 (0.5) | 9.5 (0.5)
Llama3.0-8B-Instruct | 17.4 (0.7)|11.7 (1.6)| 15.1 (0.3) Level-1 Level-2 All
Ministral-8B-Instruct-2410 22.9 (0.7)| 14.8 (0.3)| 19.5 (0.5) . 4
TnternLM3-8B-Instruct |27.9 (0.7)|13.3 (0.4)|21.8 (05)  Figure 3: The effect of varying the number of
Qwen2.5-7B-Instruct 28.6 (1.9)[16.9 (1.3)|23.5(1.6)  in-context demonstrations.

Effect of the number of in-context demonstrations. We explore how performance varies with the
number of in-context demonstrations using the Qwen2.5-72B-Instruct model. Figure [3|shows that
performance improves rapidly as the number increases from 1 to 12, after which it plateaus. This
suggests that a moderate number of relevant demonstrations is critical. Too many may introduce
irrelevant noise and diminish gains.

Comparison of LLM backbones. Table ] compares the performance of X-ICM (7B) when replacing
Qwen2.5-7B-Instruct with alternative 7B/8B models, including Deepseek-R1-Distill-Qwen-7B [85],
Llama3.0-8B-Instruct [86]], Ministral-8B-Instruct-2410 [87]], and InternLM3-8B-Instruct [[88]. The
results show significant variability in performance, underscoring the importance of choosing a
powerful and well-aligned LLM backbone.

5.3 Real-world Experiments

To evaluate real-world applicability, we test X-ICM on five physical manipulation tasks using an
xArm7 robot arm, DH-Robotics gripper, and a third-person Orbbec camera: put block into bin, push
button, put bottle into box, stack blocks, and stack cups. We collect 20 demonstrations for each of
the five tasks. During testing, we use the demonstrations from the other four tasks to construct the
cross-task in-context prompt, enabling zero-shot generalization. The Qwen2.5-72B-Instruct LLM is
used as the backbone and the number of seen demonstrations is set to 18. Each task is executed 20
times, and we report average success rates. Results shown at the bottom of Figure ] demonstrate the
strong real-world zero-shot cross-task performance of our approach. We provide additional details
in Section[A3]of the Appendix, and showcase some testing videos that include both successful and
failed cases in the Supplementary Materials.

In addition, we also evaluate the proposed X-ICM model on long-horizon tasks under the zero-shot
cross-task setting. We use tasks put block into bin, push button, put bottle into box, stack blocks,
and pull out the middle block as seen tasks, where we have 10 demonstrations for each task. The
long-horizon task we evaluated is clean the table, according the robot’s visual observation, we
decompose the long-horizon task into three sequential sub-tasks, ie, stack cups, put the stacked cups
into plate, place the mango on top of the stacked cups. We evaluated this task over 20 rollouts, with
sub-task success contingent on the success of all prior sub-tasks. For our X-ICM method, the success
rates on sub-tasks "stack cups", "put the stacked cups into plate”, "place the mango on top of the
stacked cups." are 40%, 25%, and 5%, respectively. Thus, the overall success rate for the long-horizon
task is 5%. These results align with expectations, as the sequential nature of long-horizon tasks leads
to cumulative failure. The cross-task zero-shot setting exacerbates these difficulties. These findings
highlight the need for more advanced algorithms to handle long-horizon tasks in zero-shot scenarios.

put bottle into box stack blocks stack cups

put block into bin push button
3 L

Success: 70% Success: 10% Success: 30% Success: 50% Success: 30%

Figure 4: Results of five real-world tasks. The tests are conducted in a zero-shot cross-task manner.



6 Conclusions and Discussions

Conclusions. In this work, we have introduced AGNOSTOS, a benchmark for evaluating zero-shot
cross-task generalization in robotic manipulation. With 23 unseen tasks across two difficulty levels,
AGNOSTOS provides a rigorous testbed for assessing the limits of Vision-Language-Action (VLA)
models. Our evaluation of diverse VLA models reveals their significant limitations in unseen task
generalization. To address this, we propose X-ICM, a cross-task in-context manipulation method
that leverages the cross-task generalization capabilities of LLMs. The X-ICM achieves substantial
improvements over existing VLA models, demonstrating robust zero-shot cross-task generalization.

Discussions. While X-ICM significantly enhances zero-shot cross-task generalization, its perfor-
mance on many unseen tasks, particularly those with both novel objects and motion primitives,
remains limited due to LLMs’ challenges in extrapolating beyond pre-training data and in-context
demonstrations. In addition, the use of visual information is limited to textualizing object infor-
mation, which may ignore important visual context in the raw data. To address these limitations,
future work could integrate multi-modal reasoning, combining vision, language, and action data
to improve generalization to novel semantics. Additionally, leveraging generalizable concepts like
object trajectories as a bridge between MLLMs’ perception and dynamic action sequence prediction
could reduce cross-task generalization complexity. Scaling X-ICM to diverse robotic embodiments
would further enhance its versatility across varied platforms and sensor configurations. We believe the
proposed X-ICM benchmark and X-ICM method will inspire future research in generalizable robotic
manipulation, paving the way for robots that can seamlessly adapt to open-world environments.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the main contributions and
scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the Discussions Section, we discuss the limitations of this work, and
demonstrate some promising directions for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all the information needed to reproduce the main experimental
results in the Method, Experiment, and Appendix sections. We will release the code upon
acceptance of the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We commit to releasing the code, data, and models upon acceptance of the
paper.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details necessary to understand the results
in the Method, Experiment, and Appendix sections.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We show the standard deviation of the tasks’ success rates.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information on the computer resources is provided in Experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics, since the paper does not include
any content or practices that violate ethical guidelines

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the potential societal impacts of the paper in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not involve data or models that have a high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly credits the creators or original owners of all used assets,
and properly respects the license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our new benchmark is built upon the existing RLBench environment. We
provide details about our benchmark in the Benchmark section and Appendix. We will
release the data for the benchmark upon acceptance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The task categorization process is conducted by GPT4o. The results are
verified by three human experts. The verification only takes about 10 minutes. According to
our country’s policy, human experts have received decent remuneration.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There are no risks to human subjects, and no need for Institutional Review
Board (IRB) approvals.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Al AGNOSTOS Benchmark

Al.1 Task Selection and Categorization

The AGNOSTOS benchmark is built upon the RLBench simulated environment, which includes 100
pre-defined manipulation tasks. Existing robotic manipulation studies typically use a subset of 18
RLBench tasks for training and close-set testing. Figure [AT]illustrates these 18 tasks, which we refer
to as seen tasks. To rigorously assess the generalization capabilities of vision-language-action (VLA)
models on novel tasks, we select 23 unseen tasks from RLBench with distinct semantics compared to
the seen tasks. Figure[I] visualizes these 23 unseen tasks. In the Supplementary Materials, we provide
video examples of all seen and unseen tasks.

put item in reach and drag turn tap slide block to open drawer put groceries in
drawer color target cupboard

put the item in use the stick to drag turn left tap slide the block to open the bottom put the coffee in the
middle drawer the cube onto the green target drawer cupboard
yellow target

place shape in put money in

shape sorter safe push buttons close jar stack blocks place cups

e

i

put the cube inthe  put the money away ~ push the maroon close the silver jar stack 3 white place 2 cups on the
shape sorter in the safe on the button, then push blocks cup holder
middle shelf the green button,
then push the
purple button
place wine at light bulb in sweep to . Insert onto meat off grill stack cups
rack location dustpan of size square peg

\

stack the wine screw in the azure sweep dirt to the put the ring on the take the steak off  stack the other cups
bottle to the middle light bulb short dustpan lime spoke the grill on top of the black
of the rack cup

Figure Al: Examples of 18 widely used training (seen) tasks on RLBench.

The AGNOSTOS benchmark categorizes the 23 unseen tasks into two difficulty levels. The Level-1
testing includes 13 unseen tasks, which have similar semantics to seen tasks in either objects or
motions. The Level-2 testing comprises 10 unseen tasks with entirely novel semantics, distinct from
the seen tasks. The task categorization is performed by GPT-40 based on the semantics similarities
between seen and unseen task descriptions. The categorization results are verified by three human
experts in the field of robotics. In Table El we list all 23 unseen tasks, where the text in each “[]”
symbol is an abbreviation for the corresponding task. Under the full task name of each unseen task,
we show the seen task whose semantics are the most similar to the unseen task.
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Table Al: 23 unseen tasks in our AGNOSTOS benchmark. The text in each “[]” symbol is an
abbreviation for the corresponding task. Under the full task name of each unseen task, we show its
most similar task among the 18 seen tasks.

[Toilet]
put toilet roll on stand

(place wine at rack location)

[Knife]
put knife on
chopping board

(put item in drawer )

[Fridge]
close fridge
(close jar)

[Microwave]
close microwave
(close jar)

[Laptop]
close laptop 1lid
(close jar)

[Phone]
phone on base

(place wine at rack location)

[Seat] [(LampOff] [(LampOn]
toilet seat down lamp off lamp on
(reach and drag) (push buttons) (push buttons)
[Umbrellal

[Book]
put books on bookshelf

(put groceries in cupboard)

put umbrella in
umbrella stand

(put item in drawer)

[Charger]
unplug charger

(no similar seen task)

[Grill] [Bin] [USB]
open grill put rubbish in bin | take usb out of computer
(open drawer) (put item in drawer) (no similar seen task)
[Lid] (Plate] [Ball]

take 1lid off saucepan

(no similar seen task)

take plate off
colored dish rack

(no similar seen task)

basketball in hoop

(no similar seen task)

[Scoop]
scoop with spatula

(no similar seen task)

[Rope]
straighten rope

(no similar seen task)

[Oven]
turn oven on

(no similar seen task)

[Buzz]
beat the buzz

(no similar seen task)

[Plants]
water plants

(no similar seen task)

Al.2 Evaluations of existing VLA models

Due to embodiment gaps (e.g., differences in robots, action spaces, and camera configurations),
existing learning-based VLA models cannot effectively generalize to tasks in unseen embodiments.
To address this, we fine-tune VLA models using data from RLBench’s 18 seen tasks and evaluate
their generalization on the 23 unseen tasks.

Al.2.1 Human-video pre-trained VLA models

Existing VLA models pre-trained on large-scale human action videos, such as R3M [30], D4R [31],
R3M-Align [32], and D4R-Align [32], claim to learn generalizable representations for robotic
manipulation. HR-Align [32]] adapts these models to RLBench by fine-tuning them on the 18 seen
tasks, achieving strong performance on these tasks. We evaluate these adapted models provided
by [32]] on our 23 unseen tasks to assess their generalization.

Al1l.2.2 In-domain data trained VLA models

For the VLA models trained on the RLBench’s 18 training (seen) tasks (i.e., in-domain training),
including PerAct [27], RVT [28], RVT2 [33], Sigma-Agent [78], and Instant Policy [69], we test
their officially released models on our 23 unseen tasks. These VLA models serve as strong baselines
on our benchmark, since they have sophisticated model designs on RLBench data and do not involve
the data domain gap between their training tasks and our unseen testing tasks. Instant Policy is a
within-task in-context imitation learning method that formulates policy prediction as a graph diffusion
process over structured demonstrations and observations. To evaluate its cross-task generalization
capability, we evaluate the released model on our 23 unseen tasks in a zero-shot manner, where a
randomly sampled seen demonstration is used for in-context prompting.
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A1.2.3 Foundation VLA models

The foundation VLA models trained on large-scale robotic data or built upon LLM or VLM models,
are expected to have strong generalization capabilities on new tasks. In this work, we evaluate Open-
VLA [8], RDT [9], 7o [1], LLARVA [77], SAM2Act [34], 3D-LOTUS++ [25]], and VoxPoser [2].
Below, we elaborate on our fine-tuning details, which follow the official fine-tuning guidelines.

OpenVLA [8]]. We fine-tune OpenVLA using 3,600 demonstrations from the 18 seen tasks, with
each demonstration comprising a front RGB view (size of 256 x 256) and the corresponding language
instruction. We use a batch size of 16 and apply LoRA fine-tuning with a rank of 32 and a learning
rate of 5 x 1074, Figure shows the training loss and action accuracy during fine-tuning, indicating
rapid convergence within 2,000 steps. We evaluate the model on the 23 unseen tasks every 1,000
steps and select the model with the highest generalization performance.

train_loss action_accuracy

0 1k 2k 3k 4k 5k 6k o 1k 2k 3k 4k 5k 6k

Figure A2: The statistics of the fine-tuning of OpenVLA.

RDT [9]. For the fine-tuning of RDT, we also use the 3,600 seen demonstrations. For each
demonstration, RDT takes the front and wrist RGB views as well as the language instruction as inputs,
where the image size is 256 x 256. We use a batch size of 16 and fine-tune the RDT for 400,000
steps by following their official guidance. Figure[A3]shows the training loss and the overall average
sample MSE loss (a good metric claimed by the authors) during the fine-tuning, which indicates that
the RDT converges well. We evaluate the RDT model every 10,000 steps, and report the highest
generalization performance on our 23 unseen tasks.
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Figure A3: The statistics of the fine-tuning of RDT.

7o [1]. We fine-tune 7mg with LoRA using 3,600 demonstrations, each including front, wrist, and
overhead RGB views (size of 256 x 256) and the language instruction. Following the official protocol,
we set the batch size to 64 and train for 100,000 steps. Figure [A4]shows the training loss during
fine-tuning. We evaluate the model every 10,000 steps and report the best generalization performance
on the 23 unseen tasks.

LLARVA [77]. LLARVA is a model trained with instruction tuning on the Open X-Embodiment
dataset [29]], which unifies various robotic tasks and environments. The authors further adapt LLARVA
to RLBench to mitigate the embodiment gap. Therefore, we use the officially released model to
evaluate the generalization performance on our 23 unseen tasks.

3D-LOTUS/3D-LOTUS++ [25]. We directly evaluate the generalization performance of 3D-LOTUS
using the pretrained model released by the authors. For 3D-LOTUS++, we follow the recommended
configuration and adopt LLaMA3-8B as the LLM, and the base models of OwlViT v2 [89] and
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Figure A4: The statistics of the fine-tuning of 7.

SAM [90] as the VLM components. These modules enable 3D-LOTUS++ to effectively decompose
high-level instructions and ground object references in 3D space. We evaluate the model by following
the official pipeline on our 23 unseen tasks.

SAM2Act [34]. SAM2Act builds upon the RVT-2 framework and introduces a novel module that
integrates semantic masks from SAM [90] into the action learning pipeline. The SAM2Act model
is trained end-to-end on RLBench’s 18 training tasks. In our experiment, we use the checkpoint
released by the authors and evaluate its performance directly on our 23 unseen tasks.

VoxPoser [2]]. VoxPoser uses a large language model to generate 3D affordance maps for motion
planning. We adopt the open-sourced Qwen2.5-72B-Instruct variant as the LLM and modify the
original single-task pipeline to support batched evaluation on custom datasets. During evaluation,
object positions are directly obtained from the simulator as ground-truth. We evaluate the model in a
zero-shot manner on our 23 unseen tasks.

A1.3 Performance on Seen Tasks.

In Table @], we evaluate the performance of RVT2, R3M-Align, OpenVLA, 7y and our X-ICM
(72B) on 18 in-domain (seen) tasks, alongside their performance on 23 unseen tasks. These results
demonstrate that all methods achieve high success rates on in-domain tasks after fine-tuning on seen
task demonstrations, highlighting the challenge of cross-task zero-shot generalization.

For X-ICM, we use 18 within-task demonstrations to construct in-context prompts for in-domain
tasks, yielding a 60.4% average success rate, which is substantially higher than its 30.1% on unseen
tasks. However, our X-ICM’s performance on in-domain tasks is lower than that of learning-based
VLA methods like (70.5%). This gap is expected, as X-ICM relies solely on the LLM’s in-context
learning capability without fine-tuning.

18 seen/in-domain avg (std) | 23 unseen avg (std)
RVT2 82.3(0.7) 10.3 (0.6)
R3M-Align 59.2 (0.8) 12.2 (0.3)
OpenVLA 63.1(1.4) 13.6 (0.8)
o 70.5 (0.9) 17.5(0.4)
X-ICM (72B) 60.4 (0.7) 30.1 (1.0)

Table A2: Performance on 18 seen tasks and 23 unseen tasks.

A2 More Analysis

A2.1 Dynamics-guided Sample Selection module

Different In-context Sample Selection Baselines. Our Dynamics-guided Sample Selection module
is designed to capture the dynamic semantics critical for cross-task generalization by modeling the
transformation from an initial to a final state in manipulation tasks, as detailed in Section 4.2. Unlike
standard methods like Video-CLIP [91]], which rely on video sequences and are thus incompatible
with our setting—where only a single initial frame is available during testing unseen tasks—our
diffusion-based model predicts future observations from this single frame. This enables effective
modeling of task temporal dynamics essential for generalization.
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Figure AS: Demonstration examples of five real-world tasks. We visualize one demonstration for
each task, where we show the key-observations captured by the third-view Orbbec camera.

To validate the necessity of our approach, we compared it with baselines using CLIP [92] and
DINOvV2 [93]] features for sample selection, alongside a random selection strategy. The results in
Table [A3] demonstrate that our method achieves higher average success rates and lower variance
compared to these general-purpose features, as it is trained specifically on manipulation dynamics,
unlike the broader datasets used for CLIP and DINOv2.

Level-1 avg (std) | Level-2 avg (std) | All avg (std)
Random 30.7 (4.7) 18.0 (2.2) 25.2(3.2)
CLIP feature 32.1 (3.5) 18.9 (2.6) 26.4 (2.9)
DINOV?2 feature 33.7(3.1) 19.3 (2.0) 27.4 (2.5)
Dynamics Diffusion (Ours) 37.6 (1.4) 20.3(1.7) 30.1 (1.0)

Table A3: Comparisons between different feature representations.

Qualitative results of the dynamics diffusion model. To facilitate the cross-task sample selection,
we train a dynamics diffusion model to encode the dynamic representations within each robot
demonstration. The similarities of the captured dynamic representations across seen and unseen
demonstrations are effective in identifying relevant demonstrations, thus guiding the cross-task sample
selection process. For each demonstration, the dynamics diffusion model takes the initial observation
and the corresponding language description as inputs, aiming to predict the final visual observation at
the completion of the demonstration. Figure [A]showcases qualitative predictions from the trained
dynamics diffusion model.
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Figure A6: Qualitative results of the trained dynamics diffusion model. For each demonstration, the
dynamics diffusion model uses the initial visual observation and language description as conditions
and predicts the final visual observation upon task completion.

Using different dynamic features. Our dynamics diffusion model adopts the architecture of
InstructPix2Pix [82]]. After training, we extract multi-modal features from each demonstration
to serve as dynamic features for sample selection. In this work, we use the combination of the
textual feature of the language description (i.e., feat;qang) and the predicted latent feature of the
target observation (i.e., feat,;s.out) as the dynamic features. Alternatively, we can use the latent
feature of the initial observation (i.e., feat,;s.in), and try different combinations to form the dynamic
features. Table[A4]presents the generalization performance on the 23 unseen tasks for different feature
combinations. The predicted latent feature of the target observation (i.e., featys.out) proved most
effective, validating the ability of our dynamics diffusion model to capture generalizable dynamics.
Additionally, we find that the latent feature of the initial observation (i.e., feat,;s.in) is also effective,
while using the textual feature of the language description (i.e., featiang) does not show benefit.

Table A4: Generalization performance using different dynamic feature combinations. Upon our
InstructPix2Pix-based dynamics diffusion model, feat;.,q denotes the language instruction feature,
feat,;s.in represents the latent feature of the initial observation, and feat,;s. o+ denotes the predicted
latent feature of the target observation.

featiang  featyisin  featvis.out Level-1 Level-2 All
X X X 30.7(4.7) | 18.0(2.2) | 25.2(3.2)
X X 34929) | 17.8(1.4) | 27.5(1.0)
X X v 37.2(2.4) | 199 2.1) | 29.7 (2.2)
X v v 37.1(0.8) | 17.6 (2.0) | 28.6(1.3)
v v X 36.3(0.9) | 16.4(0.4) | 27.7 (0.7)
v X v 37.6 (1.4) | 20.3(1.7) | 30.1 (1.0)
v v v 38.6(1.6) | 16.7(2.4) | 29.0 (1.6)

A2.2 Different model sizes of LLMs.

We investigated the impact of model scale on performance by evaluating the X-ICM model at various
sizes of Qwen2.5-Instruct: 7B, 14B, and 72B parameters. As shown in Table [A3] larger models
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generally tend to yield better performance. Performance improved noticeably as the model size
increased from 7B to 14B. The performance gain diminished when scaling models to 72B. This
suggests that while increasing model size is generally beneficial, the returns may diminish.

Table A5: Effects of different model sizes.
Models Level-1 Level-2 All
X-ICM (7B) | 28.6(1.9) | 16.9 (1.3) | 23.5(1.6)
X-ICM (14B) | 38.6(0.5) | 18.1(2.3) | 29.7 (0.7)
X-ICM (72B) | 37.6 (1.4) | 20.3(1.7) | 30.1(1.0)

A2.3 Cross-task In-context Prompt

Figure [A7]shows an example of the construction process of the cross-task in-context prompt. The
prompt is concatenated by the system prompt, textualized cross-task seen demonstrations that are
selected, and the textualized tested unseen task.

“You are a Franka Panda robot with a parallel gripper. We provide you with some demos
from some , in the format of [task_instruction, observation]—[7-dim action_1, 7- system
dim action_2, ..., 7-dim action_T]. Then you will receive an instruction with a
new observation, and you need to output a list of 7-dim actions that match the trends in the
*.demos. Do not output anything else.

prompt

A [“instruction’: slide the block to green target, {‘target’: [50, 33, 15], ‘block’: [52, 50, 19]}] .

—[[53, 57,17, 0, 36, 53, 0], [50, 33, 15, 0, 36, 53, 0]], Cross
; 3 task
seen
{ [“instruction’: put the cube in the shape sorter, {‘shape sorter’: [39, 63, 29], ‘cube’: [74, 53, demos

18131 —[[73, 53, 24, 0, 36, 22, 1], [73, 53, 17, 0, 36, 22, 0], [73, 53, 23, 0, 36, 22, 0], [44,
68,35, 0,36, 53, 0], [44, 68, 30,0, 36, 53, 1]],

tested

g[‘instmction': water plant, {'plant": [60, 70, 49], 'waterer": [19, 64, 26]}] — 4— unseen
: . task

Cross-task In-context prompt
Figure A7: An example of the construction of our cross-task in-context prompt, which is concatenated
by the system prompt, textualized cross-task seen demonstrations that are selected, and the textualized
tested unseen task.

A3 Real-world Manipulation Experiments

In Figure[A3] we visualize the collected demonstrations for five real-world tasks. For each task, we
randomly select one demonstration for visualization. And we visualize the visual observations when
the key-actions occur in each demonstration. In the Supplementary Materials, we showcase some
testing videos that include both successful and failed cases.

A4 Broader Impacts Statements

There are no ethical issues involved in this paper. This work proposes a cross-task generalization
benchmark to evaluate the generalization capabilities of existing vision-language-action models. The
method proposed in this work is purely algorithmic. Therefore, the proposed benchmark and method
does not change the societal impacts of robotic manipulation.
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