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Abstract001

Current medical AI models are trained primar-002
ily on static articles and question-answering003
(QA) tasks, and then evaluated on similar QA004
benchmarks. However, previous approaches005
fail to capture the dynamic real-world nature006
of clinical reasoning, particularly in handling007
ambiguous inputs (e.g., conflicting symptoms)008
and multi-step decision-making. To address009
this, we: ❶ introduce a comprehensive di-010
agnostic benchmark, MuddyMaze, evaluat-011
ing clinical reasoning with controlled noise012
and USMLE-aligned difficulty levels; ❷ cu-013
rate a new dialogue dataset by converting 10.2k014
medical QA pairs and 12k PubMed articles015
into clinician-patient interactions; and ❸ de-016
velop dialogue-based fine-tuning that enhances017
reasoning capabilities. Experiments demon-018
strate significant improvements over traditional019
methods (+16.10% in one-round accuracy and020
+4.06% in multi-round reasoning), validating021
that dialogue-based training better aligns AI022
systems with real clinical workflows.023

1 Introduction024

Large language models (LLMs) have achieved sig-025

nificant advancements in the medical domain, es-026

pecially in disease analysis and diagnostic assess-027

ment (Singhal et al., 2023; Li et al., 2023b,a; Chen028

et al., 2023; Peng et al., 2023; Kwon et al., 2024),029

while evaluating these medical LLMs remains a030

significant challenge. Many medical LLM bench-031

marks are derived from medical examinations or032

research articles, framed as multi-choice question-033

answering and long-answer reasoning tasks, (Jin034

et al., 2021; Pal et al., 2022). Although these bench-035

marks have provided valuable insight into the ca-036

pabilities of medical LLMs which enhanced AI037

performance, they primarily work in articulated en-038

vironments that diverge from the complexities of039

actual diagnostic procedures (Chen et al., 2024a;040

Yao et al., 2024).041

The highly structured nature of such existing 042

benchmarks and environments fail to reflect the 043

reasoning required in real-world clinical scenarios, 044

where systematic diagnostic investigation and step- 045

by-step analysis are essential: (i) Real-World Diag- 046

nosis is Stepwise: Real-world diagnostic reasoning 047

is an iterative, dynamic process where clinicians 048

progressively refine hypotheses by actively seek- 049

ing information—such as asking targeted follow- 050

up questions or ordering specific tests—based on 051

evolving evidence. In contrast, medical QA tasks 052

provide all information upfront, testing only final 053

interpretation—not the critical skill of deciding 054

what to ask next. This omits the core challenge of 055

real-world medicine: acting under uncertainty to 056

strategically acquire missing information. 057

(ii) Real-World Diagnosis Embraces Noise: Clin- 058

ical practice routinely deals with incomplete or con- 059

flicting data (e.g., vague symptoms, false-positive 060

tests) requiring probabilistic reasoning. Current 061

benchmarks present artificially clean cases, test- 062

ing recall of textbook knowledge rather than the 063

essential skill of uncertainty management through 064

evidence weighting and differential diagnosis. 065

To address these gaps, we first analyze exist- 066

ing benchmarks (Jin et al., 2019, 2020) and ob- 067

serve that clinical information typically follows 068

a natural sequence: from the patient background 069

through examination findings to the final diagnosis. 070

the sequential order mirrors real-world diagnostic 071

processes. Based on these insights, we reframe 072

question-answering tasks into a stepwise diagnos- 073

tic pipeline: retrieving relevant clinical evidence 074

and ranking it to mirror physician reasoning. In 075

this new benchmark, models are required to inte- 076

grate relevant evidence to support their answers 077

under two tasks: ❶ the one-round ranking task that 078

requires the model to rank all evidence once, and 079

❷ the multi-round ranking employing an iterative 080

approach that retrieves and ranks evidence over 081

several steps, gradually constructing the necessary 082
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context for decision-making. This reformulation re-083

flects the reasoning process that doctors use when084

combining and synthesizing clinical evidence to085

reach a diagnosis or treatment decision. To re-086

flect real-world challenging cases and noisy clinical087

contexts, we also introduce varying levels of diffi-088

culty—basic, advanced, and challenging—aligned089

with United States Medical Licensing Examination090

(USMLE) frameworks and irrelevant information091

sampled from other documents to mimic noise.092

To address the limitations of static training, we093

explore dialogue-based fine-tuning as a method for094

training medical LLMs, converting multiple-choice095

datasets and PubMed articles into dialogue struc-096

tures to enhance reasoning in diagnosis decisions.097

Our experiments show that this approach outper-098

forms traditional methods on evidence retrieval and099

ranking benchmarks, demonstrating its effective-100

ness in improving the model’s ability to capture101

intricate relationships and critical insights essen-102

tial for medical reasoning. Our contributions are103

summarized below.104

•We introduced an innovative benchmark, Muddy-105

Maze, that transforms traditional document-based106

multi-choice tasks into step-by-step evidence rank-107

ing challenges, reflecting real-world diagnostic rea-108

soning with tiered difficulty and noise levels.109

•We developed dialogue datasets that imitate real-110

world doctor-patient reasoning processes using pub-111

licly available medical information, enabling mod-112

els to train on clinically relevant scenarios while113

preserving patient confidentiality.114

•We proposed a dialogue-based fine-tuning frame-115

work that enhances models’ ability to capture logi-116

cal relationships in medical evidence. Compared117

to standard approaches, ours improves clinical evi-118

dence retrieval, enhances differential diagnosis pri-119

oritization, and better mirrors real-world physician120

reasoning patterns.121

2 Related Work122

Medical Large Language Models. LLMs have123

demonstrated considerable progress in the medi-124

cal field, (Singhal et al., 2023; Chen et al., 2023;125

Wu et al., 2023; Zhang et al., 2024b; Gema et al.,126

2024; Han et al., 2023; Xie et al., 2024), achieving127

state-of-the-art performance in medical question-128

answering and summarization task. Medical LLMs129

are typically fine-tuned on medical examinations,130

scientific literature, clinical guidelines, and clinical131

notes from EHRs to enable them to excel in a wide132

range of medical text analysis and real-world clin- 133

ical tasks. Moreover, bio-focused large language 134

models are being tailored specifically to address 135

the unique challenges of biomedical research and 136

healthcare applications (Luo et al., 2022; Bannur 137

et al., 2023). For instance, BioBERT (Lee et al., 138

2020) and PubMedBERT (Gu et al., 2021) are foun- 139

dational models pre-trained on PubMed articles, 140

enabling them to excel in natural language under- 141

standing tasks such as named entity recognition 142

(NER) and relation extraction. 143

Conversation Datasets in the Medical Field. 144

Previously, medical benchmarks primarily focused 145

on assessing knowledge using static question for- 146

mats, such as multiple-choice tasks or extractive 147

question answering. Examples include MedQA 148

(Yao et al., 2024), MedMCQA (Pal et al., 2022), 149

and PubMedQA (Jin et al., 2019), which are con- 150

structed from medical articles and examinations. 151

Recent efforts have shifted towards collecting con- 152

versational datasets from real-world doctor-patient 153

dialogues. Examples include MedDialog and 154

ReMeDi (Yan et al., 2022) (Zeng et al., 2020), 155

which introduces conversational benchmarks aimed 156

at reflecting real-world medical scenarios through 157

doctor-patient interactions. Additionally, there are 158

some dialogue datasets target specific domains 159

within healthcare, such as mental health counsel- 160

ing (Chen et al., 2024b), pediatrics (Zhang et al., 161

2024a), and Covid-19 (Ju et al., 2020). 162

3 Methodology 163

This section presents our approach to improving 164

medical reasoning in AI. We first distinguish be- 165

tween monologue and dialogue training formats. 166

Next, we detail our method for converting stan- 167

dard medical datasets into dialogue form using an 168

LLM. Finally, we present dialogue-tuning, which 169

leverages this format to improve reasoning by sim- 170

ulating real-world doctor-patient interactions. 171

3.1 Preliminary 172

Monologue Tuning. Monologue-style datasets pri- 173

marily involve static, non-interactive formats such 174

as multi-choice question answering and article- 175

based tasks. Medical models often rely on biomed- 176

ical literature for pretraining or fine-tuning, lever- 177

aging either the entire article or just the abstract. 178

Moreover, fine-tuning on multi-choice question- 179

answering datasets is a standard practice for many 180

medical AI models. However, this Monologue- 181

style format, while useful for acquiring medical 182
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knowledge, often fails to mimic the complexity183

of real-world diagnostic reasoning, which requires184

iterative problem-solving and logical synthesis.185

Dialogue Tuning. Dialogue datasets, in con-186

trast, simulate real-world interactions by focusing187

on dynamic exchanges between patients and doc-188

tors. These datasets emphasize the iterative nature189

of diagnostic reasoning, where information unfolds190

progressively over multiple conversational turns.191

Notably, doctor-patient dialogues showcase how192

doctors determine the next steps based on the in-193

formation provided. This process highlights how194

doctors gather details and arrive at a final diagno-195

sis. Compared to monologues, dialogues inherently196

capture the dynamic reasoning process characteris-197

tic of real-world diagnostic scenarios.198

A detailed comparison between monologue tun-199

ing and dialogue tuning is provided in Figure 1.200

Figure 1: Previous medical LLMs are trained on next token
prediction with medical text (Article-based tuning) or medical
Question-Answer pair (Multi-choice tuning). For our dialogue
tuning, we convert raw article and multi-choice QA samples
into dialogue samples with Gemini-2.5 flash.

201

3.2 Data Reformation for Dialogue Tuning202

To better simulate real-world doctor–patient inter-203

actions, we reformulated existing multiple-choice204

datasets (10.2k question–answer pairs) and approx-205

imately 12k article-based datasets—into a dialogue206

format, as shown in Figure 2.207

Figure 2: The left pie chart represents the ratio of difficulty
levels in our benchmark. While the right pie chart represents
the proportion of multiple-choice question-answering sets and
articles used during the tuning stage, the dialogues generated
from these sources are equal in quantity to them.

Multi-Choice to Dialogue. For multiple-choice 208

tasks, we transformed each question and its con- 209

text into a doctor-patient dialogue format. This 210

approach aligns with the inherent structure of med- 211

ical QA, which typically includes key clinical com- 212

ponents such as patient demographics, symptom 213

descriptions, physical examination findings, and 214

diagnostic outcomes. The dialogue framework was 215

designed to simulate natural clinical interactions: 216

patients present their medical history and current 217

symptoms, while physicians systematically elicit 218

information and guide the conversation toward an 219

accurate diagnosis and appropriate treatment plan. 220

Article-Based Tasks to Dialogue. For article- 221

based tasks, we adapted a parallel dialogue con- 222

version methodology. This process began by ex- 223

tracting structured case reports from medical lit- 224

erature, including key clinical elements such as 225

patient histories, physical examination findings, di- 226

agnostic workups, and treatment outcomes. The 227

reports were systematically converted into natu- 228

ralistic physician-patient dialogues, maintaining 229

all essential medical information while translating 230

technical details into comprehensible clinical talks. 231

Implementation. We employed the Gemini-2.5 232

Flash to perform the task reformulation, as shown 233

in Figure 1. For each dataset, we designed specific 234

prompts tailored to guide the model in generating 235

the desired dialogue format while adhering to the 236

constraints. These prompts ensured that the origi- 237

nal task’s essential details were faithfully preserved 238

in the reformulated dialogue. The number of di- 239

alogue rounds and their length varied according 240

to the complexity and amount of information in 241

the source context. The complete prompts used 242

for both multiple-choice and article-based tasks are 243

provided in Appendix A. Additionally, we con- 244

ducted human evaluations to validate the quality of 245

the reformulated dialogues; these results are pre- 246

sented in the subsection 5.2. 247

3.3 Implementation of Dialogue Tuning. 248

Our dialogue-tuning approach trains the LLM to 249

generate physician responses conditioned on the 250

previous conversational context. This differs funda- 251

mentally from conventional next-token prediction 252

by operating at the level of complete dialogue acts 253

rather than individual tokens. 254

Training Objective. Given a dialogue sequence 255

D = {u1, ..., uT } where each ut is an utterance al- 256

ternating between patient (P) and doctor (D) roles, 257

we optimize the model to predict doctor responses 258
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conditioned on preceding dialogue history. For-259

mally:260

Let xt = {u1, ..., ut−1} be the context preced-261

ing doctor’s turn ut (where ut−1 must be patient262

utterance). The training objective maximizes:263

L = −
∑
t∈TD

|ut|∑
i=1

logP (wt
i |wt

<i, xt) (1)264

where TD denotes doctor turn indices, wt
i rep-265

resents the i-th token in doctor utterance ut, and266

xt = {u1, ..., ut−1} contains all preceding dia-267

logue (ending with patient input). The loss is com-268

puted only over doctor response tokens while con-269

ditioning on the full conversational context.270

MuddyMaze: an evidence-based medical
 decision-making benchmark

MedQA MedBullets

JAMA Challenge

Medical Multi-choice
QA Benchmarks

Task 1. One-round Evidence Ranking

Task 2. Multi-round Evidence Ranking

Background: 
Query: What Is Your Diagnosis?
Options:    

 

Answer:    

LLM

Background: 
Evidence pool: 
Query: What Is Your Diagnosis?
Answer: Lymphoma

LLM

[2] - [3] - [1] - [4]

Reordered
evidences

Evidence
[4]

Evidence
[3]

Evidence
[2]

Evidence
[1]

Background: 
Evidence pool: 
Query: What Would You Do Next?
Answer: Start oral prednisone

LLM

[2] > [3] > ... > [4]

Ranking

-th iteration

-th iteration

Background: 
Evidence pool: 
Query: What Would You Do Next?
Answer: Start oral prednisone

LLM

[1] > ... > [4]

Ranking of the rest
evidences

Update inputs

 +  Evidence [2]

 - Evidence [2]

Update inputs

+  Evidence [1]

 - Evidence [1]

Figure 3: The MuddyMaze benchmarks encompass two set-
tings: one-round evidence ranking and multi-round evidence
ranking. In the one-round evidence ranking, the model is re-
quired to identify the correct evidence and output it in order.
In the multi-round evidence ranking, the model must update
the current information with each selection, iterating via sev-
eral rounds to reach the endpoint.

4 Our Benchmark: Muddy Maze271

To evaluate the reasoning abilities of AI models272

under realistic medical scenarios, we introduce273

Muddy Maze, a benchmark designed to test logi-274

cal reasoning and evidence-based decision-making275

through a structured framework, in Figure 3. It276

includes: ❶ background information (e.g., patient277

history and presenting symptoms), ❷ an evidence278

pool containing both relevant clinical findings and279

distracting information, and ❸ a diagnostic ques-280

tion requiring selection of appropriate supporting281

evidence. By using varying difficulty levels and282

realistic noise, Muddy Maze mimics the uncer- 283

tain, step-by-step nature of real medical decision- 284

making. This provides a clear way to measure how 285

well models perform in complex clinical scenarios. 286

4.1 Dataset Sources 287

Muddy Maze is built using the following question 288

answering datasets: ❶ MedQA: Includes questions 289

from USMLE Step 1, Step 2, and Step 3 exams. 290

Step 1 questions requiring foundational medical 291

knowledge and straightforward reasoning. Step 2 292

and Step 3 questions focusing on clinical reason- 293

ing and decision-making. ❷ MedBullets Step 2/3: 294

Contains high-quality questions for USMLE Step 295

2 and Step 3 preparation. ❸ JAMA Challenge: In- 296

cludes complex, real-world clinical cases published 297

in the Journal of the American Medical Associa- 298

tion (JAMA). These cases designed to simulate the 299

most difficult and ambiguous medical reasoning 300

scenarios. The preprocessing steps for MedBullets 301

and the JAMA Challenge follow the methodology 302

outlined in (Chen et al., 2024a). 303

4.2 Difficulty Levels Aligned with USMLE 304

The benchmark is divided into three difficulty lev- 305

els to reflect the progressive challenges of medical 306

training which aligned with United States Medical 307

Licensing Examination: 308

• Basic Level. Based on MedQA Step 1 questions. 309

Focuses on foundational medical knowledge with 310

straightforward evidence identification. 311

• Advanced Level. Combines MedQA Step 2 & 312

Step 3 and MedBullets questions. Requires the 313

integration of multiple pieces of evidence and rea- 314

soning through complex information. 315

• Challenge Level. Derived from JAMA Chal- 316

lenge cases. Simulates challenging real-world clin- 317

ical cases from a range of medical domains. 318

4.3 Noise Levels Aligned with the Real World 319

The benchmark can randomly select irrelevant ev- 320

idence from the dataset and add it to the current 321

evidence set to challenge the LLM’s judgment, the 322

basis shown in Appendix B. If the noise level is set 323

to 0, no additional information is included, and all 324

evidence contributes directly to the final diagnosis. 325

Otherwise, irrelevant evidence, essentially random 326

noise, gets added to the evidence pool. The pur- 327

pose of this functionality is to evaluate whether the 328

model can maintain its performance when faced 329

with noisy information, simulating real-world sce- 330

narios. Similarly, doctors must identify and rely 331
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Algorithm 1 Multi Round Muddy Maze

Input: Background Information BI , Ques-
tion Q, Answer A, Evidence Sentences E =
{e1, e2, . . . , en}, Total Attempts T
Initialize i← ∅ {No sentence selected yet}
for t = 1 to T do

if t = 1 then
Display current BI , Q, A, and E
Prompt model to select a single sentence
index it ∈ {1, 2, . . . , n}

else
Update BI ← BI ∪ eit−1 {Add previous
sentence to Background Information}
Display updated BI , Q, A, and E
Prompt model to select a single sentence
index it ∈ {1, 2, . . . , n}

end if
if t = T then

break {Final attempt reached}
end if

end for
Return iT {Final selected sentence index}

only on relevant information for the final diagno-332

sis rather than treating all information as equally333

important.334

Figure 4: Format document Question-Answering sample to
our One-Round evidence ranking sample

4.4 Details of One-Round and Multi-Round335

Tasks336

We reformatted the traditional QA tasks into evi-337

dence ranking tasks to emphasize reasoning:338

• One-Round Evidence Ranking. This task in-339

volves determining the correct sequence of ev-340

idence sentences that logically connects given341

background information to a final diagnosis342

or suggestion. The format shows in Figure 4.343

The model is provided with a background, a 344

conclusion, and a pool of unordered evidence 345

sentences. The objective is to arrange these 346

evidence sentences in a single, coherent order 347

that forms a logical reasoning chain, ensuring 348

that each sentence builds upon the previous 349

one and collectively supports the conclusion. 350

The sequence must reflect clear dependen- 351

cies—introducing foundational facts before 352

statements that rely on them—and demon- 353

strate holistic reasoning from start to finish. 354

The final ordered list should provide a smooth 355

and complete transition from the background 356

to the diagnosis or suggestion without redun- 357

dancy or logical gaps. 358

• Multi-Round Evidence Ranking. This task 359

presents the same background, final diagnosis 360

or suggestion, and pool of evidence as the one- 361

round setting, but instead of ordering all evi- 362

dence at once, the model selects one sentence 363

at a time. After each selection, the chosen ev- 364

idence is added to the background, updating 365

the context for the next decision. This step-by- 366

step approach requires the model to iteratively 367

identify the most informative evidence at each 368

stage, gradually narrowing down diagnostic 369

possibilities and constructing a coherent rea- 370

soning chain leading to the final conclusion. 371

This iterative process mirrors the way doctors 372

incrementally gather and synthesize evidence 373

in clinical reasoning, ensuring that each piece 374

of information contributes to the final diagno- 375

sis or decision-making. 376

The benchmark is explicitly designed to reflect 377

real-world medical practice, and the multi-round 378

process can be described with the (Algorithm 1): 379

• Step-by-Step Reasoning. Multi-round evidence 380

ranking mirrors how doctors iteratively gather and 381

synthesize evidence during diagnosis and treatment 382

planning. 383

• Handling Distractors. The inclusion of irrel- 384

evant evidence simulates the noisy and complex 385

environment of real-world clinical data. 386

• Complex Scenarios. The progressive diffi- 387

culty levels (basic, advanced, challenge) mirror 388

the stages of medical training and ensure compre- 389

hensive testing. 390

4.5 Evaluation Metric 391

Multi-Hop Accuracy. A metric evaluates the 392

model’s ability to both identify the correct evidence 393
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sentences and place them in the correct sequential394

order to support the reasoning chain. The metric is395

defined as:396

Multi-Hop Accuracy =

∑N
i=1 I(ei = êi ∧ pi = p̂i)

N
397

where, N represents the total number of evidence398

sentences in the reasoning chain. Each ei is the i-th399

evidence sentence in the ground-truth reasoning400

chain, while êi is the corresponding evidence sen-401

tence selected by the model. Similarly, pi denotes402

the position of the i-th evidence sentence in the403

ground truth, and p̂i is the position assigned by the404

model. The indicator function I returns 1 if both405

ei = êi and pi = p̂i, and 0 otherwise.406

This formula calculates the proportion of evi-407

dence sentences where the model correctly identi-408

fies both the content and its position in the reason-409

ing chain, providing a comprehensive measure of410

reasoning accuracy.411

Single-Wise Accuracy. metric evaluates the412

model’s ability to predict correct pairs of consecu-413

tive evidence sentences in the reasoning chain. This414

metric measures how well the model captures the415

sequential relationship between evidence elements,416

ensuring that not only the individual evidence sen-417

tences but also their relationship in the chain is418

accurate. The metric is defined as:419

Single-Wise
Accuracy =

1

N − 1

N−1∑
i=1

I
(
(ei, ei+1) = (êi, êi+1)∨
(ei, ei+1) = (êi+1, êi),

)
420

where N represents the total number of evi-421

dence sentences in the reasoning chain. The pair422

(ei, ei+1) denotes the ground-truth pair of consec-423

utive evidence sentences in the reasoning chain,424

while (êi, êi+1) represents the corresponding pair425

predicted by the model. The accuracy is calculated426

using an indicator function I, which returns 1 if427

(ei, ei+1) = (êi, êi+1) and 0 otherwise.428

This metric highlights the model’s ability to429

maintain the correct sequential relationships be-430

tween evidence elements, ensuring consistency in431

multi-round and one-round reasoning tasks. How-432

ever, the metric is relatively loose, as it accom-433

modates bidirectional consistency to account for434

reasoning paths that may flow in either direction.435

5 Experiment436

In this section, we want to validate the effectiveness437

of our proposed dialogue tuning strategy.438

5.1 Experiments Setup 439

We designed three comparison groups to show 440

our methods advantages: (1) For multiple-choice 441

data, we compared the raw model with models 442

fine-tuned on either the original multiple-choice 443

format (Multi-Choice) and its dialogue-converted 444

version (Dialogue(MC)); (2) For medical articles, 445

we similarly compared the raw model with mod- 446

els fine-tuned on either the original articles (Ar- 447

ticle) and their dialogue-converted versions (Dia- 448

logue(Article)); and (3) For combined training, we 449

tested the raw model against both a baseline model 450

trained on original multiple-choice and article data 451

together (Baseline) and a model trained on both 452

dialogue datasets combined (Combined Dialogue). 453

Q1: What is the effect of dialogue tuning on 454

reasoning across all difficulty levels in single 455

round setting? A1: Improves reasoning across 456

basic, advanced, and challenge levels. 457

The results (Table 1, Table 2, Table 3) demon- 458

strate that dialogue tuning significantly enhances 459

the reasoning performance of models compared to 460

both multi-choice, article-based tuning and base- 461

line strategies across varying levels of task diffi- 462

culty (basic, advanced, and challenge). We incor- 463

porate three noisy level, which means that we add 464

different amounts of irrelevant evidence to the evi- 465

dence pool, to distract the model’s choice, which 466

act as the noise in the real world. 467

Compared to multi-choice tuning, dialogue tun- 468

ing shows significant improvements, with a 19.46% 469

higher Multi-Hop Accuracy and an 18.86% in- 470

crease in Single-Wise Accuracy at the basic level 471

(see Table 1). This advantage persists in other diffi- 472

culty levels, where dialogue tuning consistently out- 473

performs multi-choice tuning. When tuning with 474

case reports, dialogue tuning does not exhibit as 475

large of an improvement but still achieves a 2.54% 476

higher Multi-Hop Accuracy in the advanced set- 477

ting and a 1.45% increase in the challenge setting. 478

Additionally, our baseline strategies—which com- 479

bine case reports and multiple-choice questions for 480

tuning—perform notably worse than our combined 481

dialogue tuning approach. For example, in basic 482

settings, the baseline achieves only 28.82% Single- 483

Wise Accuracy, whereas dialogue tuning reaches 484

43.40%. Even in the more challenging task, com- 485

bined dialogue tuning maintains a clear advantage, 486

scoring 47.58% (Single-Wise Accuracy) compared 487

to the baseline’s 39.23%(Single-Wise Accuracy), 488

and 30.02% versus 22.04% in another metric. 489
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Table 1: Performance of Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct under three tuning strategies across noise levels,
evaluated on Basic tasks in One-Round setting.

Basic (Multi-Hop Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.2707 0.1473 0.3253 0.2707 0.3221 0.3317 0.2707 0.2464 0.3335
1 0.3526 0.1114 0.4779 0.3526 0.4477 0.5224 0.3526 0.302 0.4882Llama-3.2-3B-Instruct
3 0.2482 0.1232 0.2842 0.2482 0.3269 0.3754 0.2482 0.2545 0.3919
0 0.2804 0.2101 0.3289 0.2804 0.2993 0.271 0.2804 0.2183 0.3045
1 0.3715 0.2198 0.4249 0.3715 0.3697 0.3779 0.3715 0.254 0.4007Qwen2.5-3B-Instruct
3 0.3337 0.2023 0.3404 0.3337 0.3262 0.3259 0.3337 0.2746 0.343

Average 0.3095 0.1690 0.3636 0.3095 0.3487 0.3674 0.3095 0.2583 0.3770

Basic (Single-Wise Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.4104 0.1991 0.4528 0.4104 0.4624 0.4635 0.4104 0.2397 0.4629
1 0.4171 0.15 0.5104 0.4171 0.4891 0.561 0.4171 0.2421 0.5044Llama-3.2-3B-Instruct
3 0.2856 0.1303 0.3096 0.2856 0.3389 0.3587 0.2856 0.1951 0.3552
0 0.3845 0.298 0.4239 0.3845 0.3836 0.339 0.3845 0.2642 0.3735
1 0.5434 0.4427 0.5568 0.5434 0.5364 0.5137 0.5434 0.4569 0.5347Qwen2.5-3B-Instruct
3 0.4023 0.2731 0.3717 0.4023 0.3797 0.3671 0.4023 0.3314 0.3733

Average 0.4072 0.2489 0.4375 0.4072 0.4317 0.4338 0.4072 0.2882 0.4340

Table 2: Performance of Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct under three tuning strategies across noise levels,
evaluated on Adavance tasks in One-Round setting.

Advance (Multi-Hop Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.1092 0.052 0.1578 0.1092 0.1574 0.1588 0.1092 0.0867 0.1683
1 0.1815 0.0522 0.424 0.1815 0.3965 0.4804 0.1815 0.1995 0.4308Llama-3.2-3B-Instruct
3 0.1508 0.0487 0.2198 0.1508 0.2474 0.3014 0.1508 0.1539 0.2925
0 0.1449 0.1374 0.1667 0.1449 0.154 0.1603 0.1449 0.1207 0.1668
1 0.339 0.2375 0.479 0.339 0.3873 0.3765 0.339 0.2888 0.4496Qwen2.5-3B-Instruct
3 0.2995 0.2108 0.2965 0.2995 0.2822 0.3 0.2995 0.2391 0.315

Average 0.2042 0.1231 0.2906 0.2042 0.2708 0.2962 0.2042 0.1815 0.3038

Advance (Single-Wise Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.1926 0.0823 0.2897 0.1926 0.3154 0.2939 0.1926 0.1274 0.2937
1 0.3178 0.1031 0.6159 0.3178 0.5859 0.6676 0.3178 0.2319 0.6092Llama-3.2-3B-Instruct
3 0.2604 0.0852 0.3754 0.2604 0.4021 0.4405 0.2604 0.1837 0.4232
0 0.2557 0.218 0.2733 0.2557 0.2714 0.2506 0.2557 0.1973 0.2713
1 0.5579 0.561 0.6919 0.5579 0.6681 0.6521 0.5579 0.6469 0.6777Qwen2.5-3B-Instruct
3 0.4131 0.3552 0.4368 0.4131 0.4309 0.4363 0.4131 0.4332 0.4511

Average 0.3329 0.2341 0.4472 0.3329 0.4456 0.4568 0.3329 0.3034 0.4544

Table 3: Performance of Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct under three tuning strategies across noise levels,
evaluated on Challenge tasks in One-Round setting.

Challenge (Multi-Hop Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.1019 0.0697 0.1154 0.1019 0.1187 0.121 0.1019 0.0888 0.1254
1 0.2931 0.0698 0.4288 0.2931 0.4449 0.5142 0.2931 0.301 0.4725Llama-3.2-3B-Instruct
3 0.227 0.0767 0.2144 0.227 0.2577 0.267 0.227 0.1935 0.2834
0 0.1192 0.1031 0.1266 0.1192 0.1232 0.1217 0.1192 0.1087 0.125
1 0.4037 0.347 0.4997 0.4037 0.456 0.4478 0.4037 0.3594 0.4935Qwen2.5-3B-Instruct
3 0.2802 0.2062 0.2865 0.2802 0.2769 0.2927 0.2802 0.2712 0.3013

Average 0.2375 0.1454 0.2786 0.2375 0.2796 0.2941 0.2375 0.2204 0.3002

Challenge (Single-Wise Acc)

Model Noise Level Raw Multi-Choice Dialogue(MC) Raw Article Dialogue(Article) Raw Baseline Combined Dialogue

0 0.2026 0.118 0.2316 0.2026 0.2314 0.2318 0.2026 0.1588 0.2392
1 0.5586 0.2013 0.6779 0.5586 0.6848 0.7384 0.5586 0.4599 0.6967Llama-3.2-3B-Instruct
3 0.4357 0.1728 0.4549 0.4357 0.4854 0.4898 0.4357 0.3336 0.4945
0 0.2115 0.1937 0.2217 0.2115 0.2229 0.2218 0.2115 0.1965 0.2154
1 0.6758 0.6564 0.7356 0.6758 0.7284 0.7076 0.6758 0.7156 0.725Qwen2.5-3B-Instruct
3 0.4629 0.4198 0.4824 0.4629 0.4804 0.485 0.4629 0.4895 0.4839

Average 0.4245 0.2937 0.4674 0.4245 0.4722 0.4791 0.4245 0.3923 0.4758

Q2: Does dialogue tuning still show the ad-490

vantage in the multi-round setting? A2: Yes, it491

still outperforms traditional tuning methods. 492

In Figure 6, we clearly demonstrate the perfor- 493
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Figure 5: Comparison of scores between baseline and com-
bined dialogue approaches for LLaMA 3.2-3B Instruct and
Qwen2.5-3B-Instruct across MedQA, MedMCQA, and Pub-
MedQA datasets. The combined dialogue approach consis-
tently improves performance.

mance of fine-tuned model in the multi-round set-494

ting across confusion levels 0 to 5. For the LLaMA495

3.2-3B Instruct, our dialogue tuning exhibits clear496

advantages across all three experimental settings,497

and further enhances performance in multi-round498

tasks—achieving a 4.06% improvement even in the499

noisiest environment (level 5). As for the Qwen500

2.5-3B Instruct model, while it does not show as501

significant a gap compared to LLaMA, it still main-502

tains an advantage, particularly in high-noise en-503

vironments. Specifically, it achieves a 3.16% im-504

provement over multi-choice tuning strategies at505

confusion level 5.506

Beyond synthetic multi-turn tasks, our dialogue-507

tuned models also demonstrate comparable or508

better performance on widely-used medical QA509

datasets including MedQA, MedMCQA, and Pub-510

MedQA (Figure 5), further confirming the practical511

generalize ability of our approach.512

5.2 Human Evaluation513

To assess the fidelity of our LLM-generated dia-514

logues to the original context, we conducted a hu-515

man evaluation study with 32 participants in U.S.,516

including medical students. Participants rated each517

dialogue on a 5-point scale ranging from Fully Cov-518

ered (4: all essential information preserved) to Not519

Covered (0: core information missing or distorted).520

The results demonstrated strong performance,521

shown in Figure 7: 79% of the MC dialogues and522

74% of the Report dialogues were rated as Fully523

Covered (score 4), indicating that the generated524

dialogues preserved all key information from the525

original context. Notably, only 3–4% of outputs fell526

into the Minimally/Not Covered categories (scores527

0–1), suggesting rare failures in coherence. These528

findings confirm that our LLM-generated dialogues529

are highly faithful to the source material, achieving530

the primary goal of dependency on and compre-531

Figure 6: Performance of Llama-3.2-3B-Instruct and
Qwen2.5-3B-Instruct under three tuning strategies across four
noise levels, average all difficulty levels, evaluated on Multi-
Round setting.

Figure 7: Human Evaluation Performance.

hensive coverage of the raw context. The human 532

evaluation thus validates the reliability of our ap- 533

proach for producing trustworthy dialogue outputs. 534

6 Conclusion 535

In this work, we introduce a novel benchmark, 536

Muddy Maze, designed to evaluate the logical 537

reasoning and evidence-based decision-making ca- 538

pabilities of language models in realistic medical 539

scenarios. Moreover, we demonstrate that dialogue 540

tuning significantly improves model performance 541

compared to multi-choice and article-based tuning, 542

through extensive experiments. 543

This work highlights the importance of a dynam- 544

ical approach to advancing reasoning in medical 545

AI systems. Dialogue tuning aligns training with 546

the step-by-step cognitive processes required for di- 547

agnostic decision-making, providing a framework 548

for developing more reliable models. 549

8



Limitations550

The dialogue generation process, which relies551

solely on Gemini-2.5 Flash, may introduce certain552

biases. Even though we randomly sample some553

of the generated dialogues for human evaluation,554

relying on a single large language model for dia-555

logue generation could lead to model-specific bi-556

ases—particularly in how it structures conversa-557

tions and prioritizes certain types of medical infor-558

mation.559
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A Dialogue Generation705

A.1 Why We Need Dialogue Tuning?706

Dialogue tuning is proposed as a more effective707

approach for capturing logical relationships, as the708

dialogue format inherently mirrors the reasoning709

process found in human doctor-patient interactions.710

Interactive Nature of Dialogue. The dialogue 711

format enables iterative, question-and-answer rea- 712

soning that mimics real diagnostic processes. Clin- 713

icians progressively gather information through tar- 714

geted questioning, with each response reducing 715

diagnostic uncertainty. This stepwise approach or- 716

ganizes clinical data logically, making the reason- 717

ing chain more transparent and tractable for AI 718

systems. 719

Empirical Support for Dialogue Tuning. Our 720

experiments in section 5 demonstrate that dialogue 721

tuning significantly outperforms multi-choice and 722

article-based tuning in tasks designed with our 723

benchmark. Key findings include: ❶ Dialogue- 724

tuned models exhibit higher accuracy in reason- 725

ing tasks, including those requiring multi-step in- 726

tegration of evidence. ❷ Dialogue-tuned mod- 727

els remain robust even when tackling challenging 728

tasks or integrating noisy inputs, maintaining per- 729

formance where other approaches falter. ❸ They 730

also have competitive capabilities in general medi- 731

cal question-answering tasks, as the model is fine- 732

tuned with multiple-choice QA and medical arti- 733

cles. 734

A.2 Prompt Templates 735

Multi-choice QA to Dialogue: Please
convert the following paragraph into a
doctor-patient dialogue. Ensure that
all the information provided, including
personal details, symptoms, examination
findings, diagnosis, and treatment, is
included. Most important is the final
answer, "{{Answer}}", which must be
included in the dialogue without any
changes. Use natural conversational
language to connect the details, but do not
introduce any new information. The dialogue
should not be too redundant:
{{Document}}

736

Article to Dialogue: Please convert the
following paragraph into a doctor-patient
dialogue. Ensure that all the information
provided, like personal details, symptoms,
examination findings, diagnosis, and
treatment, is included. Use natural
conversational language to connect the
details, but do not introduce any new
information. The dialogue should not be
too redundant:
{{Document}}

737

A.3 Task Reformulation Examples 738

This example demonstrates how we use the above 739

prompt to guide Gemini 2.5-flash in transition- 740
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ing from multiple-choice question answering to741

a doctor-patient dialogue format.742

A 23-year-old pregnant woman at 22 weeks
gestation presents with burning upon
urination. She states it started 1 day
ago and has been worsening despite drinking
more water and taking cranberry extract.
She otherwise feels well and is followed by
a doctor for her pregnancy. Her temperature
is 97.7°F (36.5°C), blood pressure is
122/77 mmHg, pulse is 80/min, respirations
are 19/min, and oxygen saturation is 98% on
room air. Physical exam is notable for an
absence of costovertebral angle tenderness
and a gravid uterus. Which of the following
is the best treatment for this patient?

743

Doctor: Hi there, I understand you’re
having some trouble. What brings you in
today?
Patient: Hi Doctor. I’m 22 weeks pregnant,
and for the past day, I’ve had burning when
I pee. It’s really uncomfortable.
Doctor: I see. And how long has this been
going on?
Patient: Just since yesterday, and it’s
actually getting worse, even though I’ve
been drinking a lot of water and taking
cranberry extract.
Doctor: I understand. Other than the
burning, how are you feeling?
Patient: I feel fine otherwise. My
pregnancy is being followed regularly by
my OB.
Doctor: Okay, let’s take a look. I’m going
to check your vitals and do a quick exam.
Your temperature is 97.7, blood pressure
is 122 over 77, pulse is 80, respirations
are 19, and your oxygen is 98%. Everything
looks good there. I’m also checking for any
tenderness in your back near your kidneys...
that’s good, no tenderness. And I can feel
your uterus is growing as expected. Given
your symptoms and the examination, the best
treatment for this is Nitrofurantoin.

744

A.4 Tuning Details745

In our tuning strategies, we consistently use LoRA746

tuning with the following parameters: rank = 8,747

lora_alpha = 32, and lora_dropout = 0.1. In all748

three comparison studies, both the control group749

and the experimental group share the same hyperpa-750

rameters. In the Multi-Choice Comparison Study,751

we set Qwen2.5-3B to 2 epochs, a learning rate of752

5× 10−4, and a max length of 1024; LLaMA-3.2-753

3B to 2 epochs, a learning rate of 5 × 10−4, and754

a max length of 1024. In the Article Comparison755

Study, we configure Qwen2.5-3B with 2 epochs,756

a learning rate of 1 × 10−5, and a max length of757

1024; LLaMA-3.2-3B with 2 epochs, a learning758

rate of 5×10−5, and a max length of 2048. Finally, 759

in the Combined Dialogue and Baseline Study, we 760

assign Qwen2.5-3B to 2 epochs, a learning rate of 761

2× 10−5, and a max length of 2048; LLaMA-3.2- 762

3B to 2 epochs, a learning rate of 5× 10−5, and a 763

max length of 2048. 764

Testbed. We fine-tuned the Llama 3.2-3B In- 765

struct and Qwen 2.5-3B Instruct models using 2 766

NVIDIA RTX 6000 GPUs, each with 48GB of 767

memory. We running our benchmark also on the 768

NVIDIA RTX 6000 48GB GPUs. 769

B Benchmark: Muddy Maze 770

Dataset. Our benchmark integrates the MedQA- 771

USMLE Test Set, Medbullets, and JAMA Clin- 772

ical Challenge. The fine-tuning is based on the 773

MedQA-USMLE Train Set, which have around 774

10.2k question-answer pairs and approximately 12k 775

PubMed articles. All dataset information shows in 776

Figure 2. 777

B.1 Clinical and Examination Basis for 778

MuddyMaze Benchmark 779

The design of MuddyMaze is rigorously aligned 780

with established medical licensing exams and real- 781

world diagnostic workflows. Below, we outline its 782

foundations in several key areas: 783

• USMLE Step 2 Clinical Skills (CS). It required 784

examinees would take a history, perform a physical 785

exam, formulate differential diagnoses, and write a 786

patient note. 787

• USMLE Step 3 CCS. It assesses clinical 788

decision-making through Computer-based Case 789

Simulations (CCS). These simulations require doc- 790

tors to diagnose and manage patients by sequen- 791

tially ordering tests, interpreting results, and initiat- 792

ing treatments—all while filtering out irrelevant in- 793

formation (like incidental findings or patient anec- 794

dotes) that could distract from critical decisions. 795

• Medical Jeopardy competitions. An answer- 796

first format, where contestants hear a clinical "clue" 797

(e.g., "This tumor causes episodic hypertension 798

and headaches") and must respond with the cor- 799

rect question (e.g., "What is pheochromocytoma?"). 800

It required clinicians compete to solve clinical 801

puzzles by connecting fragmented clues—such as 802

symptoms, labs, or imaging findings—into accu- 803

rate diagnoses. Contestants must rapidly prioritize 804

key evidence while ignoring distractors, mirroring 805

real-world diagnostic reasoning. 806
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The design of MuddyMaze integrates core prin-807

ciples from these real-world clinical assessments:808

• USMLE Step 2 CS’s iterative data gathering809

(history → exam → tests) inspired our multi-round810

evidence ranking, where models must simulate a811

clinician’s stepwise reasoning.812

•USMLE Step 3 CCS’s emphasis on prioritizing813

actions amid distractions (e.g., ignoring incidental814

findings) directly aligns with MuddyMaze’s noise815

injection and dynamic evidence selection.816

• Medical Jeopardy’s answer-first for-817

mat—requiring contestants to reverse-engineer818

diagnoses from clues—parallels our one-round evi-819

dence chaining, where models reconstruct logical820

sequences (e.g., lab → imaging → diagnosis) from821

fragmented inputs.822

Together, these connections validate Muddy-823

Maze’s clinical fidelity, ensuring it tests not just824

medical knowledge, but the decision-making work-825

flows and noise resilience essential in practice.826

B.2 Prompt Template827

Here is the background information:
"{{prerequisit}}"
Question: {{question}}
Answer: {{answer}}
Below are several evidence sentences.
Identify the {{groundtruth zoo length}}
sentences that, if added to the background
information, would support inferring the
answer based on the given question-answer
pair. Please choose the sentence in logical
order!
{{tagged maze}}
Provide only the indices of the relevant
sentences in brackets formatted like this:
[ ], no more than {{groundtruth zoo length}}
sentences.
ANSWER:

828

Here is the background information:
"{{prerequisit}}"
Question: {{question}}
Answer: {{answer}}
Below are several evidence sentences. Based
on the given question-answer pair, please
select which sentence should be added to the
background information to support inference
of the answer.
{{tagged maze}}
You have {{groundtruth zoo length}}
attempts in total to make a selection; this
is your {{i_th}} attempt. Please choose the
sentence in logical order!
Provide only the indices of the relevant
sentences in brackets formatted like this:
[ ]
ANSWER:

829

B.3 Task Reformulation Examples 830

This is an example of transitioning from the tradi- 831

tional question-answering task to our benchmark. 832

The results are generated using LLaMA 3.1-8B at 833

the basic task level, with a noise level of 0, in a 834

one-round setting. 835

A 67-year-old man with transitional cell
carcinoma of the bladder comes to the
physician because of a 2-day history
of ringing sensation in his ear. He
received this first course of neoadjuvant
chemotherapy 1 week ago. Pure tone
audiometry shows a sensorineural hearing
loss of 45 dB.
Question: The expected beneficial effect
of the drug that caused this patient’s
symptoms is most likely due to which of
the following actions?
Answer: Cross-linking of DNA

836

Here is the background information: Ä
67-year-old man with transitional cell
carcinoma of the bladder comes to the
physician because of a 2-day history of
ringing sensation in his ear.¨
Question: The expected beneficial effect
of the drug that caused this patient’s
symptoms is most likely due to which of
the following actions?
Answer: Cross-linking of DNA
Below are several evidence sentences.
Identify the 2 sentences that, if added to
the background information, would support
inferring the answer based on the given
question-answer pair. Please choose the
sentence in logical order!
0: Pure tone audiometry shows a
sensorineural hearing loss of 45 dB.
1: He received this first course of
neoadjuvant chemotherapy 1 week ago.
Provide only the indices of the relevant
sentences in brackets formatted like this:
[ ], no more than 2 sentences.
ANSWER: [1], [0]
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