TEFLOW: ENABLING MULTI-FRAME SUPERVISION FOR FEED-FORWARD SCENE FLOW ESTIMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Self-supervised feed-forward methods for scene flow estimation offer real-time efficiency, but their supervision from two-frame point correspondences is unreliable and often breaks down under occlusions. Multi-frame supervision has the potential to provide more stable guidance by incorporating motion cues from past frames, yet naive extensions of two-frame objectives are ineffective because point correspondences vary abruptly across frames, producing inconsistent signals. In the paper, we present TeFlow, enabling multi-frame supervision for feed-forward models by mining temporally consistent supervision. TeFlow introduces a temporal ensembling strategy that forms reliable supervisory signals by aggregating the most temporally consistent motion cues from a candidate pool built across multiple frames. Extensive evaluations demonstrate that TeFlow establishes a new state-of-the-art for self-supervised feed-forward methods, achieving performance gains of **up to 33%** on the challenging Argoverse 2 and nuScenes datasets. Our method performs on par with leading optimization-based methods, yet speeds up **150** times. The source code and model weights will be released upon publication.

1 Introduction

Scene flow determines the 3D motion of each point between consecutive point clouds as visualized in Figure 1a. By providing a detailed characterization of object motion, scene flow could benefit downstream tasks such as motion prediction Najibi et al. (2022), dynamic object reconstruction Chodosh et al. (2024a); Zhang et al. (2025a), and occupancy flow prediction Yang et al. (2024). Accurate scene flow prediction enables autonomous agents to capture the underlying environmental dynamics during observation Li et al. (2025); Jia et al. (2024).

To overcome the high cost of manual annotation required by supervised methods Zhang et al. (2024a); Jund et al. (2021); Khoche et al. (2025); Luo et al. (2025), the field has increasingly shifted towards self-supervised learning, which exploits geometric and temporal consistency across frames without requiring ground-truth labels. Existing self-supervised approaches fall into two categories: (1) Optimization-based methods Vedder et al. (2024b); Hoffmann et al. (2025) achieve high accuracy by enforcing long-term multi-frame constraints but suffer from substantial optimization latency, making them unsuitable for real-time deployment. As shown in Figure 1c, the optimization of such methods can take hours and days for a single scene. (2) Feed-forward methods Zhang et al. (2024b); Lin et al. (2025) achieve high efficiency by generating results in a single forward pass, however, their accuracy is limited by unstable training objectives derived from only two consecutive frames. For example, as shown in Figure 1a, when depicting objects (e.g., pedestrians), occlusions often cause missing points between frames, preventing consistent motion guidance and leading to incorrect flows. In addition, two-frame supervision is also vulnerable to sensor noise, sparse observations, and ambiguity in curved or articulated motion. Leveraging information from multiple frames mitigates these issues and provides a more stable and temporally consistent supervisory signal.

However, introducing additional frames into feed-forward training is non-trivial. As shown in Figure 1b, the direction of the two-frame supervisory signal varies drastically over time. Even when the underlying motion is smooth, two-frame estimates fluctuate sharply due to occlusions, noise, and missing points, producing deviations from the ground truth. Training with such temporally inconsistent signals prevents the model from learning coherent motion patterns and results in inaccurate scene flow. This highlights the importance of exploiting temporally consistent cues across multiple frames to provide effective supervision for feed-forward models. To achieve this, we propose

Figure 1: (a) Multi-frame supervision maintains stable guidance during occlusion by querying past frames, while two-frame supervision fails due to missing points. (b) Direction change of supervisory signals over time, reflecting their temporal consistency. The two-frame supervision Zhang et al. (2024b) exhibits abrupt variations with frequent direction shifts, while our five-frame TeFlow produces more stable signals that stay closer to the ground truth. (c) Accuracy vs. Runtime. Prior feed-forward methods are fast but less accurate, while optimization-based methods are accurate but too slow. TeFlow achieves both real-time speed and high accuracy.

TeFlow, a novel multi-frame feed-forward framework that mines consistent motion signals across time. TeFlow introduces a temporal ensembling strategy that constructs a pool of motion candidates across multiple frames and applies a voting scheme to aggregate the most consistent ones. The resulting consensus motions form a robust supervisory signal, enabling feed-forward models to achieve high-accuracy scene flow estimation while maintaining real-time efficiency.

Our contributions can be summarized as follows:

- We leverage temporally-consistent supervisory signals for self-supervised scene flow estimation by constructing a motion candidate pool from multiple frames and then optimizing the consensus motion via a voting scheme.
- By integrating our objective function, TeFlow becomes the first approach to unlock the potential of multi-frame network architectures in a real-time, self-supervised setting.
- We demonstrate through extensive experiments on the Argoverse 2 and nuScenes datasets that TeFlow achieves the state-of-the-art performance for real-time self-supervised methods, significantly narrowing the accuracy gap to slow optimization-based methods while maintaining realtime efficiency.

2 RELATED WORK

Scene flow estimation Vedula et al. (2005); Lang et al. (2023); Khatri et al. (2024); Jiang et al. (2024); Zhang et al. (2024d) has been a long-standing problem in computer vision. Our work builds upon advances in both supervised and, more importantly, self-supervised learning paradigms.

Supervised Scene Flow. Early and many current state-of-the-art methods are trained in a fully supervised manner Wei et al. (2021); Wang et al. (2023); Liu et al. (2024); Zhang et al. (2024c). These approaches leverage large datasets with ground-truth flow annotations to train deep neural networks. Methods like FastFlow3D Jund et al. (2021), DeFlow Zhang et al. (2024a), and SSF Khoche et al. (2025) use voxel-based backbones to efficiently process large-scale point clouds, achieving high accuracy and real-time inference speeds. While powerful, these methods are fundamentally limited by their reliance on expensive, manually annotated data, which is difficult to scale and may not cover all real-world scenarios.

Self-Supervised Scene Flow. To overcome the need for labeled data, self-supervised methods have gained significant interest. These methods can be broadly divided into two main strategies: optimization-based approaches and feed-forward approaches.

Optimization-based approaches fit a scene-specific model at test time. The pioneering NSFP Li et al. (2021) optimizes a small coordinate-based MLP for each two-frame pair. Follow-up works Li et al. (2023); Hoffmann et al. (2025) improve efficiency by replacing the MLP with representations like voxel grids or distance transforms. To achieve higher accuracy, the state-of-the-art method, EulerFlow Vedder et al. (2024b), reframes scene flow as the task of estimating a continuous ordinary differential equation over an entire sequence. By optimizing a neural prior against reconstruction objectives across many frames, it produces exceptionally accurate flow fields. However, this accuracy comes at a prohibitive computational cost, requiring from hours to days of optimization for a single sequence, making it unsuitable for any real-time application.

In contrast, feed-forward methods aim to train a single, generalizable network on a large unlabeled dataset, enabling real-time inference on new scenes. A prominent approach is knowledge distillation, exemplified by ZeroFlow Vedder et al. (2024a). This technique uses a slow but accurate optimization-based 'teacher' to generate pseudo-labels for a fast 'student' network. However, this label generation process requires 7.2 GPU months of computation, which limits its scalability and practical adoption. Other methods, such as SeFlow Zhang et al. (2024b), instead design the two-frame loss functions directly. SeFlow first classifies points as static or dynamic Duberg et al. (2024) and then applies tailored consistency losses to each group to improve learning. Despite their different strategies, these methods are still fundamentally trained using supervisory signals derived from only two consecutive frames.

Multi-frame Architectures. Independent of the training paradigm, network architectures have evolved to better capture temporal information. Models like Flow4D Kim et al. (2025) introduce an explicit temporal dimension and use 4D convolutions Choy et al. (2019) to process sequences of voxelized point clouds. Taking a different approach to efficiency, DeltaFlow Zhang et al. (2025b) introduces a computationally lightweight ' Δ scheme' that directly computes the difference between voxelized frames. This avoids the feature expansion common in other multi-frame methods and maintains a constant input size regardless of the number of frames. This architectural trend shows a clear recognition in the community that temporal context is crucial for accurate motion estimation. However, when trained with self-supervision, these powerful backbones are still bottlenecked by the current two-frame-based supervision objectives, preventing them from reaching their full potential.

3 PRELIMINARIES

Problem Formulation Given a continuous stream of LiDAR point clouds, our goal is to train a feed-forward network Φ_{θ} that estimates the scene flow vector field Zhang et al. (2025b). For a given frame $\mathcal{P}_t \in \mathbb{R}^{N_t \times 3}$, the network predicts its flow $\mathcal{F} \in \mathbb{R}^{N_t \times 3}$ toward the subsequent frame $\mathcal{P}_{t+1} \in \mathbb{R}^{N_{t+1} \times 3}$. The scene flow \mathcal{F} is decomposed into two parts: ego-motion flow \mathcal{F}_{ego} induced by the movement of the vehicle, and residual flow \mathcal{F}_{res} , caused by dynamic objects in the environment. Since ego-motion can be obtained directly from odometry, the network is trained only to estimate the residual flow. Formally, the network learns the mapping:

$$\Phi_{\theta}: \left\{ \mathbf{T}_{\text{ego}}^{t-h \to t+1} \mathcal{P}_{t-h}, \dots, \mathbf{T}_{\text{ego}}^{t \to t+1} \mathcal{P}_{t}, \mathcal{P}_{t+1} \right\} \to \mathcal{F}_{\text{res}}, \tag{1}$$

where $\mathbf{T}_{\text{ego}}^{t' \to t+1} \in \mathbb{R}^{4 \times 4}$ is the odometry transformation matrix from time t' to t+1, aligning all past point clouds to the coordinate frame of \mathcal{P}_{t+1} .

Self-Supervised Training Paradigm To train Φ_{θ} without labeled data, we adopt a self-supervised paradigm that derives supervisory signals directly from the input sequence. Following Zhang et al. (2024b), point clouds are first segmented into static and dynamic regions $(\mathcal{P}_{\cdot,s},\mathcal{P}_{\cdot,d})$. Static points $\mathcal{P}_{\cdot,s}$ are supervised with a near-zero flow loss. Dynamic points $\mathcal{P}_{\cdot,d}$ are further partitioned into clusters $\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{N_c}\}$, where $N_c = |\mathcal{C}|$ is the number of dynamic clusters. Each cluster is assumed to undergo a shared rigid motion and is trained with a rigidity loss, i.e., dynamic cluster loss, that enforces coherent motion within the group. Prior work Zhang et al. (2024b) derives this loss from two-frame correspondences, which are often noisy and provide unstable supervision.

Figure 2: An overview of the TeFlow, a multi-frame feedforward scene flow estimation pipeline, shown in the top row. Our self-supervised pipeline tackles the main challenge of deriving reliable supervision $\bar{\mathbf{f}}$ from dense multi-frame inputs. For each dynamic cluster \mathcal{C}_j , we create a motion candidate pool $\mathcal{F}_{\mathcal{C}_j}$ (red arrows) from multi-frame geometry and network predictions $\hat{\mathbf{f}}_{\mathcal{C}_j}$. This pool is then aggregated as final cluster-level supervision $\bar{\mathbf{f}}_{\mathcal{C}_j}$ through weighted reliability voting, where \mathbf{M} indicates inter-candidate consistency and \mathbf{w} represents magnitude-based reliability.

4 METHOD: TEFLOW

To move beyond the limits of two-frame supervision and achieve both high accuracy and efficiency, we propose TeFlow, a multi-frame feed-forward framework illustrated in Figure 2, which generates stable supervisory signals through temporal ensembling of consistent motions across frames.

4.1 TEMPORAL ENSEMBLING FOR DYNAMIC CLUSTERS

TeFlow aims to assign each dynamic cluster \mathcal{C}_j a reliable supervision target $\bar{\mathbf{f}}_{\mathcal{C}_j} \in \mathbb{R}^{1 \times 3}$ that reflects its true motion. A naive extension from two-frame to multi-frame supervision is unreliable, since frame-to-frame correspondences often vary abruptly and introduce conflicting signals (as shown in Figure 1b). To address this, TeFlow introduces a temporal ensembling approach that first constructs a pool of motion candidates across the temporal window, capturing multiple hypotheses, and then forms a robust supervision signal by selecting and weighting only the most consistent motions. The approach consists of two stages: (i) generate a diverse pool of motion candidates across the temporal window, and (ii) aggregate the target motion via a weighted voting scheme.

Motion Candidate Generation. This stage aims to build a candidate pool from which a reliable supervisory target can be aggregated for each cluster C_j . Each candidate is represented by a single 3D motion vector. The pool combines two complementary sources: internal and external candidates, which together balance stability with data-driven evidence.

The internal candidate $\hat{\mathbf{f}}_{\mathcal{C}_j}$ serves as an anchor that stabilizes the supervisory signal and keeps training grounded in the evolving state of the model. It is obtained from the current estimate from the network Φ_{θ} , computed as the average flow over all points in the cluster,

$$\hat{\mathbf{f}}_{\mathcal{C}_j} = \frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{p}_i \in \mathcal{C}_j} \hat{\mathbf{f}}_i, \tag{2}$$

where $|\mathcal{C}_j|$ is the number of point in the cluster and $\hat{\mathbf{f}}_i \in \mathcal{F}_{res}$ is the network estimation for point \mathbf{p}_i .

The external candidates $\mathbf{f}_{\mathcal{C}_j,k}^{t'}$ represent geometry-based motion hypotheses for the cluster. They aim to approximate how the cluster might actually move by exploiting information from neighboring frames. To construct them, we compare the cluster \mathcal{C}_j at time t with the dynamic points $\mathcal{P}_{t',d}$ from each of the other frames $t' \in \{t-h,\ldots,t-1,t+1\}$. For every pair of frames (t,t'), we establish correspondences by finding, for each point $\mathbf{p}_i \in \mathcal{C}_j$, its nearest neighbor in $\mathcal{P}_{t',d}$. Among these correspondences, we retain the Top-K with the largest displacement magnitudes, as they are more likely to capture meaningful motion rather than noise.

Since different frames t' are separated from t by varying time intervals, the displacements are normalized by the temporal gap (t'-t). The normalized motion vector for frame t' and the k-th selected correspondence is defined as:

$$\mathbf{f}_{\mathcal{C}_{j},k}^{t'} = \frac{\mathcal{N}\mathcal{N}(\mathbf{p}_{k}, \mathcal{P}_{t',d}) - \mathbf{p}_{k}}{t' - t},\tag{3}$$

where $\mathcal{NN}(\cdot)$ denotes nearest-neighbor search and \mathbf{p}_k is the k-th Top-K source point.

Finally, we combine the internal candidate with all external candidates from the temporal window to form the complete candidate pool:

$$\mathcal{F}_{\mathcal{C}_i} = \{\hat{\mathbf{f}}_{\mathcal{C}_i}\} \cup \{\mathbf{f}_{\mathcal{C}_i,k}^{t'} \mid t' \in \{t - h, \dots, t - 1, t + 1\}, \ k \in \{1, \dots, K\}\}$$
 (4)

This pool contains a total of 1+K(h+1) candidates, each candidate $\mathbf{f}_i \in \mathbb{R}^{1\times 3}$. By uniting stability from the internal estimate with motion evidence from external correspondences, the pool provides a strong foundation for consensus in the subsequent voting stage.

Candidate Voting and Flow Aggregation. With the candidate pool constructed, the next step is to derive a stable cluster-level flow. Since the pool still contains a mix of useful and noisy motion vectors, selecting one directly could lead to unstable supervision. To obtain a reliable estimate, we aggregate candidates based on two criteria: (i) their agreement with others in the pool, and (ii) their own reliability.

The first criterion, agreement, captures which flows reinforce each other, ensuring that the final decision reflects collective support. It is measured through a consensus matrix $\mathbf{M} \in \mathbb{R}^{(1+K(h+1))\times(1+K(h+1))}$. Each entry \mathbf{M}_{ab} indicates whether two candidates \mathbf{f}_a and \mathbf{f}_b are directionally consistent, determined by their cosine similarity τ_{\cos} :

$$\mathbf{M}_{ab} = \begin{cases} 1 & \text{if } \frac{\mathbf{f}_a \cdot \mathbf{f}_b}{\|\mathbf{f}_a\| \|\mathbf{f}_b\|} > \tau_{\cos}, \\ 0 & \text{otherwise.} \end{cases}$$
 (5)

The second criterion, reliability, reflects how trustworthy each candidate is and therefore how much influence it should have on the final flow. It is encoded in a weight vector $\mathbf{w} = [w_1, \dots, w_{1+K(h+1)}]^T$, where the weight of candidate \mathbf{f}_i is defined as

$$w_i = \gamma^{m_i} (1 + \|\mathbf{f}_i\|_2^2). \tag{6}$$

Here, $\gamma \in (0,1]$ is a temporal decay factor that prioritizes candidates from more recent frames, and m_i is the time offset of \mathbf{f}_i , with $m_i = 0$ for the internal candidate and $m_i = |t' - t|$ for external ones. The magnitude term $\|\mathbf{f}_i\|_2^2$ further emphasizes larger displacements, which provide clearer motion cues than near-zero flows. This design encourages candidates with clearer motion cues to obtain higher weights and greater influence in the voting and aggregation stage.

With both agreement and reliability defined, we combine them to identify the most representative flow in the pool. For each candidate, its score is computed by summing the reliability weights of all agreeing candidates, as encoded by the consensus matrix. Formally, the score vector is defined as

$$\mathbf{S} = \mathbf{M}\mathbf{w}, \qquad a^{\dagger} = \underset{i \in \{1, \dots, 1+K(h+1)\}}{\operatorname{arg max}} \mathbf{S}_{i}, \tag{7}$$

where a higher score means that a candidate is supported by more reliable neighbors. The index a^{\dagger} therefore corresponds to the index of the candidate with the highest score and strongest overall support, i.e., the consensus winner.

Rather than relying only on this single winner, we further stabilize the supervision by averaging the winner with all of its agreeing neighbors, weighted by their reliability:

$$\bar{\mathbf{f}}_{\mathcal{C}_j} = \frac{\sum_b \mathbf{M}_{a^{\dagger}b} w_b \mathbf{f}_b}{\sum_b \mathbf{M}_{a^{\dagger}b} w_b}.$$
 (8)

This averaging step preserves the reliability of the winner while incorporating supportive evidence from consistent candidates, mitigating the effect of noise and producing a stable supervisory target from both model predictions and multi-frame geometric evidence. As illustrated in Figure 1b, this strategy yields supervisory signals that are significantly more consistent than those from two-frame supervision. These signals $\bar{\mathbf{f}}_{\mathcal{C}_j}$ are then used to define our training objectives.

4.2 Training Objective

Building on previous two-frame approaches Zhang et al. (2024b), we define a dynamic cluster loss \mathcal{L}_{dcls} using the supervision $\bar{\mathbf{f}}_{C_j}$. The basic form is a *point-level* L2 loss, computed between the model predictions and the supervisory targets and averaged over all points in all dynamic clusters. However, as large objects contain more points, their losses dominate the training process, which biases the optimization and suppresses small objects. To solve the problem, we introduce a *cluster-level* loss term. Specifically, this term first averages the L2 error within each cluster and then averages across clusters, ensuring that small objects contribute fairly rather than being overshadowed by larger ones. The full dynamic cluster loss is the sum of the point-level and cluster-level terms:

$$\mathcal{L}_{\text{dels}} = \underbrace{\frac{1}{|\mathcal{P}_{\mathcal{C}}|} \sum_{j} \sum_{\mathbf{p}_i \in \mathcal{C}_j} \|\hat{\mathbf{f}}_i - \bar{\mathbf{f}}_{\mathcal{C}_j}\|_2^2}_{\text{Point-level Term}} + \underbrace{\frac{1}{N_c} \sum_{j} \left(\frac{1}{|\mathcal{C}_j|} \sum_{\mathbf{p}_i \in \mathcal{C}_j} \|\hat{\mathbf{f}}_i - \bar{\mathbf{f}}_{\mathcal{C}_j}\|_2^2 \right)}_{\text{Cluster-level Term}}, \tag{9}$$

where $|\mathcal{P}_{\mathcal{C}}|$ is the total number of points across all dynamic clusters and N_c is the number of clusters.

In addition to our proposed \mathcal{L}_{dcls} , we adopt two auxiliary losses from prior work Zhang et al. (2024b); Vedder et al. (2024b). The *static loss* \mathcal{L}_{static} Zhang et al. (2024b) penalizes non-zero residual flow on background points $\mathcal{P}_{t,s}$, since their motion is already explained by ego-motion of the vehicle. The *geometric consistency loss* \mathcal{L}_{geom} applies multi-frame Chamfer and dynamic Chamfer distances to ensure that the source point cloud, warped by the predicted flows, aligns with neighboring frames.

Together, these losses ensure that the network learns from reliable cluster-level supervision, respects static background constraints, and preserves global geometric consistency across time. The overall training objective is the sum of all three losses:

$$\mathcal{L}_{total} = \mathcal{L}_{dcls} + \mathcal{L}_{static} + \mathcal{L}_{geom}. \tag{10}$$

4.3 IMPLEMENTATION DETAILS

We build TeFlow on top of the multi-frame DeltaFlow backbone Zhang et al. (2025b). Static and dynamic segmentation for training is provided by DUFOMap Duberg et al. (2024), and dynamic clusters are pre-computed using HDBSCAN Campello et al. (2013). The main hyperparameters of our method are as follows: a cosine similarity threshold of $\tau_{cos}=0.7071$ (corresponding to a 45° angular difference), a Top-K selection of K=5 for external candidates, and a temporal decay factor of $\gamma=0.9$. For the DeltaFlow backbone, we adopt its standard configuration, processing a $76.8\times76.8\times6$ m region represented as a $512\times512\times40$ voxel grid with 0.15 m resolution. Training is performed for 15 epochs using the Adam optimizer with a learning rate of 0.002 and a total batch size of 20, distributed across ten NVIDIA RTX 3080 GPUs. Each dataset requires approximately 15 to 20 hours of training. The source code and model weights will be released upon publication.

5 EXPERIMENTS

Datasets Experiments are conducted on two large-scale autonomous driving datasets: Argoverse 2 Wilson et al. (2021), collected with two roof-mounted 32-channel LiDARs, and nuScenes Caesar et al. (2020), which uses a single 32-channel LiDAR. Details on datasets description, preprocessing, and ground-truth flow estimation are provided in Appendix A.

Evaluation Metrics We follow the official Argoverse 2 benchmark and report three-way End Point Error (EPE) Chodosh et al. (2024b) and Dynamic Bucket-Normalized EPE Khatri et al. (2024). *Three-way EPE* computes the unweighted average EPE over three categories: foreground dynamic (FD), foreground static (FS), and background static (BS). *Dynamic Bucket-Normalized EPE* normalizes the EPE by the mean speed within predefined motion buckets, providing a fairer comparison across different object classes. It evaluates four categories: regular cars (CAR), other vehicles (OTHER), pedestrians (PED.), and wheeled vulnerable road users (VRU). All evaluations are conducted within a 70×70 m area around the ego vehicle.

Baselines We compare TeFlow against both optimization-based and feed-forward self-supervised methods: NSFP Li et al. (2021), FastNSF Li et al. (2023), ZeroFlow Vedder et al. (2024a), ICPFlow Lin & Caesar (2024), SeFlow Zhang et al. (2024b), SeFlow++ Zhang et al. (2025a), EulerFlow Vedder et al. (2024b), VoteFlow Lin et al. (2025) and Floxels Hoffmann et al. (2025). To

Table 1: Performance comparisons on the Argoverse 2 <u>test set</u> leaderboard Argoverse 2 (2025). TeFlow achieves state-of-the-art performance in real-time scene flow estimation. '#F' denotes the number of input frames. Runtime is reported per sequence (around 157 frames), with '-' indicating unreported values. Units are given in seconds (s') and minutes (m').

Methods	#F	Runtime	Three-way EPE (cm) ↓				Dynamic Bucket-Normalized ↓					
	2	per seq	Mean	FD	FS	BS	Mean	CAR	OTHER	PED.	VRU	
Ego Motion Flow	-	-	18.13	53.35	1.03	0.00	1.000	1.000	1.000	1.000	1.000	
Optimization-based												
FastNSF	2	12m	11.18	16.34	8.14	9.07	0.383	0.296	0.413	0.500	0.322	
NSFP	2	60m	6.06	11.58	3.16	3.44	0.422	0.251	0.331	0.722	0.383	
ICP-Flow	2	-	6.50	13.69	3.32	2.50	0.331	0.195	0.331	0.435	0.363	
Floxels	13	24m	3.57	7.73	1.44	1.54	0.154	0.112	0.213	0.195	0.096	
EulerFlow	all	1440m	4.23	4.98	2.45	5.25	0.130	0.093	0.141	0.195	0.093	
Feed-forward												
ZeroFlow	3	5.4s	4.94	11.77	1.74	1.31	0.439	0.238	0.258	0.808	0.452	
SemanticFlow	2	-	4.69	12.26	1.41	0.40	0.331	0.210	0.310	0.524	0.279	
SeFlow	2	7.2s	4.86	12.14	1.84	0.60	0.309	0.214	0.291	0.464	0.265	
VoteFlow	2	13s	4.61	11.44	1.78	0.60	0.289	0.202	0.288	0.417	0.249	
SeFlow++	3	10s	4.40	10.99	1.44	0.79	0.264	0.209	0.272	0.367	0.210	
TeFlow (Ours)	5	8s	3.57	8.53	1.49	0.70	0.205	0.163	0.227	0.253	0.177	

Table 2: Performance comparisons on the nuScenes <u>validation set</u> with a 10Hz LiDAR frequency. TeFlow achieves state-of-the-art accuracy in scene flow estimation. Runtime is reported per sequence (\approx 200 frames) using the same device.

Methods	#F	Runtime	D	ynamic	Bucket-No	Three-way EPE (cm) ↓					
wichlous	#Г	per seq	Mean	CAR	OTHER	PED.	VRU	Mean	FD	FS	BS
Ego Motion Flow	-	-	1.000	1.000	1.000	1.000	1.000	12.34	35.94	1.07	0.00
Optimization-based											
NSFP	2	3.5m	0.602	0.463	0.456	0.829	0.662	10.79	20.26	4.88	7.23
ICP-Flow	2	3.2m	0.569	0.430	0.569	0.749	0.530	8.81	17.53	3.51	5.38
FastNSF	2	2.6m	0.560	0.436	0.523	0.737	0.543	12.16	18.20	6.11	12.18
Feed-forward											
SeFlow	2	6s	0.544	0.396	0.635	0.726	0.419	8.19	16.15	3.97	4.45
VoteFlow	2	8s	0.538	0.355	0.605	0.780	0.410	7.80	15.65	3.51	4.24
SeFlow++	3	7.5s	0.509	0.327	0.583	0.716	0.409	6.13	14.59	1.96	1.86
TeFlow (Ours)	5	7s	0.395	0.303	0.461	0.474	0.344	4.64	10.92	1.49	1.51

ensure fairness, Argoverse 2 results are obtained directly from the public leaderboard, and nuScenes baselines are reproduced following OpenSceneFlow¹, using best reported training configurations.

5.1 STATE-OF-THE-ART COMPARISON

TeFlow achieves state-of-the-art accuracy on both Argoverse 2 and nuScenes while maintaining real-time efficiency, as shown in Table 1 and Table 2 respectively. On Argoverse 2 test set, TeFlow achieves a Three-way EPE of 3.57 cm, on par with the best optimization-based method Floxels, while being 150× faster (8 s vs 24 min). On Dynamic Bucket-Normalized EPE, TeFlow improves by 22.3% overall compared to SeFlow++, with consistent gains across all categories, including a 31% error reduction for pedestrians. On nuScenes validation set, TeFlow again outperforms all baselines. It achieves the best dynamic normalized score (0.395) and the lowest Three-way EPE (4.64 cm), representing a 22.4% improvement over SeFlow++. The most significant advance is the 33.8% error reduction for the challenging pedestrian class. Together, these results show that TeFlow delivers optimization-level accuracy while retaining the efficiency and scalability of feed-forward methods, setting a new state-of-the-art for self-supervised scene flow estimation.

5.2 Ablation Studies on Design Choices

To further understand the source of performance gains in TeFlow, we conduct ablation studies on Argoverse 2, with results reported in Tables 3 and 4.

¹https://github.com/KTH-RPL/OpenSceneFlow

Table 3: Ablation on the number of input frames on the Argoverse 2 validation set. All experiments use the same DeltaFlow backbone for a fair comparison. TeFlow surpasses SeFlow even with two frames, and performance peaks at five frames, indicating the optimal temporal window. The best results are shown in **bold**.

Logo Type	#Eromo	Dynamic Bucket-Normalized ↓						Three-way EPE (cm) ↓				
Loss Type	#Frame	Mean	CAR	OTHERS	PED.	VRU	Mean	FD	FS	BS		
SeFlow	2	0.408	0.319	0.412	0.369	0.531	6.35	16.63	1.48	0.92		
	2	0.353	0.271	0.389	0.329	0.424	5.98	13.93	2.53	1.46		
TeFlow	5 8	0.265 0.300	0.198 0.269	0.275 0.336	0.295 0.273	0.293 0.321	4.43 5.40	10.36 13.50	1.86 1.78	1.08 0.91		

Table 4: Ablation on dynamic cluster loss on the Argoverse 2 validation set. All experiments use the same DeltaFlow backbone with **5-frame inputs**. The baseline includes static and geometric consistency loss. '+ \mathcal{L}_{dcls}^* (SeFlow)' introduces the cluster supervision target and loss from SeFlow, while '+ \mathcal{L}_{dcls} (Ours)' replaces it with our multi-frame supervisory targets and cluster loss formulation.

Loss Configuration		ynamic	Bucket-No	Three-way EPE (cm) ↓					
	Mean	CAR	OTHER	PED.	VRU	Mean	FD	FS	BS
	0.458		0.654	0.481	0.377	6.37	17.15	1.25	0.73
+ \mathcal{L}_{dels}^* (SeFlow)	0.335	0.258		0.408			13.03		
+ $\mathcal{L}_{dcls}^{dcls}$ (Ours)	0.265	0.198	0.275	0.295	0.293	4.43	10.36	1.86	1.08

Number of Input Frames Table 3 ablates the impact of the number of input frames. *Two-frame setting:* To assess the contribution of our formulation, we re-implement SeFlow on the same DeltaFlow backbone with an identical two-frame input. TeFlow achieves a 13.5% reduction in dynamic EPE (0.353 vs. 0.408), mainly due to our candidate pool and the cluster-level dynamic loss term, which provides more consensus information and ensures balanced supervision across object sizes. *Multi-frame setting:* Expanding the temporal window within TeFlow to five frames yields the best performance, lowering dynamic EPE by 24.9% to 0.265. This performance gain can be explained by Figure 1b: the multi-frame supervision produced by TeFlow closely follows the ground truth and is more stable than the fluctuating signals from two-frame supervision. Training with these stable signals results in significantly better performance. Further extending the number of frames shows little help or even degrades the performance, which is consistent with the prior findings in the supervised method Kim et al. (2025); Zhang et al. (2025b). A possible explanation is that overly distant frames introduce noisy or less relevant motion, outweighing the benefits of a longer context.

Dynamic Cluster Loss Table 4 examines the effect of different cluster supervision strategies. All models use the same DeltaFlow backbone with five input frames and identical training parameters, varying only in the design of cluster loss. The baseline, which relies only on static constraints and multi-frame Chamfer consistency, provides weak guidance for moving regions and performs poorly on dynamic objects (0.458). Adding the SeFlow two-frame-based dynamic cluster loss reduces the error by 34.2%, highlighting the necessity of specialized supervision for dynamic clusters. Replacing it with our multi-frame dynamic cluster loss reduces the error by a further 20.8% (to 0.265). This improvement further confirms that our temporal ensembling strategy effectively aggregates consistent motion candidates across frames, suppresses noise from two-frame correspondences, and produces stable supervisory signals that drive consistent improvements across categories.

5.3 ANALYSIS ON HYPERPARAMETER SELECTION

We further analyze the sensitivity of TeFlow to its key hyperparameters by varying one parameter at a time while keeping the others fixed at their optimal values. Results are reported in Table 5 and provide additional insight into the functioning of the temporal ensembling strategy.

Top-K This parameter controls the number of external candidates in the candidate pool. A small, high-quality set proves most effective, with the best performance at K=5. Larger values introduce noise from less reliable geometric matches and degrade accuracy.

Cosine similarity This threshold determines which candidates are included in the consensus matrix. The optimal value of 0.707 (45°) strikes the right balance: looser thresholds allow inconsistent motions, while stricter ones discard valid candidates too early.

Figure 3: Qualitative results on Argoverse 2 (left) and nuScenes (right). Rows show ground truth, SeFlow, and TeFlow predictions across time. Scene flow is visualized with hue indicating direction and saturation representing speed. Compared to SeFlow, TeFlow produces flow estimates that are more accurate and temporally consistent, particularly for dynamic objects (red circles).

Table 5: Ablation study on the key hyperparameters of TeFlow, evaluated on the Argoverse 2 validation set. The default and best-performing configuration is cosine similarity $\tau_{cos}=0.7$ (45°), Top-K = 5, and time decay $\gamma=0.9$. In each row, only the specified parameter is varied from this setting.

TeFlow Setting	г	ynamic	Bucket-Noi	Three-way EPE (cm) ↓					
	Mean	CAR	OTHER	PED.	VRU	Mean	FD	FS	BS
Default	0.265	0.198	0.275	0.295	0.293	4.43	10.36	1.86	1.08
$\tau_{cos} = 0 (90^{\circ})$	0.307	0.239	0.365	0.291	0.332	5.19	13.02	1.60	0.95
$\tau_{cos} = 0.9 (20^{\circ})$	0.289	0.207	0.356	0.294	0.297	4.42	10.41	1.80	1.04
K = 20	0.353	0.283	0.355	0.312	0.463	5.88	14.97	1.68	1.00
K = 10	0.307	0.241	0.314	0.296	0.377	5.11	12.39	1.83	1.12
$\gamma = 1$	0.303	0.224	0.348	0.311	0.330	4.73	11.55	1.66	0.98
$\gamma = 0.5$	0.285	0.232	0.308	0.290	0.311	4.92	11.65	1.98	1.12

Time decay This factor weights candidates by their temporal distance, giving higher importance to recent frames. Our default of $\gamma=0.9$ outperforms both no decay ($\gamma=1.0$) and stronger decay ($\gamma=0.5$). Without decay, distant frames are treated equally and introduce noise, while overly strong decay underutilizes longer-term consistency that benefits large, predictably moving objects.

5.4 QUALITATIVE RESULTS

Figure 3 presents qualitative comparisons on two challenging dynamic scenarios. On the left (Argoverse 2), the scene contains a moving car and an articulated truck making a turn. The cab and trailer of the truck exhibit distinct motions that are visible in the ground truth, but SeFlow fails to capture them and predicts a uniform flow across the entire vehicle. TeFlow, in contrast, models the articulated components more accurately, producing flows that closely match the ground truth. On the right (nuScenes), a multi-object scene is shown. Here, estimates for the moving vehicle (red circles) in SeFlow are unstable and flicker across frames, while TeFlow delivers stable and temporally consistent flow throughout the sequence. More qualitative examples are provided in Appendix B.

6 CONCLUSION

In this work, we introduced TeFlow, a self-supervised feed-forward approach that unlocks the benefits of multi-frame supervision for real-time scene flow estimation. By mining temporally consistent supervisory signals through our temporal ensembling and voting strategy, TeFlow overcomes the limitations of traditional two-frame supervision and unstable point-wise correspondences. On the Argoverse 2 and nuScenes benchmarks, TeFlow sets a new state-of-the-art for self-supervised, real-time methods, improving accuracy by up to 33%. It successfully closes the gap with slower optimization-based approaches, offering comparable performance at a 150x speedup, thereby achieving both high accuracy and efficiency.

Ethics Statement The research presented in this paper adheres to the ICLR Code of Ethics. Our work focuses on scene flow estimation, a fundamental task in 3D perception for autonomous systems. The datasets used for training and evaluation, Argoverse 2 and nuScenes, are large-scale public datasets that have been properly anonymized and are widely used by the research community. Our method aims to improve the accuracy and robustness of perception systems, which could contribute to enhancing the safety of autonomous vehicles and other robotic applications. We do not foresee any direct negative societal impacts or ethical concerns arising from this work.

Reproducibility Statement We are committed to ensuring the reproducibility of our research. To this end, we will release the complete source code, training configurations, and all pre-trained model weights used to generate the results in this paper. A detailed description of the implementation, including key hyperparameters and training infrastructure, is provided in Section 4.3. The datasets used are publicly available, and we describe our data processing steps to allow for a faithful reproduction of our experimental setup. We believe these resources will enable the community to easily verify our results and build upon our work.

REFERENCES

- Argoverse 2 scene flow online leaderboard. https://eval.ai/web/challenges/challenge-page/2210/leaderboard/5463, 2025.
- Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In CVPR, 2020.
- Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates. In *Pacific-Asia conference on knowledge discovery and data mining*, pp. 160–172. Springer, 2013.
- Nathaniel Chodosh, Anish Madan, Simon Lucey, and Deva Ramanan. Smore: Simulataneous map and object reconstruction. *arXiv preprint arXiv:2406.13896*, 2024a.
- Nathaniel Chodosh, Deva Ramanan, and Simon Lucey. Re-evaluating lidar scene flow. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, pp. 6005–6015, January 2024b.
- Christopher Choy, Jun Young Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3075–3084, 2019.
- Daniel Duberg, Qingwen Zhang, Mingkai Jia, and Patric Jensfelt. DUFOMap: Efficient dynamic awareness mapping. *IEEE Robotics and Automation Letters*, 9(6):5038–5045, 2024. doi: 10.1109/LRA.2024.3387658.
- Michael Himmelsbach, Felix V Hundelshausen, and H-J Wuensche. Fast segmentation of 3d point clouds for ground vehicles. In *Intelligent Vehicles Symposium (IV)*, 2010 IEEE, pp. 560–565. IEEE, 2010.
- David T Hoffmann, Syed Haseeb Raza, Hanqiu Jiang, Denis Tananaev, Steffen Klingenhoefer, and Martin Meinke. Floxels: Fast unsupervised voxel based scene flow estimation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 22328–22337, 2025.
- Mingkai Jia, Qingwen Zhang, Bowen Yang, Jin Wu, Ming Liu, and Patric Jensfelt. Beautymap: Binary-encoded adaptable ground matrix for dynamic points removal in global maps. *IEEE Robotics and Automation Letters*, 9(7):6256–6263, 2024. doi: 10.1109/LRA.2024.3402625.
- Chaokang Jiang, Guangming Wang, Jiuming Liu, Hesheng Wang, Zhuang Ma, Zhenqiang Liu, Zhujin Liang, Yi Shan, and Dalong Du. 3dsflabelling: Boosting 3d scene flow estimation by pseudo auto-labelling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15173–15183, 2024.

- Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen, and Jonathon Shlens. Scalable scene flow from point clouds in the real world. *IEEE Robotics and Automation Letters*, 7(2):1589–1596, 2021.
 - Ishan Khatri, Kyle Vedder, Neehar Peri, Deva Ramanan, and James Hays. I can't believe it's not scene flow! In *European Conference on Computer Vision*, pp. 242–257. Springer, 2024.
 - Ajinkya Khoche, Qingwen Zhang, Laura Pereira Sanchez, Aron Asefaw, Sina Sharif Mansouri, and Patric Jensfelt. SSF: Sparse long-range scene flow for autonomous driving. *arXiv* preprint *arXiv*:2501.17821, 2025.
 - Jaeyeul Kim, Jungwan Woo, Ukcheol Shin, Jean Oh, and Sunghoon Im. Flow4D: Leveraging 4d voxel network for lidar scene flow estimation. *IEEE Robotics and Automation Letters*, pp. 1–8, 2025. doi: 10.1109/LRA.2025.3542327.
 - Itai Lang, Dror Aiger, Forrester Cole, Shai Avidan, and Michael Rubinstein. Scoop: Self-supervised correspondence and optimization-based scene flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5281–5290, 2023.
 - Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior. *Advances in Neural Information Processing Systems*, 34:7838–7851, 2021.
 - Xueqian Li, Jianqiao Zheng, Francesco Ferroni, Jhony Kaesemodel Pontes, and Simon Lucey. Fast neural scene flow. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9878–9890, 2023.
 - Zhiheng Li, Yubo Cui, Jiexi Zhong, and Zheng Fang. Streammos: Streaming moving object segmentation with multi-view perception and dual-span memory. *IEEE Robotics and Automation Letters*, 10(2):1146–1153, 2025. doi: 10.1109/LRA.2024.3518844.
 - Yancong Lin and Holger Caesar. ICP-Flow: Lidar scene flow estimation with icp. In CVPR, 2024.
 - Yancong Lin, Shiming Wang, Liangliang Nan, Julian Kooij, and Holger Caesar. Voteflow: Enforcing local rigidity in self-supervised scene flow. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17155–17164, 2025.
 - Jiuming Liu, Guangming Wang, Weicai Ye, Chaokang Jiang, Jinru Han, Zhe Liu, Guofeng Zhang, Dalong Du, and Hesheng Wang. Difflow3d: Toward robust uncertainty-aware scene flow estimation with iterative diffusion-based refinement. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15109–15119, 2024.
 - Jiehao Luo, Jintao Cheng, Xiaoyu Tang, Qingwen Zhang, Bohuan Xue, and Rui Fan. MambaFlow: A novel and flow-guided state space model for scene flow estimation. *arXiv* preprint *arXiv*:2502.16907, 2025.
 - Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R Qi, Xinchen Yan, Scott Ettinger, and Dragomir Anguelov. Motion inspired unsupervised perception and prediction in autonomous driving. In *European Conference on Computer Vision*, pp. 424–443. Springer, 2022.
 - Kyle Vedder, Neehar Peri, Nathaniel Chodosh, Ishan Khatri, Eric Eaton, Dinesh Jayaraman, Yang Liu Deva Ramanan, and James Hays. ZeroFlow: Fast Zero Label Scene Flow via Distillation. *International Conference on Learning Representations (ICLR)*, 2024a.
 - Kyle Vedder, Neehar Peri, Ishan Khatri, Siyi Li, Eric Eaton, Mehmet Kocamaz, Yue Wang, Zhiding Yu, Deva Ramanan, and Joachim Pehserl. Neural eulerian scene flow fields. *arXiv preprint arXiv:2410.02031*, 2024b.
 - Sundar Vedula, Peter Rander, Robert Collins, and Takeo Kanade. Three-dimensional scene flow. *IEEE transactions on pattern analysis and machine intelligence*, 27(3):475–480, 2005.
 - Ziyi Wang, Yi Wei, Yongming Rao, Jie Zhou, and Jiwen Lu. 3d point-voxel correlation fields for scene flow estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023.

- Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou. PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds. In *CVPR*, 2021.
 - Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, and et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021)*, 2021.
 - Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Seung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja Fidler, Marco Pavone, and Yue Wang. EmerneRF: Emergent spatial-temporal scene decomposition via self-supervision. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=ycv2z8TYur.
 - Qingwen Zhang, Yi Yang, Heng Fang, Ruoyu Geng, and Patric Jensfelt. DeFlow: Decoder of scene flow network in autonomous driving. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 2105–2111, 2024a. doi: 10.1109/ICRA57147.2024.10610278.
 - Qingwen Zhang, Yi Yang, Peizheng Li, Olov Andersson, and Patric Jensfelt. SeFlow: A self-supervised scene flow method in autonomous driving. In *European Conference on Computer Vision (ECCV)*, pp. 353–369. Springer, 2024b. doi: 10.1007/978-3-031-73232-4_20.
 - Qingwen Zhang, Ajinkya Khoche, Yi Yang, Li Ling, Sharif Mansouri Sina, Olov Andersson, and Patric Jensfelt. HiMo: High-speed objects motion compensation in point cloud. *arXiv preprint arXiv:2503.00803*, 2025a.
 - Qingwen Zhang, Xiaomeng Zhu, Yushan Zhang, Yixi Cai, Olov Andersson, and Patric Jensfelt. DeltaFlow: An efficient multi-frame scene flow estimation method. arXiv preprint arXiv:2508.17054, 2025b.
 - Yushan Zhang, Johan Edstedt, Bastian Wandt, Per-Erik Forssén, Maria Magnusson, and Michael Felsberg. GMSF: Global matching scene flow. *Advances in Neural Information Processing Systems*, 36, 2024c.
 - Yushan Zhang, Bastian Wandt, Maria Magnusson, and Michael Felsberg. DiffSF: Diffusion models for scene flow estimation. Advances in Neural Information Processing Systems, 37:111227– 111247, 2024d.

A DATASETS DESCRIPTION

The Argoverse 2 dataset is a primary benchmark for scene flow estimation, consisting of 700 training scenes, 150 validation scenes, and 150 test scenes, totaling approximately 107,000 annotated training frames. Our main evaluations are conducted on the official test split, with results compared against the Argoverse 2 Scene Flow Challenge leaderboard Khatri et al. (2024), which provides official baseline results. For the local validation, we follow Zhang et al. (2025b) and apply dynamic motion compensation to generate ground-truth flow labels.

The nuScenes dataset contains 700 training and 150 validation scenes and is also used in our evaluation. Since nuScenes does not provide official scene flow annotations, we follow the protocol of Zhang et al. (2025a) to generate pseudo ground truth. To ensure a consistent temporal resolution, the native 20Hz LiDAR data is first downsampled to 10Hz, resulting standard 100ms interval between frames. For each object, a rigid transformation is estimated from its 3D bounding box annotations and instance ID. This transformation is then applied to all LiDAR points within the object to compute their displacements, which serve as pseudo ground-truth flow labels. These labels are generated only for the validation set, while training uses the full 137,575 unlabeled frames, demonstrating the scalability of our self-supervised approach.

For both datasets, ground points are removed prior to evaluation. In Argoverse 2, we use the provided HD maps following the official protocol, whereas in nuScenes we apply a line-fitting-based ground segmentation method Himmelsbach et al. (2010). As a result, all reported evaluation metrics are computed exclusively on non-ground points.

Figure 4: Qualitative comparisons on the Argoverse 2 validation set. Left: A multi-vehicle scene. Right: A vehicle stopping for pedestrians. Our method robustly handles both scenarios, unlike the baseline. (Best viewed in color.) The scenes correspond to scene IDs 'c85a88a8-c916-30a7-923c-0c66bd3ebbd3' and 'b6500255-eba3-3f77-acfd-626c07aa8621'.

B QUALITATIVE RESULTS

The qualitative results in the main paper are derived from the scenes '8749f79f-a30b-3c3f-8a44-dbfa682bbef1' and 'scene-0104' in the Argoverse 2 and nuScenes validation set, respectively.

Here, we present additional qualitative results comparing our TeFlow with top self-supervised feed-forward methods, namely SeFlow Zhang et al. (2024b), VoteFlow Lin et al. (2025), and SeFlow++ Zhang et al. (2025a). All visualizations use a standard color-coding scheme, where hue indicates motion direction and saturation encodes speed.

Figure 5: Qualitative results on the Argoverse 2 validation set. Our method accurately captures the motion of multiple pedestrians, while all feed-forward baselines underestimate the flows of moving pedestrians. (Best viewed in color.) The scenes correspond to scene IDs '9f871fb4-3b8e-34b3-9161-ed961e71a6da'.

Figure 4 shows two complex multi-agent scenes from Argoverse 2. In the left scene, three oncoming vehicles are captured. While the ground truth indicates consistent forward motion, all baseline feed-forward methods occasionally predict conflicting directions (e.g., flows shift from blue to purple around t=11.3-11.5), reflecting the instability of two-frame supervision. In contrast, our TeFlow maintains coherent motion across time, producing stable and accurate flow for each vehicle. The right scene highlights another common failure case: pedestrians motion. The ground truth reveals clear trajectories, including a distant pedestrian partially occluded by a lamp post. Baseline methods consistently underestimate the flow magnitudes of these small or occluded agents, resulting in weak or inconsistent predictions. While our TeFlow captures their motion with the correct magnitude and direction.

Figure 5 presents a challenging scene with three pedestrians crossing the road simultaneously. In the ground truth, all pedestrians exhibit clear motion, yet baseline feed-forward methods underestimate their flow magnitudes due to noisy two-frame supervision, resulting in weak and inconsistent predictions under such dynamic motion. In contrast, the model trained with our TeFlow objective produces flow fields that are both spatially coherent and temporally stable. Each motion of pedestrian is captured with accurate magnitude and direction, closely matching the ground truth across the time window. Furthermore, TeFlow also preserves reliable estimates for other small or distant dynamic objects, highlighting its robustness under challenging scenarios with sparse observations.

Figure 6 shows a challenging scene from the nuScenes validation set. In the lower-left corner, five pedestrians are walking together, while a vehicle and another pedestrian are passing in front of the ego car. The ground truth indicates clear motion for both the vehicle and pedestrians. However, baseline feed-forward methods significantly underestimate the vehicle's flow magnitude and often fail to detect the motions of the smaller pedestrians. In contrast, TeFlow produces a smooth and complete flow field for the vehicle and successfully captures the individual motions of the pedestrians, even under the sparse point density of nuScenes.

Figure 7 illustrates a complex roundabout scene from the Argoverse 2 validation set. Multiple vehicles are moving along curved trajectories. The baseline methods fail to provide consistent estimates, often underestimating the motion or producing fragmented flows, especially for vehicles entering or

Figure 6: Qualitative results on the nuScenes validation set. On this sparser data, TeFlow provides complete motion for the vehicle and detects the pedestrians, whereas the baseline underestimates the car's flow and misses the smaller actors. (Best viewed in color.) The scenes correspond to the scene IDs 'scene-0025'.

exiting the roundabout. While, TeFlow produces coherent and smooth flow fields that closely follow the ground-truth directions, demonstrating its ability to handle complex multi-agent interactions in curved motion scenarios.

C OTHER DISCUSSION

Detail Description of LLM Usage We utilized a Large Language Model (LLM) only as a writing assistant for language polishing and grammar checking. The authors retained full control of the manuscript, and all scientific content, ideas, methods, and experiments were entirely conceived, executed, and written by the authors.

Figure 7: Qualitative results on the Argoverse 2 validation set. Our method accurately captures the motion of vehicles in complex roundabout scenarios. (Best viewed in color.) The scenes correspond to scene IDs 'bdb9d309-f14b-3ff6-ad1f-5d3f3f95a13e'.