
Published as a conference paper at ICLR 2025

SHARPER GUARANTEES FOR LEARNING NEURAL NET-
WORK CLASSIFIERS WITH GRADIENT METHODS

Hossein Taheri
Department of Computer Science and Engineering,
University of California, San Diego.
htaheri@ucsd.edu

Christos Thrampoulidis,
Department of Electrical and Computer Engineering,
University of British Columbia.
cthrampo@ece.ubc.ca

Arya Mazumdar
Department of Computer Science and Engineering,
University of California, San Diego.
arya@ucsd.edu

ABSTRACT

In this paper, we study the data-dependent convergence and generalization behavior
of gradient methods for neural networks with smooth activation. Our first result
is a novel bound on the excess risk of deep networks trained by the logistic loss,
via an alogirthmic stability analysis. Compared to previous works, our results
improve upon the shortcomings of the well-established Rademacher complexity-
based bounds. Importantly, the bounds we derive in this paper are tighter, hold
even for neural networks of small width, do not scale unfavorably with width, are
algorithm-dependent, and consequently capture the role of initialization on the
sample complexity of gradient descent for deep nets. Specialized to noiseless data
separable with margin � by neural tangent kernel (NTK) features of a network
of width ⌦(poly(log(n))), we show the test-error rate to be e

O(L)
/�

2
n, where

n is the training set size and L denotes the number of hidden layers. This is an
improvement in the test loss bound compared to previous works while maintaining
the poly-logarithmic width conditions. We further investigate excess risk bounds
for deep nets trained with noisy data, establishing that under a polynomial condition
on the network width, gradient descent can achieve the optimal excess risk. Finally,
we show that a large step-size significantly improves upon the NTK regime’s
results in classifying the XOR distribution. In particular, we show for a one-hidden
layer neural network of constant width m with quadratic activation and standard
Gaussian initialization that SGD with linear sample complexity and with a large
step-size ⌘ = m reaches the perfect test accuracy after only dlog(d)e iterations,
where d is the data dimension.

1 INTRODUCTION

1.1 OVERVIEW

Neural networks, with their vast capacity for capturing intricate patterns in data, have triggered
a paradigm shift in machine learning. Despite the power of these networks in modeling complex
relationships, the interplay between their optimization and generalization behaviors (that is the gap
between training and test errors) continues to be a compelling area of research. In practice, training
neural networks using gradient-based optimization methods often leads to interpolation. That is, deep
networks can meticulously fit the training data, driving empirical loss to near-zero and training error
to perfect classification. However, these networks also demonstrate the capability to generalize well to
unseen data. Various recent research endeavors have explored the training and test error guarantees of
deep networks, with a focus on the Neural Tangent Kernel (NTK) regime Jacot et al. (2018); Du et al.
(2019). One prominent feature of such works is that during gradient descent iterates the network’s
weights are constrained to move at most a constant distance with respect to overparameterization i.e.,
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Activation Width Train Loss Test Loss
Chen et al. (2021);
Bartlett et al. (2017)

ReLU ⌦(poly( log(n)
�

)) eO( 1
�2T

) eO( e
O(L)

�2

p
m

n
+ 1

�2T
)

Thm. 2.1, Cor. 1 Smooth ⌦(poly( log(n)
�

)) eO( 1
�2T

) eO( e
O(L)

�2n
+ 1

�2T
)

Table 1: Comparison of our results on learning deep nets with GD under NTK separability condition
to related prior results. Here m : network width, L : network depth, � : NTK-margin, n : number of
samples and T : number of iterations.

Activation Width Iteration Sample

Telgarsky (2023); Chen et al. (2021);
Taheri & Thrampoulidis (2024);Cor.1

all ⌦(poly(d)) d
2 eO(d2)

Glasgow (2024) ReLU ⌦(poly(log(d))) poly(log(d)) eO(d)

Thm. 2.4 Quadratic ⌦(1) log(d) eO(d)

Table 2: Comparison of our findings on learning the d-dimensional XOR distribution with SGD to
relevant prior results.

kw? � w0k= Om(1), where w
? 2 Rp denotes the vector of target weights, w0 is the initial weight

vector, and m is the network width Chen et al. (2021); Ji & Telgarsky (2020); Telgarsky (2023).

Yet, even for the relatively simple setting of learning deep nets in the kernel regime, the existing gen-
eralization bounds are still suboptimal. Moreover, the boundaries of the kernel regime are still largely
unknown and an active area of research Liu et al. (2022); Banerjee et al. (2022); Telgarsky (2023).
While the kernel regime can partially demonstrate the behavior of neural networks, the resulting
guarantees often require large width, small step-size or large iteration and sample complexities. There
is increasing evidence in recent years that for certain class of data distributions neural networks can
overcome these limitations by using a large step-size which allows the network’s parameters to move
a long distance from initialization, often leading to better sample and computational complexities
Damian et al. (2022); Ba et al. (2022).

In this work, we study the generalization and convergence behavior of gradient-based algorithms in
neural nets with smooth activation functions for a wide class of data distributions. Our first result
characterizes the test and train loss rates for classification problems under the condition that deviation
from initialization is bounded depending on the network’s width. In particular, for L-hidden layer
networks our results hold under kw? � w0k. m

O(1/L), allowing the network’s weights to move
from initialization a distance increasing with m. This shows that the kernel regime continues to hold
for a wider range of setups than previous results for which the deviations are restricted to be constant
in m. The key reason for this improvement is exploiting the objective’s Hessian structure in the
gradient-descent path. More importantly, using the Hessian information enables us to develop, for the
first time, algorithm-dependent generalization bounds of deep neural networks. As will be discussed
throughout the paper, the bounds we derive via algorithmic-stability are tighter than previous relevant
bounds in the literature. We specialize these results to a well-known NTK separability condition
tailored for noiseless data and show that our results substantially improve the prior results on the test
error performance while still allowing the width to be small, specifically poly-logarithmic on sample
size (Table 1). A more detailed comparison is deferred to Section 1.2. We also consider the case of
noisy data distributions and show that deep models are consistent, i.e., they can achieve the optimal
test loss in the presence of noise as the sample size grows.

While these results improve upon the existing bounds within the NTK regime, we show in Section 2.2
that using a large step-size can further improve both the computational and sample complexities. In
particular, we show for the stylized setup of data following the XOR distribution, a two-layer neural
network with quadratic activation reaches zero test error after only log(d) steps of SGD with an
aggressive step-size ⌘ = m. A comparison of our findings with the guarantees of the kernel regime
with both GD Taheri & Thrampoulidis (2024) and one-pass SGD Telgarsky (2023); Chen et al. (2021)
and the most relevant work in the feature learning regime Glasgow (2024) is summarized in Table 2.
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Below is a summary of our contributions.

• In Theorem 2.1, we develop sufficient conditions for the global convergence of gradient descent in
deep and smooth networks and show that if m = ⌦(kw? � w0k6L+4), the training loss is bounded
by O(kw

?�w0k2

⌘T
), where ⌘ is the step-size and w

? can be any choice of network weights that
achieves small training loss. Under similar conditions on m, we show the generalization error is
bounded by O(kw

?�w0k2
G

2
0

n
) where G0 is the Lipschitz parameter of the network at initialization.

• In Corollary 1, we interpret these results by specializing them to a commonly-used margin-based
NTK separability condition. The results of the corollary and comparison to previous works in
literature are summarized in Table 1. A promising feature of our approach is that the test loss
bound does not have an unfavorable dependence on the width while still maintaining minimum
poly-logarithmic width conditions, which is new in the context of deep learning. To the best of our
knowledge this is the tightest test error bound for deep nets trained by GD in the NTK regime.

• We consider the more general case of noisy data with non-vanishing optimal test loss in Theorem 2.3
and show that under a polynomial growth condition on network width, GD achieves a convergence
rate of 1/

p
n to the optimal loss after T =

p
n iterations.

• In Section 2.2, we consider the d-dimensional XOR distribution and show that a one-hidden layer
network of constant width after exactly log(d) iterations of SGD with step-size ⌘ = m achieves
perfect test accuracy with n = eO(d) samples, considerably improving kernel regime’s limitations.

1.2 PRIOR WORKS

Generalization of deep nets. Among prior works on the generalization capabilities of deep
networks, the only initialization dependent bounds were provided in Bartlett et al. (2017)
obtaining bounds of order O(R

n
) where the Rademacher complexity is derived as R :=

(
Q

L

i=1kWik2)(
P

L

i=1
kW>

i
�M

>
i
k2/3
2,1

kWik2/3
2

)3/2. Here kWik2 is the spectral norm of the weight matrix of
layer i (typically a constant) and Mis are any data-independent matrices. Thus one can choose
Mi = Wi,0, i.e., the initialization weight matrix. In fact, the above bound resembles the bound that
we obtained via an optimization-dependent stability analysis. However, note that R depends on the
distance traversed by weights through the `2,1 norm which is always larger than the Frobenius norm,
and in the worst case, the gap can be significantly large depending on the width. To see this, note that
for a matrix V 2 Rm⇥m it holds that kV k2,1

p
mkV kF . We note that “initialization-independent”

bounds (e.g., Neyshabur et al. (2018); Golowich et al. (2018)) that are usually proportional to kwtk
(rather than kwt � w0k) are strictly looser than the bound we obtain. This is primarily due to the
fact that kwt � w0k can be much smaller than kwtk and in fact as our experiments show kwt � w0k
is of constant order and can even decrease with width. Whereas, kwtk (or kwtk/

p
m due to the

normalization in our setup) grows by increasing m, making the initialization-independent bounds
potentially grow with width at the rate O(

p
m), despite lacking an explicit dependence on m. Hence,

for wide networks, prior generalization bounds of deep neural nets based on Rademacher complexity
are larger than the bound we derive in Theorem 2.1.

Test rates under the NTK separability condition. Other works that provide generalization
bounds and optimization guarantees for neural nets include Cao & Gu (2019); Nitanda et al. (2019);
Ji & Telgarsky (2020); Chen et al. (2021); Richards & Rabbat (2021); Taheri & Thrampoulidis
(2024); Wang et al. (2023). In particular, Ji & Telgarsky (2020) derived the width condition m =
⌦(poly(log(n))

�8 ) for achieving the 1
�2

p
n

-test error rate in two-layer nets via a uniform-convergence
argument Shalev-Shwartz & Ben-David (2014). This bound was extended to deep networks in Chen
et al. (2021) with a generalization gap of order

eO
✓
4L

�2

r
m

n
^
✓

L
3/2

�2
p
n
+

L
11/3

�2m1/6

◆◆
,

where ^ takes the minimum of two quantities. As discussed earlier, this bound is dependent on
width since it is derived essentially by taking the minimum of two generalization bounds based on
Rademacher complexity derived in Bartlett et al. (2017) and Cao & Gu (2019). Importantly, in the
small width regime the bound simplifies into Õ( 4

L

�2

p
m

n
), which has an undesirable dependence on
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the width. In this paper, we improve the generalization gap to Õ( e
O(L)

�2n
) under the width condition

m = ⌦(poly(log(n)/�)). To the best of our knowledge, these are the smallest generalization bound
and width condition in literature up to now for learning deep neural nets. The key reason behind the
improvement is leveraging the Hessian structure of the objective throughout the gradient descent
iterates. The improved generalization guarantees result from the algorithmic dependency of our
bounds and in fact the bounds can even be expressed such that they solely depend on the cumulative
training loss (c.f. Eq. 5). As the training loss captures the role of initialization and is independent of
width, the resulting generalization bounds share the same favorable properties.

Feature learning and the XOR distribution. Some recent works have pointed out the limitations
of the kernel regime in understanding the full power of neural networks Abbe et al. (2022). In
particular, as in the kernel regime, the networks weights are bounded not to move significantly from
initialization, the learned features are not considerably different from those learned at initialization.
On the other hand, it is hypothesized that neural networks can learn the true underlying features of the
data distribution if the network weights are allowed (by large step-sizes or avoiding early-stopping)
to move a large distance from initialization. This phenomenon was first proved for specific regression
tasks where the labels essentially only depend on a small number of features, such as when y = g(Ux)
for U 2 Rk⇥d where k ⌧ d Damian et al. (2022); Ba et al. (2022); Abbe et al. (2022); Cui et al.
(2024), by one large SGD step leading to superior sample complexities compared to the kernel regime.
For classification tasks, some focus has been on the XOR distribution(a.k.a. parities) Wei et al. (2019).
Recent works have studied the problem of learning the d-dimensional XOR distribution using neural
networks in both NTK and feature learning settings Barak et al. (2022); Telgarsky (2023); Taheri
& Thrampoulidis (2024); Glasgow (2024). Specifically, it has been shown that under NTK with a
sufficiently small step size, a polynomially wide network requires d2 GD steps and d

2 sample size.
Some studies have achieved linear sample complexity for learning XOR Bai & Lee (2019); Glasgow
(2024); Telgarsky (2023); but these methods involve more computational effort compared to our
results. The work most related to ours is Glasgow (2024), which demonstrated that with a particular
Gaussian initialization, a ReLU network requires poly(log(d)) large SGD steps and poly(log(d))
neurons to learn XOR with linear sample complexity. In contrast, we show that by using a quadratic
activation, learning this distribution requires only log(d) large steps with a constant-width network,
while maintaining the same linear sample complexity.

NOTATION

Probability and expectation with respect to the randomness in random variable x are denoted by
Prx(·) and Ex[·]. We use Ex[wt] to represent the weights after t steps of gradient descent using
the population’s gradient. We use the standard complexity notation ., o(·), O(·),⇥(·),⌦(·) and use
õ(·), Õ(·), ⇥̃(·), ⌦̃(·) to hide polylogarithmic factors. We denote a ^ b := min{a, b}. The gradient
and Hessian of the model � : Rp⇥d ! R with respect to the first input (that is, weights) are denoted
by r� and r2�, respectively. The minimum eigenvalue of a symmetric matrix is denoted by �min(·).
We use k·k for the Euclidean norm of vectors and k·k2 for the spectral norm of matrices. We denote
[w1, w2] := {w : w = ↵w1 + (1� ↵)w2,↵ 2 [0, 1]} the line between w1, w2 2 Rp.

2 MAIN RESULTS

Throughout the paper, we consider the following unregularized objective for a neural network
classifier parameterized with w 2 Rp

,

min
w2Rp

bF (w) :=
1

n

nX

i=1

f (yi�(w, xi)) , (1)

with data points satisfying kxk 1, the binary labels yi 2 {±1} and f(·) is a loss function for
classification tasks such as the logistic loss, f(t) := log(1 + e

�t) and �(·, x) is the network’s output.
We also define the test loss as F (w) := Ex,y[f(y�(w, x))].
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2.1 TRAIN AND TEST LOSS BOUNDS IN DEEP NETS

In our first theorem, we establish conditions for the width and target weights of the network that
guarantees the training loss decays to zero if the network can interpolate the training set. We consider
gradient descent update rule where at any iteration t  T : wt+1 = wt � ⌘r bF (wt). Before stating
the theorem, we note that this result is valid under the standard descent-lemma condition for the
step-size, as stated in Lemma 3 in the appendix. In particular, the descent lemma holds if the step-size
satisfies the standard Eq. 34 in the appendix.
Theorem 2.1 (Train & Test loss of deep nets). Consider L-layer network where �(w, x) :=
1p
m
W

>
L+1(

1p
m
�(W>

L
· · · 1p

m
�(W>

1 x) · · ·) and � is a 1-smooth and 1-Lipschitz activation func-
tion such that �(0) = 0. Moreover, let �L be a constant that only depends on L, let all parameters of
the network be initialized as i.i.d. standard Gaussian and assume the step-size satisfies the condition
of the descent lemma. Fix T and assume the target weights vector w? 2 Rp that obtain small training
loss such that

⇢
? � max

⇢q
⌘T bF (w?),

q
⌘ bF (w0)

�
. (2)

where ⇢
? := kw? � w0k. Moreover, assume the width m is large enough such that it satisfies,

m � 4�2
L
(6⇢?)6L+4 (3)

Then, kwt � w0k= O(⇢?) and the training loss satisfies with high probability over initialization,

bF (wT ) 
4⇢?2

⌘T
. (4)

Moreover, assume for every n samples from the data distribution there exists w? satisfying Eqs. 2-3.
Then, the expected generalization gap satisfies with high probability over initialization,

ES

h
F (wT )� bF (wT )

i
 2.2

⌘(G0 + 1/4)2

n
ES

"
T�1X

t=0

bF (wt)

#
, (5)

where the expectation is over the randomness in the training set denoted by S and G0 is the Lipschitz
parameter of network at initialization i.e., kr�(w0, ·)k G0.

In words, the main condition of the theorem is the existence of network weights denoted by w
? that

achieves small training error (Eq. 2) and its distance from initialization is at most O(m1/(6L+4))) as
implied by Eq. 3. Under these conditions, the training loss is controlled solely by kw? � w0k and
has no explicit dependence on the width or depth of the network. As it will be stated in Corollary 1,
in the NTK regime with margin � it holds kw? �w0k= O(log(n)/�), leading to the width condition
m = ⌦(poly(log(n)/�)). This is unlike previous results which either required polynomial width
(such as (Liu et al., 2022; Cao & Gu, 2019)) or led to sub-optimal bounds (e.g., (Chen et al., 2021; Ji
& Telgarsky, 2020)).

In general, the theorem is valid for any feasible minimizer w? 2 Rp. Thus, we can choose w
? with

smallest value for kw? � w0k to optimize the bounds. With such choice of w?, the distance the
weights obtained by GD travel is also minimized as 8t 2 [T ] : kwt � w0k= O(kw? � w0k). Thus,
gradient descent tends toward solutions which attain small loss and lie at minimum possible distance
from initialization. This is in line with related prior observations in several other works such as (Du
et al., 2019; Oymak & Soltanolkotabi, 2019).

The theorem also shows the sample complexity and iteration complexity of learning deep networks
with gradient descent and demonstrates the role of initialization and weight’s norms on the test
error. Note that by replacing the time-averaged training loss guarantees (cf. Theorem B.1), the
generalization gap simplifies into:

ES

h
F (wT )� bF (wT )

i
 9

⇢
?2(G0 + 1/4)2

n
. (6)

Hence, the test loss after T = ⇥(n) iterations takes the form of

ES

h
F (wT )

i
= O

0

B@

���w? � w0

���
2
G

2
0

n
+

���w? � w0

���
2

⌘n

1

CA , (7)
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where the first term is the generalization error and the second term is the training loss. Remarkably,
Eq. 7 shows the tight correlation between the two terms, as the generalization gap is virtually the
optimization error scaled by the squared Lipschitz constant G2

0. This is indeed the consequence of
Eq. 5 which bounds the generalization gap based on the cumulative optimization error.

At a high-level, the test loss essentially depends on two quantities: (i) the Euclidean distance between
the target weights and the initialization and (ii) the Lipschitz parameter of network at initialization.
Due to the algorithmic-dependent nature of our generalization bounds and unlike the prior bounds in
literature, the bound in Eq. 7 captures the role of initialization on the test error: smaller deviations
from initialization lead to smaller test error bounds and in particular the bound approaches zero as
⇢
? goes to zero. As discussed earlier, gradient descent favors such solutions with small deviations

from initialization. In addition to “distance from initialization”, the test error bounds also depend
on the squared Lipschitz parameter of the network. For standard Gaussian initialization, it can be
shown (cf. Section A.2) that G0 . e

O(L) which introduces an exponential dependence on depth to
the generalization bound. We remark that this dependence also appears in the corresponding bounds
derived via uniform convergence and Rademacher complexity (e.g., (Bartlett et al., 2017; Golowich
et al., 2018; Chen et al., 2021)) through the term

Q
L

i=1kWik2.

An interesting feature of our approach is the algorithmic dependent bound in Eq. 5. This bound is
generally tighter than the bound in Eq. 6. With the descent lemma condition on the step-size (c.f.
Lemma 3) it holds that ⌘ < 1/(G2

0 + 1/4) which simplifies the bound into:

ES

h
F (wT )� bF (wT )

i
 2.2

n
ES

"
T�1X

t=0

bF (wt)

#
. (8)

Hence, we have a bound which only depends on the training performance and the number of training
samples. In our experiments in Section 3, we compute this bound for real-world data and compare it
with the empirical results for generalization and test loss.
Remark 2.2. Our analysis relies on the recent progress in characterising the spectral norm of the
deep net’s Hessian during GD updates (Liu et al., 2020; Banerjee et al., 2022). In particular, Liu
et al. (2020) proved that with standard Gaussian initialization, the model’s Hessian is bounded with
high probability by kr2�(w, x)k= O(R

3L
p
m
) if kw � w0k R. These guarantees can also be used

to study the convergence rate of deep networks trained by quadratic loss as done by (Liu et al.,
2020; 2022) but their approach leads to excessively large width conditions. In contrast, here we
consider classification tasks with an improved poly-logarithmic width requirement and also study the
generalization performance.

Recently, the algorithmic stability has been employed for two-layer neural nets in (Taheri & Thram-
poulidis, 2024; Richards & Rabbat, 2021)which is an improved analysis of the stability-based
approach typically used for convex objectives in (Bousquet & Elisseeff, 2002; Hardt et al., 2016; Lei
& Ying, 2020). Here, we essentially extend the stability analysis to deep networks. Compared to the
two-layer nets, here in every iterate of gradient descent, the Hessian’s norm guarantees depend on
the network’s weights. In particular, the analysis has to take into account that both kwt � w0k and
kwt � w

?k remain small during GD updates. This is necessary in order to ensure the Hessian’s norm
guarantees and the approximate quasi convexity property hold during all GD iterates. We do this
by an induction based argument which bounds these terms based on the fixed quantity kw? � w0k,
which is guaranteed to be bounded based on width by assumption.

2.1.1 SPECIALIZING TO THE NTK-SEPARABLITY CONDITION

The results in the last section can be specifically applied to a class of data distributions that includes
the XOR distribution which will be discussed more through the rest of the paper. Before stating our
result in the corollary, we state the neural tangent kernel (NTK) separability assumption.
Assumption 1 (NTK-separability (Nitanda et al., 2019)). Assume the tangent kernel of the model
at initialization separates the data with margin � i.e., for a unit-norm vector w 2 Rp it holds for all
i 2 [n] : yi hr� (w0, xi) , wi � �.

In words, the above assumption implies that the features learned by the gradient at initialization
can be linearly separated by some weights w. This assumption is commonly used in deep learning
literature for studying classification tasks (Chen et al., 2021; Ji & Telgarsky, 2020).
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Corollary 1 (NTK results). Consider the same setup as Theorem 2.1 and let Assumption 1 hold.
Define constant B > 0 that bounds the model’s output at initialization i.e., 8i 2 [n] : |�(w0, xi)|< B.

Assume the width is large enough such that m � �
2
L

⇣
2B+log(1/✏)

�

⌘6L+4
. Then there exists w? 2 Rp

such that F (w?)  ✏ and w
? lies at a bounded Euclidean distance from initialization such that

kw? � w0k 1
�
(2B + log(1/✏)).

To interpret this result, we apply this result to Theorem 2.1 and fix ✏ = 1/T . First note that the output
of network at initialization is constant with high-probability over initialization (e.g., see (Liu et al.,
2020, Lemma F.4), (Cao & Gu, 2019, Lemma 4.4)) which implies B = Õ(1). Overall, with the
stopping condition T = ⇥(n) and recalling that G0  e

O(L), Corollary 1 yields the expected test
error rate of order

eO
✓
e
O(L)

�2n
+

1

�2T

◆
,

under the condition that m = ⌦(poly(log(n)) · �L/�
6L+4). We remark the bound does not have any

explicit dependence on m. This in itself is not surprising as one intuitively expects the bound not to
scale unfavorably with width. Although recent works have derived width independent generalization
bounds for two-layer networks (Ji & Telgarsky, 2020; Telgarsky, 2023; Taheri & Thrampoulidis,
2024), we are not aware of any prior work proving width-independent bounds for learning multi-layer
networks with GD. As discussed earlier in the introduction, the bound derived in the closely related
work (Chen et al., 2021) scales unfavorably with m as it grows at the rate

p
m/n. In fact, the authors

refer to deriving width-independent bounds as an open problem in (Chen et al., 2021, Sec 3.1).

2.1.2 CONSISTENCY OF GD WITH NOISY DATA

The results of the last section mainly apply to data settings when the network can find the optimal
solution within a bounded distance from initialization that depends on the network’s width. This
setting was specially tailored to the noiseless case where achieving vanishing test loss was possible.
We discuss next the case of learning deep nets by noisy data and show that achieving optimal test loss
might be feasible in this setting.
Theorem 2.3 (Test error for noisy data). Consider the same setup and notation as Theorem 2.1 and
assume the width of the network satisfies m � �

2
L
n
3L+3 and the step-size satisfies the conditions of

the descent lemma. Then, with high probability over initialization the expected test loss at iteration
T =

p
n is bounded as:

ES

h
F (wT )

i


✓
1 +

4p
n

◆✓
F (w?) +

⇢
?2

⌘
p
n
+

⇢
?2

n
p
n
+

1p
n

◆
, (9)

where ⇢? := kw?�w0k and w
? is the minimizer of the population loss i.e., w? = argminw2Rp F (w).

The result above shows that GD reaches optimal level given that
p
n � kw? � w0k2; as for large n,

it leads to the simplified expression

ES

h
F (wT )

i
� F (w?) = O

0

B@

���w? � w0

���
2
+ F (w?)

p
n

1

CA .

Thus, even in non-interpolating regime, GD can still achieve the optimal solution of over-
parameterized deep networks.

The bound in Eq. 9 is derived via a stability argument which bounds the generalization gap based
on the training performance. However, contrary to the conditions of Theorem 2.1 here we do not
have the interpolation condition as F (w?) is not vanishing. This comes at the expense of a larger
width condition where the width is polynomial in n whereas poly-logarithmic width was sufficient in
Theorem 2.1. The condition on early stopping further guarantees that the test loss reach the Bayes
error given n is sufficiently large. It is worth noting that the setting above still is operating almost in
the NTK regime. This can be verified by the observation that for the bound to be meaningful it should
hold that kw? � w0k⌧

p
n . m

O(1/L), as per the theorem’s width condition. Finally, we remark
that the result of Thm 2.3 nicely connects to recent empirical and theoretical results (Li et al., 2020)
which show that with early-stopping, GD can find a good solution for clustered data with label noise.
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2.2 OVERCOMING NTK LIMITATIONS FOR XOR DATASET

Next, we show the previous NTK guarantees can be improved by using large step-sizes. We consider
the stylized set-up of learning the d�dimensional XOR data distribution. Consider one-hidden layer
network with quadratic activation where x 2 Rd

, wi 2 Rd:

�(w, x) =
1

2m

mX

i=1

ai(x
>
wi)

2
.

In the above, ai 2 {±1} are fixed during training and satisfy
P

i
ai = 0 and only the first layer

weights are trained. For initialization of first layer’s weights we have 8i  m, j  d : w0,ij
iid⇠

N(0, 1
d
). The data points (x, y) 2 {±1}d ⇥ {±1} are uniformly drawn from the resulting d-

dimensional distribution of 2d points where the labels are determined as y = x(1) · x(2). For the
result in the next theorem, we assume the loss function is the linear loss f(t) = �t and consider
mini-batch SGD with the update rule w

t+1 = w
t � ⌘ bF (wt), where at each step, n data points are

drawn i.i.d. from the distribution to form bF (·). The next theorem shows the computational and
sample complexities of learning this dataset for the aforementioned setup.
Theorem 2.4 (Improved guarantees for learning XOR). Assume mini-batch SGD with batch-size
n � d · log14(d) and step-size ⌘ = m. Then, after T = log(d) iterations the test accuracy satisfies
with probability at least 1� e

log(m)�log2(d) � e
� m

16 � od(1) over the randomness of initialization
and data sampling,

Ex,y

h
1{y�(wT ,x)>0}

i
� 1� od(1). (10)

Hence, with logarithmic number of SGD steps we use eO(d) samples in total to reach almost perfect
test accuracy. We remark based on the guarantees of Theorem 2.4, the network’s width can be
constant and at most must be polynomial in d in order for Eq. 10 to hold with high probability. This
aligns with our experiments in Fig. 4, demonstrating that the network’s width can be independent of
data dimension as a network of constant width (where m = 20) suffices for learning arbitrary high-
dimensional XOR data. We also note the considerable gains in iteration, sample and computational
complexities by Theorem 2.4 resulting from escaping the NTK regime with our step-size selection.
Contrary to Theorem 2.1 which required small step-size in accordance with the descent lemma, here
the step-size is proportional to width. For a comparison with recent results for this dataset we refer to
Table 2. To the best of our knowledge these are the best complexities on iteration and network width
for this setup.
Remark 2.5. The proof of Theorem 2.4 (provided in Appendix E) is nuanced and involves computing
expected weights and their corresponding error terms due to SGD sampling noise for each parameter
of the network. It is then showed that signal strength (i.e., the strength of important features)
grows as 2tp

d
whereas the error terms due to sampling noise and initialization grow at most at the

rate (1 + 1
poly(log(d)) )

t

p
d

poly(log(d)) +
2ttp

d·poly(log(d)) . Therefore, after log(d) steps the noise strength

reaches
p
d

poly(log(d)) whereas the signal’s magnitude is at least
p
d, letting the signal outgrow the noise

and leading to the network classifying every point correctly.

3 NUMERICAL RESULTS

Experiments on learning under NTK with small step-size. In this section, we present numerical
results on the behavior of the generalization bound derived in Theorem 2.1 for real-world data
(FashionMNIST and MNIST datasets) and compare it with the empirical generalization gap.

For demonstrating our theoretical results, we are interested in the algorithmic-based generalization
bound (Eq. 8) derived as,

ES

h
F (wT )� bF (wT )

i
 2.2

n
ES

"
T�1X

t=0

bF (wt)

#
. (11)

8



Published as a conference paper at ICLR 2025

Figure 1: Iteration-based distance from initialization (kwt � w0k), training loss, test loss and
generalization gap (i.e., test loss – train loss) for training a two hidden-layer neural network with
FashionMNIST dataset and two choices of step-size. Here n = 12⇥ 103,m = 500, and total number
of parameters p ⇡ 6⇥ 105.

Figure 2: Iteration-based distance from initialization, training loss, test loss and generalization gap
for training a two hidden-layer neural network with FashionMNIST dataset and m = 250, 500. Here
n = 4⇥ 103, p ⇡ 2⇥ 105(blue line), 6⇥ 105 (red line), and ⌘ = 0.02.

Figure 3: Iteration-based distance from initialization, training loss, test loss and generalization
gap for training a two hidden-layer neural network with MNIST dataset and m = 300, 600. Here
n = 2⇥ 103, p ⇡ 3⇥ 105(blue line), 8⇥ 105 (red line) and ⌘ = 0.02.

We find it helpful to note that the bound above requires the width condition in the theorem (i.e.,
m = ⌦(kw? � w0k6L+4)) to be valid. However, verifying this condition is not feasible in general.
Moreover, the bound is valid for expected generalization gap where the expectation is taken over
data sampling. Therefore computing the exact values of both sides of the above inequality is
computationally exhaustive. For our experiments we consider one realization to estimate these values.
Due to both of these reasons, the theoretical test loss and generalization loss that we present in this
section should only be taken as approximations of the general behavior of the bound and not as an
actual verified bound on the generalization. However, in order to reduce these impacts we conduct
several experiments with varying network’s width.

We consider binary classification with a 2-hidden layer network with softplus activation (�(t) =
log(1 + e

t)) trained by the logistic loss function. Figure 1 presents train, test and generalization
behavior of GD for learning a such a model with FashionMNIST dataset. The two lines in each figure
correspond to ⌘ = 0.01, 0.1. In the two rightmost plots, the resulting theoretical generalization and
test loss curves derived from Eq. 11 are compared with the empirical values. Note the good alignment
between theoretical and empirical behavior for the generalization and test loss.

A similar behavior is observed in Figures 2-3. In Figure 2, we consider a similar setup but we reduce
the sample size to 4000 training data in order to allow larger test-loss behavior. The resulting plots
show the training and test loss performance for two choices of m = 250 and m = 500. In Figure 3,
we consider the MNIST dataset for m = 300 and m = 600 and let the sample size be n = 2000. It is

9
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Figure 4: Left: Misclassification error based on iteration in learning the d�dimensional XOR distri-
bution with SGD. Right: Total number of SGD steps based on data dimension to reach approximately
zero test error.

noteworthy that the findings in both figures bear similarities, with the theoretical bounds providing
non-vacuous and accurate approximations for the test loss and generalization gap.

Experiments on learning the XOR distribution with large step-size. Figure 4 demonstrates the
test error curves associated with learning the XOR distribution according to the setting of Theorem
2.4. In particular, we fix n = 6d, ⌘ = m = 20 and set the total number of SGD steps as T = dlog(d)e.
Note that the number of iterations required to reach perfect accuracy grows with d. The right side of
Figure 4 provides further insight into the relationship between dimensionality and convergence rate.
It displays the total number of SGD steps required to reach a test error below 0.01 for different values
of d using n = 3d, m = ⌘ = 20. The results are averages over five independent experiments and
highlight the logarithmic dependence of the total SGD iterations on data dimension for achieving
near-zero test error.

4 CONCLUSIONS AND FUTURE DIRECTIONS

We explored the convergence and generalization of smooth neural networks trained with gradient
methods. Our first goal in this paper was to derive generalization bounds through a new stability-
based approach which had not been discussed in the vast literature of deep learning. These findings
represent an improvement over previous results that either required substantial over-parameterization
or provided suboptimal generalization rates that depended on the network width. For general noisy
data distributions, we also derived generalization guarantees showing that GD can reach the optimal
test loss. We also showed that orders of magnitude improvements in sample and computational
complexity are possible by surpassing the NTK limitations and using SGD with large step-size.
Several directions remain open to future research:

• It remains open to explore whether the minimum width conditions of Theorems 2.1-2.3 can
be improved in terms of � or n.

• It is also interesting to extend the XOR analysis to the noisy setting where a fraction of the
data points have corrupted labels.

• The feature learning phenomenon in multi-index classification tasks remains largely un-
explored. While we believe the XOR setup is a must-take first step, extensions to other
multi-index models can shed further light on the strengths and limitations of neural networks.

• We also aim to understand the potential benefits of network depth in either the NTK regime
or feature learning i.e., whether adding a single layer can improve sample complexity or
reduce the total number of SGD iterations.
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