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ABSTRACT

Self-supervised feed-forward methods for scene flow estimation offer real-time
efficiency, but their supervision from two-frame point correspondences is unre-
liable and often breaks down under occlusions. Multi-frame supervision has the
potential to provide more stable guidance by incorporating motion cues from past
frames, yet naive extensions of two-frame objectives are ineffective because point
correspondences vary abruptly across frames, producing inconsistent signals. In
the paper, we present TeFlow, enabling multi-frame supervision for feed-forward
models by mining temporally consistent supervision. TeFlow introduces a tempo-
ral ensembling strategy that forms reliable supervisory signals by aggregating the
most temporally consistent motion cues from a candidate pool built across mul-
tiple frames. Extensive evaluations demonstrate that TeFlow establishes a new
state-of-the-art for self-supervised feed-forward methods, achieving performance
gains of up to 33% on the challenging Argoverse 2 and nuScenes datasets. Our
method performs on par with leading optimization-based methods, yet speeds up
150 times. The source code and model weights will be released upon publication.

1 INTRODUCTION

Scene flow determines the 3D motion of each point between consecutive point clouds as visual-
ized in Figure 1a. By providing a detailed characterization of object motion, scene flow could
benefit downstream tasks such as motion prediction Najibi et al. (2022), dynamic object reconstruc-
tion Chodosh et al. (2025); Zhang et al. (2025a), and occupancy flow prediction Yang et al. (2024).
Accurate scene flow prediction enables autonomous agents to capture the underlying environmental
dynamics during observation Li et al. (2025); Jia et al. (2024).

To overcome the high cost of manual annotation required by supervised methods Zhang et al.
(2024a); Jund et al. (2021); Khoche et al. (2025); Luo et al. (2025), the field has increasingly shifted
towards self-supervised learning, which exploits geometric and temporal consistency across frames
without requiring ground-truth labels. Existing self-supervised approaches fall into two categories:
(1) Optimization-based methods Vedder et al. (2024b); Hoffmann et al. (2025) achieve high accu-
racy by enforcing long-term multi-frame constraints but suffer from substantial optimization latency,
making them unsuitable for real-time deployment. As shown in Figure 1c, the optimization of such
methods can take hours and days for a single scene. (2) Feed-forward methods Zhang et al. (2024b);
Lin et al. (2025) achieve high efficiency by generating results in a single forward pass, however,
their accuracy is limited by unstable training objectives derived from only two consecutive frames.
For example, as shown in Figure 1a, when depicting objects (e.g., pedestrians), occlusions often
cause missing points between frames, preventing consistent motion guidance and leading to incor-
rect flows. In addition, two-frame supervision is also vulnerable to sensor noise, sparse observations,
and ambiguity in curved or articulated motion. Leveraging information from multiple frames miti-
gates these issues and provides a more stable and temporally consistent supervisory signal.

However, introducing additional frames into feed-forward training is non-trivial. As shown in Fig-
ure 1b, the direction of the two-frame supervisory signal varies drastically over time. Even when the
underlying motion is smooth, two-frame estimates fluctuate sharply due to occlusions, noise, and
missing points. Training with such temporally inconsistent signals prevents the model from learn-
ing coherent motion patterns and results in inaccurate scene flow. This highlights the importance
of exploiting temporally consistent cues across multiple frames to provide effective supervision for
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Occluded
Observation GT Two-frames

(a) Multi-Frame Information for Scene Flow Estimation

GT Two-frames TeFlow  (Ours)

(b) Self-Supervised Supervision Signal (c) Performance on Argoverse 2

TeFlow  (Ours)

Figure 1: (a) Multi-frame supervision maintains stable guidance during occlusion by querying past
frames, while two-frame supervision fails due to missing points. (b) Direction change of super-
visory signals over time, reflecting their temporal consistency. The two-frame supervision Zhang
et al. (2024b) exhibits abrupt variations with frequent direction shifts, while our five-frame TeFlow
produces more stable signals that stay closer to the ground truth. (c) Accuracy vs. Runtime. Prior
feed-forward methods are fast but less accurate, while optimization-based methods are accurate but
too slow. TeFlow achieves both real-time speed and high accuracy.

feed-forward models. To achieve this, we propose TeFlow, a novel multi-frame feed-forward frame-
work that mines consistent motion signals across time. TeFlow introduces a temporal ensembling
strategy that constructs a pool of motion candidates across multiple frames and applies a voting
scheme to aggregate the most consistent ones. The resulting consensus motions form a robust super-
visory signal, enabling feed-forward models to achieve high-accuracy scene flow estimation while
maintaining real-time efficiency.

Our contributions can be summarized as follows:
• We leverage temporally-consistent supervisory signals for self-supervised scene flow estimation

by constructing a motion candidate pool from multiple frames and then optimizing the consensus
motion via a voting scheme.

• By integrating our objective function, TeFlow becomes the first approach to unlock the potential
of multi-frame network architectures in a real-time, self-supervised setting.

• We demonstrate through extensive experiments on the Argoverse 2 and nuScenes datasets that
TeFlow achieves the state-of-the-art performance for real-time self-supervised methods, signifi-
cantly narrowing the accuracy gap to slow optimization-based methods while maintaining real-
time efficiency.

2 RELATED WORK

Scene flow estimation Vedula et al. (2005); Lang et al. (2023); Khatri et al. (2024); Jiang et al.
(2024); Zhang et al. (2024d) has been a long-standing problem in computer vision. Our work builds
upon advances in both supervised and, more importantly, self-supervised learning paradigms.

Supervised Scene Flow Early and many current state-of-the-art methods are trained in a fully su-
pervised manner Wei et al. (2021); Wang et al. (2023); Liu et al. (2024); Zhang et al. (2024c). These
approaches leverage large datasets with ground-truth flow annotations to train deep neural networks.
Methods like FastFlow3D Jund et al. (2021), DeFlow Zhang et al. (2024a), and SSF Khoche et al.
(2025) use voxel-based backbones to efficiently process large-scale point clouds, achieving high ac-
curacy and real-time inference speeds. While powerful, these methods are fundamentally limited by
their reliance on expensive, manually annotated data, which is difficult to scale and may not cover
all real-world scenarios.
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Self-Supervised Scene Flow To overcome the need for labeled data, self-supervised methods
have gained significant interest. These methods can be broadly divided into two main strategies:
optimization-based approaches and feed-forward approaches.

Optimization-based approaches fit a scene-specific model at test time. The pioneering NSFP Li
et al. (2021) optimizes a small coordinate-based MLP for each two-frame pair. Follow-up works Li
et al. (2023); Hoffmann et al. (2025) improve efficiency by replacing the MLP with representations
like voxel grids or distance transforms. To achieve higher accuracy, the state-of-the-art method, Eu-
lerFlow Vedder et al. (2024b), reframes scene flow as the task of estimating a continuous ordinary
differential equation over an entire sequence. By optimizing a neural prior against reconstruction
objectives across many frames, it produces exceptionally accurate flow fields. However, this accu-
racy comes at a prohibitive computational cost, requiring from hours to days of optimization for a
single sequence, making it unsuitable for any real-time application.

In contrast, feed-forward methods aim to train a single, generalizable network on a large unlabeled
dataset, enabling real-time inference on new scenes. A prominent approach is knowledge distil-
lation, exemplified by ZeroFlow Vedder et al. (2024a). This technique uses a slow but accurate
optimization-based ‘teacher’ to generate pseudo-labels for a fast ‘student’ network. However, this
label generation process requires 7.2 GPU months of computation, which limits its scalability and
practical adoption. Other methods, such as SeFlow Zhang et al. (2024b), instead design the two-
frame loss functions directly. SeFlow first classifies points as static or dynamic Duberg et al. (2024)
and then applies tailored consistency losses to each group to improve learning. Despite their differ-
ent strategies, these methods are still fundamentally trained using supervisory signals derived from
only two consecutive frames.

Multi-frame Architectures Independent of the training paradigm, network architectures have
evolved to better capture temporal information. Models like Flow4D Kim et al. (2025) introduce
an explicit temporal dimension and use 4D convolutions Choy et al. (2019) to process sequences of
voxelized point clouds. Taking a different approach to efficiency, DeltaFlow Zhang et al. (2025b)
introduces a computationally lightweight ‘∆ scheme’ that directly computes the difference between
voxelized frames. This avoids the feature expansion common in other multi-frame methods and
maintains a constant input size regardless of the number of frames. This architectural trend shows a
clear recognition in the community that temporal context is crucial for accurate motion estimation.
However, when trained with self-supervision, these powerful backbones are still bottlenecked by the
current two-frame-based supervision objectives, preventing them from reaching their full potential.

3 PRELIMINARIES

Problem Formulation Given a continuous stream of LiDAR point clouds, our goal is to train a
feed-forward network Φθ that estimates the scene flow vector field Zhang et al. (2025b). For a
given frame Pt ∈ RNt×3, the network predicts its flow F ∈ RNt×3 toward the subsequent frame
Pt+1 ∈ RNt+1×3. The scene flow F is decomposed into two parts: ego-motion flow Fego induced by
the movement of the vehicle, and residual flow Fres, caused by dynamic objects in the environment.
Since ego-motion can be obtained directly from odometry, the network is trained only to estimate
the residual flow. Formally, the network learns the mapping:

Φθ : {Tt−h→t+1
ego Pt−h, . . . ,T

t→t+1
ego Pt,Pt+1} → Fres, (1)

where Tt′→t+1
ego ∈ R4×4 is the odometry transformation matrix from time t′ to t + 1, aligning all

past point clouds to the coordinate frame of Pt+1.

Self-Supervised Training Paradigm To train Φθ without labeled data, we adopt a self-supervised
paradigm that derives supervisory signals directly from the input sequence. Following Zhang et al.
(2024b), point clouds are first segmented into static and dynamic regions (P·,s,P·,d). Static points
P·,s are supervised with a near-zero flow loss. Dynamic points P·,d are further partitioned into
clusters C = {C1, C2, . . . , CNc

}, where Nc = |C| is the number of dynamic clusters. Each cluster
is assumed to undergo a shared rigid motion and is trained with a rigidity loss, i.e., dynamic cluster
loss, that enforces coherent motion within the group. Prior work Zhang et al. (2024b) derives this
loss from two-frame correspondences, which are often noisy and provide unstable supervision.
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Figure 2: An overview of the TeFlow, a multi-frame feedforward scene flow estimation pipeline,
shown in the top row. Our self-supervised pipeline tackles the main challenge of deriving reliable
supervision f̄ from dense multi-frame inputs. For each dynamic cluster Cj , we create a motion
candidate pool FCj

(red arrows) from multi-frame geometry and network predictions f̂Cj
. This pool

is then aggregated as final cluster-level supervision f̄Cj
through weighted reliability voting, where

M indicates inter-candidate consistency and w represents magnitude-based reliability.

4 METHOD: TEFLOW

To move beyond the limits of two-frame supervision and achieve both high accuracy and efficiency,
we propose TeFlow, a multi-frame feed-forward framework illustrated in Figure 2, which generates
stable supervisory signals through temporal ensembling of consistent motions across frames.

4.1 TEMPORAL ENSEMBLING FOR DYNAMIC CLUSTERS

TeFlow aims to assign each dynamic cluster Cj a reliable supervision target f̄Cj
∈ R1×3 that reflects

its true motion. A naive extension from two-frame to multi-frame supervision is unreliable, since
frame-to-frame correspondences often vary abruptly and introduce conflicting signals (as shown
in Figure 1b). To address this, TeFlow introduces a temporal ensembling approach that first con-
structs a pool of motion candidates across the temporal window, capturing multiple hypotheses, and
then forms a robust supervision signal by selecting and weighting only the most consistent motions.
The approach consists of two stages: (i) generate a diverse pool of motion candidates across the
temporal window, and (ii) aggregate the target motion via a weighted voting scheme.

Motion Candidate Generation. This stage aims to build a candidate pool from which a reliable
supervisory target can be aggregated for each cluster Cj . Each candidate is represented by a single
3D motion vector. The pool combines two complementary sources: internal and external candidates,
which together balance stability with data-driven evidence.

The internal candidate f̂Cj
serves as an anchor that stabilizes the supervisory signal and keeps train-

ing grounded in the evolving state of the model. It is obtained from the current estimate from the
network Φθ, computed as the average flow over all points in the cluster,

f̂Cj =
1

|Cj |
∑

pi∈Cj

f̂i, (2)

where |Cj | is the number of point in the cluster and f̂i ∈ Fres is the network estimation for point pi.

The external candidates f t
′

Cj ,k
represent geometry-based motion hypotheses for the cluster. They aim

to approximate how the cluster might actually move by exploiting information from neighboring
frames. To construct them, we compare the cluster Cj at time t with the dynamic points Pt′,d from
each of the other frames t′ ∈ {t− h, . . . , t− 1, t+ 1}. For every pair of frames (t, t′), we establish
correspondences by finding, for each point pi ∈ Cj , its nearest neighbor in Pt′,d. Among these
correspondences, we retain the Top-K with the largest displacement magnitudes, as they are more
likely to capture meaningful motion rather than noise.
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Since different frames t′ are separated from t by varying time intervals, the displacements are nor-
malized by the temporal gap (t′−t). The normalized motion vector for frame t′ and the k-th selected
correspondence is defined as:

f t
′

Cj ,k =
NN (pk,Pt′,d)− pk

t′ − t
, (3)

where NN (·) denotes nearest-neighbor search and pk is the k-th Top-K source point.

Finally, we combine the internal candidate with all external candidates from the temporal window
to form the complete candidate pool:

FCj = {f̂Cj} ∪ {f t
′

Cj ,k | t′ ∈ {t− h, . . . , t− 1, t+ 1}, k ∈ {1, . . . ,K}} (4)

This pool contains a total of 1+K(h+1) candidates, each candidate fi ∈ R1×3. By uniting stability
from the internal estimate with motion evidence from external correspondences, the pool provides a
strong foundation for consensus in the subsequent voting stage.

Candidate Voting and Flow Aggregation. With the candidate pool constructed, the next step is
to derive a stable cluster-level flow. Since the pool still contains a mix of useful and noisy motion
vectors, selecting one directly could lead to unstable supervision. To obtain a reliable estimate, we
aggregate candidates based on two criteria: (i) their agreement with others in the pool, and (ii) their
own reliability.

The first criterion, agreement, captures which flows reinforce each other, ensuring that the fi-
nal decision reflects collective support. It is measured through a consensus matrix M ∈
R(1+K(h+1))×(1+K(h+1)). Each entry Mab indicates whether two candidates fa and fb are direc-
tionally consistent, determined by their cosine similarity τcos:

Mab =

1 if
fa · fb

∥fa∥∥fb∥
> τcos,

0 otherwise.
(5)

The second criterion, reliability, reflects how trustworthy each candidate is and therefore how
much influence it should have on the final flow. It is encoded in a weight vector w =
[w1, . . . , w1+K(h+1)]

T , where the weight of candidate fi is defined as

wi = γmi
(
1 + ∥fi∥22

)
. (6)

Here, γ ∈ (0, 1] is a temporal decay factor that prioritizes candidates from more recent frames, and
mi is the time offset of fi, with mi = 0 for the internal candidate and mi = |t′− t| for external ones.
The magnitude term ∥fi∥22 further emphasizes larger displacements, which provide clearer motion
cues than near-zero flows. This design encourages candidates with clearer motion cues to obtain
higher weights and greater influence in the voting and aggregation stage.

With both agreement and reliability defined, we combine them to identify the most representative
flow in the pool, referred to as the consensus winner. It is obtained as

a† = argmax
i∈{1,...,1+K(h+1)}

Si, where S = Mw. (7)

Here, each element Si aggregates the reliability weights of all candidates that agree with the i-th
one, so a higher score means that a candidate is supported by more reliable neighbors. The index a†

therefore corresponds to the candidate with the strongest overall support.

Rather than relying only on this single winner, we further stabilize the supervision by taking a
weighted average of flow candidates that are directionally consistent with the consensus winner:

f̄Cj
=

∑
b Ma†bwbfb∑
b Ma†bwb

. (8)

This averaging step preserves the reliability of the winner while incorporating supportive evidence
from consistent candidates, mitigating the effect of noise and producing a stable supervisory target
from both model predictions and multi-frame geometric evidence. As illustrated in Figure 1b, this
strategy yields supervisory signals that are significantly more consistent than those from two-frame
supervision. These signals f̄Cj

are then used to define our training objectives.

5
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4.2 TRAINING OBJECTIVE

Building on previous two-frame approaches Zhang et al. (2024b), we define a dynamic cluster loss
Ldcls using the supervision f̄Cj . The basic form is a point-level L2 loss, computed between the model
predictions and the supervisory targets and averaged over all points in all dynamic clusters. However,
as large objects contain more points, their losses dominate the training process, which biases the
optimization and suppresses small objects. To solve the problem, we introduce a cluster-level loss
term. Specifically, this term first averages the L2 error within each cluster and then averages across
clusters, ensuring that small objects contribute fairly rather than being overshadowed by larger ones.
The full dynamic cluster loss is the sum of the point-level and cluster-level terms:

Ldcls =
1

|PC |
∑
j

∑
pi∈Cj

∥f̂i − f̄Cj
∥22︸ ︷︷ ︸

Point-level Term

+
1

Nc

∑
j

 1

|Cj |
∑

pi∈Cj

∥f̂i − f̄Cj
∥22


︸ ︷︷ ︸

Cluster-level Term

, (9)

where |PC | is the total number of points across all dynamic clusters and Nc is the number of clusters.

In addition to our proposed Ldcls, we adopt two auxiliary losses from prior work Zhang et al. (2024b);
Vedder et al. (2024b). The static loss Lstatic Zhang et al. (2024b) penalizes non-zero residual flow on
background points Pt,s, since their motion is already explained by ego-motion of the vehicle. The
geometric consistency loss Lgeom applies multi-frame Chamfer and dynamic Chamfer distances to
ensure that the source point cloud, warped by the predicted flows, aligns with neighboring frames.

Together, these losses ensure that the network learns from reliable cluster-level supervision, respects
static background constraints, and preserves global geometric consistency across time. The overall
training objective is the sum of all three losses:

Ltotal = Ldcls + Lstatic + Lgeom. (10)

4.3 IMPLEMENTATION DETAILS

We build TeFlow on top of the multi-frame DeltaFlow backbone Zhang et al. (2025b). Static and
dynamic segmentation for training is provided by DUFOMap Duberg et al. (2024), and dynamic
clusters are pre-computed using HDBSCAN Campello et al. (2013). The main hyperparameters of
our method are as follows: a cosine similarity threshold of τcos = 0.7071 (corresponding to a 45◦

angular difference), a Top-K selection of K = 5 for external candidates, and a temporal decay
factor of γ = 0.9. For the DeltaFlow backbone, we adopt its standard configuration, processing a
76.8×76.8×6m region represented as a 512×512×40 voxel grid with 0.15m resolution. Training
is performed for 15 epochs using the Adam optimizer with a learning rate of 0.002 and a total batch
size of 20, distributed across ten NVIDIA RTX 3080 GPUs. Each dataset requires approximately
15 to 20 hours of training. The source code and model weights will be released upon publication.

5 EXPERIMENTS

Datasets Experiments are conducted on two large-scale autonomous driving datasets: Argoverse
2 Wilson et al. (2021), collected with two roof-mounted 32-channel LiDARs, and nuScenes Caesar
et al. (2020), which uses a single 32-channel LiDAR. Details on datasets description, preprocessing,
and ground-truth flow estimation are provided in Section A.

Evaluation Metrics We follow the official Argoverse 2 benchmark and report three-way End Point
Error (EPE) Chodosh et al. (2024) and Dynamic Bucket-Normalized EPE Khatri et al. (2024).
Three-way EPE computes the unweighted average EPE over three categories: foreground dynamic
(FD), foreground static (FS), and background static (BS). Dynamic Bucket-Normalized EPE nor-
malizes the EPE by the mean speed within predefined motion buckets, providing a fairer compari-
son across different object classes. It evaluates four categories: regular cars (CAR), other vehicles
(OTHER), pedestrians (PED.), and wheeled vulnerable road users (VRU). All evaluations are con-
ducted within a 70×70 m area around the ego vehicle.

Baselines We compare TeFlow against both optimization-based and feed-forward self-supervised
methods: NSFP Li et al. (2021), FastNSF Li et al. (2023), ZeroFlow Vedder et al. (2024a),
ICPFlow Lin & Caesar (2024), SeFlow Zhang et al. (2024b), SeFlow++ Zhang et al. (2025a), Eu-
lerFlow Vedder et al. (2024b), VoteFlow Lin et al. (2025) and Floxels Hoffmann et al. (2025). To
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Table 1: Performance comparisons on the Argoverse 2 test set leaderboard Argoverse2 (2025).
TeFlow achieves state-of-the-art performance in real-time scene flow estimation. ‘#F’ denotes the
number of input frames. Runtime is reported per sequence (around 157 frames), with ‘-’ indicating
unreported values. Units are given in seconds (s’) and minutes (m’).

Methods #F Runtime
per seq

Three-way EPE (cm) ↓ Dynamic Bucket-Normalized ↓
Mean FD FS BS Mean CAR OTHER PED. VRU

Ego Motion Flow - - 18.13 53.35 1.03 0.00 1.000 1.000 1.000 1.000 1.000

Optimization-based
FastNSF 2 12m 11.18 16.34 8.14 9.07 0.383 0.296 0.413 0.500 0.322
NSFP 2 60m 6.06 11.58 3.16 3.44 0.422 0.251 0.331 0.722 0.383
ICP-Flow 2 - 6.50 13.69 3.32 2.50 0.331 0.195 0.331 0.435 0.363
Floxels 13 24m 3.57 7.73 1.44 1.54 0.154 0.112 0.213 0.195 0.096
EulerFlow all 1440m 4.23 4.98 2.45 5.25 0.130 0.093 0.141 0.195 0.093
Feed-forward
ZeroFlow 3 5.4s 4.94 11.77 1.74 1.31 0.439 0.238 0.258 0.808 0.452
SemanticFlow 2 - 4.69 12.26 1.41 0.40 0.331 0.210 0.310 0.524 0.279
SeFlow 2 7.2s 4.86 12.14 1.84 0.60 0.309 0.214 0.291 0.464 0.265
VoteFlow 2 13s 4.61 11.44 1.78 0.60 0.289 0.202 0.288 0.417 0.249
SeFlow++ 3 10s 4.40 10.99 1.44 0.79 0.264 0.209 0.272 0.367 0.210
TeFlow (Ours) 5 8s 3.57 8.53 1.49 0.70 0.205 0.163 0.227 0.253 0.177

Table 2: Performance comparisons on the nuScenes validation set with a 10Hz LiDAR frequency.
TeFlow achieves state-of-the-art accuracy in scene flow estimation. Runtime is reported per se-
quence (≈200 frames) using the same device.

Methods #F Runtime
per seq

Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHER PED. VRU Mean FD FS BS

Ego Motion Flow - - 1.000 1.000 1.000 1.000 1.000 12.34 35.94 1.07 0.00

Optimization-based
NSFP 2 3.5m 0.602 0.463 0.456 0.829 0.662 10.79 20.26 4.88 7.23
ICP-Flow 2 3.2m 0.569 0.430 0.569 0.749 0.530 8.81 17.53 3.51 5.38
FastNSF 2 2.6m 0.560 0.436 0.523 0.737 0.543 12.16 18.20 6.11 12.18

Feed-forward
SeFlow 2 6s 0.544 0.396 0.635 0.726 0.419 8.19 16.15 3.97 4.45
VoteFlow 2 8s 0.538 0.355 0.605 0.780 0.410 7.80 15.65 3.51 4.24
SeFlow++ 3 7.5s 0.509 0.327 0.583 0.716 0.409 6.13 14.59 1.96 1.86
TeFlow (Ours) 5 7s 0.395 0.303 0.461 0.474 0.344 4.64 10.92 1.49 1.51

ensure fairness, Argoverse 2 results are obtained directly from the public leaderboard, and nuScenes
baselines are reproduced following OpenSceneFlow1, using best reported training configurations.

5.1 STATE-OF-THE-ART COMPARISON

TeFlow achieves state-of-the-art accuracy on both Argoverse 2 and nuScenes while maintaining
real-time efficiency, as shown in Table 1 and Table 2 respectively. On Argoverse 2 test set, TeFlow
achieves a Three-way EPE of 3.57 cm, on par with the best optimization-based method Floxels,
while being 150× faster (8 s vs 24 min). On Dynamic Bucket-Normalized EPE, TeFlow improves
by 22.3% overall compared to SeFlow++, with consistent gains across all categories, including a
31% error reduction for pedestrians. On nuScenes validation set, TeFlow again outperforms all
baselines. It achieves the best dynamic normalized score (0.395) and the lowest Three-way EPE
(4.64 cm), representing a 22.4% improvement over SeFlow++. The most significant advance is the
33.8% error reduction for the challenging pedestrian class. Together, these results show that TeFlow
delivers optimization-level accuracy while retaining the efficiency and scalability of feed-forward
methods, setting a new state-of-the-art for self-supervised scene flow estimation.

5.2 ABLATION STUDIES ON DESIGN CHOICES

To further understand the source of performance gains in TeFlow, we conduct ablation studies on
Argoverse 2, with results reported in Tables 3 and 4, and more analyses presented in Section B.

Number of Input Frames Table 3 ablates the impact of the number of input frames. Two-frame set-
ting: To assess the contribution of our formulation, we re-implement SeFlow on the same DeltaFlow

1https://github.com/KTH-RPL/OpenSceneFlow
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Table 3: Ablation on the number of input frames on the Argoverse 2 validation set. All experiments
use the same DeltaFlow backbone for a fair comparison. TeFlow surpasses SeFlow even with two
frames, and performance peaks at five frames, indicating the optimal temporal window. The best
results are shown in bold.

Loss Type #Frame Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHERS PED. VRU Mean FD FS BS

SeFlow 2 0.408 0.319 0.412 0.369 0.531 6.35 16.63 1.48 0.92

TeFlow

2 0.353 0.271 0.389 0.329 0.424 5.98 13.93 2.53 1.46
4 0.283 0.204 0.342 0.295 0.293 4.57 10.77 1.87 1.08
5 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08
6 0.269 0.197 0.305 0.290 0.284 4.55 10.66 1.87 1.12
8 0.300 0.269 0.336 0.273 0.321 5.40 13.50 1.78 0.91

Table 4: Ablation study of proposed self-supervised loss items. Results are evaluated on the Ar-
goverse 2 validation set with default hyperparameter. Bold indicates the best performance and red
highlights settings with a significant performance drop.

Loss item Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Lgemo Lstatic Ldcls Mean CAR OTHER PED. VRU Mean FD FS BS

✓ 0.386 0.317 0.586 0.297 0.343 8.85 17.26 4.45 4.85
✓ ✓ 0.458 0.321 0.654 0.481 0.377 6.37 17.15 1.25 0.73

✓ 0.303 0.254 0.310 0.285 0.362 8.53 12.28 7.17 6.14
✓ ✓ 0.313 0.233 0.402 0.296 0.321 4.84 11.99 1.73 0.80

✓ ✓ ✓ 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08

backbone with an identical two-frame input. TeFlow achieves a 13.5% reduction in dynamic EPE
(0.353 vs. 0.408), mainly due to our candidate pool and the cluster-level dynamic loss term, which
provides more consensus information and ensures balanced supervision across object sizes. Multi-
frame setting: Expanding the temporal window within TeFlow to five frames yields the best per-
formance, lowering dynamic EPE by 24.9% to 0.265. This performance gain can be explained
by Figure 1b: the multi-frame supervision produced by TeFlow closely follows the ground truth and
is more stable than the fluctuating signals from two-frame supervision. Training with these stable
signals results in significantly better performance. Further extending the number of frames shows
little help or even degrades the performance, which is consistent with the prior findings in the super-
vised method Kim et al. (2025); Zhang et al. (2025b). A possible explanation is that overly distant
frames introduce noisy or less relevant motion, outweighing the benefits of a longer context.

Self-supervised Loss Item Table 4 evaluates the contribution of each loss term in our proposed
self-supervised objective. Using only the geometric loss provides limited supervision, as nearest-
neighbor alignment provides coarse motion cues. Adding the static term improves three-way EPE
but increases the dynamic normalized error. Training with only the proposed dynamic-cluster loss
Ldcls achieves strong dynamic performance, especially for pedestrians, since the temporal ensem-
bling discovers reliable supervision from multi-frame consistency; however, the absence of static
constraints leads to large errors in static regions (FS, BS). Combining Lstatic with Ldcls restores bal-
anced accuracy, while incorporating all three losses delivers the best result (0.265), reducing the
dynamic normalized error by 31.3% compared to the geometric baseline and demonstrating that our
multi-frame self-supervised objective effectively unifies geometric, static, and dynamic cues into a
consistent training signal.

5.3 ANALYSIS ON HYPERPARAMETER SELECTION

We further analyze the sensitivity of TeFlow to its key hyperparameters by varying one parameter
at a time while keeping the others fixed at their optimal values. Results are reported in Table 5 and
provide additional insight into the functioning of the temporal ensembling strategy.

Top-K This parameter controls the number of external candidates in the candidate pool. A small,
high-quality set proves most effective, with the best performance at K = 5. Larger values introduce
noise from less reliable geometric matches and degrade accuracy.
Cosine Similarity This threshold determines which candidates are included in the consensus matrix.
The optimal value of 0.707 (45°) strikes the right balance: looser thresholds allow inconsistent
motions, while stricter ones discard valid candidates too early.

8
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Figure 3: Qualitative results on Argoverse 2 (left) and nuScenes (right). Rows show ground truth,
SeFlow, and TeFlow predictions across time. Scene flow is visualized with hue indicating direction
and saturation representing speed. Compared to SeFlow, TeFlow produces flow estimates that are
more accurate and temporally consistent, particularly for dynamic objects (red circles).

Table 5: Ablation study on the key hyperparameters of TeFlow, evaluated on the Argoverse 2 valida-
tion set. The default and best-performing configuration is cosine similarity τcos = 0.7 (45°), Top-K
= 5, and time decay γ = 0.9. In each row, only the specified parameter is varied from this setting.

TeFlow Setting Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHER PED. VRU Mean FD FS BS

Default 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08
τcos = 0 (90°) 0.307 0.239 0.365 0.291 0.332 5.19 13.02 1.60 0.95
τcos = 0.9 (20°) 0.289 0.207 0.356 0.294 0.297 4.42 10.41 1.80 1.04
K = 20 0.353 0.283 0.355 0.312 0.463 5.88 14.97 1.68 1.00
K = 10 0.307 0.241 0.314 0.296 0.377 5.11 12.39 1.83 1.12
γ = 1 0.303 0.224 0.348 0.311 0.330 4.73 11.55 1.66 0.98
γ = 0.5 0.285 0.232 0.308 0.290 0.311 4.92 11.65 1.98 1.12

Time Decay This factor weights candidates by their temporal distance, giving higher importance
to recent frames. Our default of γ = 0.9 outperforms both no decay (γ = 1.0) and stronger decay
(γ = 0.5). Without decay, distant frames are treated equally and introduce noise, while overly strong
decay underutilizes longer-term consistency that benefits large, predictably moving objects.

5.4 QUALITATIVE RESULTS

Figure 3 presents qualitative comparisons on two challenging dynamic scenarios. On the left (Ar-
goverse 2), the scene contains a moving car and an articulated truck making a turn. The cab and
trailer of the truck exhibit distinct motions that are visible in the ground truth, but SeFlow fails to
capture them and predicts a uniform flow across the entire vehicle. TeFlow, in contrast, models the
articulated components more accurately, producing flows that closely match the ground truth. On
the right (nuScenes), a multi-object scene is shown. Here, estimates for the moving vehicle (red cir-
cles) in SeFlow are unstable and flicker across frames, while TeFlow delivers stable and temporally
consistent flow throughout the sequence. More qualitative examples are provided in Section C.

6 CONCLUSION

In this work, we introduced TeFlow, a self-supervised feed-forward approach that unlocks the ben-
efits of multi-frame supervision for real-time scene flow estimation. By mining temporally con-
sistent supervisory signals through our temporal ensembling and voting strategy, TeFlow over-
comes the limitations of traditional two-frame supervision and unstable point-wise correspon-
dences. On the Argoverse 2 and nuScenes benchmarks, TeFlow sets a new state-of-the-art for self-
supervised, real-time methods, improving accuracy by up to 33%. It successfully closes the gap
with slower optimization-based approaches, offering comparable performance at a 150x speedup,
thereby achieving both high accuracy and efficiency.
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Ethics Statement The research presented in this paper adheres to the ICLR Code of Ethics. Our
work focuses on scene flow estimation, a fundamental task in 3D perception for autonomous sys-
tems. The datasets used for training and evaluation, Argoverse 2 and nuScenes, are large-scale public
datasets that have been properly anonymized and are widely used by the research community. Our
method aims to improve the accuracy and robustness of perception systems, which could contribute
to enhancing the safety of autonomous vehicles and other robotic applications. We do not foresee
any direct negative societal impacts or ethical concerns arising from this work.

Reproducibility Statement We are committed to ensuring the reproducibility of our research. To
this end, we will release the complete source code, training configurations, and all pre-trained model
weights used to generate the results in this paper. A detailed description of the implementation, in-
cluding key hyperparameters and training infrastructure, is provided in Section 4.3. The datasets
used are publicly available, and we describe our data processing steps to allow for a faithful repro-
duction of our experimental setup. We believe these resources will enable the community to easily
verify our results and build upon our work.
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A DATASETS DESCRIPTION

The Argoverse 2 dataset is a primary benchmark for scene flow estimation, consisting of 700 train-
ing scenes, 150 validation scenes, and 150 test scenes, totaling approximately 107,000 annotated
training frames. Our main evaluations are conducted on the official test split, with results compared
against the Argoverse 2 Scene Flow Challenge leaderboard Khatri et al. (2024), which provides of-
ficial baseline results. For the local validation, we follow Zhang et al. (2025b) and apply dynamic
motion compensation to generate ground-truth flow labels.

The nuScenes dataset contains 700 training and 150 validation scenes and is also used in our eval-
uation. Since nuScenes does not provide official scene flow annotations, we follow the protocol
of Zhang et al. (2025a) to generate pseudo ground truth. To ensure a consistent temporal resolu-
tion, the native 20Hz LiDAR data is first downsampled to 10Hz, resulting standard 100ms interval
between frames. For each object, a rigid transformation is estimated from its 3D bounding box
annotations and instance ID. This transformation is then applied to all LiDAR points within the
object to compute their displacements, which serve as pseudo ground-truth flow labels. These la-
bels are generated only for the validation set, while training uses the full 137,575 unlabeled frames,
demonstrating the scalability of our self-supervised approach.

For both datasets, ground points are removed prior to evaluation. In Argoverse 2, we use the pro-
vided HD maps following the official protocol, whereas in nuScenes we apply a line-fitting-based
ground segmentation method Himmelsbach et al. (2010). As a result, all reported evaluation metrics
are computed exclusively on non-ground points.

B ADDITIONAL QUANTITATIVE ANALYSIS

Importance of Internal Candidate Table 6 examines the role of the internal candidate in our tem-
poral ensembling strategy (Section 4.1). When only external candidates are used, supervision relies
solely on geometric correspondences between frames, which are often unstable under occlusion or
sparse observations, leading to higher errors (0.321 vs. 0.265). By including the internal candidate
predicted by the network, the supervisory pool gains a stable reference that anchors learning and
suppresses noisy geometric matches. This combination reduces the dynamic normalized error by
17.4% and improves three-way EPE across all categories, confirming that the internal candidate is
essential for producing reliable consensus supervision and stable training.

Table 6: Ablation on the importance of internal candidates. Results are evaluated on the Argoverse
2 validation set with five input frames. Including internal candidates provides a stable reference for
the voting scheme and consistently improves the performance.

Candidates Pool Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHER PED. VRU Mean FD FS BS

Only External 0.321 0.278 0.403 0.281 0.321 5.42 13.53 1.74 0.98
Both (Proposed) 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08

Table 7: Ablation study of dynamic cluster loss Ldcls. Results are evaluated on the Argoverse 2
validation with 5 input frames. The other two loss item kept unchanged. Bold indicates the best
performance and red highlights settings with a significant performance drop.

Ldcls formulation Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHER. PED. VRU Mean FD FS BS

Only Point-level 0.351 0.258 0.331 0.352 0.463 4.92 12.66 1.29 0.80
Only Cluster-level 0.356 0.222 0.603 0.284 0.316 5.31 12.99 1.87 1.09
Both (Proposed) 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08

Dynamic Cluster Loss Formulation Table 7 evaluates the contribution of the point-level and
cluster-level terms in the proposed dynamic cluster loss Ldcls (Equation (9)). Training with only the
point-level term underperforms on small and slow-moving agents such as pedestrians and VRUs,
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supporting our claim that point-wise supervision is dominated by large clusters containing many
points. When trained with only the cluster-level term, the model improves small-object perfor-
mance but loses fine-grained alignment for large dynamic objects, resulting in an 82% increase in
the OTHER category error (0.603 vs. 0.331). Combining both terms achieves the best overall perfor-
mance, reducing the dynamic normalized error by 24.5% and 25.6% compared to the point-level and
cluster-level variants, respectively, demonstrating the effectiveness of our proposed self-supervised
formulation in providing reliable and balanced supervision across different object scales.

Different Multi-frame Backbone Table 8 evaluates the generality of our self-supervised framework
on different multi-frame backbones. When adopting Flow4D, the model already benefits from multi-
frame temporal reasoning but achieves a mean dynamic normalized error of 0.330. Replacing it
with the ∆Flow backbone yields consistent improvements across all categories, reducing the overall
dynamic error by 19.7% (0.330 to 0.265) and three-way EPE by 22.3% (5.70 to 4.43). This trend
aligns with results observed in supervised training, where ∆Flow provides more effective temporal
representation and motion modeling. These results verify that our proposed self-supervised objective
is agnostic to the backbone architecture and can be seamlessly applied to future multi-frame scene
flow networks as they emerge.

Table 8: Ablation study on different multi-frame backbones within our self-supervised pipeline.
Results are evaluated on the Argoverse 2 validation set with five input frames. The results show that
our self-supervised objective consistently improves performance across two distinct multi-frame
backbones (Flow4D and ∆Flow), indicating that the method is architecture-agnostic and readily
applicable to future multi-frame scene flow networks.

Backbone Dynamic Bucket-Normalized ↓ Three-way EPE (cm) ↓
Mean CAR OTHER PED. VRU Mean FD FS BS

Flow4D 0.330 0.254 0.326 0.329 0.411 5.70 12.98 2.67 1.46
∆Flow 0.265 0.198 0.275 0.295 0.293 4.43 10.36 1.86 1.08
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Figure 4: Qualitative comparisons on the Argoverse 2 validation set. Left: A multi-vehicle scene.
Right: A vehicle stopping for pedestrians. Our method robustly handles both scenarios, unlike the
baseline. (Best viewed in color.) The scenes correspond to scene IDs ‘c85a88a8-c916-30a7-923c-
0c66bd3ebbd3’ and ‘b6500255-eba3-3f77-acfd-626c07aa8621’.
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C QUALITATIVE RESULTS

The qualitative results in the main paper are derived from the scenes ‘8749f79f-a30b-3c3f-8a44-
dbfa682bbef1’ and ‘scene-0104’ in the Argoverse 2 and nuScenes validation set, respectively.

Here, we present additional qualitative results comparing our TeFlow with top self-supervised
feed-forward methods, namely SeFlow Zhang et al. (2024b), VoteFlow Lin et al. (2025), and Se-
Flow++ Zhang et al. (2025a). All visualizations use a standard color-coding scheme, where hue
indicates motion direction and saturation encodes speed.
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Figure 5: Qualitative results on the Argoverse 2 validation set. Our method accurately captures the
motion of multiple pedestrians, while all feed-forward baselines underestimate the flows of moving
pedestrians. (Best viewed in color.) The scenes correspond to scene IDs ‘9f871fb4-3b8e-34b3-
9161-ed961e71a6da’.

Figure 4 shows two complex multi-agent scenes from Argoverse 2. In the left scene, three oncoming
vehicles are captured. While the ground truth indicates consistent forward motion, all baseline feed-
forward methods occasionally predict conflicting directions (e.g., flows shift from blue to purple
around t = 11.3–11.5), reflecting the instability of two-frame supervision. In contrast, our TeFlow
maintains coherent motion across time, producing stable and accurate flow for each vehicle. The
right scene highlights another common failure case: pedestrians motion. The ground truth reveals
clear trajectories, including a distant pedestrian partially occluded by a lamp post. Baseline methods
consistently underestimate the flow magnitudes of these small or occluded agents, resulting in weak
or inconsistent predictions. While our TeFlow captures their motion with the correct magnitude and
direction.

Figure 5 presents a challenging scene with three pedestrians crossing the road simultaneously. In
the ground truth, all pedestrians exhibit clear motion, yet baseline feed-forward methods underesti-
mate their flow magnitudes due to noisy two-frame supervision, resulting in weak and inconsistent
predictions under such dynamic motion. In contrast, the model trained with our TeFlow objective
produces flow fields that are both spatially coherent and temporally stable. Each motion of pedes-
trian is captured with accurate magnitude and direction, closely matching the ground truth across
the time window. Furthermore, TeFlow also preserves reliable estimates for other small or distant
dynamic objects, highlighting its robustness under challenging scenarios with sparse observations.

Figure 6 shows a challenging scene from the nuScenes validation set. In the lower-left corner, five
pedestrians are walking together, while a vehicle and another pedestrian are passing in front of the
ego car. The ground truth indicates clear motion for both the vehicle and pedestrians. However,
baseline feed-forward methods significantly underestimate the vehicle’s flow magnitude and often
fail to detect the motions of the smaller pedestrians. In contrast, TeFlow produces a smooth and com-
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Figure 6: Qualitative results on the nuScenes validation set. On this sparser data, TeFlow provides
complete motion for the vehicle and detects the pedestrians, whereas the baseline underestimates
the car’s flow and misses the smaller actors. (Best viewed in color.) The scenes correspond to the
scene IDs ‘scene-0025’.

plete flow field for the vehicle and successfully captures the individual motions of the pedestrians,
even under the sparse point density of nuScenes.

Figure 7 illustrates a complex roundabout scene from the Argoverse 2 validation set. Multiple vehi-
cles are moving along curved trajectories. The baseline methods fail to provide consistent estimates,
often underestimating the motion or producing fragmented flows, especially for vehicles entering or
exiting the roundabout. While, TeFlow produces coherent and smooth flow fields that closely follow
the ground-truth directions, demonstrating its ability to handle complex multi-agent interactions in
curved motion scenarios.

D OTHER DISCUSSION

Detail Description of LLM Usage We utilized a Large Language Model (LLM) only as a writing
assistant for language polishing and grammar checking. The authors retained full control of the
manuscript, and all scientific content, ideas, methods, and experiments were entirely conceived,
executed, and written by the authors.
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Figure 7: Qualitative results on the Argoverse 2 validation set. Our method accurately captures the
motion of vehicles in complex roundabout scenarios. (Best viewed in color.) The scenes correspond
to scene IDs ‘bdb9d309-f14b-3ff6-ad1f-5d3f3f95a13e’.
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