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Abstract

Denoising diffusion probabilistic models (DDPMs) [17] have shown impressive
results on image and waveform generation in continuous state spaces. Here, we
introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-
like generative models for discrete data that generalize the multinomial diffusion
model of Hoogeboom et al. [18], by going beyond corruption processes with uni-
form transition probabilities. This includes corruption with transition matrices that
mimic Gaussian kernels in continuous space, matrices based on nearest neighbors
in embedding space, and matrices that introduce absorbing states. The third al-
lows us to draw a connection between diffusion models and autoregressive and
mask-based generative models. We show that the choice of transition matrix is an
important design decision that leads to improved results in image and text domains.
We also introduce a new loss function that combines the variational lower bound
with an auxiliary cross entropy loss. For text, this model class achieves strong
results on character-level text generation while scaling to large vocabularies on
LM1B. On the image dataset CIFAR-10, our models approach the sample quality
and exceed the log-likelihood of the continuous-space DDPM model.

1 Introduction

Generative modeling is a core problem in machine learning, useful both for benchmarking our ability
to capture statistics of natural datasets and for downstream applications that require generating
high-dimensional data like images, text, and speech waveforms. There has been a great deal of
progress with the development of methods like GANs [14, 3], VAEs [22, 32], large autoregressive
neural network models [43, 42, 44], normalizing flows [31, 11, 21, 30], and others, each with their
own tradeoffs in terms of sample quality, sampling speed, log-likelihoods, and training stability.

Recently, diffusion models [36] have emerged as a compelling alternative for image [17, 39] and au-
dio [7, 23] generation, achieving comparable sample quality to GANs and log-likelihoods comparable
to autoregressive models with fewer inference steps. A diffusion model is a parameterized Markov
chain trained to reverse a predefined forward process, which is a stochastic process constructed to
gradually corrupt training data into pure noise. Diffusion models are trained using a stable objective
closely related to both maximum likelihood and score matching [19, 45], and they admit faster
sampling than autoregressive models by using parallel iterative refinement [28, 38, 40, 37].

Although diffusion models have been proposed in both discrete and continuous state spaces [36],
most recent work has focused on Gaussian diffusion processes that operate in continuous state spaces
(e.g. for real-valued image and waveform data). Diffusion models with discrete state spaces have
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Figure 1: D3PM forward and (learned) reverse process applied to a quantized swiss roll. Each dot
represents a 2D categorical variable. Top: samples from the uniform, discretized Gaussian, and
absorbing state D3PM model forward processes, along with corresponding transition matrices Q.
Bottom: samples from a learned discretized Gaussian reverse process.

been explored for text and image segmentation domains [18], but they have not yet been demonstrated
as a competitive model class for large scale text or image generation.

Our aim in this work is to improve and extend discrete diffusion models by using a more structured
categorical corruption process to shape data generation, as illustrated in Figure 1. Our models do not
require relaxing or embedding discrete data (including images) into continuous spaces, and can embed
structure or domain knowledge into the transition matrices used by the forward process. We achieve
significantly improved results by taking advantage of this flexibility. We develop structured corruption
processes appropriate for text data, using similarity between tokens to enable gradual corruption
and denoising. Expanding further, we also explore corruption processes that insert [MASK] tokens,
which let us draw parallels to autoregressive and mask-based generative models. Finally, we study
discrete diffusion models for quantized images, taking inspiration from the locality exploited by
continuous diffusion models. This leads to a particular choice of discrete corruption process that
diffuses preferentially to more similar states and leads to much better results in the image domain.

Overall, we make a number of technical and conceptual contributions. Beyond designing several new
structured diffusion models, we introduce a new auxiliary loss which stabilizes training of D3PMs
and a family of noise schedules based on mutual information that lead to improved performance. We
strongly outperform various non-autoregressive baselines for text generation on character-level text
generation, and successfully scale discrete diffusion models to large vocabularies and long sequence
lengths. We also achieve strong results on the image dataset CIFAR-10, approaching or exceeding
the Gaussian diffusion model from Ho et al. [17] on log-likelihoods and sample quality.

2 Background: diffusion models

Diffusion models [36] are latent variable generative models characterized by a forward and a reverse
Markov process. The forward process q(x1:T |x0) =

QT
t=1 q(xt|xt�1) corrupts the data x0 ⇠

q(x0) into a sequence of increasingly noisy latent variables x1:T = x1,x2, ...,xT . The learned
reverse Markov process p✓(x0:T ) = p(xT )

QT
t=1 p✓(xt�1|xt) gradually denoises the latent variables

towards the data distribution. For example, for continuous data, the forward process typically adds
Gaussian noise, which the reverse process learns to remove.
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In order to optimize the generative model p✓(x0) to fit the data distribution q(x0), we typically
optimize a variational upper bound on the negative log-likelihood:

Lvb = Eq(x0)


DKL[q(xT |x0)||p(xT )]| {z }

LT

+
TX

t=2

Eq(xt|x0)

⇥
DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)]

⇤
| {z }

Lt�1

�Eq(x1|x0)[log p✓(x0|x1)]| {z }
L0

�
. (1)

When the number of time steps T goes to infinity, both the forward process and the reverse process
share the same functional form [36, 12], in the sense that the true posterior q(xt�1|xt) becomes
fully conditionally independent.3 This motivates using a conditionally independent approximate
reverse process p✓(xt�1|xt) from the same class of distributions as that of the forward process.
Furthermore, for several choices of the forward process the distribution q(xt|x0) converges to a
stationary distribution ⇡(x) in the limit t ! 1 independent of the value of x0. When the number of
time steps T is large enough and we choose ⇡(x) as the prior p(xT ), we can guarantee that the LT

term in (1) will approach zero regardless of the data distribution q(x0). (Alternatively, one can use a
learned prior p✓(xT ).)

While q(xt|xt�1) can in theory be arbitrary, efficient training of p✓ is possible when q(xt|xt�1):

1. Permits efficient sampling of xt from q(xt|x0) for an arbitrary time t, allowing us to
randomly sample timesteps and optimize each Lt�1 term individually with stochastic
gradient descent,

2. Has a tractable expression for the forward process posterior q(xt�1|xt,x0), which allows
us to compute the KL divergences present in the Lt�1 term of (1).

The majority of recent work in continuous spaces [17, 37, 7, 28] defines the forward
and reverse distributions as q(xt|xt�1) = N

�
xt|

p
1� �txt�1,�tI

�
and p✓(xt�1|xt) =

N (xt�1|µ✓(xt, t),⌃✓(xt, t)), respectively. The aforementioned properties hold in the case of
these Gaussian diffusion models: the forward process q(xt|x0) converges to a stationary distribution,
motivating the choice p(xT ) = N (xT |0, I), and both q(xt|x0) and q(xt�1|xt,x0) are tractable
Gaussian distributions for which the KL divergence can be computed analytically.

3 Diffusion models for discrete state spaces

Diffusion models with discrete state spaces were first introduced by Sohl-Dickstein et al. [36], who
considered a diffusion process over binary random variables. Hoogeboom et al. [18] extended
the model class to categorical random variables with transition matrices characterized by uniform
transition probabilities. In their supplementary material, Song et al. [37] also derived this extension,
although no experiments were performed with this model class. Here, we briefly describe a more
general framework for diffusion with categorical random variables which includes these models as
special cases.4

For scalar discrete random variables with K categories xt, xt�1 2 1, ...,K the forward transition
probabilities can be represented by matrices: [Qt]ij = q(xt = j|xt�1 = i). Denoting the one-hot
version of x with the row vector x, we can write

q(xt|xt�1) = Cat(xt;p = xt�1Qt), (2)

where Cat(x;p) is a categorical distribution over the one-hot row vector x with probabilities given
by the row vector p, and xt�1Qt is to be understood as a row vector-matrix product. We assume
that Qt is applied to each pixel of an image or each token in a sequence independently, and that
q factorizes over these higher dimensions as well; we thus write q(xt|xt�1) in terms of a single

3For continuous state spaces and Gaussian q, the limit T ! 1 corresponds to a stochastic differential
equation [40], whereas for discrete state spaces it corresponds to a Markov jump process.

4Our implementation of D3PM framework is available at https://github.com/google-research/
google-research/tree/master/d3pm.

3

https://github.com/google-research/google-research/tree/master/d3pm
https://github.com/google-research/google-research/tree/master/d3pm


element. Starting from x0, we obtain the following t-step marginal and posterior at time t� 1:
q(xt|x0) = Cat

�
xt;p = x0Qt

�
, with Qt = Q1Q2 . . .Qt

q(xt�1|xt,x0) =
q(xt|xt�1,x0)q(xt�1|x0)

q(xt|x0)
= Cat

 
xt�1;p =

xtQ>
t � x0Qt�1

x0Qtx
>
t

!
. (3)

Note that due to the Markov property of the forward process q(xt|xt�1,x0) = q(xt|xt�1). As-
suming that the reverse process p✓(xt|xt�1) is also factorized as conditionally independent over
the image or sequence elements, the KL divergence between q and p✓ can be computed by simply
summing over all possible values of each random variable; we thus satisfy criteria 1 and 2 discussed
in Section 2. Depending on Qt, the cumulative products Qt can often be computed in closed form,
or simply precomputed for all t. However, for large K and large T this may be prohibitive. In
Appendix A.4 we discuss how to ensure Qt can still be computed efficiently in this case, allowing
the framework to scale to a larger number of categories.

In the next section we discuss the choice of the Markov transition matrices Qt and corresponding
stationary distributions. From here on, we refer to the general class of diffusion models with discrete
state spaces as Discrete Denoising Diffusion Probabilistic Models (D3PMs).

3.1 Choice of Markov transition matrices for the forward process

An advantage of the D3PM framework described above is the ability to control the data corruption
and denoising process by choosing Qt, in notable contrast to continuous diffusion, for which only
additive Gaussian noise has received significant attention. Besides the constraint that the rows of Qt

must sum to one to conserve probability mass, the only other constraint in choosing Qt is that the
rows of Qt = Q1Q2 . . .Qt must converge to a known stationary distribution5 when t becomes large,
which can be guaranteed while imposing minimal restrictions on Qt (see Appendix A.1).

We argue that for most real-world discrete data, including images and text, it makes sense to
add domain-dependent structure to the transition matrices Qt as a way of controlling the forward
corruption process and the learnable reverse denoising process. Below we briefly discuss the uniform
transition matrices that have been studied in prior work [18], along with a set of structured transition
matrices we have explored for our image and text dataset experiments; see Appendix A.2 for more
details on each matrix type. We also note that this set is not exhaustive, and many other transition
matrices could also be used within the D3PM framework.

Uniform (Appendix A.2.1). Sohl-Dickstein et al. [36] considered a simple 2⇥2 transition matrix for
binary random variables. Hoogeboom et al. [18] later extended this to categorical variables, proposing
a transition matrix Qt = (1 � �t)I + �t/K T with �t 2 [0, 1]. Since this transition matrix is
doubly stochastic with strictly positive entries, the stationary distribution is uniform. Because the
transition probability to any other state is uniform, in this paper we equivalently refer to this discrete
diffusion instance as D3PM-uniform.

Absorbing state (Appendix A.2.2). Motivated by the success of BERT [10] and recent work on
Conditional Masked Language Models (CMLMs) in text, we consider a transition matrix with an
absorbing state (called [MASK]), such that each token either stays the same or transitions to [MASK]
with some probability �t. This does not impose particular relationships between categories, similar to
uniform diffusion, but still allows corrupted tokens to be distinguished from original ones. Moreover,
the stationary distribution is not uniform but has all the mass on the [MASK] token. For images, we
reuse the grey pixel as the [MASK] absorbing token.

Discretized Gaussian (Appendix A.2.3). Instead of transitioning uniformly to any other state, for
ordinal data we propose imitating a continuous space diffusion model by using a discretized, truncated
Gaussian distribution. We choose a normalization such that the transition matrix is doubly stochastic,
leading to a uniform stationary distribution. This transition matrix will transition between more
similar states with higher probability, and is well suited for quantized ordinal data such as images.

Token embedding distance (Appendix A.2.4). Textual data does not have ordinal structure, but
there may still be interesting semantic relationships. For instance, in a word-level vocabulary

5If a stationary distribution is not known, we can introduce a learned prior p✓(xT ); we note that this is
equivalent to extending the forward process by appending a rank-one matrix QT+1 that ignores xT and produces
a deterministic xT+1, then learning the reverse step p✓(xT |xT+1) = p✓(xT ).
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synonyms or closely related words (like “dog" or “cat") may be more similar than other tokens. As
a demonstration of the generality of the D3PM framework, we explore using similarity in word
embedding space to guide the forward process, and construct a doubly-stochastic transition matrix
that transitions more frequently between tokens that have similar embeddings while maintaining a
uniform stationary distribution.

For uniform and absorbing-state diffusion, the cumulative products Qt can be computed in closed
form (see Appendix A.4.1); the remainder can be precomputed.

3.2 Noise schedules

We consider several different options for the noise schedule of the forward process. For discretized
Gaussian diffusion, we explore linearly increasing the variance of the Gaussian before discretizing
it. (Note that a linear schedule for Qt leads to a nonlinear amount of cumulative noise in Qt.) For
uniform diffusion we use the cosine schedule which sets the cumulative probability of a transition to
a cosine function, as introduced by Nichol and Dhariwal [28] and adapted by Hoogeboom et al. [18].
For a general set of transition matrices Qt (such as the one based on token embeddings), previously
proposed schedules may not be directly applicable. We consider linearly interpolating the mutual
information between xt and x0 to zero, i.e. I(xt;x0) ⇡ (1 � t

T )H(x0). Interestingly, for the
specific case of absorbing-state D3PMs, this schedule reduces to exactly the (T � t+ 1)�1 schedule
proposed by Sohl-Dickstein et al. [36] for a Bernoulli diffusion process. See Appendix A.7 for more
details.

3.3 Parameterization of the reverse process

While it is possible to directly predict the logits of p✓(xt�1|xt) using a neural network nn✓(xt),
we follow Ho et al. [17] and Hoogeboom et al. [18] and focus on using a neural network nn✓(xt)
to predict the logits of a distribution ep✓(ex0|xt), which we combine with q(xt�1|xt,x0) and a
summation over one-hot representations of x0 to obtain the following parameterization

p✓(xt�1|xt) /
X

ex0

q(xt�1,xt|ex0)ep✓(ex0|xt). (4)

We note that under this x0-parameterization the KL divergence DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)]
will be zero if ep✓(ex0|xt) places all of its probability mass on the original value x0. The decomposition
of q(xt�1|xt,x0) in (3) also provides us with a motivation for this parameterization. According to
(3), in a given state xt, the optimal reverse process only takes into account transitions to states for
which q(xt|xt�1) is non-zero. Therefore, the sparsity pattern of Qt determines the sparsity pattern
of the ideal reverse transition probabilities in p✓(xt�1|xt). The parameterization in (4) automatically
ensures that the learned reverse probability distribution p✓(xt�1|xt) has the correct sparsity pattern
dictated by the choice of the Markov transition matrix Qt. This parameterization also lets us perform
inference with k steps at a time, by predicting p✓(xt�k|xt) =

P
q(xt�k,xt|ex0) ep✓(ex0|xt).

Finally, when modeling ordinal discrete data, instead of predicting the logits of ep✓(ex0|xt) directly
with the output of a neural net, another option is to model the probabilities with a truncated discretized
logistic distribution (see Appendix A.8). This provides an extra ordinal inductive bias to the reverse
model and boosts FID and log-likelihood scores for images.

3.4 Loss function

While the original diffusion models introduced by Sohl-Dickstein et al. [36] were optimized with
the negative variational lower bound Lvb of (1), more recent diffusion models are optimized with
different objectives. For instance, Ho et al. [17] derive a simplified loss function (Lsimple) that
reweights the negative variational bound, and Nichol and Dhariwal [28] explore a hybrid loss
Lhybrid = Lsimple + �Lvb (using one term to learn the predicted mean and the other to learn
predicted variance). Inspired by this recent work, we introduce an auxiliary denoising objective for
the x0-parameterization of the reverse process, which encourages good predictions of the data x0 at
each time step. We combine this with the negative variational lower bound, yielding the following
alternative loss function:

L� =Lvb + � Eq(x0)Eq(xt|x0)[� log ep✓(x0|xt)]. (5)
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We note that the auxiliary loss resembles the cross entropy term L0 in (1) at t = 1, and so one might
expect that it is a KL reweighting similar to the one described by Ho et al. [17]. However, our L�

directly supervises the model output ep✓(ex0|xt). This is in general a stronger source of supervision
than any reweighting of the terms in the lower bound (1), which only provides supervision through
the sum in (4). To see this, note that for a fixed x0, both DKL[q(xt�1|xt,x0)||p✓(xt�1|xt)] and
Eq(xt|x0)[� log ep✓(x0|xt)] are minimized when ep✓(ex0|xt) has all its mass on the datapoint x0, but
for some choices of q there may be a different setting ex0 6= x0 that induces the same distribution
p✓(xt�1|xt). We find that training with this loss leads to improved quality of image samples.

4 Connection to existing probabilistic models for text

In this section we expand on interesting connections between the D3PM framework and several
existing probabilistic and language modeling approaches.

BERT is a one-step diffusion model: One possible D3PM transition matrix is a combination of a
uniform transition matrix and an absorbing state at the [MASK] token (i.e. Q = ↵ eTm+� T /K+
(1� ↵� �)I , where em is a one-hot vector on the [MASK] token). For a one-step diffusion process
in which q(x1|x0) replaces 10% of tokens with [MASK] and 5% uniformly at random, this leads
precisely to the BERT denoising objective, i.e. Lvb � LT = �Eq(x1|x0)[log p✓(x0|x1)] = LBERT ,
since LT is a constant independent of ✓ (assuming a fixed prior).

Autoregressive models are (discrete) diffusion models: Consider a diffusion process that deter-
ministically masks tokens one-by-one in a sequence of length N = T : q([xt]i | x0) = [x0]i if i <
N�t else [MASK] . This is a deterministic forward process, so q(xt�1|xt,x0) is a delta distribution
on the xt sequence with one fewer mask: q([xt�1]i |xt,x0) = �[xt]i if i 6= T � t else �[x0]i . While
this process is not applied independently to each token, it can be recast as an independently-applied
diffusion process on the product space [0...N ]⇥ V , where each token is tagged with its position in
the sequence, V is the vocabulary, and Q is an N ⇥ |V|⇥N ⇥ |V| sparse matrix.

Because all tokens except the one at position i = T � t have deterministic posteriors, the KL
divergence DKL(q([xt�1]j |xt,x0) || p✓([xt�1]j |xt)) is zero for all other positions. The only
token for which this is not true is the token at position i, for which DKL(q([xt�1]i|xt,x0) ||
p✓([xt�1]i|xt)) = � log p✓([x0]i|xt), the standard cross entropy loss for an autoregressive model.

(Generative) Masked Language-Models (MLMs) are diffusion models: Generative Masked Lan-
guage Models ([13], [47]) are generative models that generate text from a sequence of [MASK]
tokens. They are usually trained by sampling a sequence x0, masking k tokens according to some
schedule, and learning to predict the masked tokens given context. It turns out that a D3PM absorbing
([MASK]) model trained on the usual ELBO objective with the x0-parameterization from 3.3 reduces
to a reweighted version of this MLM objective (see Appendix A.3 for a detailed derivation).

5 Text generation

For text, we experiment with generation on two datasets: text8 [26], a character-level dataset extracted
from English-language Wikipedia, and the One Billion Word dataset (LM1B) [6], a large dataset of
shuffled English-language sentences. For both, we train a D3PM uniform model based on the work
by Hoogeboom et al. [18] (D3PM uniform) and a model that masks tokens (D3PM absorbing). We
also consider a model that transitions uniformly to nearest neighbors in a token embedding space
(D3PM NN). We follow Hoogeboom et al. [18] and use T = 1000 timesteps, although we are also
able to evaluate on fewer due to the parameterization in Section 3.3.

5.1 Character-level generation on text8

text8 is a character-level text dataset consisting of a small vocabulary of 27 tokens: the letters ‘a’-‘z’
and the ‘_’ whitespace token. We follow the convention of training and evaluating text8 in chunks of
length 256 without any preprocessing [18]. For nearest-neighbor D3PM, our nearest neighbor graph
in character-space is shown in Appendix B.2.1. D3PM uniform models were trained with a cosine
schedule from Hoogeboom et al. [18] (ablations in Appendix B.2.1), while D3PM absorbing and
D3PM NN models were trained with a mutual information schedule.
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Table 1 shows that for D3PM, the D3PM absorbing model performed the best, exceeding the
uniform and NN diffusion models. We were able to improve upon the baseline result of [18] with
hyperparameter tuning, and our uniform and NN results outperformed results from Hoogeboom
et al. [18] across all inference steps, down to as few as 20. We found that L�=0.01 worked best
for D3PM absorbing, while Lvb was better for D3PM uniform. Our model outperforms all non-
autoregressive baselines except one, the Discrete Flow model [41] (for which unfortunately no
open-source implementations exist), and is also faster than all but one method, the IAF/SCF model
[49]. It is also nearly 20x faster than an autoregressive transformer of the same size. We note that while
our 20-step D3PM models in Table 1 are much faster than a comparable autoregressive transformers,
this table only shows timings for batch size 1 (per device). For larger batches, autoregressive caching
allows transformers to perform inference relatively more quickly. We include additional benchmarks
and a plot of inference time as a function of iterations in Appendix B.2.1. D3PM with the mask
absorbing token was by far the best performing model, which lends credibility to the use of masks in
denoising auto-encoders. Nearest-neighbor diffusion only narrowly improves upon a D3PM-uniform
model: this was a surprising negative result for us, suggesting that not all notions of structure are
meaningful.

5.2 Text generation on LM1B

Text generation for large-scale text datasets and large vocabularies with discrete diffusion models has
not been previously demonstrated. We include results from LM1B as a proof of concept, showing
that these models can indeed scale (as discussed in Appendix A.4), and that the D3PM absorbing
model continues to excel. All models were trained and evaluated on packed sequences of length 128,
using a sentencepiece6 vocabulary of size 8192.

Table 2 contains results from experiments on LM1B. Overall, mask diffusion (D3PM absorbing)
does relatively well, approaching the performance of a comparable autoregressive model of the
same size, and scaling to far fewer steps, while uniform diffusion performs significantly worse.
We find, surprisingly, that the D3PM NN model performs worse than the uniform model in terms
of log likelihoods (although it demonstrates unique qualitative behavior). This suggests that word
embedding similarity may not be a meaningful kind of locality in a diffusion process. We found the
the L�=0.01 loss worked best for the mask absorbing model, but reduced performance for the other
models. We note the surprising scaling in perplexity in Figure 2, achieving strong results with as
few as 10 inference steps. We also show samples from our model and completions from corrupted
samples.

Table 1: Quantitative results on text8. NLL is reported on the entire test set. Sample times are for
generating a single example of length 256. Results are reported on two seeds. All models are standard
12-layer transformers unless otherwise noted. †Transformer XL is a 24-layer transformer, using a
784 context window. ‡Results reported by [18] by running code from official repository.

Model Model steps NLL (bits/char) (#) Sample time (s) (#)

Discrete Flow [41] (8 ⇥ 3 layers) - 1.23 0.16
Argmax Coupling Flow [18] - 1.80 0.40 ± 0.03
IAF / SCF [49]‡ - 1.88 0.04 ± 0.0004
Multinomial Diffusion (D3PM uniform) [18] 1000  1.72 26.6 ± 2.2

D3PM uniform [18] (ours) 1000  1.61 ± 0.02 3.6 ± 0.4
D3PM NN (Lvb) (ours) 1000  1.59 ± 0.03 3.1474 ± 0.0002
D3PM absorbing (L�=0.01) (ours) 1000  1.45 ± 0.02 3.4 ± 0.3

D3PM uniform [18] (ours) 256  1.68 ± 0.01 0.5801 ± 0.0001
D3PM NN (Lvb) (ours) 256  1.64 ± 0.02 0.813 ± 0.002
D3PM absorbing (L�=0.01) (ours) 256  1.47 ± 0.03 0.598 ± 0.002
Transformer decoder (ours) 256 1.37 0.3570 ± 0.0002
Transformer decoder [1] 256 1.18 -
Transformer XL [9]† 256 1.08 -

D3PM uniform [18] (ours) 20  1.79 ± 0.03 0.0771 ± 0.0005
D3PM NN (Lvb) (ours) 20  1.75 ± 0.02 0.1110 ± 0.0001
D3PM absorbing (L�=0.01) (ours) 20  1.56 ± 0.04 0.0785 ± 0.0003

6https://github.com/google/sentencepiece
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Figure 2: Left: perplexity v.s. sampling iterations for LM1B. Right: Using a trained D3PM absorbing
model for LM1B to (top) generate new sentences and (bottom) reconstruct corrupted examples.

Table 2: Quantitative results on LM1B. Perplexity reported on the test set. Results are reported
on two seeds. All models have context window length 128 and 12 layers unless otherwise noted.
†Transformer XL is a 24 layer transformer. ‡rounded for readability, see Appendix B.2.2.

Metric: Perplexity (#) Sample time‡ (s) (#)

inference steps: 1000 128 64 1000 128 64

D3PM uniform 137.9 ± 2.1 139.2 ± 1.2 145.0 ± 1.2 1.82 0.21 0.08
D3PM NN 149.5 ± 1.3 158.6 ± 2.2 160.4 ± 1.2 21.29 6.69 5.88

D3PM absorbing 76.9 ± 2.3 80.1 ± 1.2 83.6 ± 6.1 1.90 0.19 0.10

Transformer (ours) - 43.6 - - 0.26 -
Transformer XL [9]† - 21.8 - - - -

6 Image generation

We evaluate the performance of several D3PM models on the task of unconditional image generation
with the dataset CIFAR-10 [25]. We follow Ho et al. [17] and use T = 1000 timesteps for all models
and verify that for all models the forward process converges to the stationary distribution within T
steps, yielding a value of at most LT ⇡ 10�5 bits per dimension. We train three versions of D3PM
with different transition matrices: doubly stochastic matrices with uniform transition probabilities
(D3PM uniform) [18], transition matrices with an absorbing state located at R, G and B values of 128
(D3PM absorbing) and doubly stochastic discretized Gaussian transition matrices (D3PM Gauss). For
the D3PM uniform model we experimented with a linear �t schedule as well as the cosine schedule
as proposed in [18], with the cosine schedule producing the best results. For D3PM absorbing we
use the schedule �t = (T � t+ 1)�1 as also proposed in [36], which corresponds to increasing the
probability of being in the absorbing state linearly over time. For D3PM Gauss we use the same
linear schedule as in [17]. See Appendix B.1 for more details on the experimental setup.

Table 3 shows that for D3PM models trained with the Lvb objective, D3PM Gauss performs better
than D3PM absorbing and uniform on all metrics: Inception score (IS), Frechet Inception Distance
(FID) and negative log-likelihood (NLL). The IS score of the uniform and absorbing D3PM models
are comparable, while the FID score and NLL of the D3PM absorbing model are slightly better. We
trained both D3PM absorbing and D3PM Gauss with the alternative loss function L� of (5), and
we found � = 0.001 to work best. We have also experimented with larger values of � and a model
trained only with the auxiliary denoising term in (5). Although this led to a more rapid increase
in performance early on in training, the NLL leveled off at higher values for larger � and the FID
even started increasing again. The results show that the models trained with L� perform significantly
better than their counterparts trained with Lvb. One explanation for this boost in performance is that
the cross entropy term leads to gradient noise that varies less with the time step t, which is in contrast
to the large change in magnitude of the Lt�1 terms in Lvb for smaller t, as demonstrated by Nichol
and Dhariwal [28]. Finally, we achieve our best results by combining D3PM Gauss trained on L�

with a truncated logistic parameterization of the reverse process distribution p✓(ex0|xt) (D3PM Gauss
+ logistic). Figure 3 shows samples from our best model (D3PM Gauss + logistic), as well as the
D3PM absorbing model.
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Table 3: Inception scores (IS), Frechet Inception Distance (FID) and negative log-likehood (NLL) on
the image dataset CIFAR-10. The NLL is reported on the test set in bits per dimension. We report our
results as averages with standard deviations, obtained by training five models with different seeds.

Model IS (") FID (#) NLL (#)

Sparse Transformer [8] 2.80
NCSN [38] 8.87 ± 0.12 25.32
NCSNv2 [39] 8.40 ± 0.07 10.87
StyleGAN2 + ADA [20] 9.74 ± 0.05 3.26

Diffusion (original), Lvb [36]  5.40
DDPM Lvb [17] 7.67 ± 0.13 13.51  3.70
DDPM Lsimple [17] 9.46 ± 0.11 3.17  3.75
Improved DDPM Lvb [28] 11.47  2.94
Improved DDPM Lsimple [28] 2.90  3.37
DDPM++ cont [40] 2.92 2.99
NCSN++ cont. [40] 9.89 2.20

D3PM uniform Lvb 5.99 ± 0.14 51.27 ± 2.15  5.08 ± 0.02
D3PM absorbing Lvb 6.26 ± 0.10 41.28 ± 0.65  4.83 ± 0.02
D3PM absorbing L�=0.001 6.78 ± 0.08 30.97 ± 0.64  4.40 ± 0.02
D3PM Gauss Lvb 7.75 ± 0.13 15.30 ± 0.55  3.966 ± 0.005
D3PM Gauss L�=0.001 8.54 ± 0.12 8.34 ± 0.10  3.975 ± 0.006
D3PM Gauss + logistic L�=0.001 8.56 ± 0.10 7.34 ± 0.19  3.435 ± 0.007

7 Related Work

Diffusion generative models were first proposed by Sohl-Dickstein et al. [36] and have gained
renewed attention recently due to strong results on image and waveform generation [17, 7]. Recent
works have proposed improvements for diffusion model training, including importance sampling of
the ELBO, better noise schedules [28] and implicit diffusion models [37]. Several works have also
drawn connections to score matching [45, 19, 38], leading to improved sampling algorithms in the
continuous-time limit [40].

While most works have considered continuous diffusion models, discrete diffusion-like models were
described in [36] and applied to text generation and image segmentation data in [18]. Some works
[29, 27] have dealt with discrete data by embedding it in continuous space and leveraging Gaussian
diffusion, but have not applied this to text. Seff et al. [35] considered generation of discrete structured
objects using a diffusion-like Markov corruption process. Goyal et al. [15] proposed a diffusion-like
model for images with a more flexible family of learned corruption processes. Ho et al. [17] also
draws connections between diffusion and autoregressive models for continuous data.

For text, denoising autoencoders have a long history both in representation learning [2, 10] and more
recently as generative models [47]. These closely resemble our absorbing state diffusion variants for

Figure 3: Left: progressive sampling at t = 1000, 900, 800, ..., 0 for D3PM absorbing (top) and
D3PM Gauss + logistic (bottom), trained with L� loss on CIFAR-10. These samples were cherry
picked. Right: (non cherry picked) samples from the D3PM Gauss + logistic model.
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a particular schedule and transition matrix (see Section 4), although our framing allows us to compute
log-likelihoods and experiment with alternative transition matrices. Other works have considered
non-autoregressive translation and speech transcription via insertion and deletion [16, 33], masking
[13], and iteratively-refined sequence alignments [5, 34].

8 Discussion

We have presented D3PMs, a class of models that improves diffusion models for discrete data by
defining new kinds of discrete corruption processes. We achieve strong empirical results relative to
previous work on discrete diffusion models, even surpassing performance of continuous diffusion
models in terms of log-likelihoods for image generation. While these results are promising, one
limitation is that—like much other work on non-autoregressive generative models—our models are
still inferior to strong autoregressive models like Transformer XL for text generation, and continuous
diffusion models still yield stronger results on image quality. We expect that D3PMs can benefit
further from the rapid development of continuous diffusion models [40, 28]. For example, further
research in alternative losses for D3PM’s can take inspiration from the reweighted Lsimple objective
used in [17], or the resampled variational bound in Nichol and Dhariwal [28]. Furthermore, D3PM’s
might benefit from increasing the number of timesteps and a more optimized noise schedule, as
discussed in Nichol and Dhariwal [28]. Another limitation comes from the choice of evaluation
metrics that we use (and that are standard for evaluation of generative models). Inception score
and Frechet Inception Distance are based on neural networks that have been trained on a particular
distribution of data, which is not representative for all use-cases, and focusing on average quality
metrics may not accurately reflect performance across the wide diversity of settings where these
generative models may be applied. This creates a risk of negative social impacts where advances
disproportionately favor a subset of the population. Text generation models, including D3PMs,
also present many challenges for responsible and reliable use. Prior works have highlighted the
potential for misuse [24, 4], bias [46], and hallucination [48] in neural language models. D3PMs,
like autoregressive language models, should be carefully evaluated along these axes before being
deployed in a production setting. Going forward, we are excited about the space of possibilities that
arise within the D3PM framework. We have found successes in leveraging the flexibility that comes
from defining discrete corruption processes for discrete data, but we believe that there are many more
possibilities that make use of richer forms of structure to define even more powerful discrete diffusion
models.
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