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Abstract

We derive and investigate two DPO variants that explicitly model the
possibility of declaring a tie in pair-wise comparisons. We replace the
Bradley-Terry model in DPO with two well-known modeling extensions,
by Rao and Kupper and by Davidson, that assign probability to ties as
alternatives to clear preferences. Our experiments in neural machine trans-
lation and summarization show that explicitly labeled ties can be added
to the datasets for these DPO variants without the degradation in task
performance that is observed when the same tied pairs are presented to DPO.
We find empirically that the inclusion of ties leads to stronger regularization
with respect to the reference policy as measured by KL divergence, and we
see this even for DPO in its original form. These findings motivate and
enable the inclusion of tied pairs in preference optimization as opposed to
simply discarding them.

1 Introduction

The original formulation of DPO (Rafailov et al., 2023) does not allow for ties. DPO requires
training data consisting of paired options, yw ≻ yl, and each of these pairs should represent
a clear preference in judgment with no ambiguity as to which is the winner and which is
the loser. From this data, the DPO learning procedure encourages the underlying policy to
prefer yw over yl. This formulation does not allow for any ambiguity or uncertainty in the
comparison of the paired examples in the training data.

This certainty is not easy to achieve in practice. A common approach is simply to discard data.
Dubey et al. (2024, Sec. 4.2.1) apply DPO in post-training of Llama 3 models and note that
for “DPO, we use samples that are labeled as the chosen response being significantly better or
better than the rejected counterpart for training and discard samples with similar responses.”
Similarly, Qwen2 developers (Yang et al., 2024a, Sec. 4.3) “sample multiple responses from
the current policy model, and the reward model selects the most and the least preferred
responses, forming preference pairs that are used for DPO.” Over-generation followed by
aggressive selection is effective in producing the strongly ordered judgments needed for DPO.
However the process appears wasteful: many potentially useful, and expensively collected,
preference judgments are discarded simply because they are ties. As Rao and Kupper (1967)
note: “any model which does not allow for the possibility of ties is not making full use of the
information contained in the no-preference class.”

Motivated by this, we investigate DPO variants that can incorporate ties. We replace
the Bradley-Terry preference model at the heart of DPO by two well-known extensions
by Rao and Kupper (1967) and by Davidson (1970) that explicitly assign probability to
tied judgments alongside winners and losers. Since these models are generalizations of the
Bradley-Terry model, we find that they are readily incorporated into the DPO modeling
framework. In experiments in neural machine translation and summarization, we find that
ties can be added to the datasets for these DPO variants without the degradation in task
performance that results from adding ties to the original DPO. We also observe improved
regularization, in reduced KL-divergence to the reference policy, by adding ties.
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2 Methodology

2.1 DPO and the Bradley-Terry Preference Distribution

The Bradley-Terry model assigns probability that an item yi will be preferred to item yj
in terms of their ‘strength’ parameters λ. In the RLHF setting, strengths are expressed as
rewards r, λ = er (Rafailov et al., 2023, Eq. 1), so that the preference distribution for item
i over item j depends on the difference in their rewards, dij = ri − rj

pBT (yi ≻ yj) =
λi

λi + λj
=

eri

eri + erj
= σ(ri − rj) = σ(dij) (1)

One of the enabling observations made by Rafailov et al. (2023) is that when a policy πθ is
sought to maximize the KL-regularized objective maxπθ

E [r(x, y)]−β D(πθ(y|x) || πref (y|x)),
the reward associated with the policy has the form rθ(x, y) = β log πθ(y|x)

πref (y|x) + β logZθ(x).
This allows expressing the difference in rewards between hypotheses yw and yl under a
parameterized policy πθ as the reward margin

dθ(x, yw, yl) = rθ(x, yw)− rθ(x, yl) = β log
πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

(2)

so that the corresponding Bradley-Terry probability that item yw beats item yl is

pBT
θ (yw ≻x yl) = σ(dθ(x, yw, yl)) = σ(β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

). (3)

The DPO policy objective (Rafailov et al., 2023, Eq. 7) follows by incorporating the
parameterized form of the preference distribution into a maximum likelihood objective

LDPO(πθ;πref ) = −Ex,yw,yl
log pθ(yw ≻x yl) (4)

= −Ex,yw,yl
log σ(β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

) (5)

We note that Eq. 2 follows from the regularized risk optimization (Rafailov et al., 2023, A.1).
It does not rely on any assumption that limits its use to the Bradley-Terry model.

2.2 Bradley-Terry Extensions that Accommodate Ties

An observed weakness of the Bradley-Terry model is that it does not allow for ties. Unless
two items have exactly the same strengths (so that dij = 0), the model always assigns a
higher probability of winning to the stronger item. This may be reasonable if one item is
much stronger than the other, but when items are relatively comparable it may be desirable
to allow some probability for tied outcomes.

The Rao-Kupper (Rao and Kupper, 1967) model assigns win and tie probabilities as:

pRK(yi ≻ yj) =
λi

λi + νRKλj
item yi beats item yj (6)

pRK(yi ∼ yj) =
(ν2RK − 1)λiλj

(λi + νRKλj)(λj + νRKλi)
items yi and yj tie (7)

while the Davidson (Davidson, 1970) model assigns win and tie probabilities as:

pD(yi ≻ yj) =
λi

λi + λj + 2νD
√
λiλj

item yi beats item yj (8)

pD(yi ∼ yj) =
2νD

√
λiλj

λi + λj + 2νD
√
λiλj

items yi and yj tie (9)

The probabilities of the three outcomes sum to one for both of these Bradley-Terry extensions:
p(yi ≻ yj) + p(yj ≻ yi) + p(yi ∼ yj) = 1. For both models, p(yi ∼ yj) = p(yj ∼ yi) and
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p(yi ∼ yj) tends towards 0 if λj ≫ λi. Both variants have parameters ν that control how
much probability is allocated to ties. Apart from νRK = 1 or νD = 0, when both variants
agree with Bradley-Terry, some probability is reserved for tied outcomes.

The Rao-Kupper and Davidson models arise from different considerations. Rao and Kupper
(1967) begin with the formulation pBT (yi ≻ yj) =

1
4

∫∞
−(ri−rj)

sech2(y/2)dy (Bradley, 1953,
Eq. 13) and note its sensitivity to the difference in values ri − rj . They note that some
judges “may not be able to express any real preference” in paired-comparisons if their
“sense of perception is not sharp enough” to detect small differences. They reason that a
“threshold of sensory perception” is needed such that if the observed difference is less than
the threshold, a judge declares a tie. They introduce the sensitivity threshold αRK as follows,
pRK(yi ≻ yj) =

1
4

∫∞
−(ri−rj)+αRK

sech2(y/2)dy, and Eqs. 6 and 7 follow for νRK = eαRK .

Davidson (1970) starts from Luce’s “choice axiom” (Luce, 1959a) which states that a complete
system of choice probabilities should satisfy p(yi ≻ yj)/p(yj ≻ yi) = λi/λj , which the Rao-
Kupper model fails to do. Davidson (1970) observes that it is desirable for the probability of
a tie to “be proportional to the geometric mean of the probabilities of preference”. Adding
this requirement p(yi ∼ yj) ∝

√
p(yi ≻ yy)p(yj ≻ yi) to the choice axioms yields Eqs. 8

and 9 as a preference model that allows for ties and also satisfies the choice axiom.

The Rao-Kupper win and tie probabilities can be written in a form more useful for DPO
(Appendix B.1), with νRK = eαRK , as

pRK
θ (yw ≻x yl) = σ(dθ(x, yw, yl)− αRK) (10)

pRK
θ (yw ∼x yl) = (ν2RK − 1)σ(−dθ(x, yw, yl)− αRK)σ(dθ(x, yw, yl)− αRK)

= (ν2RK − 1)σ(−dθ(x, yw, yl)− αRK) pRK
θ (yw ≻x yl) (11)

and the Davidson win and tie probabilities can be written as

pDθ (yw ≻x yl) =
1

1 + e−dθ(x,yw,yl) + 2νDe−dθ(x,yw,yl)/2
(12)

pDθ (yw ∼x yl) = 2 νD e−dθ(x,yw,yl)/2 pDθ (yw ≻x yl) (13)

Although their parametric forms are different, their treatments of wins and ties are similar
(Appendix B.1, Fig. 5). For pairs (x, yw, yl) treated as wins, higher likelihood is assigned
for higher values of the reward margin dθ(x, yw, yl). For the Rao-Kupper this is particularly
clear, in that the Bradley-Terry preference distribution is simply shifted by αRK . Conversely,
for pairs (x, yw, yl) treated as ties, the probability of declaring a tie is high for small reward
margins dθ(x, yw, yl).

Balancing Wins and Ties. In the special case of two evenly matched players (λi = λj), we
are interested in the probability of a tie p(yi ∼ yj) versus a clear win by either player, p(yi ≻
yj)+ p(yj ≻ yi). It follows that PRK(tie) = νRK−1

2 PRK(no tie) and PD(tie) = νDPD(no tie).
This shows that the parameters ν determine the probability that equally-matched items are
judged as tied or not. ν can be tuned, but in our work, we assume that equally-matched
items will tie with a probability of 1/2 and so we set νRK = 3 and νD = 1.

2.3 Incorporating Rao-Kupper and Davidson Models into DPO

We extend the DPO policy objective (Eq. 4) to include a binary flag t to indicate a tie:

L(πθ;πref ) = −Ex,yw,yl,t=0 log pθ(yw ≻x yl)− Ex,yw,yl,t=1 log pθ(yw ∼x yl) (14)

where pθ(yw ≻ yl) and pθ(yw ∼ yl) are taken from either the Rao-Kupper model (Eqs. 10, 11
or the Davidson model (Eqs. 12, 13). Note that in Eq. 14 preference pairs in the dataset
are unambiguously either wins (t = 0) or ties (t = 1). The policy objectives for these two
DPO variants are:

LRK(πθ;πref ) = −Ex,yw,yl,t=0

[
log σ(dθ(x, yw, yl)− αRK)

]
(15)

− Ex,yw,yl,t=1

[
log σ(−dθ(x, yw, yl)− αRK) + log σ(dθ(x, yw, yl)− αRK)− log(ν2RK − 1)

]

3
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and

LD(πθ;πref ) =− Ex,yw,yl,t=0

[
log

1

1 + e−dθ(x,yw,yl) + 2νDe−dθ(x,yw,yl)/2

]
− Ex,yw,yl,t=1

[
log

2νDe−dθ(x,yw,yl)/2

1 + e−dθ(x,yw,yl) + 2νDe−dθ(x,yw,yl)/2

]
(16)

We refer to these DPO variants as DPO-RK and DPO-D. Like DPO, these objectives depend
on the policy πθ through the reward margin dθ(x, yw, yl) (Eq. 2). Unlike DPO, the training
objective Eq. 14 consists of two competing terms. For pairs (x, yw, yl) labeled as wins the
objective is to find πθ to increase the reward margin dθ(x, yw, yl). However, for pairs labeled
as ties the objective is to find πθ to minimize |dθ(x, yw, yl)|. To simultaneously achieve both
these objectives, the underlying policy should learn to model both wins and ties.

2.3.1 DPO-RK and DPO-D Updates

Rafailov et al. (2023) show that DPO dynamically adjusts the gradient according to how
well the preference objective is optimized for each sample

∇θ log p
BT
θ (yw ≻x yl) = σ(−dθ(x, yw, yl))︸ ︷︷ ︸

higher weight when reward
estimate is wrong

β∇θ log
πθ(yw|x)
πθ(yl|x)

(17)

DPO-RK and DPO-D also adjust their gradients dynamically (Appendix B.2). We define
the gradient scale factors ∆win and ∆tie to illustrate the DPO-RK and DPO-D gradient
updates on wins and ties:

∇ log pRK
θ (yw ≻x yl) = σ(α− dθ(x, yw, yl))︸ ︷︷ ︸

∆RK
win(dθ)

β∇θ log
πθ(yw|x)
πθ(yl|x)

(18)

∇θ log p
RK
θ (yw ∼x yl) =

[
σ(α− dθ(x, yw, yl))− σ(α+ dθ(x, yw, yl))︸ ︷︷ ︸

∆RK
tie (dθ)

]
β∇θ log

πθ(yw|x)
πθ(yl|x)

(19)

∇θ log p
D
θ (yw ≻x yl) =

e−dθ + νe−dθ/2

1 + e−dθ + 2νe−dθ/2︸ ︷︷ ︸
∆D

win(dθ)

β∇θ log
πθ(yw|x)
πθ(yl|x)

(20)

∇θ log p
D
θ (yw ∼x yl) =

[
∆D

win(dθ)−
1

2

]
︸ ︷︷ ︸

∆D
tie(dθ)

β∇θ log
πθ(yw|x)
πθ(yl|x)

(21)

∇ log pθ(yw ≻x yl): For data labeled as wins, the DPO-RK gradient scale factor has the
same form as DPO, but shifted by αRK (Fig. 6). DPO-D has a symmetric scale factor that is
not as steep as DPO-RK. All three methods work to increase the reward margin dθ(x, yw, yl).

∇ log pθ(yw ∼x yl): For data labeled as ties, the DPO-D and DPO-RK gradient scale factors
are odd and work to drive dθ(x, yw, yl) towards zero, although the DPO-RK scale factor is
more aggressive. This is a mechanism not present in DPO.

2.3.2 Rao-Kupper and Davidson Classifiers

The above DPO variants yield probability distributions pθ(yw ≻x yl) and pθ(yw ∼x yl) in
terms of the policy πθ and the reference model πref . We can use these distributions as
classifiers to label a pair (x, y1, y2) as either a win (y1 ≻x y2 or y2 ≻x y1) or a tie (y1 ∼x y2),
whichever has the highest probability under either the Rao-Kupper or the Davidson model
(Eqs. 10, 11, or 12, 13). We will evaluate classification performance on held-out data not
used in training to see if policies produced by our DPO variants learn to distinguish wins
from ties.
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3 Experiments

3.1 Adding Ties to DPO

DPO in its original formulation relies on a static dataset of comparisons D =

{x(i), y
(i)
w , y

(i)
l }Ni=1 where y

(i)
w and y

(i)
l are preferred and dispreferred responses to a prompt

x(i) (Rafailov et al., 2023). These preferences are assumed to be sampled from some latent
reward model and we refer to this dataset as Clear Preference Pairs (CPs, for short)
because they are typically selected to reflect a clear preference between winner and loser as
assessed either by human judges or by some trusted automatic metric. We distinguish these
Clear Preference Pairs from Tied Pairs (TPs). Tied Pairs also consist of a winner and a
loser, but are very similar in quality. Human judges might be less consistent, or have less
confidence, in selecting the winner in a tied pair, and automatic metrics will assign more
similar quality scores to Tied Pairs than to Clear Preference Pairs. As noted, DPO datasets
typically are constructed to include only Clear Preference Pairs. We will extend the data
selection procedures to generate Tied Pairs along with Clear Preference Pairs so that we can
investigate how DPO changes when Tied Pairs are included in the training data. We report
experiments on Neural Machine Translation (NMT) and Summarization. Appendix C gives
experiment details.

Clear Preference Pairs and Tied Pairs in NMT. We use DPO to improve translation
quality similar to that done in Yang et al. (2024b). We apply DPO with BLOOMZ-mt-
7b (Muennighoff et al., 2023) as the baseline model. Translation quality is measured with
BLEURT (Sellam et al., 2020) on the WMT21 ZH-EN and IWSLT17 FR-EN translation test
sets (Appendix C.1). To construct a DPO preference dataset for the WMT21 ZH-EN test set,
we use BLOOMZ-mt-7b to generate 32 translations (via sampling) for each source sentence
in the WMT20 ZH-EN test set. For each source sentence, the translations are ranked by
their BLEURT scores computed with respect to the reference translations. The highest and
lowest scoring translations form the Clear Preference Pairs; for each source sentence, these
are the two translations with the greatest difference in BLEURT score. By contrast, we take
the Tied Pairs as the two non-identical translations with the minimum absolute BLEURT
difference; the translation with higher BLEURT is labeled as the winner of each Tied Pair.
This yields ca. 16K CPs and TPs for use in DPO. The same procedure is applied to the
IWSLT17 validation set, yielding ca. 800 CPs and TPs for use as DPO preference datasets.

Clear Preference Pairs and Tied Pairs in Summarization. We follow Amini et al.
(2024a) in DPO fine-tuning of Pythia-2.8B (Biderman et al., 2023) on the TL;DR dataset (Sti-
ennon et al., 2020) with evaluation via win-rate against human-written summaries. Previous
works use GPT-4 to compute the win-rate (Rafailov et al., 2023; Amini et al., 2024b). We
find that the judgments of PairRM (Jiang et al., 2023) agree well with those of GPT-4
(Appendix C.3) and opt to use PairRM win-rate as a cost-effective automatic metric. In the
TL;DR task, each prompt is associated with a collection of paired summaries, with a winner
and a loser identified for each pair. There is no immediately obvious way to distinguish tied
pairs from clear preference pairs in the collection and so we use DPO itself to select tied pairs.
We first apply DPO with β = 0.1 on the full TL;DR training dataset. Using the reward
model formed by this model and the reference model, we compute the reward margins of all
pairs of summaries in the training split. For each prompt, the pair with minimal reward
margin is treated as a tied pair, with all other pairs kept as clear preference pairs, yielding
ca. 14k (15.3%) TPs. See Appendix C.4 for a study of this selection strategy.

3.1.1 Task Performance vs. KL to the Reference Policy

Following prior work (Rafailov et al., 2023; Amini et al., 2024b; Park et al., 2024), we evaluate
DPO in terms of task performance versus KL divergence to the reference policy. For each of
the three tasks we form two training sets: CP, which contains the Clear Preference Pairs;
and CP+TP, which contains both the Clear Preference Pairs and the Tied Pairs. We refer
to DPO training on these sets as DPO(CP) and DPO(CP+TP) (Figure 1).
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Figure 1: Task Performance vs. KL to the reference policy for DPO systems trained on
Clear Preference Pairs (DPO(CP), blue) and on Clear Preference Pairs and Tied Pairs
(DPO(CP+TP), green). KL is estimated over 256 test set policy samples; β is noted for best
performing systems. Full details are in Appendix C.5.1.

The obvious conclusion from these experiments is that including tied pairs in DPO is not
good for task performance. All best performing systems are obtained by DPO(CP), with
DPO(CP+TP) underperforming for nearly all values of KL relative to the reference policy.
This performance degradation from including ties is consistent with common practice in
the DPO literature which only keeps pairs with clear preference, filtering others to obtain
the best-performing system (Yang et al., 2024a; Dubey et al., 2024). Consistent with
this, the TL;DR results show that removing tied pairs from the DPO dataset leads to
improved summarization performance, even when ties are identified by a DPO model in
an unsupervised manner. These results also suggest that tied pairs in the DPO datasets
can enhance regularization. By this we mean that including tied pairs causes DPO to find
models that are closer to the reference policy as measured by KL divergence. The overall
effect of the reduced task performance and more regularization is to shift the frontier ‘down
and to the left’.

Theorem 3.1 of Chen et al. (2024) suggests how these regularization effects might arise. The
ideal DPO policy π∗ should follow (Appendix D):

π∗(yw|x)
π∗(yl|x)

=
πref(yw|x)
πref(yl|x)

( γ(x, yw, yl)

1− γ(x, yw, yl)

)1/β

(22)

where γ(x, yw, yl) is the true preference probability of yw ≻ yl under prompt x. If we assume
that tied pairs have a true preference probability γ(x, yw, yl) of 0.5, from Equation 22 we
have π∗(yw|x)

π∗(yl|x) = πref(yw|x)
πref(yl|x) , where π∗ is the ideal DPO policy1. By this analysis, the ideal

DPO model should maintain the same chosen/rejected likelihood ratio as the reference model
on tied pairs, and this constraint serves as a form of regularization. In our NMT experiments
(Figures 8a, 8b), where half of the pairs are constructed to be ties, the regularization effect
is especially pronounced as the DPO model should keep to the reference model likelihood
ratio on 50% of the training data. Regularization is less pronounced on TL;DR (Figure 1c)
where only 1/8 of the pairs are ties. Furthermore, Eq 22 can be rearranged as follows:

d∗θ(x, yw, yl) = β
(
log

π∗(yw|x)
πref (yw|x)

− log
π∗(yl|x)
πref (yl|x)

)
= β log

γ(x, yw, yl)

1− γ(x, yw, yl)
(23)

From this it follows that the reward margin on tied pairs should ideally be close to zero,
which we verify experimentally in the next section.

3.1.2 Convergence Behaviour

We analyse how the inclusion of tied pairs affects the detailed behaviour of DPO. We study
DPO on the BLOOMZ-mt-7b datasets with β = 0.7 for WMT21 ZH-EN as these systems
show both strong regularization effects and task performance degradation when tied pairs

1In Appendix D, we show that the ideal policy can also be derived for DPO-D which includes
the ideal DPO policy as a special case.
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are added. Figure 2 shows the evolution of reward margins, DPO loss, and gradient scale
factors (Equations 2, 5, 24) during training.
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Figure 2: DPO(CP) (blue) and DPO(CP+TP) training statistics on WMT21 ZH-EN. For
DPO(CP+TP), margins, loss, and gradient scale factor are shown separately on CPs (green)
and on TPs (red).

DPO(CP) is well behaved: the reward margins on the CP data increase over the epoch
(Fig. 2a (blue)); the DPO losses on the CP dataset decrease over the epoch (Fig. 2b (blue));
and the DPO gradient scale factor shows that learning slows and stabilizes after the 500th

batch (Fig. 2c (blue)).

Adding tied pairs to the DPO dataset alters this behaviour for both tied pairs and clear
preference pairs. DPO(CP+TP) does yield some gains in reward margins for clear preference
pairs, but these are well below that of DPO(CP) (Fig. 2a (blue vs green)). By contrast,
DPO(CP+TP) fails almost entirely to find any improvement in the reward margins for its
tied pair data (Fig. 2a (red)). While this is less than ideal from a modeling perspective,
we note that it provides empirical support for the observation in the previous section that
the reward margins on tied pairs should ideally remain close to zero. Similar behaviour is
observed in the DPO loss (Fig. 2b). Decreases in loss over clear preference pairs are offset by
loss increases on the tied pairs. This is reflected in the gradient scale factors. The gradient
scale factors remain high as DPO(CP+TP) searches for a better policy.

3.2 Adding Ties to DPO-RK and DPO-D

In the previous section we investigated the effects of including tied preference pairs in DPO
datasets. Using the same data we now evaluate DPO-RK and DPO-D as DPO variants
that explicitly model both ties and clear preferences. We use the DPO datasets CP+TP
(Sec. 2.2) with the DPO-D and DPO-RK algorithms to produce models DPO-D(CP+TP)
and DPO-RK(CP+TP). We follow the protocols of Sec. 3.1 so that results are directly
comparable to earlier DPO(CP) and DPO(CP+TP) results. For all experiments we set
νRK = 3 and νD = 1 for DPO-RK and DPO-D (as described in Sec. 2.2).

3.2.1 Task Performance vs. KL to the Reference Policy

When tied pairs are added to the dataset, DPO-D and DPO-RK do not suffer the same
drops in task performance that DPO exhibits (Fig. 3, orange and purple vs. green). DPO-
RK(CP+TP) and DPO-D(CP+TP) reach similar levels of task performance to each other,
and to DPO(CP), but do so at smaller KL values than DPO (Fig. 3, orange and purple
vs. blue). These are the regularization effects of including tie pairs in the DPO datasets
reported in Section 3.1, but without decrease in task performance. For a given level of KL
to reference policy, DPO-D(CP+TP) and DPO-RK(DP+TP) yield higher task performance
than DPO(CP). Compared to DPO as it is usually done, DPO-RK and DPO-D frontiers are
shifted leftwards, showing similar task performance but stronger regularization.

3.2.2 Preference Pair Classification Accuracy

We assess the performance of the Rao Kupper and Davidson classifiers introduced in Sec.2.3.2
in terms of their ability to label preference pairs as either clear preferences or ties. Ideally,
classification performance will improve: (1) as tied pairs are added to the clear preference
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Figure 3: KL-Performance frontiers with DPO(CP) in blue, DPO(CP+TP) in green, DPO-
RK(CP+TP) in purple, and DPO-D(CP+TP) in orange. Full details in Appendix C.5.

data sets (CP vs CP+TP); and (2) with margins generated from models produced by
DPO variants that emphasize the distinction between tied pairs and clear preference pairs
(DPO-D(CP+TP), DPO-RK(CP+TP)).

We assess classifier performance on the held-out set created by collecting CPs and TPs
from the WMT18 ZH-EN test set as was done for WMT20 ZH-EN (Sec.3.1); this yields
pairs with gold labels as either clear preference pairs or tied pairs. Classification and
assessment proceeds as follows: we generate reward margins for the WMT18 ZH-EN pairs
using DPO(CP), DPO(CP+TP), DPO-RK(CP+TP), DPO-D(CP+TP) models; we use these
reward margins to label the unseen pairs using the Davidson and Rao-Kupper classification
rules (Sec. 2.3.2); and finally compute the classification accuracy relative to the gold labels.

Results are shown in Table 1. We find that smaller beta in training consistently leads to
better overall RK-classification accuracy (+10% overall Acc. from β = 1.0 to β = 0.1),
suggesting heavy regularization with respect to the reference model impedes preference
ranking. Classifiers based on reward margins generated from DPO(CP) models perform
well in identifying clear preference pairs (Acc. > 85%) but poorly in identifying tied pairs
(Acc. < 35%). This imbalance is likely explained by the DPO(CP) model never having
seen tied pairs in training. Adding TPs to the DPO datasets (DPO(CP+TP)) significantly
improves the classification accuracy of tied pairs (+30%) with more balanced classification
accuracies for CPs and TPs. The best overall classification accuracies (≈ 73%) are obtained
with reward margins generated by models trained to match its classifier. Across all beta values,
DPO-RK(CP+TP) and DPO-D(CP+TP) achieve better overall accuracy and more-balanced
CP accuracy and TP accuracy under their respective decision rules.

Model β = 0.1 β = 0.5 β = 1.0

Rao-Kupper Classifier
DPO(CP) 60.1% (87.1%, 33.1%) 52.8% (87.3%, 18.3%) 50.1% (86.9%, 13.3%)
DPO(CP+TP) 67.0% (72.0%, 62.1%) 57.5% (69.3%, 45.7%) 51.5% (71.2%, 31.9%)
DPO-RK(CP+TP) 73.1% (74.5%, 71.7%) 64.2% (73.2%, 55.3%) 58.5% (73.4%, 43.5%)

Davidson Classifer
DPO(CP) 65.3% (84.4%, 46.3%) 57.4% (83.7%, 31.0%) 53.6% (84.6%, 22.6%)
DPO(CP+TP) 71.0% (59.1%, 82.8%) 62.1% (58.3%, 65.8%) 57.2% (62.3%, 52.2%)
DPO-D(CP+TP) 73.8% (79.6%, 67.9%) 66.8% (75.9%, 57.8%) 62.7% (75.2%, 50.3%)

Table 1: Preference pair classification accuracies (Overall Acc. (CP Acc., TP Acc.)) for
Rao-Kupper and Davidson classification rules based on reward margins computed using
DPO(CP), DPO(CP+TP), DPO-RK(CP+TP), and DPO-D(CP+TP) models as evaluated
on the WMT18 ZH-EN test set.

3.2.3 Empirical Reward Margin Distributions

We now look at the reward margins on held-out pairs to determine how the DPO objective
generalizes to unseen data. Ideally, a post-DPO model should assign reward margins that

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

are large for clear preference pairs but close to zero for tied pairs. We assess this on the
same held-out data as in the previous section (Sec. 3.1).

Model β = 0.1 β = 0.5 β = 1.0 β = 0.1 β = 0.5 β = 1.0

Clear Preference Pairs Tied Pairs
DPO(CP) 8.2 ±12.0 9.5 ±13.2 10.0 ±11.1 0.7 ±13.2 0.6 ±9.4 0.4 ±7.9
DPO(CP+TP) 2.4 ±3.3 2.3 ±3.2 2.5 ±3.3 0.4 ±4.8 0.3 ±3.2 0.2 ±2.7
DPO-RK(CP+TP) 2.9 ±4.3 2.8 ±3.3 3.0 ±3.3 0.0 ±1.3 0.0 ±1.4 0.0 ±1.7
DPO-D(CP+TP) 4.6 ±5.8 4.8 ±6.1 4.9 ±6.3 0.0 ±2.0 0.1 ±2.3 0.0 ±2.4

Table 2: Reward margin statistics (mean ± std) for Clear Preference Pairs and Tied Pairs
from WMT18 ZH-EN.

In Table 2, reward margins of DPO(CP+TP), DPO-RK(CP+TP), and DPO-D(CP+TP)
are similar and well-behaved, showing means close-to-zero on TPs (< 0.4) and farther from
zero for CPs (> 2.3). Reward margin standard deviations are also similar and reasonably
small. However the standard deviation for both tied pairs and clear preference pairs are
much higher for DPO(CP) models (≥ 11.1 on CPs and ≥ 7.9 on TPs).
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PBT(y1 y2)

0
200
400
600
800

1000
1200

Fr
eq

ue
nc

y

Figure 4: Empirical distribution of tied proba-
bilities on tied pairs. DPO(CP) in blue, and
DPO(CP+TP) in orange. See Appendix C.6
for an analysis of CPs.

This can be explained by Figure 4 which
shows that DPO(CP) models overwhelm-
ingly assign preference probability values of
either ∼ 1.0 or ∼ 0.0 to tied pairs, corre-
sponding to very positive and very nega-
tive reward margins, respectively. This con-
tributes to the high standard deviation and
shows that for a tied pair (y1, y2), DPO(CP)
model exhibits a strong preference for ei-
ther y1 ≻ y2 or y2 ≻ y1, even though these
are tied pairs by construction (y1 ∼ y2). In
contrast, DPO(CP+TP) yields well-behaved
estimated preference probability distribution
more centered around 0.5 for tied pairs.

4 Related Work

Variants of Direct Preference Optimization A range of variants of Direct Preference
Optimization have been proposed based on problem-specific or theoretical motivations. Park
et al. (2024) tackle excessive response length by introducing explicit length normalization
in the DPO objective. SimPO (Meng et al., 2024) modifies the DPO objective to remove
the need for a reference model and to include length normalization. KTO (Ethayarajh
et al., 2024) is motivated by Kahneman and Tversky’s prospect theory and learns from
non-paired preference data. ODPO (Amini et al., 2024a) incorporates preference strength in
the objective by introducing an offset parameter. In deriving ODPO, the offset parameter
of Amini et al. (2024b, Theorem 3)) plays a role similar to the sensitivity threshold of Rao
and Kupper (1967). To our knowledge, our work is the first to consider accommodating
tied pairs in DPO. We note that the ODPO objective with a fixed offset agrees with our
proposed DPO-RK objective restricted to clear preference data, but does not extend to ties.

Frameworks for Pair-wise Preference Optimization Several works propose theoretical
frameworks for understanding general Preference Optimization from which DPO can be
obtained as a special case. Azar et al. (2024) introduces the ΨPO formalism which allows
alternative expression of the reward in terms of the model’s predicted probability. IPO
is derived when the identity mapping is used, and DPO arises under a log-ratio mapping.
Dumoulin et al. (2024) formulate learning from pair-wise preference as learning the implicit
preference generating distribution of the annotators. In this formalism, DPO is a well-
specified model for the implicit preference distribution assuming that the human preference
generative process follows the Bradley-Terry model. Our work can be viewed as assuming an
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annotator preference generating distribution that allows for the outcome of a tie (i.e. the
Rao-Kupper or the Davidson model). Tang et al. (2024) propose a generalized approach to
deriving offline preference optimization losses through binary classification. In this work,
we consider the ternary classification with the possibility of declaring a tie. In Appendix
D, we show that the ‘perfect’ DPO-D policy can be simulated starting from the ternary
classification loss.

Pair-wise Comparison Models Hamilton et al. (2023) review the history and the
range of motivations for the Bradley-Terry model, including its relation to the logistic
distribution (Bradley and Gart, 1962), and the Luce choice axiom Luce (1959b). The
Rao-Kupper (Rao and Kupper, 1967) and the Davidson model (David, 1988) are two notable
extensions to Bradley-Terry (Sec. 2.2). We point interested readers to a review by David
(1988) and a bibliography by Davidson and Farquhar (1976). Modeling ties remains an
active research topic in fields such as sport team ranking (Zhou et al., 2022) and medical
treatments (Gaohong Dong and Vandemeulebroecke, 2020).

5 Conclusion

We have derived and investigated two tie-compatible DPO variants, DPO-RK and DPO-
D, by replacing the Bradley-Terry preference model with the Rao-Kupper model and the
Davidson model, respectively. Our experiments on translation and summarization show
that by explicitly modeling the probability of declaring a tie, DPO-RK and DPO-D can
accommodate tied pairs in preference data without the degradation in task performance that
is observed when the same tied pairs are added to the original DPO. We find empirically
that the inclusion of ties in preference learning leads to stronger regularization with respect
to the reference model as measured by KL divergence, gives better-behaved reward margin
distribution on held-out sets and improves the trained policy’s overall accuracy in classifying
clear preference and tied pairs. These findings alongside with the proposed DPO variants
motivate and enable the use of tied pairs in available preference data as opposed to wastefully
discarding them. We discuss limitations in Appendix A.
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A Limitations

The effect of accommodating ties in preference learning can be further investigated using
human-annotated tied pairs. However, at the time of writing, there is no substantial
preference dataset with annotated ties; notably, current annotation guidelines are typically
written to explicitly exclude ties. We note that this enforcement of win/lose judgments has
likely conditioned the generative process of human preference towards the Bradley-Terry
model. A meaningful extension of this work would be to assess the effectiveness of DPO-RK
and DPO-D on preference datasets where the annotators are asked to identify ties. As
explained in Sec 2.2, the hyper-parameter νRK and νD can be tuned which would require
either grid search or estimation given ground-truth preference/tie probabilities. We find that
the choice of νRK = 3 and νD = 1 as motivated in Sec 2.2 works well and we did not need to
tune the parameter to obtain good performance. It is likely that better performance and
more efficient frontiers can be obtained by tuning ν to better fit the underlying preference
generative process for both DPO-RK and DPO-D. Given our focus on accommodating ties
from a modeling perspective, we leave performance optimization to future works concerning
applications.

B Mathematical Derivations

B.1 Rao-Kupper and Davidson Preference and Tie Probabilities

We derive the win and tie probabilities as functions of the reward margin dθ(x, yw, yl) =
rθ(x, yw)− rθ(x, yl) (Eq 2) under the Rao-Kupper (Eq 10, 11) and Davidson formulations
(Eq 12, 13).

The Rao-Kupper win and tie probabilities can be obtained by substituting λw = erθ(x,yw),
λl = erθ(x,yl) and νRK = eαRK into Eq 6 and Eq 7, respectively:

pRK
θ (yw ≻ yl) =

λw

λw + νRKλl
=

erθ(x,yw)

erθ(x,yw) + νRKerθ(x,yl)

=
1

1 + erθ(x,yl)−rθ(x,yw)+αRK
= σ(dθ(x, yw, yl)− αRK)

pRK
θ (yw ∼ yl) =

(ν2RK − 1)λwλl

(λw + νRKλl)(λl + νRKλw)
=

(ν2RK − 1)erθ(x,yw)erθ(x,yl)

(erθ(x,yw) + νRKerθ(x,yl))(erθ(x,yl) + νRKerθ(x,yw))

= (ν2RK − 1)
( erθ(x,yl)

erθ(x,yl) + νRKerθ(x,yw)

)( erθ(x,yw)

erθ(x,yw) + νRKerθ(x,yl)

)
= (ν2RK − 1)σ(−dθ(x, yw, yl)− αRK)σ(dθ(x, yw, yl)− αRK)

= (ν2RK − 1)σ(−dθ(x, yw, yl)− αRK) pRK
θ (yw ≻ yl)

The Davidson win and tie probabilities can be obtained with the same substitution into Eq
8 and Eq 9, respectively:

pDθ (yw ≻x yl) =
λw

λw + λl + 2νD
√
λwλl

=
erθ(x,yw)

erθ(x,yw) + erθ(x,yl) + 2νD
√
erθ(x,yw)+rθ(x,yl)

=
1

1 + e−dθ(x,yw,yl) + 2νDe−dθ(x,yw,yl)/2

pDθ (yw ∼x yl) =
2νD

√
λwλl

λw + λl + 2νD
√
λwλl

= (2νDλ
− 1

2
w λ

1
2

l )
λw

λw + λl + 2νD
√
λwλl

= 2 νD e−
1
2 (rθ(x,yw)−rθ(x,yl)) pDθ (yw ≻x yl)

= 2 νD e−dθ(x,yw,yl)/2 pDθ (yw ≻x yl)

In Figure 5 we plot the preference and tie probabilities as a function of reward margin dθ
under Bradley-Terry (as used in DPO), Rao-Kupper (as used in DPO-RK), and Davidson
(as used in DPO-D).
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B.2 Gradients for DPO-RK and DPO-D

The gradients of the Rao-Kupper log probabilities (Eq 18, 19) are as follows. For convenience,
we use the short-hand dθ for dθ(x, yw, yl).

∇ log pRK
θ (yw ≻x yl) = ∇θ log σ(dθ − αRK)

= σ(αRK − dθ)∇θdθ(x, yw, yl)

= σ(αRK − dθ)︸ ︷︷ ︸
∆RK

win(dθ)

[
∇θ log πθ(yw|x)−∇θ log πθ(yl|x)

]

= ∆RK
win(dθ)∇θ log

πθ(yw|x)
πθ(yl|x)

∇θ log p
RK
θ (yw ∼x yl) = ∇θ

[
log σ(−dθ − αRK) + log σ(dθ − αRK)

]
= −σ(dθ + αRK)∇θdθ + σ(−dθ + αRK)∇θdθ

=
(
σ(αRK − dθ)− σ(αRK + dθ)

)
︸ ︷︷ ︸

∆RK
tie (dθ)

[
∇θ log πθ(yw|x)−∇θ log πθ(yl|x)

]

= ∆RK
tie (dθ)∇θ log

πθ(yw|x)
πθ(yl|x)

The gradients of the Davidson log-probabilities (Eq 20, 21) follow similarly.

∇θ log p
D
θ (yw ≻x yl) =

∇θp
D
θ (yw ≻x yl)

pDθ (yw ≻x yl)

=
∇θ(1 + e−dθ + 2νe−dθ/2)−1

pDθ (yw ≻x yl)

= (−1)
(1 + e−dθ + 2νe−dθ/2)−2

pDθ (yw ≻x yl)
(−edθ − νedθ/2)∇θdθ

=
pDθ (yw ≻x yl)

2

pDθ (yw ≻x yl)
(e−dθ + νe−dθ/2)∇θdθ

= pDθ (yw ≻x yl)(e
−dθ + νe−dθ/2)∇θdθ

=
e−dθ + νe−dθ/2

1 + e−dθ + 2νe−dθ/2︸ ︷︷ ︸
∆D

win(dθ)

[
∇θ log πθ(yw|x)−∇θ log πθ(yl|x)

]

= ∆D
win(dθ)∇θ log

πθ(yw|x)
πθ(yl|x)

∇θ log p
D
θ (yw ∼x yl) = ∇θ log

(
2νe−dθ/2pDθ (yw ≻x yl)

)
= ∇θ

[
log pDθ (yw ≻x yl)− dθ/2

]
=

[ e−dθ + νe−dθ/2

1 + e−dθ + 2νe−dθ/2
− 1

2

]
∇θdθ

=
[
∆D

win(dθ)−
1

2

]
︸ ︷︷ ︸

∆D
tie(dθ)

[
∇θ log πθ(yw|x)−∇θ log πθ(yw|x)

]

= ∆D
tie(dθ)∇θ log

πθ(yw|x)
πθ(yl|x)

For illustration, we plot ∆win and ∆tie as a function of reward margin dθ in Figure 6.

The quantities ∇θLD(πθ;πref ) and ∇θLRK(πθ;πref ) follow by substituting the above results
into the gradient of Eq 14

∇θL(πθ;πref ) = −∇θEx,yw,yl,t=0 log pθ(yw ≻x yl)−∇θEx,yw,yl,t=1 log pθ(yw ∼x yl) (24)
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Figure 5: The clear preference probabilities P (yw ≻ yl|x) (left) and tie probabilities P (yw ∼
yl|x) (right) as a function of reward margins dθ(x, yw, yl) for Bradley-Terry (as used in
DPO) (blue), Rao-Kupper (purple) (as used in DPO-RK), and Davidson (orange) (as used
in DPO-D). αRK = log 3 and νD = 1 are used in producing these plots.
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Figure 6: The gradient scale factors for DPO (blue) and DPO-RK (purple) and DPO-D
(orange) as a function of reward margins dθ(x, yw, yl) on clear preference pairs (left) and tied
pairs (right).αRK = log 3 and νD = 1 are used in producing these plots.

C Experimental Details and Full Results

We provide additional details of our experiments on Neural Machine Translation and Sum-
marization with respect to the SFT models, the training configurations, and the decoding
procedures. All experiments are run with the random seed set to 0.

C.1 Neural Machine Translation

We largely follow Yang et al. (2024b) in our experimental setup for NMT where the preference
dataset is obtained via sampling and BLEURT-based ranking as explained in Sec.3.1.

SFT Models On WMT-21 ZH-EN, we performed supervised fine-tuning on the BLOOMZ-
mt-7b Muennighoff et al. (2023) using previous WMT test sets to obtain the SFT model from
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which we train with DPO/DPO-RK/DPO-D. The clear preference pairs and tied pairs are
generated by sampling from this SFT model. On IWSLT-17 FR-EN, we use the pretrained
BLOOMZ-mt-7b model directly in sampling clear preferences and tied pairs and in DPO
fine-tuning, as we find further SFT leads to repetitive generation.

Training Details We use the RMSProp optimizer with the learning rate set to 5e−7 and
the number of warm-up steps set to 150. All NMT experiments are run on two Nvidia
A100-80G GPUs with an effective batch size of 4. We used FP32 for training the policy.
The log-probabilities from the reference model are pre-computed with FP32 precision. Each
training run takes ≈ 2 hours on WMT20 ZH-EN CP+TP data and ≈ 1 hour on IWSLT17
FR-EN data.

Decoding Following Yang et al. (2024b), we use beam search with a beam size = 4 to
decode all models.

Held-out Clear Preference Pairs and Tied Pairs As explained in Sec.3.1, we curate
held-out sets by generating translations by sampling on the WMT18 ZH-EN test set. Clear
Preference Pairs and Tied Pairs are identified using their rankings under BLEURT exactly
as done for WMT21 ZH-EN (Sec.3.2.2). This gives 3980 CPs and 3980 TPs for held-out
evaluation.

C.2 Summarization

We follow Amini et al. (2024a) in experimental setups. The preference dataset is obtained
via sampling and ranking with a DPO model without requiring an external reward model as
explained in Sec.3.1.

SFT Model We follow Amini et al. (2024a) to supervise-finetune a Pythia-2.8B model Bi-
derman et al. (2023) on the chosen responses in TL;DR train split for one epoch to obtain
the initial checkpoint for preference learning. We use the summarization prompt provided in
Appendix D.2 by Rafailov et al. (2023).

Training Details We use the RMSProp optimizer with the learning rate set to 5e−7 and
the number of warm-up steps set to 150. All summarization experiments are run on two
Nvidia A100-40G GPUs with an effective batch size of 64. We used FP32 for the policy and
FP16 for the reference model. Each training run takes ≈ 7 hours on TL;DR CP+TP data.

Decoding We use greedy decoding for all models as we find it performs on-par or better
than temperature sampling (Appendix C.3).

C.3 PairRM as a Proxy Evaluator for GPT-4

PairRM (Jiang et al., 2023) is a strong reward model that has been shown to be effective in
curating preference datasets for iterative DPO training (Tran et al., 2023). In our experiments
on TL;DR summarization, we use the PairRM reward model instead of GPT-4 for comparing
generated summaries against human references. In this appendix, we show that win-rate as
judged by PairRM is a good proxy for GPT4-0613 (OpenAI et al., 2024) win-rate on the
TL;DR dataset Stiennon et al. (2020).

We generate summaries from SFT pythia-2.8B model by sampling at temperature T =
[0.0, 0.5, 1.0] and the DPO model (β = 0.1) trained on TL;DR’s full training set at temperature
T = [0.0, 0.25, 0.5, 0.75, 1.0]. Their win-rates against the 256 human-written summaries in
the TL;DR valid-2 split as judged by GPT-4 and PairRM are tabulated in Table 3. We find
that the win-rates by GPT-4 and PairRM are similar and that system rankings are generally
preserved. We opt to use PairRM as our evaluation metric which enables us to conduct
experiments faster and at lower costs.
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System GPT-4 PairRM

DPO
T=1.0 23.4% 27.3%
T=0.75 40.2% 40.6%
T=0.5 52.3% 54.7%
T=0.25 46.9% 51.6%
T=0.0 50.4% 55.5%

SFT
T=1.0 22.3% 23.0%
T=0.5 37.5% 38.7%
T=0.0 36.7% 39.8%

Table 3: Win-rate of Pythia-2.8B model SFT/DPO on TL;DR train against 256 human-
written summaries as judged by GPT4-0613 and PairRM.

C.4 Verifying a Tied Pair Selection Strategy for TL;DR

As explained in Sec. 3.1, we use the reward model associated with the DPO model trained on
TL;DR to identify summarizations that are similar in quality. Note that we are performing
unsupervised labelling of ties in the DPO training data, which is somewhat more forgiving
than the classification task discussed in other sections which requires labelling ties in held-out
data not seen in training. We do however assume that the reward model should perform
well on the data it was trained on.

To investigate these assumptions, we swap the preferred and the dispreferred responses in all
tied pairs to form “reversed Tied Pairs” (rTP). If the responses in TP are truly similar in
quality (i.e., it is acceptable to reverse the preference direction), training with DPO(CP+TP)
and DPO(CP+rTP) should yield similar performing models. Furthermore, the DPO-RK and
DPO-D learning procedures which explicitly model tied pairs should yield better performing
model. We conduct experiments on TL;DR. Table 4 Right shows that the performance relation
DPO-D(CP+TP) ∼ DPO-RK(CP+TP) ≻ DPO(CP+TP) ∼ DPO(CP+rTP) indeed holds
for TL;DR, which suggests that our Tied Pair selection strategy is reasonable.

System PairRM
DPO(CP+ TP) 58.6%
DPO(CP+rTP) 60.9%
DPO-RK(CP+TP) 68.0%
DPO-D(CP+TP) 68.8%

Table 4: Win-rates of Pythia-2.8B model DPO on TL;DR train against 256 human-written
summaries as judged by PairRM. Systems were trained on CP+TP or CP+rTP data with
DPO, DPO-RK, or DPO-D at fixed β = 0.3. For DPO-RK and DPO-D learning, rTP is
equivalent to TP as there is no preference direction for ties.

C.5 Tabulated KL-Performance Results on NMT and Summarization

We tabulate the KL-Performance results shown in Figure 1 and Figure 3.

C.5.1 Neural Machine Translation

In addition to KL Divergence and BLEURT, we also provide COMET (Rei et al., 2020)
scores, BLEU (Post, 2018) scores and BLEU’s Length Ratio.

We observe the “reward hacking” phenomenon identified by Yang et al. (2024b) on both
WMT21 ZH-EN and IWSLT17 FR-EN where systems achieve good BLEURT but have large
length ratio (>1.5) and lower COMET than the pre-DPO system. These systems learn to
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generate long, repetitive translations which BLEURT fails to recognize as low-quality. Yang
et al. (2024b) find that using small beta values (e.g. 0.1) in DPO training results in reward
hacking models. Our results are consistent with their findings and further suggest that large
KL divergence from the reference model is a good indicator for reward hacking. On WMT21
ZH-EN, the only model that exhibits reward hacking is trained by DPO(CP) with beta=0.1
which also yields the highest KL divergence (174.13) among all models, greatly exceeding
the second-highest KL divergence (68.12). On IWSLT17 FR-EN, Almost all models with KL
Divergence > 30 (DPO(CP), β = 0.1, DPO-RK(CP+TP), β = 0.1 and DPO-D(CP+TP)
β = 0.1, 0.5) show reward hacking behaviours.

Reward hacking on NMT can be resolved by increasing regularization with respect to the
reference model. We find that training with larger beta values or incorporating ties in
DPO-RK/DPO-D training can provide such regularization without performance degradation.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

System beta KL Divergence BLEU Length Ratio COMET BLEURT

Bloomz-mt-7b1-SFT - 0 17.6 77.9 61.6

DPO(CP) 0.1 174.13 7.23 3.01 70.2 67.7
DPO(CP) 0.2 68.12 20.8 1.10 80.8 66.2
DPO(CP) 0.3 62.85 20.7 1.13 80.6 66.4
DPO(CP) 0.4 56.02 21.4 1.09 80.7 66.4
DPO(CP) 0.5 50.99 21.2 1.11 80.8 66.5
DPO(CP) 0.6 47.97 21.5 1.09 80.9 66.5
DPO(CP) 0.7 44.08 21.5 1.11 81.0 66.7
DPO(CP) 0.8 41.88 21.3 1.14 80.8 66.7
DPO(CP) 0.9 41.24 21.5 1.14 80.8 66.8
DPO(CP) 1.9 33.69 22.3 1.09 81.2 67.0
DPO(CP) 1.2 32.01 22.4 1.09 81.3 67.1
DPO(CP) 1.5 29.58 21.7 1.13 81.1 67.1
DPO(CP) 1.55 29.01 21.9 1.13 81.1 67.1

DPO(CP+TP) 0.1 51.29 20.3 1.16 80.0 66.0
DPO(CP+TP) 0.2 36.37 18.8 1.30 80.1 66.6
DPO(CP+TP) 0.3 26.15 19.5 1.24 80.2 66.6
DPO(CP+TP) 0.4 18.21 20.6 1.20 80.4 66.6
DPO(CP+TP) 0.5 15.47 21.2 1.15 80.4 66.4
DPO(CP+TP) 0.6 14.74 21.9 1.10 80.6 66.4
DPO(CP+TP) 0.7 13.29 22.1 1.11 80.5 66.4
DPO(CP+TP) 0.8 12.57 22.2 1.10 80.5 66.2
DPO(CP+TP) 0.9 12.10 21.9 1.10 80.5 66.3
DPO(CP+TP) 1.0 11.43 22.0 1.11 80.5 66.2

DPO-RK(CP+TP) 0.1 48.55 19.3 1.22 80.2 66.9
DPO-RK(CP+TP) 0.2 28.61 22.1 1.11 80.9 66.9
DPO-RK(CP+TP) 0.3 20.21 22.5 1.11 81.0 67.1
DPO-RK(CP+TP) 0.4 14.80 22.4 1.12 81.1 67.1
DPO-RK(CP+TP) 0.5 11.66 22.8 1.10 81.0 67.1
DPO-RK(CP+TP) 0.6 9.74 22.2 1.13 80.8 66.8
DPO-RK(CP+TP) 0.7 8.04 22.3 1.12 80.8 66.7
DPO-RK(CP+TP) 0.8 8.10 22.1 1.13 80.8 66.8
DPO-RK(CP+TP) 0.9 7.58 21.8 1.15 80.7 66.8
DPO-RK(CP+TP) 1.0 6.31 22.3 1.11 80.7 66.6

DPO-D(CP+TP) 0.2 42.74 21.4 1.13 80.8 66.6
DPO-D(CP+TP) 0.3 38.56 21.2 1.15 80.2 66.5
DPO-D(CP+TP) 0.4 17.01 22.5 1.11 81.0 67.1
DPO-D(CP+TP) 0.5 20.20 22.7 1.10 81.1 67.1
DPO-D(CP+TP) 0.6 26.85 22.3 1.10 81.1 66.9
DPO-D(CP+TP) 0.7 14.97 22.6 1.11 81.1 67.1
DPO-D(CP+TP) 0.8 13.33 22.7 1.11 81.1 67.1
DPO-D(CP+TP) 1.0 10.05 22.3 1.12 80.9 67.0

Table 5: KL-Performance evaluated on WMT-21 ZH-EN.

C.5.2 Summarization

Table 7 shows the KL-PairRM winrate on TL;DR summarization.
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System beta KL Divergence BLEU Length Ratio COMET BLEURT

Bloomz-mt-7b1 - 17.6 85.4 74.8

DPO(CP) 0.1 53.60 25.8 1.40 82.3 74.7
DPO(CP) 0.3 30.80 23.7 1.60 83.6 76.5
DPO(CP) 0.5 16.70 36.8 1.00 86.1 76.2
DPO(CP) 0.7 13.80 38.5 1.00 86.4 76.4
DPO(CP) 1.0 12.40 38.6 1.00 86.5 76.5
DPO(CP) 1.2 11.80 38.8 0.98 86.5 76.5
DPO(CP) 1.5 10.70 38.9 0.99 86.5 76.5

DPO(CP+TP) 0.1 35.60 35.8 1.00 85.6 75.5
DPO(CP+TP) 0.3 25.80 35.7 1.10 85.4 75.9
DPO(CP+TP) 0.5 22.00 35.1 1.10 85.8 76.3
DPO(CP+TP) 0.7 17.00 38.7 1.00 86.3 76.3
DPO(CP+TP) 1.0 11.50 38.9 1.00 86.4 76.4
DPO(CP+TP) 1.2 8.50 39.1 0.98 86.5 76.4
DPO(CP+TP) 1.5 6.30 39.0 0.98 86.4 76.3

DPO-RK(CP+TP) 0.1 46.70 23.0 1.60 78.7 76.3
DPO-RK(CP+TP) 0.2 19.51 35.9 1.05 85.9 76.4
DPO-RK(CP+TP) 0.3 15.50 36.1 1.10 86.1 76.5
DPO-RK(CP+TP) 0.5 13.30 31.4 1.20 85.7 76.6
DPO-RK(CP+TP) 0.7 10.90 31.3 1.20 85.8 76.5
DPO-RK(CP+TP) 0.8 10.90 29.9 1.28 85.6 76.5
DPO-RK(CP+TP) 0.9 11.60 27.2 1.40 85.3 76.4
DPO-RK(CP+TP) 1.0 11.60 26.1 1.50 85.1 76.3
DPO-RK(CP+TP) 1.2 11.80 24.4 1.57 84.8 76.3

DPO-D(CP+TP) 0.1 48.60 25.3 1.41 82.6 76.3
DPO-D(CP+TP) 0.3 19.90 35.4 1.07 85.8 76.5
DPO-D(CP+TP) 0.5 51.90 8.4 4.35 75.1 76.1
DPO-D(CP+TP) 0.7 12.80 36.6 1.06 86.2 76.6
DPO-D(CP+TP) 1.0 10.30 37.8 1.03 86.3 76.6
DPO-D(CP+TP) 1.2 10.90 32.1 1.20 85.9 76.6

Table 6: KL-Performance evaluated on IWSLT17 FR-EN
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System beta KL Divergence PairRM Winrate
Pythia-2.8B-SFT, Greedy - 0.00 37.5

DPO(CP) 0.025 97.03 67.9
DPO(CP) 0.05 60.31 70.3
DPO(CP) 0.07 57.14 71.5
DPO(CP) 0.08 38.16 66.4
DPO(CP) 0.10 26.82 62.5
DPO(CP) 0.30 9.97 63.7
DPO(CP) 0.50 5.79 59.0
DPO(CP) 0.70 3.78 57.8

DPO(CP+TP) 0.025 87.66 63.7
DPO(CP+TP) 0.03 119.60 66.8
DPO(CP+TP) 0.04 70.69 69.5
DPO(CP+TP) 0.05 35.39 63.3
DPO(CP+TP) 0.10 17.21 57.4
DPO(CP+TP) 0.30 4.50 58.6
DPO(CP+TP) 0.50 7.61 57.8
DPO(CP+TP) 0.70 2.91 55.9

DPO-RK(CP+TP) 0.04 80.86 65.2
DPO-RK(CP+TP) 0.05 62.57 67.2
DPO-RK(CP+TP) 0.10 40.50 67.6
DPO-RK(CP+TP) 0.20 22.24 67.6
DPO-RK(CP+TP) 0.30 12.45 68.0
DPO-RK(CP+TP) 0.50 6.15 65.6
DPO-RK(CP+TP) 0.70 4.33 61.7

DPO-D(CP+TP) 0.05 82.35 64.8
DPO-D(CP+TP) 0.10 54.06 71.5
DPO-D(CP+TP) 0.20 39.23 66.0
DPO-D(CP+TP) 0.30 22.46 68.8
DPO-D(CP+TP) 0.40 12.57 67.6
DPO-D(CP+TP) 0.50 9.92 67.2
DPO-D(CP+TP) 0.70 6.82 64.8

Table 7: KL-PairRM winrate against 256 human-written summaries on TL;DR summarization
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C.6 Empirical Reward Margin Distributions
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Figure 7: Empirical distribution of
clear preference probabilities on clear
preference pairs. DPO(CP) in blue,
and DPO(CP+TP) in orange.

In Sec.3.2.3, we show that DPO(CP) yields models
that often show strong preference for either one of a
pair of translations even though the pairs are known
to be ties. This is shown by the estimated preference
probability P (y1 ≻ y2) on held-out tied pairs (Fig-
ure 4). For completeness, we provide the estimated
preference probability of the same models on held-out
clear preference pairs in Figure 7.

The DPO(CP) model correctly assigns high preference
probability to most of the held-out CPs. This is con-
sistent with its high classification accuracy on clear
preference pairs in Table 1. Similar to the estimated
preference probability on held-out TPs, the DPO(CP)
model tends to give confident, clear preference judg-
ment with > 0.8 probability in either direction. In
comparison, the DPO(CP+TP) model is more con-
servative in making preference judgments, showing
a less-sharp preference probability distribution over the held-out CP pairs. These results
suggest that incorporating ties in DPO training leads to preference probability distributions
that more evenly spread on both CPs and TPs as opposed to one concentrated on the two
ends.

For completeness, we also show the clear preference/tie probability distributions produced by
models trained with DPO-RK(CP+TP) and DPO-D(CP+TP) on held-out clear preference
pairs and tied pairs. Figure 8 show that these distributions are well-behaved in that most of
the probability mass are allocated to Pθ(y1 ≻ y2) > 0.5 on held-out clear preference pairs
and to Pθ(y1 ∼ y2) ≈ 0.5 on held-out tied pairs. We note that under our hyper-parameter
setting for the Rao-Kupper and Davidson models, the maximal tie probability is 0.5.

All models in this analysis are trained with β = 0.1.
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(a) Preference probability under the models on
held-out clear preference pairs.
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(b) Tie probability under the models on held-out
tied pairs.

Figure 8: DPO-D (orange) and DPO-RK (purple) preference/tie probability on held-out sets
under the Davidson and Rao-Kupper models, respectively.

D Simulating the Perfect DPO-Davidson Policy

In Section 3.1.1 we make use of the relationship derived by Chen et al. (2024, Appendix A.2)
which specifies the optimal DPO policy to minimize the binary classification loss

min
π

P(y1 ≻x y2) log π(y1 ≻x y2) + (1− P(y1 ≻x y2)) log(1− π(y1 ≻x y2))
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where P(y1 ≻x y2) is the human ground truth preference distribution.

We extend the analysis of Chen et al. (2024) to include the Davidson model, noting that the
binary maximum likelihood objective becomes ternary. We assume we have the ground-truth
human preference distributions P(y1 ≻x y2), P(y2 ≻x y1), and P(y1 ∼x y2) needed to define
the objective. The resulting Theorem 1 can be viewed as a generalization of Theorem 3 of
Chen et al. (2024) that allows for the observations of ties. Where ties are not allowed (i.e.
νD = 0), the Davidson model simplifies to the Bradley-Terry model and Theorem 3 of Chen
et al. (2024) is recovered as a special case of Theorem 1.
Theorem 1 (Simulating Perfect DPO-D Policy). Assume we are given an aggregated
comparison datapoint (x, y1, y2) and human ground-truth preference probabilities P(y1 ≻x y2),
P(y1 ≻x y2), and P(y1 ∼x y2) which obey the Davidson model with hyper-parameter νD.
Let the reference model be πref . It follows that the perfect DPO-Davidson policy π∗ on this
aggregated comparison datapoint satisfies

π∗(y1|x)
π∗(y2|x)

=
πref (y1|x)
πref (y2|x)

(P(y1 ≻x y2)

P(y2 ≻x y1)

)1/β

(25)

or equivalently
π∗(y1|x)
π∗(y2|x)

=
πref (y1|x)
πref (y2|x)

(
2νD

P(y1 ≻x y2)

P(y1 ∼x y2)

)2/β

(26)

Proof. The DPO-D policy objective optimizes the following three-way classification loss:

min
π

P(y1 ≻x y2) log π(y1 ≻x y2) + P(y2 ≻x y1) log π(y2 ≻x y1) + P(y1 ∼x y2) log π(y1 ∼x y2)

Let θ∗ denotes a set of parameters such that πθ∗ is an optimal policy for the above loss, then
πθ∗ satisfies:

πθ∗(y1 ≻x y2) = P(y1 ≻x y2)

πθ∗(y2 ≻x y1) = P(y2 ≻x y1)

πθ∗(y1 ∼x y2) = P(y1 ∼x y2)

Expressing the policy probability πθ∗(yw ≻x yl) and πθ∗(yl ≻x yw) in terms of the reward
margins dθ∗(x, yw, yl):

P(y1 ≻x y2) =
1

1 + e−dθ∗ (x,yw,yl) + 2νDe−dθ∗ (x,yw,yl)/2

P(y2 ≻x y1) =
e−dθ∗ (x,y1,y2)

1 + e−dθ∗ (x,y1,y2) + 2νDe−dθ∗ (x,y1,y2)/2

Rearranging, we have

P(y2 ≻x y1)

P(y1 ≻x y2)
= exp

(
− dθ∗(x, y1, y2)

)
= exp

(
β log

πθ∗(y2|x)
πref (y2|x)

− β log
πθ∗(y1|x)
πref (y1|x)

)
Taking logarithms on both side and divide by β.

1

β
log

P(y1 ≻x y2)

P(y2 ≻x y1)
= log

πθ∗(y2|x)πref (y1|x)
πref (y2|x)πθ∗(y1|x)

Exponentiating both sides gives

πθ∗(y2|x)
πθ∗(y1|x)

=
πref (y2|x)
πref (y1|x)

(P(y2 ≻x y1)

P(y1 ≻x y2)

)1/β

Taking the inverse yields Eq 25.

To see the equivalence between Eq 25 and Eq 26, note that the ground-truth preference and
tie probabilities which obey the Davidson model satisfy the following relation:
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P(y1 ∼x y2) = 2νD
√

P(y1 ≻x y2)P(y2 ≻x y1)

Rearranging Eq 25:

π∗(y1|x)
π∗(y2|x)

=
πref (y1|x)
πref (y2|x)

(P(y1 ≻x y2)

P(y2 ≻x y1)

)1/β

=
πref (y1|x)
πref (y2|x)

(√P(y1 ≻x y2)

P(y2 ≻x y1)

)2/β

=
πref (y1|x)
πref (y2|x)

( P(y1 ≻x y2)√
P(y1 ≻x y2)P(y2 ≻x y1)

)2/β

=
πref (y1|x)
πref (y2|x)

(
2νD

P(y1 ≻x y2)

P(y1 ∼x y2)

)2/β

which is Eq 26.
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