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Abstract

We consider a standard federated learning (FL) setup where a group of clients
periodically coordinate with a central server to train a statistical model. We
develop a general algorithmic framework called FedLin to tackle some of the key
challenges intrinsic to FL, namely objective heterogeneity, systems heterogeneity,
and infrequent and imprecise communication. Our framework is motivated by the
observation that under these challenges, various existing FL algorithms suffer from
a fundamental speed-accuracy conflict: they either guarantee linear convergence
but to an incorrect point, or convergence to the global minimum but at a sub-linear
rate, i.e., fast convergence comes at the expense of accuracy. In contrast, when the
clients’ local loss functions are smooth and strongly convex, we show that FedLin
guarantees linear convergence to the global minimum, despite arbitrary objective
and systems heterogeneity. We then establish matching upper and lower bounds
on the convergence rate of FedLin that highlight the effects of infrequent, periodic
communication. Finally, we show that FedLin preserves linear convergence rates
under aggressive gradient sparsification, and quantify the effect of the compression
level on the convergence rate. Notably, our work is the first to provide tight linear
convergence rate guarantees, and constitutes the first comprehensive analysis of
gradient sparsification in FL.

1 Introduction

In a canonical federated learning (FL) architecture, a set S of clients periodically communicate with
a central server to find a global statistical model that solves the following problem [1–5]:

min
x∈Rd

f(x), where f(x) =
1

m

m∑
i=1

fi(x). (1)

Here, m is the number of clients, fi : Rd → R is the local objective (loss) function of client i, and
f(x) is the global objective function. Some of the core distinguishing tenets of the FL paradigm are
as follows [1–5]. First, due to privacy considerations, clients cannot directly share their local training
data with the server. Second, differences in the clients’ data-sets may cause the clients to have non-
identical loss functions with different minima - this is known as statistical or objective heterogeneity.
Third, due to variability in hardware (CPU, memory) and power (battery level), i.e., due to systems or
device heterogeneity, the client devices may have different computation speeds; in particular, this
may lead to slow and straggling devices that affect convergence guarantees. Finally, communication-
efficiency is a major concern, dictating the need to reduce the number of communication rounds,
and also the size of the messages transmitted in each round. The above considerations pose unique
technical challenges that we aim to address in this paper.

In a typical FL setting, to reduce the number of communication rounds, clients perform multiple local
training steps in isolation before communicating with the server. Due to such local steps, the popular
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FedAvg algorithm suffers from a “client-drift phenomenon" under objective heterogeneity [6–11]:
the local iterates of each client drift-off towards the minimum of their own local loss function, leading
to slow convergence rates. For analysis on FedAvg, we refer the reader to [6, 8, 12–21]. Recently,
several new algorithms such as FedProx [22], SCAFFOLD [11], FedSplit [10], and FedNova [23]
have been proposed as improvements to FedAvg. Despite these advances, there remain gaps in our
understanding of the extent to which these algorithms match the guarantees of a centralized baseline.1

For instance, even for simple, deterministic settings, FedProx [22] and FedNova [23] exhibit a fun-
damental speed-accuracy conflict under objective heterogeneity; see [8, 9] and Section 2. Specifically,
with constant step-sizes, these algorithms converge linearly, but potentially to an incorrect point.
Thus, convergence to the minimum of the global loss function necessitates diminishing step-sizes,
which, in turn, leads to sub-linear convergence. Thus, fast convergence comes at the expense of
accuracy. Although SCAFFOLD [11] and FedSplit [10] employ variance-reduction and operator-
splitting techniques, respectively, to tackle objective heterogeneity, it is not known whether the rates
in these papers are tight. More importantly, neither SCAFFOLD nor FedSplit account for the effects
of systems heterogeneity or compression, both of which are key challenges in FL. Indeed, due to
systems heterogeneity, the number of local steps may vary across clients, causing some clients to
make much less progress than others in each round [23]. Moreover, while empirical studies [24, 25]
have revealed significant benefits of biased sparsification, theoretical guarantees for such methods in
a federated setting have remained elusive. In this context, our contributions are as follows.

• A New Algorithm: Motivated by the above concerns, we develop a general algorithmic framework
called FedLin that simultaneously accounts for objective heterogeneity, systems heterogeneity, and
gradient sparsification. The key components of FedLin include a gradient correction term in the
local update rule that exploits memory; the use of client-specific learning rates; and error-feedback
mechanisms at the clients and the server.

• Matching Centralized Rates: For smooth and strongly convex losses, we show that FedLin
converges to the global minimum linearly in the deterministic setting, and with a O(1/T ) rate for
a general stochastic oracle model, thereby matching centralized rates (up to constants). We then
present matching rates for smooth, convex and non-convex settings as well. Importantly, our results
hold under arbitrary objective and systems heterogeneity. In contrast, the only other work in FL (as
far as we are aware) that investigates both objective and systems heterogeneity [23] provides results
only for the non-convex setting, under a bounded dissimilarity assumption. Moreover, the FedNova
algorithm in [23] suffers from the speed-accuracy conflict, while FedLin does not.

• Quantifying the Price of Multiple Local Steps: We establish a lower bound for FedLin that
matches the upper-bound we obtain for smooth, strongly convex losses. In doing so, we provide
the first (as far as we are aware) tight linear convergence rate analysis. Our lower bound highlights
the price paid for performing multiple local steps, i.e., the effect of infrequent communication on
the convergence rate. In particular, our analysis reveals, perhaps surprisingly, that there exist simple
instances (involving quadratic losses) for which performing multiple local steps does not improve the
rate of convergence, indicating that even mild statistical heterogeneity can hurt. Our analysis also
provides valuable insights into the limitations of gradient-tracking/variance-reduction techniques.

• Analyzing the Impacts of Gradient Sparsification at Server and at Clients: While several
works explore the effect of unbiased random quantization in distributed settings [26–31], there are
only a handful of papers [15, 32] that also consider the effect of local steps in FL. Different from all
these works, we explore the impacts of sparsifying gradients using a biased TOP-k operator, both
at the server side and at the clients. Our results in this context (i) constitute the first formal study
of gradient sparsification in a federated setting; (ii) reveal key differences between up-link and
down-link compression; and (iii) quantify the effect of the compression level on the convergence rate.
Notably, FedLin preserves linear convergence rates despite aggressive gradient sparsification.

Basic Notation and Terminology: Referring to (1), let x∗ ∈ argminx∈Rd f(x), and x∗i ∈
argminx∈Rd fi(x). Every FL algorithm mentioned in this paper operates in rounds t ∈ {1, . . . , T}.
In each round t, every client performs a certain number of local steps in isolation, starting from a
common global model x̄t. We will denote by x(t)

i,` client i’s estimate of the model at the `-th local

step of round t. In particular, x(t)
i,0 = x̄t,∀i ∈ S.

1By a centralized baseline, we refer to a setup where each client can communicate with every other client at
all time steps via the server.
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Method Linear Convergence
to x∗

Lower Bounds Variable Client
Speeds

Sparsification/
Compression

FedAvg [2] 7 Thm. II in [11] 7 7
FedProx [22] 7 — 7 7
FedNova [23] 7 — 3 7
FedSplit [10] 7 — 7 7
SCAFFOLD [11] 3 — 7 7
FedLin (Sec. 3) 3 Thm. 5 3 3

Table 1: Comparison of our proposed algorithm FedLin with popular FL algorithms. We indicate
whether or not each algorithm (i) guarantees linear convergence to x∗ for smooth, strongly convex
losses in a deterministic setting under objective heterogeneity; (ii) comes with lower bounds; (iii) ac-
counts for variable local steps across clients (systems heterogeneity); and (iv) performs compression.

2 Motivation: Speed-Accuracy Trade-Off
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Figure 1: Simulations comparing FedProx, FedNova, and
FedLin for two clients with f1(x) = (1/2)(x − 3)2 and
f2(x) = (x − 50)2. Left: Clients perform the same num-
ber of local steps, H = 50. For FedProx, we set β = 5. Right:
Clients 1 and 2 perform 50 and 30 local steps, respectively.

To motivate our work, we first show
how some recently proposed FL
algorithms, namely FedProx [22]
and FedNova [23], exhibit a fun-
damental speed-accuracy trade-off
even in simple, deterministic set-
tings. Specifically, we show that
these schemes do not, in general,
guarantee convergence to the global
minimum with constant step-sizes.
This, in turn, necessitates diminish-
ing step-sizes, leading to sub-linear
convergence rates. Our analysis
here is inspired by that in [8] for
FedAvg. We consider a determinis-
tic quadratic model where the local
loss function of client i is given by
fi(x) = 1/2‖A1/2

i (x− ci)‖2, where Ai is a symmetric positive-definite matrix. We begin by assum-
ing that all clients perform the same number of local steps H . The following is the FedProx update
rule where a proximal term is added to mitigate client-drift:

x
(t)
i,`+1 = x

(t)
i,` − η

(
∇fi(x(t)

i,` ) + β(x
(t)
i,` − x̄t)

)
, ` = 0, . . . ,H − 1; x̄t+1 =

1

m

∑
i∈S

x
(t)
i,H . (2)

Proposition 1. For any step-size η > 0, T rounds of FedProx amount to performing T rounds of
parallel GD on the surrogate optimization problem given by

min
x

1

m

∑
i∈S

1

2

∥∥∥∥(H−1∑
`=0

[I − η(Ai + βI)]`Ai

)1/2

(x− ci)
∥∥∥∥2

. (3)

Proposition 1 shows that even when clients perform the same number of local updates, FedProx
minimizes a surrogate objective function (3) whose minimum may not, in general, coincide with the
minimum of the original problem. When β = 0, FedProx reduces to FedAvg, and our observations
continue to hold. To capture systems heterogeneity as in [23], suppose now that client i performs
τi local steps. Define τeff , 1/m

∑
i∈S τi and αi , τeff/τi, ∀i ∈ S. The update rule of FedNova

relies on normalized aggregation of cumulative local gradients, and is given by

x
(t)
i,`+1 = x

(t)
i,` − η∇fi(x

(t)
i,` ); x̄t+1 = x̄t −

η

m

∑
i∈S

αi

τi−1∑
`=0

∇fi(x(t)
i,` ), (4)

where ` = 0, . . . , τi − 1, i ∈ S. Although FedNova can accommodate any local solver whose
accumulated gradients are expressible as a linear combination of local gradients, we choose gradient
descent, a simple solver, to isolate the impact of normalized aggregation - the essence of FedNova.
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Algorithm 1 FedLin
1: Input: Client step-sizes ηi, i ∈ S, compression levels δc and δs, initial iterate x̄1 ∈ Rd,
g1 = ∇f(x̄1), initial compression errors ρi,1 = 0,∀i ∈ S and e1 = 0

2: for t = 1, . . . , T do
3: for i = 1, . . . ,m do
4: for ` = 0, . . . , τi − 1 do
5: x

(t)
i,`+1 ← x

(t)
i,` − ηi(∇fi(x

(t)
i,` )−∇fi(x̄t) + gt); x

(t)
i,0 = x̄t

6: end for
7: Transmit x(t)

i,τi
to server

8: end for
9: Server transmits x̄t+1 = 1/m

∑
i∈S x

(t)
i,τi

10: for i = 1, . . . ,m do
11: Transmit hi,t+1 = Cδc(ρi,t +∇fi(x̄t+1)) to server
12: ρi,t+1 ← ρi,t +∇fi(x̄t+1)− hi,t+1

13: end for
14: Server transmits gt+1 = Cδs(et + 1/m

∑
i∈S hi,t+1)

15: et+1 ← et + 1/m
∑
i∈S hi,t+1 − gt+1

16: end for

Proposition 2. For any step-size η > 0, T rounds of FedNova amount to performing T rounds of
parallel GD on the surrogate optimization problem given by

min
x

1

m

∑
i∈S

1

2

∥∥∥∥( τi−1∑
`=0

[I − ηAi]`αiAi
)1/2

(x− ci)
∥∥∥∥2

. (5)

For the proofs of Propositions 1 and 2, see Appendix B. Proposition 2 shows that in the presence
of both objective and systems heterogeneity, FedNova minimizes a surrogate loss function whose
minimum may not coincide with x∗.2 Observe from (3) and (5) that using a larger learning rate η
introduces more distortion to the original problem. In Figure 1, we see how FedProx and FedNova
both converge to incorrect minimizers, even for simple instances with two clients and deterministic,
quadratic losses. In contrast, FedLin, our proposed approach that we develop in the next section,
guarantees linear convergence to the global minimum.

Main Takeaway: The main message we want to convey here is that even for deterministic settings,
there are non-trivial challenges posed by objective and systems heterogeneity that only get amplified
when one additionally considers biased compression. For such scenarios, it is not at all apparent
whether (and to what extent) one can match even the basic centralized benchmark of achieving linear
convergence for smooth, strongly convex loss functions. To focus on the above unresolved issues, we
will primarily consider a deterministic model in this paper. Nonetheless, the general approach we
develop applies to the stochastic setting as well, as aptly demonstrated by Theorem 4 in Section 4.

3 Proposed Algorithm: FedLin

In this section, we develop our proposed algorithm FedLin, formally described in Algorithm 1.
FedLin is initialized from a common global iterate x̄1 ∈ Rd. For simplicity, we assume that
g1 = ∇f(x̄1), i.e., every client has access to the true gradient of f(·) initially; we can allow g1 to
be arbitrary as well without affecting the convergence guarantees. FedLin proceeds in rounds: in
each round t, starting from a common global model x̄t, each client i performs τi local training steps
in parallel, as per line 5 of Algorithm 1. The key features of our local update rule are as follows:
exploiting past gradients to account for objective heterogeneity, using client-specific step-sizes to
tackle systems heterogeneity, and employing error-feedback to account for gradient sparsification.
We now discuss each of these features in detail.

2In a follow-up work to [8], the authors in [9] generalize their framework to encompass proximal methods
such as FedProx as well. As such, Propositions 1 and 2 in this section turn out to be special cases of the results
in [9]. We were not aware of [9] at the time of submission of this paper.
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To gain intuition regarding the local step in line 5, note that the ideal local update at client i is
x

(t)
i,`+1 = x

(t)
i,` − ηi∇f(x

(t)
i,` ). However, this requires client i to have access to the gradients of

all other clients - which it does not, since clients do not communicate between rounds. To get
around this, client i exploits memory, and uses the gradient of the global function ∇f(x̄t) from the
beginning of round t (when the clients last communicated) as a guiding direction in its update rule.
However, since ∇f(x̄t) is evaluated at a stale point x(t)

i,0 = x̄t, client i subtracts off ∇fi(x̄t) from

∇f(x̄t), and adds in the most recently evaluated gradient∇fi(x(t)
i,` ). This results in the update rule:

x
(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,` )−∇fi(x̄t) +∇f(x̄t)). Our local update rule in line 5 is precisely of

the above form, where gt is an inexact version of ∇f(x̄t) to account for gradient sparsification.

When each client i performs τi local-steps, our analysis reveals that the bound on the drift-term
‖xi,` − x̄t‖ scales linearly in τi (see Lemma 9 in Appendix F). Accordingly, to compensate for such
drift at client i, the step-size ηi needs to be chosen to vary inversely with the number of local steps
τi. In fact, the requirement that ηi ∝ 1/τi also turns out to be necessary (see Theorem 5), providing
further motivation for the choice of client-specific learning rates in FedLin.

To explain the gradient sparsification module, let us denote by Cδ : Rd → Rd the TOP-k operator,
where δ = d/k, and k ∈ {1, . . . , d}. Given any x ∈ Rd, let Eδ(x) be a set containing the indices
of the k largest-magnitude components of x. Then, the TOP-k operator we consider is given by
(Cδ(x))j = (x)j if j ∈ Eδ(x), and (Cδ(x))j = 0 otherwise. Here, we use (x)j to denote the j-th
component of a vector x. Clearly, a larger δ implies more aggressive compression. We employ a
standard error-feedback mechanism [33–35] at both the server and the clients to account for gradient
sparsification. At client i, ρi,t represents the accumulated error due to gradient sparsification. At the
end of round t, instead of just compressing∇fi(x̄t+1), client i instead compresses∇fi(x̄t+1) + ρi,t,
to account for gradient coordinates not transmitted in the past. It then updates the aggregate error
via line 12. An analogous description applies to the error-feedback scheme at the server, where et is
the aggregate error at the beginning of round t. The parameters of FedLin are the client step-sizes
{ηi}i∈S , and the compression levels δc and δs at the clients and at the server, respectively. We now
comment on some related algorithmic ideas.

Related Algorithmic Approaches: In the related but different setting of distributed optimization,
we note that the idea of exploiting past gradients has been used to design gradient-tracking algorithms
[36–40]. In the context of FL, this idea is also related to the variance-reduction technique employed
in SCAFFOLD [11]. A major difference of FedLin with the above works is that none of them consider
the effect of systems heterogeneity or biased compression. In particular, accounting for the inexact
gradient term gt in our update rule introduces new technical challenges that we address in this paper.

There are some additional basic differences between FedLin and SCAFFOLD. To see this, consider the
update rule of FedLin without sparsification: x(t)

i,`+1 = x
(t)
i,` − ηi(∇fi(x

(t)
i,` )−∇fi(x̄t) +∇f(x̄t)).

Now suppose the global model x̄t at the beginning of round t has already converged to x∗. Since
x

(t)
i,0 = x̄t,∀i ∈ S , and ∇f(x∗) = 0, it is easy to see that the iterates of the clients do not evolve any

further, as one would ideally want. Thus, the global optimum x∗ can be viewed as a fixed-point of the
FedLin update rule. Adapting to our notation, and considering the case when there is no noise in the
gradients, the update rule of SCAFFOLD takes the form x

(t)
i,`+1 = x

(t)
i,` − η(∇fi(x(t)

i,` )− ci + c), where
ci is a ‘control-variate’ maintained by client i, and c is the average of the ci’s. Importantly, the control
variates {ci}i∈S used in round t of SCAFFOLD contain stale terms from round t− 1. As a result, even
if x̄t = x∗, it may very well be that (∇fi(x̄t) − ci + c) 6= 0, causing the iterates of the clients to
move away from x∗, and requiring further rounds of communication to average out the imbalance.
Thus, the fixed-point property we discussed for FedLin does not hold in general for SCAFFOLD. Our
simulations in Section 7 reveal that FedLin converges much faster relative to SCAFFOLD on a simple
linear regression model; we conjecture it is precisely due to the reason described above.

Keeping aside the differences due to systems heterogeneity and compression, the FedSVRG algorithm
in [1] includes a similar gradient correction term as in FedLin, but makes use of certain additional
diagonal scaling and pre-conditioning matrices. Although promising empirical results are reported
for FedSVRG in [1], these results come with no supporting theoretical guarantees of convergence.
In contrast, we will develop rigorous complexity guarantees for FedLin in the following sections.
Specifically, we will show that FedLin guarantees linear convergence rates despite the challenges of
objective heterogeneity, systems heterogeneity, and aggressive gradient sparsification.
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4 Matching Centralized Rates under Objective and Systems Heterogeneity

In this section, we will analyze the performance of FedLin in the face of both objective and systems
heterogeneity. To focus solely on the effects of client heterogeneity, we will assume throughout
this section that there is no gradient sparsification, i.e., δc = δs = 1. Accordingly, observe that
ρi,t = 0, et = 0,∀i ∈ S,∀t ∈ {1, . . . , T}. Thus, the local update rule for FedLin simplifies to

x
(t)
i,`+1 = x

(t)
i,` − ηi(∇fi(x

(t)
i,` )−∇fi(x̄t) +∇f(x̄t)). (6)

Let us denote by κ = L/µ the condition number of an L-smooth and µ-strongly convex function.
Also, let ηi = η̄/τi,∀i ∈ S, where η̄ ∈ (0, 1) is a flexible parameter that we will specify based on
context. We are now ready to state the main results of this section.
Theorem 1. (Strongly convex case) Suppose each fi(x) is L-smooth and µ-strongly convex. More-
over, suppose τi ≥ 1,∀i ∈ S, and δc = δs = 1. Then, with ηi = 1

6Lτi
,∀i ∈ S, FedLin guarantees:

f(x̄T+1)− f(x∗) ≤
(

1− 1

6κ

)T
(f(x̄1)− f(x∗)).

Theorem 2. (Convex case) Suppose each fi(x) is L-smooth and convex. Moreover, suppose τi ≥
1,∀i ∈ S, and δc = δs = 1. Then, with ηi = 1

10Lτi
,∀i ∈ S, FedLin guarantees:

f

(
1

T

T∑
t=1

x̄t

)
− f(x∗) ≤ 10L

T

(
‖x̄1 − x∗‖2 − ‖x̄T+1 − x∗‖2

)
.

Theorem 3. (Non-convex case) Suppose each fi(x) is L-smooth. Moreover, suppose τi ≥ 1,∀i ∈ S ,
and δc = δs = 1. Then, with ηi = 1

26Lτi
,∀i ∈ S, FedLin guarantees:

min
t∈[T ]

‖∇f(x̄t)‖2 ≤
52L

T
(f(x̄1)− f(x̄T+1)). (7)

Noisy Case Analysis: We now analyze the performance of FedLin under a general stochastic oracle
model. For each i ∈ S and x ∈ Rd, let qi(x) be an unbiased estimate of the gradient ∇fi(x) with
variance bounded above by σ2. We consider the update rule: x(t)

i,`+1 = x
(t)
i,` − ηi(qi(x

(t)
i,` )− qi(x̄t) +

q(x̄t)), where q(x) , 1/m
∑
i∈S qi(x),∀x ∈ Rd. We then have the following result.

Theorem 4. (Strongly convex case with noise) Consider the above stochastic oracle model. Suppose
each fi(x) is L-smooth and µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S , and δc = δs = 1.
For each i ∈ S , let ηi = η̄

τi
, where η̄ ∈ (0, 1) satisfies η̄ < 1

6L . Then, ∀t ∈ [T ], FedLin guarantees:

E[‖x̄t+1 − x∗‖2] ≤
(

1− η̄µ

2

)
E[‖x̄t − x∗‖2] + 25η̄2σ2. (8)

The proofs of Theorems 1, 2, 3, and 4 are provided in Appendix F.

Main Takeaways: From Theorems 1, 2, and 3, we note that FedLin matches the convergence
guarantees of centralized gradient descent (up to constants) for smooth, strongly convex, convex,
and non-convex settings, respectively. As far as we are aware, this is the first work to provide such
comprehensive guarantees under arbitrary objective and systems heterogeneity. In fact, all our results
continue to hold even when the operating speeds of the client machines vary across rounds, i.e., τi is
allowed to be a function of t. Each client i can simply adjust its learning rate ηi ∝ 1/τi(t) locally to
account for such variations. The bound for the noisy case in Theorem 4 resembles that of centralized
SGD [41]: with a time-varying parameter η̄t = O(1/t), we get the standard O(1/T ) rate after T
rounds (using the exact same arguments as in [41]). The key thing to note here is that despite arbitrary
heterogeneity, the assumptions we make on the stochastic gradients are the same as those made in the
analysis of centralized SGD: unbiased gradients with bounded variance, nothing more.

Comparison with Related Work: In the recent paper [10], the authors propose FedSplit, and
analyze it in a deterministic setting. For strongly-convex and smooth loss functions, FedSplit
guarantees linear convergence, but only to a non-vanishing neighborhood of x∗. Thus, like FedAvg
[2], FedProx [22], and FedNova [23], FedSplit fails to guarantee exact linear convergence to x∗.
Empirically, we observe that FedSplit diverges on certain instances; see Appendix J. Compared to

6



these algorithms, we see from Theorem 1 that FedLin guarantees linear convergence to x∗. Notably,
the linear convergence rate we obtain in Theorem 1 under both objective and systems heterogeneity is
the best rate we know of in FL, and matches that of SCAFFOLD [11] where only objective heterogeneity
is considered.3 The model of systems heterogeneity we study is taken from [23], where the authors
provide guarantees only for the non-convex case under a bounded dissimilarity assumption. In
contrast, our results cover all the three standard settings - strongly-convex, convex, and non-convex -
without requiring any bounded dissimilarity assumption. For further related work on straggler-robust
distributed learning algorithms (without objective heterogeneity or local steps), see [43–48].

4.1 The Price of Infrequent Communication

In this section, we take a closer look at the effect of performing multiple local steps on the convergence
rate. To do so, we assume that all clients perform the same number of local steps H , i.e., there is no
communication for H consecutive time-steps between two communication rounds. Now consider a
centralized baseline where each client can communicate with every other client at all times (i.e., even
between rounds). In this case, since each client can always access∇f(x), gradient descent yields

f(x̄T+1)− f(x∗) ≤ exp(− 1

κ
TH)(f(x̄1)− f(x∗)) (9)

after T rounds, with H synchronized local iterations within each round. Based on Theorem 1,
observe that we lose out by a factor of H in the exponent relative to the centralized baseline. Notably,
both in the centralized case, and in FedLin, each client queries the gradient of its local objective
H times in each round, thereby making TH gradient queries over T rounds. Thus, relative to a
centralized baseline, FedLin incurs the same computational cost in terms of gradient queries, and
reduces communication by a factor of H , at the expense of a convergence rate that is slower by a
factor of H . We emphasize here that just as with FedLin, H does not show up in the convergence
rate (exponent) of algorithms like FedSplit [10] and SCAFFOLD [11] either.

The primary reason for the slower convergence rate (relative to a centralized baseline) stems from the
need to set η ∝ 1/H to mitigate client-drift under objective heterogeneity. At this stage, one may
conjecture that the above requirement is simply an artifact of a conservative analysis of Algorithm
1, and that a more refined analysis will reveal the utility of performing more local steps even in the
heterogeneous setting. Our next result suggests otherwise; for a proof, see Appendix E.
Theorem 5. (Lower bound for FedLin) Suppose δc = δs = 1, and τi = H, ηi = η,∀i ∈ S. Then,
given anyL ≥ 14 andH ≥ 2, there exists an instance involving 2 clients where each fi(x), i ∈ {1, 2},
is 1-strongly convex and L-smooth, and an initial condition x̄1, such that FedLin initialized from x̄1

generates a sequence of iterates {x̄t} satisfying the following for any T ≥ 1:

‖x̄T+1 − x∗‖2 ≥ exp (−4T )‖x̄1 − x∗‖2; f(x̄T+1)− f(x∗) ≥ exp(−4T )(f(x̄1)− f(x∗)). (10)

Main Takeaways: There are several key implications of Theorem 5. First, it complements Theorem
1 by providing a matching lower bound. We believe ours is the first work to provide a tight linear
convergence rate analysis: [11] and [10] only provide upper-bounds for SCAFFOLD and FedSplit,
respectively. Second, our analysis of Theorem 5 in Appendix E indicates that there are problem
instances where setting η ∝ 1/H is in fact necessary to guarantee convergence to x∗. As a result,
for such problem instances, no matter how many local steps H each client performs, the error at the
end of T rounds remains bounded below by an H-independent quantity, as is apparent from (10).
Perhaps surprisingly, we show in Appendix E that the lower bound in Theorem 5 even applies to
simple instances with non-identical quadratic losses (across clients) where every fi(x) has the same
minimum! This is particularly insightful since it highlights the limitations of exploiting stale gradient
terms in the local update rule (as is done in both FedLin and SCAFFOLD), and suggests the need for
more informed updating schemes that explicitly take into account the level of statistical heterogeneity.

Proof Idea for Theorem 5: To establish Theorem 5, we set up an instance involving two clients with
quadratic loss functions. Our main idea is to relate the convergence of FedLin to the Schur stability
of an appropriate discrete-time linear time-invariant (LTI) system. Based on this connection, we show
that guaranteeing stability necessitates setting η ∝ 1/H , which immediately leads to the lower bound.
We believe that the same technique can be used to establish a similar lower bound for SCAFFOLD.

3In a concurrent work [42], the authors develop a linearly converging algorithm called S-Local-SVRG for
the finite-sum setting, but neither consider systems heterogeneity nor compression. Moreover, unlike the lower
bound we develop for FedLin in Theorem 5, no lower bounds are provided for S-Local-SVRG in [42].
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5 Gradient Sparsification at Server

In this section, our focus will be on addressing the following question: For strongly convex and
smooth deterministic functions, and in the presence of both objective and systems heterogeneity, can
we still hope for linear convergence to x∗ when gradients are sparsified at the server? Interestingly,
we will show that not only is it possible to converge linearly to x∗, it is possible to do so without
any error-feedback. Moreover, this claim holds regardless of how aggressive the server is in its
sparsification scheme: it may even transmit just a single component of the aggregated gradient vector.

To isolate the impact of server-level sparsification, we will assume throughout this section that
gradients are not sparsified at the clients, i.e., δc = 1. Consequently, hi,t+1 = ∇fi(x̄t+1),∀i ∈
S,∀t ∈ {1, . . . , T}. We begin by considering a simpler variant of FedLin with no error-feedback at
the server side, i.e., line 15 is skipped, and gt+1 in line 14 of Algo. 1 is instead updated as follows

gt+1 = Cδs

(
1

m

∑
i∈S
∇fi(x̄t+1)

)
= Cδs (∇f(x̄t+1)) . (11)

Theorem 6. (Sparsification at server with no error-feedback) Suppose each fi(x) is L-smooth and
µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S, and δc = 1. Consider a variant of FedLin,
where line 14 is replaced by equation (11), and line 15 is skipped, i.e., there is no error-feedback.
Then, with ηi = 1

2(2+
√
δs)Lτi

,∀i ∈ S, this variant of FedLin guarantees

f(x̄T+1)− f(x∗) ≤

(
1− 1

2δs
(
2 +
√
δs
)
κ

)T
(f(x̄1)− f(x∗)).

Main Takeaways: From Theorem 6, we see that even without error-feedback, it is possible to linearly
converge to x∗; the rate of convergence, however, is inversely proportional to δ

3
2
s . Thus, Theorem 6

quantifies the trade-off between the level of sparsification at the server, and the rate of convergence.
When there is no gradient compression, i.e., when δs = 1, we exactly recover Theorem 1.

One may ask: Is there any potential benefit to employing error-feedback when gradients are sparsified
at the server? Our next result answers this question in the affirmative.
Theorem 7. (Sparsification at server with error-feedback) Suppose each fi(x) is L-smooth and
µ-strongly convex. Moreover, suppose τi ≥ 1,∀i ∈ S, and δc = 1. Let the step-size for client i be
chosen as ηi = 1

72Lδsτi
. Then, FedLin guarantees:

f(x̄T+1)− f(x∗) ≤ 2κ

(
1− 1

96δsκ

)T
(f(x̄1)− f(x∗)) .

For proofs of Theorems 6 and 7, see Appendix G and I.

Main Takeaways: Comparing the guarantee of Theorem 6 with that of Theorem 7, we note that the
convergence rate is inversely proportional to δ

3
2
s in the former, and inversely proportional to δs in the

latter. Thus, the main message here is that employing error-feedback leads to a faster convergence
rate by improving the dependence of the rate on δs.

6 Gradient Sparsification at Clients

In this section, we will turn our attention to the case when gradients are sparsified at the clients
prior to being transmitted to the server. Throughout this section, we will assume that gradients are
not compressed any further at the server side, i.e., δs = 1. To proceed, we will need to make the
following bounded gradient dissimilarity assumption.
Assumption 1. There exist constants C ≥ 1 and D ≥ 0 such that the following holds ∀x ∈ Rd:

1

m

m∑
i=1

‖∇fi(x)‖2 ≤ C‖∇f(x)‖2 +D. (12)

The following is the main result of this section; for a proof, see Appendix H.
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Theorem 8. (Sparsification at clients with error-feedback) Suppose each fi(x) is L-smooth and
µ-strongly convex, and suppose Assumption 1 holds. Moreover, suppose τi ≥ 1,∀i ∈ S , and δs = 1.
Let the step-size for client i be chosen as ηi = η̄

τi
, where η̄ ∈ (0, 1) satisfies η̄ ≤ 1

72LδcC
. Then,

FedLin guarantees:

‖x̄T+1 − x∗‖2 ≤ 2

(
1− 3

4
η̄µ

)T
‖x̄1 − x∗‖2 +

16

3
η̄

(
6

δcC
+ δc

)
D

µ
. (13)

Main Takeaways: Intuitively, one would expect that sparsifying gradients at each client prior to
aggregation at the server would inject more errors than when gradients are first accurately aggregated
at the server, and then the aggregated gradient vector is sparsified: Theorems 6 and 8 support this
intuition. For the former, we neither required error-feedback nor Assumption 1 to guarantee linear
convergence to the global minimum x∗; for the latter, even with error-feedback and the bounded
gradient dissimilarity assumption, we can establish linear convergence to only a neighborhood of x∗,
in general. From (13), we note that the size of this neighborhood scales linearly with D - a measure
of objective heterogeneity. In particular, when D = 0, the iterates x̄t converge exactly to x∗.
Remark 1. To the best of our knowledge, our results in Sections 5 and 6 constitute the first formal
analysis of biased gradient sparsification in FL. In particular, we significantly generalize the recent
results in [49] for a single worker to a multi-client FL setting with both objective and systems
heterogeneity. To arrive at these results, we develop a new potential-function based proof technique
in Appendix H. For more related work on compression in distributed learning, see Appendix A.

Extensions: We studied the effect of compressing information at the server and at the clients
separately, with the goal of identifying the key differences between each of these mechanisms. The
analysis techniques we developed in the process pave the way for studying various natural extensions:
(i) combined sparsification at both the clients and the server; (ii) gradient sparsification in tandem
with model parameter compression; and (iii) stochastic counterparts of Theorems 6, 7, and 8.

7 Experimental Results
In this section, we provide numerical results for FedLin on a least squares problem to validate our
theory. In Appendix K, we also provide additional numerical results on a logistic regression problem.

For now, we consider the following least squares regression problem:

min
x∈Rd

f(x) = min
x∈Rd

1

m

m∑
i=1

1

2
‖Aix− bi‖2, (14)

where Ai ∈ R500×100 is a design matrix and bi ∈ R500 is a response vector. The client objective
functions, fi(x) are strongly convex. Assuming that all design matrices are full column rank, problem
(14) admits a unique minimizer. To generate synthetic data, for each client i ∈ S = {1, . . . , 20}, we
generate Ai and bi according to the model bi = Aixi + εi, where xi is a weight vector and εi ∈ R500

is a disturbance. In particular, we generate [Ai]jk
i.i.d.∼ N (0, 1), and εi ∼ N (0, 0.5I500), ∀i ∈ S.

To capture statistical heterogeneity, the entries of the local true parameter of client i are modeled as
[xi]k ∼ N (ui, 1), k ∈ {1, . . . , 100}, where ui ∼ N (0, α) and α ≥ 0. Hence, α controls the level
of statistical heterogeneity. To model the effect of systems heterogeneity, for each client i ∈ S, the
number of local steps is drawn uniformly and independently from [2, 100]. We will primarily focus
on a deterministic setting here for our experiments; in Appendix L, we evaluate FedLin on a standard
stochastic oracle model. Our experiments in Appendix L reveal that under a noisy oracle, FedLin
guarantees linear convergence to a ball around the true minimum, exactly as suggested by Thm. 4.

Gradient Sparsification at Server. We first consider a variant of FedLin where gradient sparsi-
fication is implemented only at the server side and without any error-feedback. In particular, we
consider the cases where δs ∈ {2, 4}, which correspond to the implementation of a TOP-50 and
a TOP-25 operator, respectively. For comparison, we also plot the resulting performance when no
gradient sparsification is implemented at the server. To examine the effect of statistical heterogeneity
on the performance of FedLin, we generate two synthetic datasets corresponding to two different
levels of heterogeneity in the clients’ local objectives, namely α = 10 and α = 50. As illustrated
in Fig. 2, irrespective of the level of gradient sparsification on the server side, FedLin achieves
linear convergence to the true minimum in the presence of both objective and systems heterogeneity,
confirming Theorem 6. Also, both the convergence speed and accuracy of FedLin remain unaffected
as the level of heterogeneity in the clients’ objective functions increases.
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Figure 2: Server-side sparsification results for FedLin. The
constant η̄ is fixed at 10−2. Left: α = 10. Right: α = 50.

0 50 100
10

-2

10
-1

10
0

10
1

0 50 100
10

-1

10
0

10
1

Figure 3: Client-side sparsification results for FedLin. The
constant η̄ is fixed at 5× 10−4. Left: α = 1. Right: α = 10.
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Figure 4: Comparison of FedLin with SCAFFOLD. (Left) De-
terministic setting. (Right) General stochastic oracle model:
unbiased gradients with variance σ = 10−1.

Gradient Sparsification at Clients.
Next, we implement gradient sparsi-
fication only at the clients’ side, i.e.
δs = 1. In particular, we consider
the cases where δc ∈ {4/3, 2}, which
correspond to the implementation of
a TOP-75 and a TOP-50 operator, re-
spectively. Once again, we gener-
ate two synthetic datasets with differ-
ent levels of objective heterogeneity,
namely α = 1 and α = 10. As il-
lustrated in Fig. 3, unlike the server
case, FedLin with sparsification at
the clients’ side converges linearly,
but with a non-vanishing error that in-
creases as the value of δc increases.
This aligns with the conclusions of
Theorem 8. Furthermore, the level of
objective heterogeneity has a direct
impact on the convergence error. In
particular, for the same level of gradi-
ent sparsification, higher levels of ob-
jective heterogeneity result in larger
values of the convergence error.

Comparison with SCAFFOLD. We
now compare FedLin with SCAFFOLD
on the least squares regression setup
described above. To make a fair
comparison, we assume that there is
no systems heterogeneity or gradi-
ent compression. For implementing
SCAFFOLD, we use Option II in their
paper [11] for updating the control
variates. We set the number of local
steps H = 20, the statistical hetero-
geneity parameter α = 10, and use a
step-size of 10−3 for both algorithms
(the step-size was tuned to get best re-
sults). For the deterministic setting,
we note from Fig. 4 that FedLin con-

verges much faster compared to SCAFFOLD. This trend persists when we perturb the gradients with
zero-mean Gaussian noise with variance σ = 10−1. We conjecture that the faster convergence of
FedLin stems from the fact that it uses less stale gradient correction terms relative to the control
variates of SCAFFOLD; see the discussion about the fixed point property of FedLin in Sec. 3.

8 Conclusion

We developed a novel algorithmic framework called FedLin to tackle some of the key challenges
in FL, namely objective heterogeneity, systems heterogeneity, and imprecise communication. We
showed that FedLin enjoys strong theoretical guarantees: (i) FedLin matches centralized rates,
and, in particular, guarantees linear convergence to the global minimum under arbitrary objective
and systems heterogeneity; and (ii) preserves linear convergence rates despite aggressive gradient
sparsification. We also established a tight lower-bound for FedLin, highlighting that even mild
statistical heterogeneity can end up hurting convergence rates - this is the first such result in FL. Our
current approach requires two passes of communication between the clients and the server in each
round. Moreover, our analysis does not account for partial client participation. As future work, we
plan to address these limitations. We also plan to investigate other federated learning formulations
(beyond supervised learning) where statistical heterogeneity can potentially help.
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