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Abstract

Tokenisation is the first step in almost all NLP001
tasks, and state-of-the-art transformer-based002
language models all use subword tokenisation003
algorithms to process input text. Existing al-004
gorithms have problems, often producing to-005
kenisations of limited linguistic validity, and006
representing equivalent strings differently de-007
pending on their position within a word. We008
hypothesise that these problems hinder the009
ability of transformer-based models to handle010
complex words, and suggest that these prob-011
lems are a result of allowing tokens to include012
spaces. We thus experiment with an alterna-013
tive tokenisation approach where spaces are al-014
ways treated as individual tokens, finding it al-015
leviates existing problems, improving perfor-016
mance of models. Concretely, we apply a017
modification to the BPE and Unigram algo-018
rithms which implements this approach, and019
find it gives more morphologically correct to-020
kenisations, in particular when handling pre-021
fixes. In addition, we show that the modi-022
fied algorithms give improved performance on023
downstream NLP tasks that involve handling024
complex words, whilst having no detrimental025
effect on performance in general natural lan-026
guage understanding tasks. Given the results027
of our experiments, we advocate for always028
treating spaces as individual tokens as a supe-029
rior tokenisation method.030

1 Introduction031

Tokenisation is a key initial step in processing nat-032

ural language with computers, as it identifies the033

linguistic units to be processed, converting them034

to numerical IDs which can then be vectorised and035

manipulated by mathematical operations.036

Earlier NLP approaches used simple string-037

searching techniques with regular expressions to to-038

kenise text, however these pattern-matching tokeni-039

sation methods have drawbacks: they require large040

vocabulary sizes to cover the training data, they041

cannot handle out-of-vocabulary words, and they042

do not work for languages without spaces as word 043

demarcations. To address these issues, subword 044

tokenisation was introduced. The first explicit men- 045

tion (and popularisation) of this approach was by 046

Sennrich et al. (2015), though it was indirectly in- 047

troduced earlier by Schuster and Nakajima (2012). 048

This method works by learning from training data 049

to build a vocabulary (of a fixed size), and then 050

tokenising text at inference time using this vocabu- 051

lary (and possibly other learned parameters). More 052

frequent words are represented as single tokens, 053

with rare words being broken down into multiple 054

subword tokens, possibly down to the character 055

level. 056

State-of-the art transformer-based language mod- 057

els all use subword tokenisation algorithms based 058

on either byte-pair encoding (BPE) (Sennrich et al., 059

2015) or Unigram (Kudo, 2018). The original trans- 060

former model (Vaswani et al., 2017) uses BPE, 061

whilst BERT (Devlin et al., 2018), which consists 062

of a transformer encoder pretrained with a masked 063

language modelling objective, uses WordPiece to- 064

kenisation (Schuster and Nakajima, 2012), which 065

is a variant of BPE with a language model loss func- 066

tion. WordPiece is also used by ERNIE (Sun et al., 067

2019), DistilBERT (Sanh et al., 2019), ELEC- 068

TRA (Clark et al., 2020), StructBERT (Wang 069

et al., 2019) and NEZHA (Wei et al., 2019). GPT- 070

2 (Radford et al., 2019) introduced byte-level BPE, 071

operating on byte sequences rather than Unicode 072

code points, which allows all sequences to be en- 073

coded using a base vocabulary of 256, avoiding the 074

issue of unknown characters. The same approach is 075

used in RoBERTa (Liu et al., 2019) and DeBERTa 076

(He et al., 2020). 077

The algorithms of BPE and Unigram are im- 078

plemented in the SentencePiece library (Kudo 079

and Richardson, 2018), which also implements ex- 080

tensions including subword regularisation (Kudo, 081

2018) for Unigram and BPE-dropout (Provilkov 082

et al., 2019) for BPE. There is a lack of clarity 083
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regarding SentencePiece in the literature, with it084

being erroneously considered as its own algorithm085

rather than an implementation of other algorithms.086

For example, in the paper introducing T5 (Raffel087

et al., 2019) they state that they "use SentencePiece088

to encode text as WordPiece tokens", which is not089

in fact implemented in SentencePiece. Looking at090

their code, we find they use the default Sentence-091

Piece implementation, which is Unigram. XLNET092

(Yang et al., 2019) say they tokenise with Senten-093

cePiece, but do not say which algorithm they use094

- again, looking at their code, we find they use the095

default of Unigram. Equivalently, ALBERT (Lan096

et al., 2019) say they tokenise with SentencePiece097

as for XLNET, meaning they again use Unigram.098

Despite their ubiquity, existing tokenisation al-099

gorithms have problems, which we hypothesise100

hinders the ability of language models to handle101

complex words (Section 2). We suggest that these102

problems are pervasive across all existing subword103

tokenisation algorithms due to a fundamental equiv-104

alence in allowing tokens to include spaces, and105

thus experiment with an alternative treatment of106

spaces where they are always taken as individual107

tokens, and implement this approach by making108

simple modifications to the existing BPE and Un-109

igram algorithms (Section 3). We evaluate our110

modified algorithms intrinsically (Section 4), quan-111

titatively finding that they improve morphological112

correctness, in particular when handling prefixes.113

Qualitatively, we take examples from previous pa-114

pers and show how our modified algorithms are115

able to alleviate the discussed issues. We also eval-116

uate our modified algorithms extrinsically by pre-117

training and finetuning transformer-based models118

(Section 5), showing they give improved perfor-119

mance on NLP tasks that require handling complex120

words with no detrimental effect on performance121

in the general domain.122

2 Problems with Existing Tokenisation123

Algorithms124

Existing tokenisation algorithms often produce un-125

intuitive tokenisations for complex words, incor-126

rectly splitting prefixes and producing unmeaning-127

ful subword tokens, which are problems that have128

been discussed in previous works. Church (2020)129

looks at the BERT (WordPiece) tokenisations for130

complex words, highlighting the many unnatural to-131

kenisations that arise, with tokens often splitting up132

morphemes and digraphs. Nayak et al. (2020) also133

discuss the issues with BERT’s tokeniser, specif- 134

ically highlighting problems with the splitting of 135

prefixes, and they show that poor tokenisation leads 136

to weak semantic representations. Hofmann et al. 137

(2021) find that BERT performs poorly on classify- 138

ing complex words containing prefixes, performing 139

much better on suffixes. They suggest a reason is 140

that BERT’s tokeniser is seldom accurate for split- 141

ting prefixes, but is much more often correct for 142

splitting suffixes. Schick and Schütze (2020) argue 143

that a reason BERT struggles to understand rare 144

words is due to suboptimal tokenisation of these 145

words. Here we give a few of our own examples of 146

BERT tokenisations that illustrate the problems1: 147

joint -> _joint 148
jointed -> _joint, ed 149
disjointed -> _di, s, jo, int, ed 150
unisex -> _un, ise, x 151
true -> _true 152
untrue -> _un, tr, ue 153
estimate -> _estimate 154
overestimate -> _over, est, imate 155

We see here that the prefixed words are tokenised 156

poorly: the prefix is either incorrectly split, as in 157

"disjointed" and "unisex", or the prefix is correctly 158

split but the rest of the word is tokenised differently 159

to the standalone case, as in "untrue" and "overesti- 160

mate". We note that suffixes are handled better than 161

prefixes, which is due to spaces being prepended 162

rather than appended to words (see Section 3). 163

For these latter examples, there is a second prob- 164

lem: even if base were tokenised as a single token, 165

the addition of the space symbol means there would 166

be no explicit link between the prefixed word and 167

the base as a word in itself. As an example, we 168

cherry-pick a rare example of a morphologically 169

correct tokenisation by BERT of a word containing 170

a prefix, showing both strings and token IDs: 171

beatable -> _beat, able (3786, 3085) 172
unbeatable -> _un, beat, able (4895, 19442, 3085) 173

We can see that, even though these tokenisations 174

are reasonable, the subword "beat" is assigned dif- 175

ferent IDs in the two cases due to the prepending 176

of the special space symbol. 177

We hypothesise that both of these problems hin- 178

der the ability of existing language models (such 179

as BERT) to deal with complex words. Regarding 180

1BERT’s tokeniser actually prepends the space symbol to
subword units not occurring at the start of words, and the
space symbol they use is "##" rather than "_", but these are
inconsequential differences and we standardise the output here
for clarity.
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the first problem, we argue that the morphological181

correctness of a tokeniser is a metric which will182

correlate with the ability of language models to183

deal with complex words: correctly splitting affixes184

means morphologically related words (those shar-185

ing a common base) are given related tokenisations.186

The splitting of prefixes is particularly important187

as prefixes always have a semantic function, un-188

like suffixes which can have syntactic and semantic189

functions (Giraudo and Grainger, 2003). Also, to-190

kenisations made up of meaningful subword tokens191

(morphemes or groups of morphemes) will allow192

language models to build stronger representations193

with less data, since the representations of complex194

words can be computed from the representations195

of the subwords. Regarding the second problem,196

the fact that base forms are represented differently197

depending on their position within a word means a198

reduction in relevant training instances and hence199

a further weakening of representations for complex200

words.201

3 Our Modified Algorithms202

We suggest that the problems discussed in Sec-203

tion 2 arise as a result of how spaces are handled204

by existing algorithms: all subword tokenisation al-205

gorithms currently used by transformer-based mod-206

els allow tokens to include space symbols as the207

first character2. This means equivalent strings are208

treated differently depending on whether they ap-209

pear at the start of a word or not. This difference oc-210

curs when training these tokenisers, which leads to211

suboptimal tokenisations of prefixed words. It also212

occurs when using these tokenisers in NLP models,213

leading to equivalent strings being assigned differ-214

ent tokens depending on whether they occur at the215

start of a word or not.216

Thus, to attempt to alleviate these issues, and217

hence improve the handling of complex words by218

language models, we propose an alternative treat-219

ment of spaces where they are always assigned220

individual tokens. This simple modification can be221

made to any existing subword tokenisation algo-222

rithm, though for brevity we restrict our attention223

to BPE and Unigram. Our modified algorithms and224

the defaults are shown in Figure 1 and Figure 2 for225

BPE and Unigram, respectively3.226

2Splitting on spaces occurs as a first step, so space symbols
cannot occur in the middle of tokens. The default implementa-
tion splits before spaces, meaning space symbols occur only
at the start of words.

3We release code for our modified algorithms, as well as

We do not include the WordPiece algorithm used 227

by BERT in our analysis as there is no public imple- 228

mentation for training, but it is a variant of BPE and 229

treats spaces equivalently, so the same modifica- 230

tion could be applied. In the following sections, we 231

compare our modified tokenisation algorithms to 232

the defaults by evaluating them intrinsically (Sec- 233

tion 4) and extrinsically (Section 5). 234

4 Intrinsic Evaluation: Morphological 235

Correctness 236

Given our hypothesis that the morphological cor- 237

rectness of a tokeniser, especially when handling 238

prefixes, correlates with the performance of lan- 239

guage models on dealing with complex words (Sec- 240

tion 2), we perform a controlled intrinsic evaluation 241

of our tokenisers using this metric. We train our 242

modified algorithms and the defaults on 1 million 243

sentences from English Wikipedia for BPE and Un- 244

igram, with a fixed vocabulary size of 16,000, and 245

then run evaluation on four morphological datasets: 246

LADEC, MorphoLex, MorphyNet and DagoBERT. 247

The LADEC dataset (Gagné et al., 2019) con- 248

sists of 7,804 noun compounds with a unique mor- 249

phological parse (we exclude those with multiple 250

parses). MorphoLex (Sánchez-Gutiérrez et al., 251

2018) provides derivational morphology for 68,624 252

entries from the English Lexicon Project (Balota 253

et al., 2007). Here we only consider those with a 254

concatenative parse (i.e. no overlapping tokens), 255

resulting in 12,028 entries. MorphyNet (Batsuren 256

et al., 2021) provides derivational and inflectional 257

morphology for words across 15 languages, ex- 258

panding on the UniMorph dataset (McCarthy et al., 259

2020). Taking only those derivational morphology 260

entries in English with a concatenative parse gives 261

193,945 entries. The DagoBERT dataset (Hof- 262

mann et al., 2020) comprises 279,443 words con- 263

taining low-frequency derivatives, taken from Red- 264

dit posts. Again we take those with a concatenative 265

parse, giving 268,513 entries. 266

We evaluate a tokeniser on these datasets using 267

the evaluation method introduced by Creutz et al. 268

(2004), which produces metrics by comparing the 269

boundaries of a generated tokenisation with a gold 270

standard reference: false negatives are boundaries 271

appearing in the reference but not in the generated 272

tokenisation, whilst false positives are boundaries 273

appearing in the generated tokenisation but not in 274

the pretrained models and code for running our experiments
at (URL withheld)
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(a) Default BPE

Training

input : training data T , vocabulary size s
output :vocabulary V

1 Replace whitespace in T with the space symbol
2 Prepend space symbol to first word of every sentence in T 4

3 Vocabulary V initialised as all characters
4 while |V | < s do
5 Find most frequently occurring bigram in T that only includes

spaces as first character
6 Apply merge operation on the bigram to make a new token
7 Add merge operation to V
8 end

(b) Modified BPE

Training

input : training data T , vocabulary size s
output :vocabulary V

1 Replace whitespace in T with the space symbol
2 Vocabulary V initialised as all characters
3 while |V | < s do
4 Find most frequently occurring bigram in T that does not include

spaces
5 Apply merge operation on the bigram to make a new token
6 Add merge operation to V
7 end

Tokenisation

input : text T , vocabulary V
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Prepend space symbol to first word of every sentence in T
3 Apply the merge operations from V in order to T .

Tokenisation

input : text T , vocabulary V
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Apply the merge operations from V in order to T .

Figure 1: Default and modified BPE algorithms. Red text is removed from the default algorithm, whilst green text
is added.

(a) Default Unigram

Training

input : training data T , vocabulary size s
output :vocabulary V , language model parameters Θ

1 Replace whitespace in T with the space symbol
2 Prepend space symbol to first word of every sentence in T
3 Vocabulary V initialised as all substrings occurring in T only including

spaces as first character5

4 while |V | > s do
5 Optimise a Unigram language model with parameters Θ to fit the

data using the EM algorithm
6 For each substring in V , compute the loss from removing this from

the vocabulary
7 Remove the substring with the smallest loss from V

8 end

(b) Modified Unigram

Training

input : training data T , vocabulary size s
output :vocabulary V , language model parameters Θ

1 Replace whitespace in T with the space symbol
2 Vocabulary V initialised as all substrings occurring in T that do not

include spaces, plus the space symbol
3 while |V | > s do
4 Optimise a Unigram language model with parameters Θ to fit the

data using the EM algorithm
5 For each substring in V , compute the loss from removing this from

the vocabulary
6 Remove the substring with the smallest loss from V

7 end

Tokenisation

input : text T , vocabulary V , language model parameters Θ
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Prepend space symbol to first word of every sentence in T
3 Use the Viterbi algorithm with the learned language modelling

parameters and the vocabulary to tokenise T

Tokenisation

input : text T , vocabulary V , language model parameters Θ
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Use the Viterbi algorithm with the learned language modelling

parameters and the vocabulary to tokenise T with spaces being given an
arbitrarily high score so they are always selected as individual tokens

Figure 2: Default and modified Unigram algorithms. Red text is removed from the default algorithm, whilst green
text is added.

the reference. Because it makes sense to store com-275

mon words as single tokens in the vocabulary, even276

if they can be decomposed into morphemes, we re-277

port precision along with F1 as a potentially more278

meaningful metric, since this allows undersegmen-279

tation whilst penalising oversegmentation. We also280

compute the mean sequence length (number of to-281

kens) for each tokeniser across each dataset. Re-282

sults are shown in Table 1. Here, and throughout,283

4In the standard implementation, space symbols are added
at the start of sentences so that words are equivalent whether
they appear at the start of a sentence or not.

5This is only tractable for languages that include spaces.
For languages without them, other initialisation methods must
be used.

the prime symbol (′) denotes the given algorithm 284

modified to always treat spaces as individual to- 285

kens. 286

The general trend is that Unigram outperforms 287

BPE (consistent with findings by Bostrom and Dur- 288

rett 2020), with the modified algorithms perform- 289

ing better than their default counterparts. On the 290

MorphoLex dataset, however, the default Unigram 291

algorithm performs the best. This is also the only 292

one of the datasets where default Unigram gives a 293

shorter mean sequence length than Unigram′. To 294

investigate this further, we perform evaluation on 295

the subsets of the data containing only prefixed and 296

only suffixed entries, shown in Table 2. We can 297
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see that Unigram′ performs best on prefixed entries,298

but worse than default Unigram on suffixed entries.299

Since the dataset consists of many more entries300

containing suffixes than those containing prefixes301

(7422 vs 2692), this could explain the performance302

difference. Because the correct tokenisation of pre-303

fixed words is particularly important (Section 2),304

we believe that this performance trade-off is bene-305

ficial. In Section 5, we confirm this through evalu-306

ation on downstream tasks.307

Interestingly, BPE′ gives the shortest sequence308

length on three of the four datasets, but not the309

most morphologically correct tokenisations. Since310

BPE was developed as a compression algorithm,311

the short sequence lengths are perhaps expected,312

but here we see no link between sequence length313

and morphological correctness.314

For a qualitative analysis, we take examples from315

papers that highlight problems with existing to-316

kenisers (Section 2) and generate the output from317

the default and modified algorithms for BPE and318

Unigram, shown in Table 3. These examples illus-319

trate how our modified algorithms are able to gener-320

ate improved tokenisations for complex words. For321

example, whereas the default Unigram algorithm322

tokenises "unicycle" into "_un" "i" "cycle", which323

is misleading as the string "un" does not have its324

typical semantic role, our modified Unigram algo-325

rithm tokenises it more meaningfully into "uni"326

"cycle". Also, the modified algorithms explicitly327

create links between words containing prefixes and328

their bases. For the words "accessible" and "un-329

accessible", the modified algorithms tokenise the330

subword "accessible" identically in both cases. The331

default Unigram and BPE algorithms do correctly332

split the prefix "un", but the rest of the word is333

tokenised differently, which is problematic, and334

even if the tokenisation was equivalent, the inclu-335

sion of the space symbol means there would be336

no link between these forms (Section 2). We note337

that our modified algorithms are not immune to338

oversegmentation, with Unigram′ tokenising "re-339

sponsiveness" into seven tokens.340

We investigate the vocabularies of the default341

and modified algorithms, shown in Table 4. We342

remove the beginning of sentence, end of sentence,343

and <unk> tokens from the vocabularies. For the344

default algorithms, we also remove tokens that are345

duplicates apart from prepended space symbols,346

and we find that there is significant vocabulary de-347

generacy (8.7% and 9.1% for BPE and Unigram, re-348

spectively). We also find that a large percentage of 349

the vocabulary is transferred over from the default 350

to the modified algorithm (90.0% and 90.1% for 351

BPE and Unigram, respectively). We see that all of 352

the algorithms have a similar number of prefixes in 353

their vocabularies, which suggests the tokenisation 354

algorithm plays an important role, as performance 355

differences on handling prefixes are large (Table 2) 356

despite similar vocabularies. This is supported by 357

work by Hofmann et al. (2021), who find that em- 358

ploying a fixed vocabulary in a morphologically 359

correct way leads to performance improvements. 360

We also see, however, that Unigram′ has fewer suf- 361

fixes in its vocabulary than default Unigram, which 362

reflects the performance difference seen in Table 2. 363

We note that an interesting result of our modifica- 364

tions is an improvement at word segmentation. As 365

an example, the outputs of the default and modified 366

Unigram algorithms when passed the concatenated 367

sentence "thisisasentencethatneedstobesegmented" 368

are: 369

Unigram _this, isa, s, ent, ence, that, ne, ed, s, to, be, s, eg, 370
ment, ed 371

Unigram′ this, is, a, sentence, that, needs, to, be, segment, 372
e, d 373

5 Extrinsic Evaluation: 374

Pretrain-Finetune 375

Given the improved intrinsic performance of our 376

algorithms, we wish to evaluate how this impacts 377

the extrinsic performance of NLP models, in gen- 378

eral and in particular on tasks involving complex 379

words. As in Section 4, we train the default and 380

modified BPE and Unigram algorithms on 1 mil- 381

lion sentences from English Wikipedia, with a fixed 382

vocabulary size of 16,000, but we also implement 383

a variant of our modified algorithm that removes 384

spaces as a post-processing step. The reasoning 385

behind this is that it reduces the sequence length 386

significantly with minimal information loss, and 387

more closely mirrors existing models which have 388

no explicit space information. Example tokenisa- 389

tions for the Unigram algorithms given the input 390

"This is an input sentence." are: 391

Unigram _This, _is, _an, _input, _sentence, . 392

Unigram′ This, _, is, _, an, _, input, _, sentence, . 393

Unigram′ no spaces This, is, an, input, sentence, . 394

For each of the tokenisers, we pretrain RoBERTa 395

(base) on the full text of English Wikipedia, and 396
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LADEC MorphoLex MorphyNet DagoBERT
Seq Length Precision F1 Seq Length Precision F1 Seq Length Precision F1 Seq Length Precision F1

BPE 2.98 41.2 54.8 2.67 43.4 49.5 3.17 19.9 29.0 3.22 28.4 38.6
BPE′ 2.60 53.8 66.2 2.47 50.8 54.7 2.93 24.6 34.8 2.86 37.4 48.0

Unigram 2.80 51.9 66.8 2.56 58.1 64.3 3.09 32.3 46.6 3.16 45.3 61.1
Unigram′ 2.67 56.7 70.9 2.65 53.9 61.2 3.03 33.6 48.1 2.81 54.5 69.2

Table 1: Performance of the default and modified algorithms for BPE and Unigram across four morphological
datasets, showing the average sequence length, precision and F1 score generated following the standard introduced
by Creutz et al. (2004). Best results are shown in bold.

Only Prefixes Only Suffixes
Seq Length Precision F1 Seq Length Precision F1

BPE 2.54 33.5 40.2 2.33 12.0 20.6
BPE′ 2.26 50.4 55.4 2.17 14.4 24.4

Unigram 2.51 53.4 63.6 2.22 15.9 26.9
Unigram′ 2.48 57.2 67.4 2.39 14.1 24.4

Table 2: Performance of the default and modified BPE
and Unigram algorithms on subsets of the MorphoLex
dataset with entries containing only prefixes and only
suffixes. Best results are shown in bold.

then finetune on downstream tasks, keeping all hy-397

perparameters fixed, changing only the tokenisa-398

tion algorithm used. For evaluation of the models399

in a general domain, we use the GLUE benchmark400

(Wang et al., 2018), excluding WNLI. For evalu-401

ation in specifically handling complex words, we402

use the two Superbizarre topicality tasks (Hofmann403

et al., 2021), which require the binary classification404

of derivationally complex English words6.405

Over the whole of the English Wikipedia data,406

the sequence lengths for each of the tokenisation407

approaches are:408

BPE 3.72e+09409
BPE′ 5.88e+09410
BPE′ no spaces 3.61e+09411
Unigram 3.68e+09412
Unigram′ 5.94e+09413
Unigram′ no spaces 3.67e+09414

As in the evaluation in Table 1, the modified415

models without spaces give shorter sequences416

than their default counterparts, with BPE′ without417

spaces giving the shortest mean sequence length.418

The difference in sequence lengths of the models419

means a difference in number of updates per epoch420

during pretraining. Hence, fixing the number of421

updates (and thus training time) will advantage422

models with shorter sequence lengths, especially423

disadvantaging the models that include spaces. Be-424

cause of this, we perform two evaluations: one425

fixing the number of pretraining updates, and one426

6We do not consider the Superbizarre sentiment task due
to a higher proportion of uninformative words.

fixing the number of pretraining epochs7. 427

Due to computational constraints, we only ran 428

pretraining once for each model. For finetuning, 429

we ran each experiment with 10 different seeds, 430

reporting the mean development result and standard 431

deviation. Results are shown in Table 5 and Table 6 432

for fixed updates and fixed epochs, respectively. 433

Full training procedure is given in Appendix A. 434

On the Superbizarre datasets, we can see that Un- 435

igram outperforms BPE, with Unigram′ no spaces 436

performing significantly better than all other mod- 437

els using a Welch’s t-test (p < 0.05), see Ap- 438

pendix C. Note that DelBERT (Hofmann et al., 439

2021), a model which is passed the input segmented 440

according to gold standard references, achieves 441

73.1 on the Arxiv dev set and 72.3 on the Arxiv 442

test set, both worse than our (unsupervised) model, 443

although DelBERT outperforms our best models 444

on the Reddit task, achieving 69.6 and 70.1 on the 445

dev and test sets, respectively. 446

On the mean GLUE benchmark, the modified 447

models without spaces perform as well or better 448

than their default counterparts, with Unigram′ per- 449

forming the best when both updates and epochs 450

are fixed. However, this result is not statistically 451

significant (see Appendix C), and over the individ- 452

ual GLUE tasks the best performing models vary, 453

with high variances across seeds on some tasks 454

due to the small dataset sizes (see Appendix B). 455

Since the GLUE tasks do not rely on handling com- 456

plex words, a significant performance difference 457

is probably not expected, but we see no drop in 458

performance with the modified algorithms. 459

The modified models that include spaces per- 460

form poorly on the GLUE benchmark, even when 461

the number of epochs is fixed rather than updates, 462

meaning they are trained for ∼65% more updates 463

than the modified models without spaces. This 464

7In finetuning, the number of updates and epochs is equiv-
alent for all models as one example is processed at a time.
In pretraining, we follow the standard implementation of
RoBERTa by taking contiguous sentences from the training
data.
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Input BPE BPE′ Unigram Unigram′

directional _direction, al direction, al _direction, al direction, al
unidirectional _un, id, ire, ction, al un, id, ire, ction, al _un, i, direct, ional uni, direction, al
electroneutral _elect, r, one, ut, ral electr, one, utr, al _electron, eu, tral electro, neutral

neurotransmitter _neuro, trans, mit, ter neuro, transmitter _neuro, trans, mitt, er neuro, transmitter
responsiveness _respons, iveness respons, iveness _re, s, pon, s, ive, ness r, e, sp, on, s, ive, ness

hyporesponsiveness _hyp, ores, p, ons, iveness hypo, respons, iveness _hypo, res, pon, s, ive, ness hypo, r, e, sp, on, s, ive, ness
hyperresponsiveness _hyper, resp, ons, iveness hyper, respons, iveness _hyper, res, pon, s, ive, ness hyper, r, e, sp, on, s, ive, ness

saturated _sat, urated sat, urated _sat, ur, ated saturated
unsaturated _uns, atur, ated un, sat, urated _un, sa, tur, ated un, saturated

equal _equal equal _equal equal
unequal _un, equ, al une, qual _un, e, qual un, equal

multiplayer _multip, layer multi, player _multi, play, er multi, player
nonmultiplayer _non, m, ult, ip, layer non, multi, player _non, mul, ti, play, er non, multi, player

overpriced _over, p, ric, ed over, pr, iced _over, p, ric, ed over, price, d
accessible _accessible accessible _accessible accessible

unaccessible _un, ac, cess, ible un, accessible _un, ac, ces, s, ible un, accessible
unicycle _un, icy, cle un, icy, cle _un, i, cycle uni, cycle

Table 3: Example tokenisations of the default and modified BPE and Unigram algorithms, with inputs taken from
the following papers: Church (2020), Nayak et al. (2020), Hofmann et al. (2020) and Schick and Schütze (2020).

Vocab Size Unique Elements #Prefixes #Suffixes
BPE 14613 1459 114 182
BPE′ 15997 2843 123 192

Unigram 14544 1443 123 201
Unigram′ 15997 2896 116 147

Table 4: Vocabularies of the models, showing size,
number of unique elements, and numbers of prefixes
and suffixes.

suggests that this method of including spaces as ad-465

ditional tokens is suboptimal for general language466

tasks, though interestingly Unigram′ with spaces467

is the second best performing model across all Su-468

perbizarre datasets. The tokenisers themselves per-469

form splitting on spaces as a first step, so addition-470

ally include spaces may be simply passing noise471

to the model for the masked language modelling472

task, especially due to the high frequency of spaces.473

This means the pretraining loss decreases rapidly474

due to space prediction, but plateaus earlier (see475

Appendix A). Due to the much greater sequence476

lengths, the models that include spaces also discard477

examples that are too long during finetuning, which478

could lead to worse results.479

6 Related Work480

There is previous work which has compared sub-481

word tokenisation algorithms. Gallé (2019) inves-482

tigates various compression algorithms for tokeni-483

sation, including BPE, and finds an inverse link484

between mean tokens per sentence and translation485

quality, hypothesising that the compression capa-486

bility of BPE leads to its effectiveness in NLP tasks.487

In our experiments we find that Unigram′ outper-488

forms BPE′ on the complex words tasks, and there 489

to be no significant difference between them on 490

the general language understanding (GLUE) tasks. 491

This is despite Unigram′ having a longer sequence 492

length, suggesting this factor is not wholly indica- 493

tive of model performance. Intrinsically, we also 494

find no link between sequence length and morpho- 495

logical correctness (see Section 4). Bostrom and 496

Durrett (2020) compare Unigram and BPE, finding 497

that Unigram generates more morphologically cor- 498

rect tokenisations and gives improved downstream 499

task performance. Whilst we saw similar improve- 500

ments in intrinsic performance, we were unable 501

to replicate the performance difference on MNLI 502

that they found, finding no significant different in 503

performance (see Appendix B). We did not per- 504

form evaluation on the other two English datasets 505

they used. Wei et al. (2021) perform comparison 506

between byte-level BPE and byte-level Unigram, 507

finding BPE to perform better than Unigram across 508

seven languages on the XNLI dataset, which is 509

contrary to our findings and those of Bostrom and 510

Durrett (2020). 511

There have also been attempts to generate im- 512

proved tokenisation methods. Hofmann et al. 513

(2021) introduce DelBERT, which takes input 514

words tokenised according to gold standard mor- 515

phological references, with an unchanged vocab- 516

ulary. They find this improves performance on 517

handling complex words. We note that this is a su- 518

pervised method, whereas ours is unsupervised and 519

allows simple extension to other languages and do- 520

mains. Wei et al. (2021) experiment with different 521

methods of handling spaces within their byte-level 522

7



Epochs GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

BPE 27 81.6 66.8 66.6 71.1 70.2
BPE′ 16 79.2 66.6 66.2 70.3 69.3

BPE′ no spaces 28 81.7 67.2 66.9 70.9 70.0

Unigram 27 81.5 68.0 67.8 72.2 71.4
Unigram′ 16 78.4 68.2 68.2 72.5 71.6

Unigram′ no spaces 27 81.9 68.8 68.8 73.0 72.3

Table 5: Finetuning results after pretraining for 100000 updates. Shown are mean results across 10 seeds. Results
that are significantly better than all others using a Welch’s t-test (p < 0.05) are shown in bold. More detailed
results are given in Appendix B.

Updates GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

BPE 109761 81.5 67.1 66.8 71.0 70.1
BPE′ 177845 79.5 66.8 66.5 70.5 69.8

BPE′ no spaces 106485 81.5 67.1 67.1 70.8 70.1

Unigram 108606 81.6 67.9 67.9 72.2 71.6
Unigram′ 179909 79.1 68.3 68.3 72.5 71.8

Unigram′ no spaces 108441 81.8 68.8 69.0 73.2 72.5

Table 6: Finetuning results after pretraining for 30 epochs. Shown are mean results across 10 seeds. Results that
are significantly better than all others using a Welch’s t-test (p < 0.05) are shown in bold. More detailed results
are given in Appendix B.

BPE algorithm which appear similar to those imple-523

mented here, although they find these alternatives524

perform worse than the default on XNLI. They do525

not release code for their experiments so we are526

unable to make a controlled comparison.527

7 Conclusion and Future Work528

We hypothesise that problems with current tokeni-529

sation algorithms arise from allowing tokens to530

include spaces, and thus experiment with an al-531

ternative tokenisation approach where spaces are532

always treated as individual tokens. We demon-533

strate that this approach alleviates existing prob-534

lems and leads to improved performance on NLP535

tasks that involve handling complex words, whilst536

having no detrimental effect on performance in gen-537

eral natural language understanding tasks. Whilst538

our work focuses on BPE and Unigram, our mod-539

ifications can be applied to any existing subword540

tokenisation algorithm, including WordPiece, and541

hence to any transformer-based model. We also542

only worked with English, but the algorithms used543

are unsupervised and language-independent, and544

we expect that our approach would lead to greater 545

improvements in languages with a higher degree 546

of morphological complexity, which is a possible 547

investigation of future work. 548

When training our NLP models, we found that 549

including the individual space tokens lead to worse 550

performance. Our improvements were thus found 551

using lossy tokenisation (excluding the space to- 552

kens), which may not be ideal for all tasks. We did 553

not perform evaluation on sequence-to-sequence 554

tasks, and indeed the subword tokenisation algo- 555

rithms discussed here were introduced in the field 556

of NMT, where space information is likely more 557

important. Future work could thus look at alterna- 558

tive methods for including space information that 559

maintain the performance gains seen here whilst 560

keeping tokenisation lossless. Additionally, whilst 561

our modified algorithms alleviate existing prob- 562

lems, in particular giving improved morphological 563

correctness when handling prefixes, there is still 564

significant room for improvement, which we ex- 565

pect to lead to further performance improvements 566

of NLP models at handling complex words. 567
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A Training Details735

Hyperparameters for tokenisation, pretraining, fine-736

tuning are shown in Table 7, Table 8 and Table 9,737

respectively. We did not use stochastic tokenisation738

(BPE-dropout or subword regularisation).739

Implementation SentencePiece (Kudo and Richardson,
2018)

Vocabulary Size 16000
BPE-dropout 0
Unigram Subword
Regularisation

0

Table 7: Hyperparameters for tokenisation.

Implementation fairseq (Ott et al., 2019)
Architecture RoBERTa (base) (Liu et al., 2019)
Precision 16 bit
Optimizer ADAM (Kingma and Ba, 2014), ε =1e-

6, β = (0.9, 0.98)
Sequence length 512
Learning rate sched-
uler

Linear warm-up for 10000 updates to
5e-4, then reduce to 1e-4 upon increased
training loss at epoch

Training for 100000 updates / 30 epochs
Batch size 2048
Dropout 0.1
Attention Dropout 0.1
Weight Decay 0.01

Table 8: Hyperparameters for pretraining.

Implementation fairseq (Ott et al., 2019)
Architecture RoBERTa (base) (Liu et al., 2019)
Precision 16 bit
Optimizer ADAM (Kingma and Ba, 2014), ε =1e-

6, β = (0.9, 0.98)
Sequence length 512
Learning rate sched-
uler

Linear warm-up to 2e-3 for 6% of up-
dates, then linear decay to 0

Training for 20 epochs
Batch size 32
Dropout 0.1
Attention Dropout 0.1
Weight Decay 0.01

Table 9: Hyperparameters for finetuning.

A.1 Pretraining740

Pretraining was run on 8 NVIDIA Tesla V100s. We741

ran pretraining on the text of English Wikipedia.742

A Wikipedia dump was processed with the Python743

package WikiExtractor8, and then split into sen-744

tences using BlingFire9. In order to perform a745

fair comparison across models, we removed all746

sentences with sequence lengths longer than 510747

when tokenised with the modified models includ-748

ing spaces. However, this was a very small amount749

8https://github.com/attardi/
wikiextractor/

9https://github.com/microsoft/
BlingFire

of the data (∼0.002%) and would thus have a neg- 750

ligible effect on performance. 751

Loss curves are shown in Figure 3. 752

A.2 Finetuning 753

Finetuning was run on a single NVIDIA Tesla 754

V100. All finetuning experiments were ran with a 755

batch size of 32, and a peak learning rate of 2e-3 756

with linear warm-up for 6% of updates, then lin- 757

ear decay to 0. All other parameters were kept 758

the same as for pretraining. Experiments were ran 759

for 20 epochs, and the best performing epoch was 760

taken, with 10 random seeds per model. For the 761

Superbizarre datasets, we took the best performing 762

epoch for each seed on the dev set and evaluated it 763

on the test set. 764

B Detailed Results 765

Detailed results are shown in Table 10 and Table 11 766

for fixed pretraining updates and fixed pretraining 767

epochs, respectively. The standard deviations on 768

the mean GLUE score are calculated assuming zero 769

covariance between tasks. 770

C Significance Tests 771

Here we give full Welch’s t-test results comparing 772

the best performing model to all the others for each 773

dataset, shown in Table 12 and Table 13 for fixed 774

pretraining updates and fixed pretraining epochs, 775

respectively. 776
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(c) BPE′ no spaces
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(d) Unigram
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(f) Unigram′ no spaces

Figure 3: Pretraining loss curves for the six models.

Epochs GLUE Superbizarre Reddit Superbizarre Arxiv

MRPC CoLA STS-
B

RTE SST-
2

QQP QNLI MNLI-
m

MNLI-
mm

Mean Dev Test Dev Test

BPE 27 84.5
(0.8)

55.4
(2.5)

87.1
(0.3)

68.6
(2.7)

91.6
(0.4)

89.7
(0.1)

91.3
(0.2)

83.1
(0.2)

83.5
(0.3)

81.6
(1.3)

66.8
(0.8)

66.6
(0.9)

71.1
(0.2)

70.2
(0.2)

BPE′ 16 83.0
(1.0)

48.9
(2.9)

86.0
(0.2)

59.5
(1.9)

91.6
(0.4)

89.2
(0.1)

90.7
(0.3)

81.6
(0.2)

82.3
(0.1)

79.2
(1.2)

66.6
(0.2)

66.2
(0.2)

70.3
(0.1)

69.3
(0.2)

BPE′ no spaces 28 84.4
(0.6)

54.4
(1.4)

87.0
(0.2)

70.3
(0.8)

92.2
(0.5)

89.7
(0.1)

91.1
(0.2)

83.1
(0.2)

83.2
(0.2)

81.7
(0.6)

67.2
(0.2)

66.9
(0.2)

70.9
(0.1)

70.0
(0.2)

Unigram 27 85.0
(1.2)

52.3
(1.4)

87.3
(0.2)

69.8
(1.9)

91.7
(0.5)

89.5
(0.1)

91.9
(0.4)

83.1
(0.2)

83.1
(0.2)

81.5
(0.9)

68.0
(0.2)

67.8
(0.3)

72.2
(0.3)

71.4
(0.2)

Unigram′ 16 83.3
(0.6)

39.5
(15.4)

84.8
(0.4)

64.0
(1.8)

91.3
(0.4)

89.1
(0.1)

89.8
(0.3)

81.4
(0.2)

82.1
(0.2)

78.4
(5.2)

68.2
(0.4)

68.2
(0.3)

72.5
(0.2)

71.6
(0.3)

Unigram′ no spaces 27 85.2
(1.4)

54.6
(1.4)

87.8
(0.3)

71.1
(1.5)

91.6
(0.4)

89.5
(0.1)

91.3
(0.3)

83.0
(0.2)

83.1
(0.2)

81.9
(0.9)

68.8
(0.1)

68.8
(0.3)

73.0
(0.2)

72.3
(0.3)

Table 10: Full finetuning results after pretraining for 100000 updates. Shown are mean dev set results across 10
seeds, with standard deviations in parentheses.

Updates GLUE Superbizarre Reddit Superbizarre Arxiv

MRPC CoLA STS-
B

RTE SST-
2

QQP QNLI MNLI-
m

MNLI-
mm

Mean Dev Test Dev Test

BPE 109761 84.4
(0.8)

53.5
(1.7)

87.2
(0.2)

68.7
(0.9)

91.8
(0.3)

89.7
(0.1)

91.4
(0.2)

83.1
(0.2)

83.5
(0.3)

81.5
(0.7)

67.1
(0.2)

66.8
(0.3)

71.0
(0.2)

70.1
(0.3)

BPE′ 177845 83.2
(1.1)

48.9
(1.4)

86.6
(0.2)

60.0
(2.6)

92.0
(0.2)

89.2
(0.0)

90.7
(0.3)

82.2
(0.2)

82.9
(0.2)

79.5
(1.1)

66.8
(0.3)

66.5
(0.1)

70.5
(0.1)

69.8
(0.2)

BPE′ no spaces 106485 85.0
(0.6)

53.4
(0.9)

86.9
(0.3)

69.1
(0.6)

92.0
(0.4)

89.5
(0.1)

91.2
(0.3)

83.2
(0.2)

83.2
(0.2)

81.5
(0.5)

67.1
(0.2)

67.1
(0.3)

70.8
(0.2)

70.1
(0.2)

Unigram 108606 84.8
(0.9)

53.1
(2.3)

87.4
(0.2)

70.1
(1.8)

91.6
(0.3)

89.6
(0.1)

91.3
(0.5)

83.0
(0.1)

83.2
(0.2)

81.6
(1.0)

67.9
(0.2)

67.9
(0.3)

72.2
(0.1)

71.6
(0.1)

Unigram′ 179909 82.0
(0.9)

45.9
(2.0)

84.7
(0.2)

64.9
(1.5)

91.5
(0.3)

89.0
(0.1)

90.1
(0.2)

81.5
(0.1)

82.0
(0.1)

79.1
(0.9)

68.3
(0.5)

68.3
(0.4)

72.5
(0.2)

71.8
(0.3)

Unigram′ no spaces 108441 84.8
(0.8)

54.5
(1.9)

87.8
(0.2)

70.0
(1.8)

91.5
(0.3)

89.6
(0.1)

91.5
(0.2)

83.2
(0.1)

83.2
(0.2)

81.8
(0.9)

68.8
(0.2)

69.0
(0.2)

73.2
(0.2)

72.5
(0.2)

Table 11: Full finetuning results after pretraining for 30 epochs. Shown are mean dev set results across 10 seeds,
with standard deviations in parentheses.
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GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

BPE 0.61 2.15e-05 1.34e-05 5.70e-15 5.26e-13
BPE′ 2.7e-05 1.50e-16 5.26e-14 3.82e-17 8.61e-15

BPE′ no spaces 0.58 7.22e-14 9.04e-12 1.75e-15 5.54e-14

Unigram 0.36 2.27e-08 1.69e-06 5.15e-07 1.11e-07
Unigram′ 6.0e-02 6.22e-04 7.83e-05 1.74e-05 6.05e-06

Table 12: P values for welch’s t-test comparing Unigram′ no spaces to other models for fixed pretraining updates.

GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

BPE 0.41 1.47e-13 2.25e-13 2.77e-15 1.48e-13
BPE′ 8.72e-05 1.19e-12 7.84e-16 3.46e-16 4.53e-14

BPE′ no spaces 0.41 1.28e-12 2.01e-15 1.21e-15 2.35E-12

Unigram 0.66 2.92e-08 1.19e-09 3.96e-09 8.78e-08
Unigram′ 2.8e-06 1.45e-02 1.69e-06 1.55e-06 3.90e-04

Table 13: P values for welch’s t-test comparing Unigram′ no spaces to other models for fixed pretraining epochs.
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