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ABSTRACT

Long-context large language models (LLMs) are prone to being distracted by
irrelevant contexts. The reason for distraction remains poorly understood. In this
paper, we first identify the contextual heads, a special group of attention heads that
control the overall attention of the LLM to the contexts. Then, we demonstrate
that distraction arises when contextual heads fail to allocate sufficient attention to
relevant contexts and can be mitigated by increasing attention to these contexts. We
further identify focus directions, located at the key and query activations of these
heads, which control the amount of attention activated from the attention sink to the
contexts. With a proper amount of attention activation, the contextual heads could
allocate more attention to relevant contexts. Motivated by this, we introduce an
automated magnitude control method that keeps attention activation within a proper
range, enabling practical use of focus directions. We comprehensively evaluate the
effect of focus direction on various long-context tasks and find that focus directions
can help mitigate the poor task alignment of long-context LLMs. We believe our
findings could promote further research on long-context LLM alignment.

1 INTRODUCTION

Long-context large language models enable multiple applications, such as many-shot in-context
learning |Li et al.| (2024c); |Agarwal et al.|(2025)); Bertsch et al.|(2024), summarization |Chang et al.
(2023)); Kim et al.| (2024), and retrieval-augmented generation [Lee et al.|(2024)). Given a long context
window such as 128k tokens, only a small amount of the contexts are relevant to the task, and a large
amount of contexts are irrelevant. Long context LLM may be distracted by irrelevant contexts |Liu
et al.| (2024); Shi et al.|(2023)). Such distractions may result in generating false information, erroneous
reasoning, and negative social impacts.

The reason for LLMs being distracted by irrelevant context is poorly understood. In this paper,
we aim to reveal the cause of the distraction (§2). As shown in Figure[I] starting with a dataset
with labels of relevant and irrelevant context, we first introduce a contextual scoring method, which
measures the strength of the attention to the relevant context during text generation. Based on such a
scoring method, we identify contextual heads, a special group of attention heads with the highest
score. We then adjust the strength of attention of these heads to the relevant contexts based on the
label of the relevant context. We found that increasing attention on these heads to the relevant context
increases the downstream task performance, while decreasing attention decreases the performance.
While other non-contextual heads have minimal such effects. We conclude that contextual heads
could control the overall attention of LLMs to the contexts.

Building upon the findings of the contextual head, we further identify the focus directions (§3)), which
control how much attention is being activated from attention sinks Xiao et al.[(2023) to the contexts.
Focus directions are located at the key and query activations of the contextual heads. Similar to other
directional vectors, like refusal [Arditi et al.| (2024)), sentiment [Han et al.|(2023)), and truthfulness |L1
et al.| (2024b)), we found that applying a proper magnitude of focus directions could enable LLMs to
pay more attention to the relevant contexts, and thus improve the downstream performance.

To understand how focus directions affect the capability of long-context LLMs (§4), we apply
focus directions to three families of LLMs and evaluate them on HELMET |Yen et al.| (2024), a
comprehensive long-context task benchmark. We found that focus directions could help mitigate
poor task alignment of the LLMs. At last, we discuss the potential application of the focus directions.
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Figure 1: Overview of this work. We first introduce contextual scoring, measuring the attention
distribution over inputs during response generation. Based on contextual scoring, we identify the
contextual heads, which control the overall attention of LLMs. We further find out focus directions,
which make LLMs pay more attention to the relevant contexts.

2 CAUSE OF DISTRACTION

To reveal the cause of LLMs being distracted by irrelevant contexts, we first identify the attention
heads that are mostly responsible for extracting information from relevant contexts, which we named
contextual heads Then, we study the basic properties of the contextual heads, including their
location and behavior in different cases §2.2] At last, we demonstrate that increasing attention to
relevant contexts on these heads could mitigate distractions §2.3]

2.1 IDENTIFYING CONTEXTUAL HEADS

To identify contextual heads, we introduce a contextual scoring method to identify the attention
distribution of different parts of input for each attention head in the transformer architecture. Our
method is based on the Multi-Document Question Answering (QA) data introduced by the “lost in
the middle” paper |Liu et al.| (2024)).

Multi-Document Question Answering data. The data is initiated with the NaturalQuestions-Open
dataLee et al.|(2019); Kwiatkowski et al.[(2019). Each samples have a question and a list of answers.
The questions are user queries from Google search, and the answers are human-annotated based on
Wikipedia. The authors of [Liu et al.|(2024) further matched each question and answer pair with a
set of documents using a retrieval system. In these documents, only one contains the answer (i.e.,
relevant context), and others do not contain the answer (i.e., irrelevant contexts).

Experiment settings. The above dataset has 2654 samples in total, we randomly split them into half
training and half testing. The input is defined as P = [I,,, ébefore, C, éafter, I,], where I, and I,
are instructions, specifying the QA task (e.g., a system prompt and a question). The C' stands for
relevant context, é‘be fore> and C‘a fter stands for the irrelevant contexts before and after the relevant
context, which can be zero, one, or more documents. We consider 20 document cases where one of
the documents in the input is relevant and the rest of the 19 documents are irrelevant. We put the
relevant documents in positions 1, 5, 10, 15, and 20. The input is fed into an LLM, in our case, we
use Llama-3.2-3B instruction modeﬂ to obtain an LLM response I? using greedy decoding. The
evaluation metric is the exact match (EM) accuracy. If the model output matches one of the answers
in the output list, then it is considered to be correct; otherwise, it is wrong.

Contextual scoring. Based on the above data and experiment settings, we introduce the following
contextual scoring method, which aims to find a set of attention heads in the LLM that pay the
most attention to the relevant contexts during generation. Let W € RT*7T be the attention weight
matrix of an attention head, where 7' is the sequence length. For each token 7; in the generated
response R = [Fstart, - - -, Tend), We extract the attention weights corresponding to relevant contexts

'https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Long Correct Wrong Gold
Heads RT IR} IR max| Sink | Rt IR| IR max| Sink | Rt IR} IR max| Sink | R Sink
(13,23) 0209 0.516 0.160 0.105 | 0.290 0.437 0.125 0.114 | 0.106 0.612 0.202 0.093 | 0.555 0.187
(12,1) 0203 0.568 0.161 0.079 | 0.283 0.490 0.129 0.084 | 0.106 0.664 0.201 0.070 | 0.637 0.153
(15,18) 0.199 0423 0.138 0.254 | 0.279 0.338 0.101 0.267 | 0.101 0.525 0.183 0.238 | 0.507 0.317
(15,22) 0.195 0.391 0.140 0.244 | 0.277 0.309 0.103 0.254 | 0.098 0.487 0.184 0.227 | 0.481 0.280
(14,2)  0.185 0.339 0.130 0.294 | 0.270 0.262 0.086 0.278 | 0.080 0.429 0.181 0.311 | 0.345 0.458

Table 1: Contextual scores of top-5 contextual heads. Heads: (Layer, head number), R: relevant
contextual score, IR: irrelevant contextual score, IR max: max single document irrelevant contextual
score, Sink: sink contextual score. We consider four cases: Long: standard 20-documents long
context case. Gold: with only relevant contexts but not irrelevant ones. Correct: exactly matched
for both gold and long case. Wrong: exactly matched for the gold case but not exactly matched in
the long case. We define the correct and wrong based on the gold to filter out the cases that are not
doable for LLMs.

C = [¢start, - - - y Cena] and sum over this span, and then average through each response token r;:

Tend Cend

Sczﬁ S OS wy (1)

i=Tstart J=Cstart

This score quantifies how much an attention head focuses on the relevant context while generating
the response. Higher values indicate stronger attention toward the relevant span, helping to identify
heads that extract the most information from the relevant contexts. We then further average the score
Sc through the dataset for each head, obtaining a relevant contextual score. We do not normalize
the score by length since, at the dataset level, each document does not have a significant difference
in length. With such a score, we are now able to identify the contextual heads with top-k scores
focused on the relevant contexts. Similarly, we can extend the definition of the relevant contextual
score to any text span in the input. We could define irrelevant contextual score, which measures the
attention to the entire irrelevant contexts (i.e., C‘be fore and C’a fter); max single document irrelevant
contextual score, which represents the highest contextual score among individual documents within
the irrelevant contexts; sink contextual score, which measure the “dummy” attention to the attention
sink (i.e., starts tokens) [Xiao et al.| (2023)) when that part of attention do not need to pay in other
non-start tokens.

2.2 PROPERTIES OF CONTEXTUAL HEADS

Contextual heads are sparse. As shown in Ulama.3.2.38 Instruct
Figure[2] among 672 attention heads in Llama-
3.2-3B instruction model, only 2 (0.3%) of the
heads have a relevant contextual score that >
0.2. Also, only 37 (5.5%) of the heads have a

- - 0.2-0.5

Layer Ids

2624222018161412108 6 4 2 0

relevant contextual score >0.1, and only 113 - - i 0102
(16.8%) of the heads have a relevant contextual =

score >0.05. In general, only a small amount of &= - “““““““““ o
heads with high relevant contextual scores are CrZ A e T oA I IeT 101920212223
considered to extract information from relevant

contexts during autoregressive generation. Most Figure 2: Location of the contextual heads.

heads, with low relevant contextual scores, are
not considered to extract information from the relevant contexts.

Contextual heads are mostly located in middle and late layers. As shown in Figure[2] most of
the contextual heads with relevant contextual scores >0.1 are located from layer 8 to layer 18 (index
from O to 27).

Contextual heads focus more on relevant context when the response is correct, focus less on
relevant context when the response is wrong. As shown in Table[I] we found that overall, relevant
contexts have lower scores than the irrelevant contexts since we have 19 documents as irrelevant
context and only 1 as relevant context. However, in the long and correct case, the score for relevant
context is larger than the IR max score. This means contextual heads have more focus on the relevant



Under review as a conference paper at ICLR 2026

context when the generated answer is correct. While in the wrong case, this does not hold that relevant
contexts have a lower score than the irrelevant ones with a max score.

More attention is ““activated” for long contexts compared to the short ones. As shown in Table[I]
sink contextual scores are similar for long, correct, and wrong cases. However, the gold has a higher
sink contextual score than the other three long context cases. At the same time, less attention is paid
to the contexts for the gold cases than the three long context cases since the attentions are summed up
to 1. This suggests that more attention is “activated” for long contexts compared to the short ones,
and the sink contextual scores could be an indicator for such activation.

2.3  ATTENTION COMPENSATION ON CONTEXTUAL HEADS

From we demonstrate the correct cases have a higher attention to the relevant contexts compared
to the wrong cases. In this section, we aim to further demonstrate that if we could increase the
attention to the relevant contexts for the contextual head, the distraction could be mitigated.

Attention compensation
method. We use split-softmax 0]
i ot al] @024a), which can %] i _— " T— P — i
increase or decrease the at- e
tention on a token span for
some specific attention heads.
Specifically, given the attention
weight matrix W € RT*T at
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Figure 3: Performance across different top-%£ contextual/random
heads and split softmax exponents 7. Baseline: 20 documents (1

Cend relevant, 19 irrelevant) case without intervention. Gold baseline:
mo(i) = Z Wi ;  (2) 1 relevant document case without intervention. Negative baseline:
J=Cstart 19 irrelevant documents case without intervention.

We then rescale the attention
distribution using the split-softmax transformation:
ey iy
Wi, = 1”00(i)<'1>{/l’j7 nree
) —7mc( e
T Wi £7¢C
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where 7 is the split softmax exponent controlling the strength of the modification, with 7 > 0. When
0 < 7 < 1, attention is increased for the span C, when 7 = 1, no modification is applied, and when
7 > 1, attention is decreased for the span C. And smaller values of 7 increase the attention, while
larger values of T decrease the attention. The reweighted matrix W’ ensures that the attention scores
still sum to 1 across each row while redistributing more attention toward the span C'.

Experiment settings. We experiment with split softmax exponent 7 = (0.1, 0.3,0.6, 1.5, 1000) with
the top-k heads of (1, 5, 10, 20, 30, 50, 100, 150, 200, 300, 400, 500, 600), using the testing split of
our dataset. We also report the baseline EM accuracy of 0.59, which is without any split softmax
intervention.

Increasing attention to the relevant contexts mitigates the distraction, while decreasing attention
to the relevant contexts results in more distraction. As shown in Figure [3] increasing the attention
to the relevant contexts (7 < 1) improves the performance. For all the cases of 7 = (0.1,0.3,0.6),
the EM accuracy is larger than the baseline. On the other hand, decreasing the attention to the relevant
contexts (7 > 1) decreases the performance.

Increasing attention on the contextual heads mitigates distraction, while increasing attention on
non-contextual heads has a limited effect on distraction mitigation. We demonstrate this through
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two aspects: using top-k contextual heads and k random heads. As shown in Figure[3] for the top-k
contextual heads, for all cases of 7 < 1, the EM accuracy improves with more attention heads being
intervened from top-1 to top-20. The best EM accuracy (0.916) is achieved with top-20 heads and
7 = 0.1. However, with more top-k heads intervened, the EM accuracy is decreased compared to
the top-20 case. Notably, adding too much attention (7 = 0.1) on 600 heads even makes the EM
accuracy drop under the baseline. On the other hand, when using & random heads with 7 = 0.3, we
observe a limited (<0.3%) EM accuracy improvement with <20 heads, a performance drop when
using 50 heads, and a similar performance compared to contextual heads when using more than 400
heads. This demonstrates that increasing attention helps more with distraction mitigation when using
contextual heads and helps less when using non-contextual heads.

Contextual heads control the overall attention of the LLM. As shown in Figure[3] when intervening
in top-20 contextual heads, increasing attention to the relevant context on the contextual heads, the
EM accuracy can reach up to 0.916, better than the gold baseline of 0.847. On the other hand, with
decreasing attention to the relevant context on the contextual heads, the EM accuracy can drop to
0.320, close to the negative baseline of 0.276. This suggests that the contextual heads control the
overall attention of the LLM to the input tokens. In the case of increased attention on the contextual
heads, the effect of input tokens in the relevant contexts can be amplified. In case of decreased
attention on the contextual heads, the effect of input tokens in the relevant contexts can be nullified.

3 ELICITING ATTENTION ON RELEVANT CONTEXTS VIA FOCUS DIRECTION

From §2.3|we show that increasing attention on the relevant contexts could mitigate the distraction.
However, in practice, we do not have the label of relevant contexts during LLM inference. We
wonder, can contextual heads figure out the relevant contexts by themselves? Inspired by previous
direction addition works |Turner et al.| (2023)); |Arditi et al.| (2024); Li et al.|(2024b)), we hypothesize
the existence of a focus direction that could make LLLMs focus more on the relevant contexts. In this
section, we first introduce a method to obtain the focus directions (. Then, we discuss the usage
and effect of the focus directions (§3.2).

3.1 OBTAINING FOCUS DIRECTION

To obtain the focus direction, we first need to identify the location of the focus direction. Previous
works mainly focused on the residual stream activation Turner et al.|(2023); |Arditi et al.[(2024) or O
projection L1 et al.| (2024b)) of attention heads, which do not have a direct relation with the attention
and may not be feasible for our case. Since the attention is produced by key and query activation, we
hypothesize that focus directions are situated within the key and query representation spaces. Based
on the hypothesis, we aim to find two focus direction vectors, one for key activation and another for
query activation for each attention head.

Obtain focus directions by training. We consider a simple training method to obtain the focus
direction. We first generate a response with [I,,, C, I,] (i.e., with relevant context only), obtain a gold
LLM response R, for each sample in our training split, and obtain text sequences [I,,, C, I, R,].
We then cache the key activations K € R7*¥ and query activations Q € RT*F of the text sequence
for each attention head, where F’ is the feature dimension of () and K. The original attention weights

is obtained by W = softmax (%) We add focus direction vectors dx € R and d € R for

K and @, obtaining a new attention weights

“

W? = softmax <(Q +do) (K + dK)T)

VF

Given the new W, we can simply put it into Equation which obtains S& =
|—}2| Sorend N~cend P4 measuring the attention to the relevant contexts C' when generat-

1=Tstart Jj=cCstart = ©J°
ing the LLM answer. We can use a simple loss function L = —Sg, training dx and dg to obtain
the focus direction. The directions maximize attention to the relevant contexts of the corresponding
attention head during the response generation process.

3.2 INFERENCE TIME INTERVENTION WITH FOCUS DIRECTION
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(Q + OtdQ)(K + OldK)T>
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where « is an intervention magnitude factor to
control the magnitude of the intervention. When
« > 0 is the positive intervention, aim to make
the attention head pay more attention to the rel-
evant context. When o < 0 is the negative inter-
vention, aim to make the attention head pay less
attention to the relevant context. When oo = 0
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have a hyperparameter k that intervenes top-k contextual heads.
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3.3 EXPERIMENT SETTINGS

We first cache the activations for the whole sequence of our training split and then obtain the focus
directions by training. We used AdamW optimizer with a learning rate of 10~ training for 10 epochs.
For evaluation, we used our testing split. We report the contextual scores of the top-5 heads in Table
[]and the EM accuracy in Figure ]

3.4 RESULTS

Focus directions make contextual heads pay more attention to the relevant context. As shown in
Table 3] when a positive focus direction is applied (v = 0.2 and o = 0.5), the contextual scores on
the relevant context are increased. Also, the higher the o, the more attention to the relevant contexts.
On the other hand, when a negative focus direction is applied, the contextual scores on the relevant
context are decreased.

Focus directions control attention activation from the sink. As shown in Table 3] while increasing
the attention to the relevant contexts, positive focus directions do not decrease the attention to the
irrelevant contexts. Instead, the attention on irrelevant context may still have little increase. The
main attention reassigned to the relevant contexts is from the attention sink. This suggests the main
function of positive focus direction is to move the attention from the sink to the relevant contexts. On
the other hand, if a negative focus direction is applied, the amount of attention in the attention sink is
increased.

Positive focus direction mitigates distraction, while negative focus direction leads to more
distraction. As shown in Figure[d] when applying a positive focus direction with 0 < @ < 0.5, for
the top 1-20 heads, the EM accuracy has a consistent improvement compared to the baseline (59.4 %).
The best EM accuracy of 67.1% was achieved with o = 0.3 with top-20 headﬂ This demonstrates
that positive focus directions could mitigate distraction. On the other hand, when applying a negative
focus direction with ac < 0, the EM accuracy drops under the baseline, indicating more distraction
than no intervention.

Focus directions only help mitigate distraction on contextual heads. When applying a positive
focus direction, we observe that an intervention of > 20 heads always results in lower EM accuracy
than the one of 20 heads. This indicates focus direction only helps mitigate distraction on contextual
heads. Applying focus direction on non-contextual heads may not help mitigate distraction. The
observation is also consistent with the attention compensation result in Figure 3]

Applying overly strong focus directions can inadvertently heighten attention to irrelevant
contexts. As shown in Table|3|, from av = 0.4 to = 0.5, the IR max score starts to rise at a higher
rate than the R score. For example, for the head (13, 23), the R score increased from 0.40 to 0.41, and
the IR max score increased from 0.21 to 0.23. The raised IR max score distracts the LLM, making

2As noted in |Liu et al[(2024), some distractor passages may contain a reasonable answer. As such, we don’t
expect the EM accuracy here to be comparable with the one in Figure@
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the corresponding EM accuracy drop from 67.0% to 65.1%. Furthermore, when oo = 1.0, the R
score further drops to 0.34, and its value is similar to the IR max score. And the corresponding EM
accuracy dropped 45.8%, even worse than the baseline of 59.4%. This indicates that applying a
strong focus direction can also distract the LLM. The amount of attention activation is needed to
align LLMs to achieve optimal downstream performance.

3.5 A PROPER AMOUNT OF ATTENTION ACTIVATION MATTERS

In the previous section, we discussed the results of applying focus direction intervention from a
dataset-level view. Here, we further discuss this from a single-sample perspective.

Improper amount of attention activation breaks the attention distribution. An improper amount
of attention activation could be either too large or too small. An overly strong positive focus direction
could result in an attention activation level that is too high, and an overly strong negative focus
direction could lead to an activation level that is too low. Specifically, the focus direction can be
applied as follows: (Q + adg)(K + adx) " (Numerator part of Equation . And it can be expanded
o QKT + aQdj + adoK " + a?dgdj.. Where the QK T is the original attention weights before
normalization, the rest are the extra terms related to the focus directions. In case of overly strong
focus direction (either positive or negative), the extra terms may be larger than the QK ", which
completely breaks the attention distribution of the LLMs. From the dataset-level view, the larger
the «, the more samples will have the attention distribution broken, and thus the performance will
decrease. For example, in Figure [d] the 20-head case, the performance starts to decrease when
a>0.3.

Automated magnitude control. To control the amount of attention activation in a proper range,
we provide an initial exploration of automated magnitude control using a magnitude controller. We
consider two types of training objectives for automated magnitude control: an aggressive Median
Intervention (MI) objective and a conservative Intervention when Necessary (IN) objective. The
details are in §C| We found that automated magnitude control improves downstream performance
without requiring manual specification of the magnitude of intervention. Such a method enables
focus directions applicable in real-world applications.

4 FOCUS DIRECTIONS ARE GENERALIZABLE TO DIFFERENT TASKS

To study the effect of the focus direction on various long-context tasks, we use HELMET |Yen
et al.|(2024), a comprehensive benchmark for long-context evaluation. We use five categories of the
task from HELMET, including Synthetic recall (Recall) (needle-in-a-haystack |Hsieh et al.| (2024)
and JSON KV retrieval task [Liu et al.| (2024)), Retrieval-augmented generation (RAG) (KILT
benchmark |[Petroni et al.| (2020), including Natural Questions (NQ) [Kwiatkowski et al.| (2019),
TriviaQA Joshi et al.| (2017), HotpotQA |Yang et al.| (2018), PopQA Mallen et al.[(2022))), Passage
re-ranking (Re-rank) (MS MARCO [Bajaj et al.| (2016))), Many-shot in-context learning (ICL)
(TREC-course, TREC-fine [Li & Roth|(2002), BANKING77 |Casanueva et al.|(2020), CLINC150
Larson et al.[|(2019), NLU [Liu et al.|(2021))), Long-document QA (Long QA)(Infbench QA and
multiple choice (MC) [Zhang et al.[(2024)).

Experiment settings. We consider three LLMs, including Llama-3.2-3B-Instruct, Qwen2.5-7B-
Instruct, and Ministral-8B-Instruct-2410. To show the effect of focus direction on base models, we
also provide the results of Llama-3.2-3B and Qwen2.5-7B, using the focus direction obtained by their
corresponding instruction models. We consider five settings, including baseline (no intervention),
a = —0.2, and 0.2 for top-10 and top-20 attention heads. Also, we experiment with 8k, 16k, 32k,
64k, and 128k token contexts, following the HELMET benchmark. We report the 32k and 64k results
in Table 2] and the rest are in the tables in the appendix. We also report the sink contextual score
under 8k and 16k contexts in Table [[3]and 14

Focus direction mitigates poor task alignment. We discuss this from two aspects. First, we
compare the task performance between base models and instruction models. For a task, if there is
a performance gain after post-training, the base model may have a performance gain by applying
the focus direction. For example, as shown in Table[3] for the HotpotQA task under 8k contexts
(Llama), the performance improved from 52.67% (base model) to 62.00% after post-training. When
focus directions are applied, the base model performance could be improved to 56.00%. In this case,
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Model Recall RAG Re-ranking ICL  Long QA  Overall Average Model Recall RAG Re-ranking ICL  Long QA  Overall Average

Llama-3.2-3B Llama-3.2-3B

20--0.2 82.19 56.25 30.15 75.20 - 60.95 20--0.2 66.00  54.96 82.20 - 58.10
10--0.2 88.19 58.67 32.46 75.20 - 63.63 10--0.2 7381  56.58 - 60.03
20.0.2 87.81  60.29 31.44 76.60 - 64.04 200.2 58.75 25.37 80.20 - 61.46
10.0.2 60.38 31.54 77.40 - 64.78 10.0.2 58.54 80.60 -

baseline  89.75  60.92 32.71 77.40 - 65.20 baseline  78.88  58.83 26.10 82.20 - 61.50
Llama-3.2-3B-Instruct Llama-3.2-3B-Instruct

20--0.2 8538  60.25 25.93 56.12 20--0.2 73.00 58.04 13.68 78.80 50.17
10_-0.2 90.31  62.08 25.03 76.40 56.30 10--0.2 79.12 13.32 79.40 51.74
20.0.2 91.44 6433 73.40 27.21 20.0.2 83.50 54.20
10.0.2 75.60 25.67 10.0.2 83.69

MIL10 91.69  63.79 73.40 27.01 58.26 MIL10 82.75  60.17 79.80 53.98
IN_10 76.40 IN_10 61.75

baseline  92.81 64.71 29.82 76.80 27.64 58.36 baseline  84.38  63.00 17.13 80.20 54.30
Qwen2.5-7B Qwen2.5-7B

20--0.2 95.94  58.50 3291 75.80 - 65.79 20--0.2 94.56  53.50 22.86 77.60 - 62.13
10--0.2 59.92 32.78 75.80 - 66.28 1002 9531 78.40 -

20.0.2 59.67 32.11 75.60 - 66.22 200.2 95.88  54.04 79.40 - 63.14
10.0.2 59.42 32.73 75.60 - 66.19 10.0.2 9550  54.08 23.11 - 63.17
baseline  96.56  60.08 33.14 76.00 - 66.45 baseline  96.00 54.21 23.15 79.60 - 63.24
Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct

20--0.2 96.38  62.67 46.07 40.34 64.29 20--0.2 9438  55.87 35.88 59.65
10--0.2 97.19  63.58 46.79 75.60 39.72 64.58 10--0.2 56.54 35.78

20.0.2 97.38 45.66 75.40 64.97 200.2

10.0.2 64.75 46.74 39.48 65.06 10.0.2 35.85

MIL10 97.94 46.91 40.18 MIL10 94.94 35.87 31.58 59.68
IN_10 64.75 40.79 IN_10 9525 5771 35.29 77.40 59.71
baseline  98.00 64.83 47.15 75.80 40.93 65.34 baseline 9525 57.71 36.56 77.40 31.92 59.77
Ministral-8B-Instruct-2410 Ministral-8B-Instruct-2410

20--0.2 97.19  65.29 72.80 64.07 20--0.2 94.62  61.79 31.31 77.20 59.70
1002 97.75  65.12 47.68 74.20 63.75 1002 9456  62.17 29.74 78.80 59.69
20.0.2 97.06  66.00 76.60 200.2 93.81  63.46 29.00

10.0.2 96.94  65.58 75.80 32.39 63.98 10.0.2 93.81 28.74

MI_10 97.25 76.40 MIL10 94.56  63.33

IN_10 97.12 74.80 IN_10 9381  62.79 77.20

baseline  97.75  66.00 48.55 76.80 32.78 64.38 baseline  94.75  63.58 33.68 79.00 31.56 60.51

Table 2: HELMET benchmark results under 16k (left) and 32k (right) context. Green indicates better
than the baseline; red indicates worse than the baseline. “10-0.2” means intervention top-10 heads
with o = 0.2. “IN_10” means automated magnitude control with the IN objective with top-10 heads.

the base model does not have good task alignment and can benefit from applying focus direction.
Second, if there is an unusual sink contextual score, focus directions could help to achieve a better
task alignment by paying the right amount of attention to the contexts. For example, for the TREC
Coarse task under 8k contexts, the Llama-instruction model has a sink contextual score of 0.535,
higher than the average score under 8k contexts of 0.297. As such, the LLM may not pay enough
attention to the contexts. A positive focus direction helps the performance improve from 69% to 75%.

Most of the tasks could be improved by either a positive or a negative focus direction. Table
shows the category-based average performance of each task under 16k and 32k contexts. We found
that 32 of the 46 task categories could have performance improvement by either positive or negative
focus directions. This indicates that the focus direction generalizes to most long-context tasks. This
also confirms that the proper amount of attention activation is needed for optimal task performance.
When an LLM exhibits excessive attention activation, a negative focus direction may help suppress
irrelevant information. Conversely, when attention activation is insufficient, a positive focus direction
can enhance attention to relevant contexts.

Focus direction improves the overall performance of poorly aligned LLMs. We also show
the overall average performance of all the tasks. We found that focus direction could improve the
performance of 5 of 5 LLMs on 32k contexts and 3 of 5 LLMs on 16k contexts. We also check the
standard deviation of the sink contextual scores of all the tasks for each LLM (Table[I3]and [T4). We
consider the LL.Ms with higher standard deviation poorly aligned since they do not have a consistent
attention behavior under the same length of context. Based on this, we consider that Qwen and
LLama are more poorly aligned than Ministral. And over the performance of different tasks ranging
from 8k to 128k contexts, Qwen and LLama have more improvement than Ministral with the focus
directions. We conclude that focus directions are likely to improve poorly aligned LLMs.

Proper magnitude control can improve the overall performance of LLMs. Among the 30 task
categories evaluated under 16k and 32k contexts, as shown in Table our automatic magnitude control
(IN objective) improves or maintains the performance in 19 cases, demonstrating its effectiveness.
We also note the limitation of the focus directions in cross-domain generalization. In such cases, a
proper magnitude means a conservative intervention (e.g., top-10 heads, o = 0.1). In comparison, in
the in-domain case in Section [3] an aggressive intervention (e.g., top-20 heads, a = 0.3) could be
applied to further enhance performance. To further enhance the performance, task-dependent focus
directions are needed. We further discuss this in Section[3
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5 DISCUSSION

Contextual heads vs. retrieval heads. A similar type of attention head with contextual heads is
retrieval heads [Wu et al.| (2024). Retrieval heads are the attention heads used for copying tokens
from the input to the output. We found that contextual heads are different from retrieval heads in the
following aspects. 1) Location: As shown in Figure[J] retrieval heads universally exist in different
layers, while contextual heads are mainly located in the middle and late layers. Among the top 20
retrieval heads and contextual heads, only 5 overlap in the Llama-3.2-3B-Instruct model. 2) Function:
retrieval heads focus on explicit copy tokens from the input to the output, while contextual heads
control the overall attention of LLMs.

Focus directions may be task dependent. While we verify the existence of the focus direction, we
do not consider that we locate the “optimal” focus direction for every task. Instead, we consider that
the focus direction may be task-dependent. In other words, each task may have a different definition of
relevant contexts and may have its corresponding focus directions. Given such task-dependent focus
directions, more aggressive interventions could be applied to further improve the performance. In
addition, given optimal task focus directions, the overall amount of attention activation may converge
across tasks that share the same context length. We leave these as future work.

Border impact of contextual heads and focus directions. We consider that the focus direction may
have the following applications: 1) Focus directions may be an alternative approach for parameter-
efficient fine-tuning [Xu et al.|(2023)) for adapting long-context language models for different tasks.
2) Focus directions may serve as a “switch” to control the LLM’s use of contextual or internal
knowledge, addressing knowledge conflicts [ Xu et al.|(2024).

6 RELATED WORK

Long context LL.Ms and evaluation. Advanced long-context LLMs now can accommodate 128k
or more tokens in their context, including property models like GPT-4, Gemini, and Claude and
open-source models like Llama 3.1 |Dubey et al.|(2024)), Ministral and Qwen2.5 |Yang et al.|(2024).
Such models enable various applications, such as long context QA [Wang et al.|(2024); Karpinska
et al.| (2024), in-context learning [Li et al.| (2024c); |Agarwal et al.| (2025)); Bertsch et al.| (2024),
summarization [Chang et al.| (2023); |Kim et al.|(2024), and retrieval-augmented generation |Lee et al.
(2024). For evaluation, early works mainly focus on the synthetic tasks |Hsieh et al.| (2024); Liu et al.
(2024); [Tay et al.|(2020), such as the needle in the haystack, which may not well measure the LLM
performance in the real world. Recent work has focused more on diverse and real-world settings,
such as RAG |Lee et al.|(2024), in-context learning Li et al.| (2024c), and reasoning Zhou et al.| (2025)).

Mechanistic interpretability on attention heads and activation steering. Our contextual heads
relate to the recent work that discovers functional attention heads in LLMs, such as heads related to
retrieval Wu et al.|(2024)), in-context learning |Olsson et al.| (2022)); Yin & Steinhardt|(2025)); Ren
et al.| (2024), safety |Chen et al.|(2024), and knowledge conflicts Jin et al.[(2024); |Shi et al.| (2024)).
Our focus direction is related to the activation steering work, which could use a directional vector to
control the LLMs’ behavior, such as truthfulness |Li et al.|(2024b)), sentiment [Han et al.| (2023)), and
refusal |Ardit1 et al.| (2024).

7 CONCLUSION

In this paper, we identify the contextual heads that control the overall attention of LLMs to contexts
and focus directions on these heads, which can make LLMs pay more attention to relevant contexts.
We first propose a contextual scoring method to identify the contextual heads. Then, we demonstrate
that insufficient attention to the relevant context in these heads is the cause of LLM distraction.
Moreover, we identify focus directions that could redirect the attention of contextual heads from
the attention sink to the relevant contexts, thereby mitigating distraction. We additionally introduce
an automatic magnitude control method to control the strength of focus directions and make them
applicable to the real world. We further study the effect of focus directions on the real-world long
context benchmark and find that focus directions could help mitigate poor task alignment. At last, we
discuss the potential border impact of focus directions for long-context LLM alignment.
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A EXPERIMENT DETAILS

A.1 DETAILS OF EXPERIMENT ON HELMET BENCHMARK

We used the same settings as the HELMET benchmark. For metrics, we used the substring exact
match for all the retrieval-augmented generation and synthetic recall tasks, NDCG@ 10 for the
passage re-ranking task, and accuracy for all many-shot in-context learning tasks, ROUGE F1 for
Infbench QA, and accuracy for the Infbench MC. We exclude other tasks that require model-based
evaluation.

B ADDITIONAL RESULTS

We provide additional results for the Qwen and Ministral models in Figure [5} [6] (contextual head
locations), Figure (EM accuracy of test split of the Multi-Document Question Answering data).
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C AUTOMATED MAGNITUDE CONTROL

C.1 MOTIVATIONS

Different samples may require different amounts of attention activation to achieve optimal perfor-
mance. Additionally, it is a challenge to determine a fixed magnitude for real-world applications.
To address this, we introduce a method for automated magnitude control. We consider two types of
training objectives for automated magnitude control.

Median Intervention (MI). We first observe, in the case of intervention with top-10 heads, 99% of
the sample in our training set has a consecutive range of magnitudes that could result in a correct
response. We thus consider the most robust magnitude for such samples to be the median of that
consecutive range. We visualize the distribution of the median values of the Llama-3.2-3B instruction
model (top-10 heads) in Figure We use such median values as the training objectives.

Intervention when Necessary (IN). We also observe that among the samples that can produce a
correct response with or without intervention (o« = [—1, 1]), 61% of those samples can produce a
correct response without intervention (i.e., « = 0). We thus consider another strategy that only applies
minimal intervention to make the response correct. To this end, we define the training objective as
the magnitude closest to O for a correct response. The distribution of such magnitudes is shown in
Figure

C.2 METHOD

Our method to achieve automated magnitude control consists of three steps: magnitude sampling,
magnitude controller training, and inference.

Magnitude sampling. Given a predefined top-k heads, we first sample different magnitudes and
record the corresponding prompt, correct responses, and magnitude tuples (P, R, «). In our case, this
can be achieved using the training set defined in §2.1] We sample top-10 and top-20 contextual heads
with magnitudes ranging from -1 to 1, incrementing by 0.1 intervals. For the MI objective, for each
prompt P, we only keep the tuple with the median « for training. For the IN objective, we only keep
the tuple with the « closest to O for training.

Magnitude controller training. We used linear layers as our magnitude controller. At each
transformer attention layer, these controllers receive the same hidden states used by the key and query
projections as input, and produce a single scalar value per token for every attention head in that layer.
We use the KL divergence loss to train the magnitude controller. Specifically, we first use a fixed
teacher model to obtain the output probability distribution for each token given the input of [P, R]
under the intervention strength «v. Then, we use the probability distribution to train the student model
using the KL divergence loss. The student model is also fixed, except that the magnitude controllers
are being trained. We used a learning rate of 10~* and trained for 10 epochs.

Inference. Given the trained magnitude controllers, we can now obtain a dynamic magnitude for
each head at each token. To avoid the unnecessary perturbation of magnitude across tokens during
inference. We first average the magnitudes across tokens for each head. This averaged value is then
fixed and used consistently during text generation.

C.3 RESULTS

We first discuss the in-domain result of the Multi-Document Question Answering data. We consider
both top-10 and top-20 heads. As shown in Table [ all three LLMs have a performance gain
with automated magnitude control, demonstrating the effectiveness of the proposed method. Also,
compared to the IN objective, the MI objective results in better performance in the in-domain testing
set. This suggests, in the case of an in-domain application, the MI objective is preferred. We also
consider that the MI objective introduces a stronger intervention than the IN objective. Thus, in the
case of an in-domain application, an aggressive intervention is preferred.

We then discuss the cross-domain result on the HELMET benchmark. We first observed, among 15
cases of the overall average of three LLMs in 8-128k contexts, that the IN objective outperformed the
MI objective in 12 cases. This suggests that, in cross-domain applications, a conservative intervention
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is preferred. This also suggests that the focus directions we found can generalize across domains, but
in limited ways. Such directions are likely to help when the initial amount of attention activation is
abnormal, but less likely to further improve the performance when the amount of attention activation
is close to optimal.

D MISCELLANEOUS

D.1 LLM USAGE

LLMs were used for polishing writing (i.e., correcting grammatical errors and enhancing writing
clarity).

Qwen2.5-7B-Instruct
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Figure 5: Location of the contextual heads of Qwen2.5-7B-Instruct.
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Figure 6: Location of the contextual heads Ministral-8B-Instruct-2410.
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790 (15,22)  0.09(-0.10) 0.31(-008) 0.10(-0.04) 040(+0.16) 0.26(-023) 049 (+0.21) (15.22) 036006 0.48624 020482 0.04563

791 (14,2)  007(-0.12) 021(-0.13) 0.08(-0.05 0.56 (+0.27) 0.12(-023) 072 (+0.26) (14,2) 044528 045260 0.23089 0.01582
a=0.2

a=05

792 (13,23) 031 (+0.11) 0.51(-0.00)  0.18 (+0.02) 0.03 (-0.08)  0.75 (+0.20)  0.06 (-0.13) (13,23)0041196 0.47068  0.23630  0.00324
(12,1) 029 (+0.09) 0.55(-0.02) 0.18 (+0.02) 0.04(-0.04) 0.78 (+0.14) 0.06 (-0.09) (12,1) 041427 051336 024182 0.00608

793 (15,18)  0.32(+0.12)  0.45(+0.03) 0.17 (+0.04) 0.12(-0.13)  0.74 (+0.24) 0.13 (-0.18) (15,18) 0.38408 0.51542 0.22953 0.02423
(15,22)  0.31(+0.12) 044 (+0.05) 0.18 (+0.04) 0.12(-0.13)  0.69 (+0.21) 0.12(-0.16) (15,22) 0.36751 0.52062 0.23100 0.02447

794 (14,2)  032(+0.13) 042 (+0.08) 0.17 (+0.04) 0.10(-0.19) 0.64 (+0.29) 0.19(-027) (14,2) 045509 047693 0.26239 0.00799
a=0.5 =1.0

795 (13,23)  0.45(+0.24) 0.46(-0.05) 0.21 (+0.05) 0.00 (-0.10)  0.90 (+0.34)  0.00 (-0.18) (IC;, 23) 0.34991 0.55895 0.34943  0.00008
(12,1) 041 (+0.21) 0.51(-0.06) 0.21 (+0.05) 0.01(-0.07)  0.90 (+0.26) 0.01 (-0.14) (12,1)  0.36854 0.59642 0.33347 0.00010

796 (15,18) 047 (+0.27) 046 (+0.03) 022 (+0.08) 0.02(-0.24)  0.93 (+0.42) 0.02(-0.30) (15,18) 0.33626 0.61708 032412 0.00017
(15,22) 0.46 (+0.27) 046 (+0.07) 0.22(+0.08) 0.01 (-0.23) 0.89 (+0.41) 0.01 (-0.27) (15,22) 0.31526 0.64934 0.32020 0.00054

797 (14,2) 047 (+0.29) 0.44 (+0.10) 022 (+0.09) 0.01(-0.29) 0.91 (+0.57) 0.02(-0.44) (14,2) 038478 0.58332 036628 0.00018

798

799 Table 3: Left: Contextual scores of top-5 contextual heads when top-5 heads are intervened. The

800 value in the “()” represents the difference compared to the result without intervention in Table [I]

801 Right: Contextual scores of top-5 contextual heads when top-20 heads are intervened.

802

803 Model/Top-k heads Baseline MI_10 MI20 IN_10 IN_20

804

805 Llama-3.2-3B-Instruct 59.4 64.9 66.4 62.3 62.1

Qwen2.5-7B-Instruct 66.6 69.1 71.7 67.2 68.6
806 Ministral-8B-Instruct-2410 ~ 65.2 678 690 658  67.0
807

808 Table 4: Automated magnitude control result (EM accuracy %) on testing split of the Multi-Document
809 Question Answering data.
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Figure 10: Magnitude distribution of Llama-3.2-3B-Instruct model with median intervention objective
(top-10 contextual heads).
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Figure 11: Magnitude distribution of Llama-3.2-3B-Instruct model with intervention when necessary
objective (top-10 contextual heads).

Recall RAG Re-ranking ICC Tong QA
model MK Needle MKUUID MV JSONKV NQ TriviaQA HotpotQA PopQA MS MARCO _TREC Coarse TREC Fine BANKING77 CLINCIS0 NLU _Infbench QA _Infbench MC

Llama-3.2-3B

2002 90.00 89.00 53.00 98.00 48.67 48.33 52.67 38.15 58.00 27.00 66.00 73.00 77.00 - -
95.00 60.50 100.00 50.67 50.67 54.00 4231 59.00 28.00 66.00 75.00 78.00 - -
97.00 64.50 98.00 54.50 55.6 56.17 16.21 67.00 34.00 68.00 8.00 82.00 - -
99.00 67.25 98.00 54.67 56.00 56.83 4241 67.00 35.00 69.00 8.00 81.00 - -
99.00 65.50 99.00 54.50 52.67 56.50 43.52 61.00 33.00 69.00 77.00 82.00 - -
90.00 99.00 88.00 5117 83.00 54.00 56.83 68.00 37.00 77.00 72.00 76.00 14.47 36.00
98.00 99.00 96.00 51.50 82.17 57.67 59.83 67.00 34.00 76.00 70.00 79.00 15.99 37.00
98.00 99.75 97.00 56.50 82.67 62.6 62.00 5.00 33.00 69.00 69.00 79.00 16.63 29.00
97.00 99.00 98.00 58.00 85.1 62.6 60.6 5.00 33.00 72.00 2.00 79.00 13.88 27.00
98.00 100.00 96.00 57.67 83.83 62.67 75.00 34.00 73.00 71.00 78.00 1491 27.00
IN_10 99.00 99.00 98.75 97.00 56.17 84.33 62.67 70.00 32.00 73.00 70.00 79.00 14.83 29.00
baseline  100.00 99.00 9900 9900 5533  84.83 62.00 69.00 35.00 72.00 7100 80.00 15.48 3100
Qwen2.5-7B
20--0.2 99.00 99.00 98.00 51 79.00 61.00 48.6 82.00 43.00 66.00 5.00 - -
10-0.2 100.00 99.00 99.00 52 79.33 62.00 48.55 82.00 45.00 68.00 73.00 - -
20.0.2 100.00 96.00 100.00 50.17 78.50 64.67 44.94 81.00 41.00 66.00 74.00 - -
10.0.2 100.00 96.00 100.00 51.33 79.17 65.00 46.52 83.00 42.00 70.00 74.00 - -
bascline 100.00 99.00 10000 SIS0 79.83 64.00 4744 83.00 43.00 68.00 74.00 - -
Qwen2.5-7B-Instruct
2 100.00 99.00 98.00 97.00 53.17 78.67 58.00 58.50 82.00 42.00 6.00 80.00 75.00 42.00
100.00 98.00 98.50 98.00 53.83 79.17 58.67 58.67 82.00 44.00 73.00 80.00 76.00 42.00
100.00 97.00 98.25 100.00 82.83 62.67 63.17 81.00 41.00 70.00 79.00 76.00 25.20 40.00
100.00 97.00 98.25 100.00 82.33 61.67 62.50 81.00 40.00 73.00 80.00 77.00 25.54 41.00
100.00 9800 9850  100.00 8217 6133 6200 83.00 41.00 72.00 8L00 7700 23.90 41.00
100.00 98.00 98.50 100.00 82.1 60.6 61.17 83.00 41.00 72.00 81.00 76.00 25.61 40.00
100.00 98.00 98.75 99.00 81.83 59.67 61.17 83.00 41.00 73.00 81.00 76.00 24.12 40.00
stral-8B-Instruct-2410
100.00 100.00 93.75 100.00 87.00 65.00 73.00 38.00 83.00 86.00 78.00 36.00
100.00 100.00 5 100.00 87.00 64.95 73.00 38.00 83.00 8§00 79.00 38.00
100.00 100.00 100.00 87.83 68.00 66.88 74.00 41.00 82.00 84.00 79.00 35.00
100.00 100.00 100.00 87.50 67.00 65.80 74.00 38.00 83.00 83.00 80.00 33.00
100.00 100.00 100.00 87.17 67.67 58.83 67.59 75.00 40.00 83.00 83.00 79.00 36.00
100.00 100.00 100.00 87.17 68.00 58.00 68.42 74.00 39.00 81.00 84.00 79.00 36.00
baseline100.00 100.00 100.00 86.50 6767 58.67 6632 7400 37.00 84.00 8500 79.00 37.00

Table 5: Results of HELMET benchmark under 8k context.
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Recall RAG Re-ranking ICL Long QA
model MK Needle MK UUID MV JSONKV  NQ  TriviaQA HotpotQA PopQA  MS MARCO TREC Coarse TREC Fine BANKING77 CLINCIS0 NLU Infbench QA Infbench MC

Llama-3.2-3B

73.00 66.75 95.00 47.00 86.33 43.67 48.00 30.15 82.00 83.00 87.00 80.00 - -
84.00 73.75 96.00 50.83 87.00 46.33 50.50 32.46 82.00 83.00 90.00 79.00 - -
91.00 66.25 96.00 52.50 82.50 51.33 54.83 31.44 83.00 87.00 90.00 81.00 - -
90.00 74.25 96.00 53.17 84.17 50.00 54.17 31.54 84.00 89.00 89.00 83.00 - -
90.00 74.00 96.00 55.00 85.83 50.00 52.83 3271 82.00 89.00 89.00 82.00 - -
0--0.2 100.00 99.50 87.00 50.67 84.00 50.33 56.00 2593 81.00 52.00 86.00 87.00 83.00 21.51
10-0.2 99.00 99.25 89.00 53.67 84.17 5233 58.17 2! 80.00 46.00 84.00 88.00 84.00 20.38
20.0.2 97.00 99.75 88.00 5433 85.00 58.33 59.67 3 79.00 34.00 84.00 87.00 83.00 21.42
10.0.2 99.00 100.00 93.00 56.00 86.83 61.00 59.33 35.92 81.00 39.00 88.00 89.00 81.00 19.35
MI10 98.00 76.00 99.75 93.00 53.17 85.17 60.33 56.50 35. 78.00 36.00 85.00 87.00 81.00 24.02
IN_10 100.00 83.00 99.25 94.00 56.17 86.33 59.00 58.50 36.34 82.00 40.00 87.00 89.00 84.00 23.22
baseline 99.00 82.00 99.25 91.00 54.67 86.00 58.67 59.50 29.82 83.00 41.00 85.00 90.00 85.00 2428
96.00 94.75 97.00 50.50 78.00 58.67 46.83 86.00 16.00 84.00 89.00 74.00 - -
K 96.00 95.50 98.00 51.33 80.00 59.33 49.00 87.00 16.00 83.00 88.00 75.00 - -
100.00 95.00 96.00 99.00 49.67 78.33 59.67 51.00 89.00 47.00 79.00 86.00 00 - -
99.00 94.00 96.00 99.00 49.33 77.33 58.67 5233 88.00 45.00 81.00 88.00 76.00 - -
97.00 96.00 95.25 98.00 50.17 79.83 59.67 50.67 88.00 45.00 83.00 89.00 75.00 - -
'n2.5-7B-Instruct
99.00 99.00 96.50 91.00 51.50 83.33 5733 58.50 46.07 86.00 44.00 86.00 89.00 75.00 50.00
99.00 99.00 96.75 94.00 53.50 82.67 59.67 58.50 46.79 85.00 44.00 84.00 89.00 76.00 49.00
99.00 97.00 96.50 97.00 53.67 83.33 63.33 59.83 45.66 83.00 45.00 83.00 89.00 00 52.00
99.00 99.00 97.50 97.00 54.50 83.17 61.33 60.00 46.74 84.00 46.00 85.00 89.00 77.00 49.00
99.00 99.00 96.75 97.00 56.17 83.50 61.00 59.67 46.91 85.00 .00 86.00 91.00 78.00 49.00
99.00 99.00 97.25 97.00 55.50 83.33 60.00 60.17 17.68 84.00 44.00 86.00 89.00 77.00 50.00
99.00 99.00 97.00 97.00 54.67 83.50 61.33 59.83 47.15 83.00 45.00 86.00 89.00 76.00 50.00
Ministral-8B-Instruct-2410
100.00 100.00 90.75 98.00 56.00 88.33 63.00 53.83 49.82 84.00 33.00 87.00 90.00 70.00 40.00
100.00 100.00 92.00 99.00 55.33 88.33 62.67 54.17 47.68 86.00 34.00 86.00 90.00 75.00 38.00
100.00 100.00 89.25 99.00 53.83 89.17 64.33 56.67 49.30 89.00 35.00 88.00 89.00 82.00 39.00
100.00 100.00 88.75 99.00 88.83 64.00 3 19.17 87.00 32.00 88.00 91.00 81.00 37.00
100.00 100.00 91.00 98.00 88.67 65.67 3 49.12 87.00 35.00 88.00 92.00 80.00 . 38.00
100.00 100.00 90.50 98.00 88.83 65.00 56.00 50. 87.00 32.00 88.00 91.00 76.00 28.66 40.00
baseline 100.00 100.00 92.00 99.00 89.00 63.67 56.00 48.55 88.00 35.00 89.00 91.00 81.00 29.57 36.00

Table 6: Results of HELMET benchmark under 16k context.

Recall RAG Re-rankin; ICL Long QA
model MK Needle MKUUID MV JSONKV ~ NQ  TriviaQA HotpotQA PopQA  MS MARCO TREC Coarse TREC Fine BANKING77 CLINCI5S0 NLU Infbench QA  Infbench MC

Llama-3.2-3B

20-0.2 88.00 43.00 54.00 79.00 84.67 43.00 29.22 87.00 59.00 90.00 89.00 86.00 - -
10-0.2 95.00 .00 56.25 90.00 86.83 46.00 26.73 86.00 62.00 92.00 89.00 86.00 - -
2002 98.00 00 60.00 91.00 86.17 49.67 2537 89.00 89.00 87.00 83.00 - -
10.0.2 98.00 75.00 59.00 96.00 87.67 49.33 26.16 89.00 88.00 89.00 84.00 - -
baseline 97.00 67.00 61.50 90.00 87.17 48.00 26.10 88.00 90.00 90.00 85.00 - -
Llama-3.2-3B-Instruct

20-0.2 96.00 .00 98.00 63.00 85.00 48.67 13.68 80.00 54.00 91.00 87.00 82.00 19.63 35.00
10-0.2 97.00 5.00 98.50 76.00 87.67 49.67 1332 80.00 56.00 92.00 88.00 81.00 16.33 37.00
200.2 95.00 62.00 98.00 79.00 84.67 54.33 20.58 83.00 59.00 90.00 88.00 83.00 18.18 34.00
10.0.2 97.00 58.00 97.75 82.00 87.17 53.67 20. 80.00 58.00 92.00 88.00 84.00 16.88 35.00
MIL10 97.00 58.00 98.00 78.00 85.33 52.67 21.65 81.00 57.00 90.00 88.00 83.00 20.06 31.00
IN_10 98.00 61.00 98.50 81.00 86.83 53.67 20.73 84.00 57.00 92.00 88.00 84.00 16.57 36.00
baseline 98.00 59.00 98.50 82.00 87.67 56.33 17.13 82.00 56.00 92.00 88.00 83.00 19.57 34.00
Qwen2.5-7B

20-0.2 97.00 90.00 93, 98.00 79.17 49.00 22.86 86.00 55.00 81.00 90.00 76.00 - -
10-0.2 96.00 94.00 93.2 98.00 78.00 50.67 24.84 87.00 54.00 82.00 90.00 79.00 - -
2002 96.00 96.00 93.50 98.00 76.83 51.00 23.25 87.00 58.00 85.00 90.00 77.00 - -
10.0.2 97.00 94.00 93.00 98.00 77.50 51.00 23.11 87.00 58.00 86.00 90.00 79.00 - -
baseline 96.00 96.00 93.00 99.00 79.00 50.33 23.15 87.00 58.00 83.00 91.00 79.00 - -
Qwen2.5-7B-Instruct

20-0.2 98.00 95.00 88.50 96.00 43 77.67 45.67 57.00 35.88 90.00 19.00 87.00 91.00 75.00 15.45 52.00
10-0.2 98.00 97.00 89.50 97.00 42,6 78.50 4 59.67 3578 90.00 19.00 86.00 91.00 6.00 14.25 53.00
20.0.2 99.00 96.00 88.75 98.00 44, 82.00 47.33 60.50 36.75 88.00 48.00 87.00 92.00 00 12.90 54.00
10.0.2 99.00 97.00 88.75 97.00 43.33 81.50 47.6 62.6 35.85 91.00 48.00 87.00 91.00 74.00 13.22 52.00
MIL10 98.00 96.00 88.75 97.00 42.00 80.50 46.33 62.50 35.87 90.00 48.00 87.00 91.00 75.00 14.16 49.00
IN_10 98.00 97.00 89.00 97.00 41.67 80.33 46.67 62.17 3529 90.00 47.00 85.00 90.00 75.00 13.84 52.00
baseline 98.00 97.00 89.00 97.00 4250 80.33 4733 60.67 36.56 91.00 45.00 86.00 90.00 75.00 14.84 49.00
Ministral-8B-Instruct-2410

20-0.2 100.00 97.00 82.50 99.00 54.00 86.83 55.00 90.00 31.00 88.00 97.00 80.00 44.00
10-0.2 100.00 97.00 81 100.00 54.33 86.83 57.00 91.00 36.00 88.00 97.00 82.00 14.00
2002 99.00 97.00 80. 99.00 48.17 88.83 61.67 90.00 10.00 88.00 97.00 82.00 37.00
10.0.2 99.00 97.00 80.25 99.00 49.50 89.00 61.33 93.00 39.00 88.00 97.00 81.00 36.00
MIL_10 100.00 98.00 S 98.00 5 88.00 59.00 90.00 39.00 89.00 97.00 83.00 16.00
IN_10 100.00 95.00 8225 98.00 52.00 86.33 59.00 89.00 34.00 88.00 95.00 80.00 2 16.00
baseline 100.00 96.00 83.00 100.00  52.17 88.50 59.00 92.00 36.00 87.00 97.00 83.00 22.12 41.00

Table 7: Results of HELMET benchmark under 32k context.

Recall RAG Re-rankin ICL Long QA
model MK Needle MKUUID MV JSONKV ~ NQ  TriviaQA HotpotQA PopQA  MS MARCO TREC Coarse TREC Fine BANKING77 CLINCIS0 NLU Infbench QA  Infbench MC

Llama-3.2-3B

20-0.2 86.00 2700 5000 59.00  39.17 8283 4000 39.50 6.83 89.00 68.00 91.00 9200 86.00 - -
10-0.2 93.00 3700 6025 6800 4033 876 4500 4283 624 89.00 72.00 91.00 9200 £7.00 - -
2002 85.00 5500 5425 1.00 84.17 4 49.00 7.08 90.00 70.00 91.00 9300 83.00 - -
10.0.2 87.00 SL00 5475 7000 44 83.83 4533 49.50 9.27 90.00 69.00 92.00 9200 84.00 - -
baseline  88.00 4600 5800 7000 4533  85.50 4233 4617 729 90.00 72.00 92.00 9200 85.00 - -
Llama-3.2-3B-Instruct
2002 78.00 700 9750 4300 4850  83.83 4800  46.67 3.77 83.00 70.00 91.00 9100 84.00 1927 38.00
10-0.2 82.00 13.00 9925 5000 4883 86.00 5067 4783 86.00 68.00 93.00 9300 85.00 18.76 42.00
82.00 2200 9925 6000 4800 8583 5233 5067 85.00 64.00 92.00 90.00  86.00 18.45 38.00
82.00 2000 9900 5600 4953 86.83 50.83 85.00 67.00 92.00 9100  86.00 19.60 34.00
81.00 1900 9800  60.00 5100  86.17 49.50 85.00 68.00 92.00 90.00  86.00 18.59 32.00
82.00 00 9950 6000 4967  87.00 49.67 85.00 69.00 91.00 91.00  84.00 19.14 39.00
82.00 1900 9950 5600 4850  86.83 50.83 85.00 70.00 94.00 9200 84.00 19.27 43.00
31.00 2000 8425 24.00 66.17 4067 3167 130 85.00 53.00 84.00 8800  77.00 - -
39.00 28.00 28.00 67.67 4167 32.67 2.64 86.00 53.00 82.00 8800  78.00 - -
47.00 26.00 28.00 67.50 41.67 33.00 119 87.00 53.00 80.00 8800 80.00 - -
43.00 2800 8625 29.00 67.67 4333 3367 107 86.00 54.00 84.00 90.00  80.00 - .
as 41.00 2800 8375 28.00 68.17 4333 33.67 1.88 86.00 53.00 83.00 89.00  79.00 - -
Qwen2.5-7B-Instruct
20-0.2 40.00 32.00 30.00 67.17 39.67 3917 1192 85.00 53.00 86.00 91.00  79.00 37.00
10-0.2 44.00 29.00 30.00 67.83 3833 40.00 1221 86.00 51.00 87.00 9100 78.00 36.00
2002 63.00 28.00 33.00 69.50 39.67 4200 10.28 87.00 51.00 87.00 90.00 76,00 39.00
10.0.2 56.00 28.00 32.00 69.50 12,67 3.50 11.66 87.00 50.00 86.00 9100 77.00 s 10.00
ML10 44.00 30.00 30.00 68.67 39.67 4233 1232 87.00 50.00 87.00 9200 79.00 7.31 37.00
IN_10 47.00 31.00 32.00 69.83 42.67 41.67 11.84 86.00 49.00 86.00 91.00  77.00 651 36.00
baseline  48.00 3100 8150 31.00 68.17 4167 4250 11.88 87.00 50.00 88.00 91.00  77.00 6.86 38.00
Ministral-8B-Instruct-2410
20-0.2 45.00 9.00 13.00 3450 7200 40.00 38.1 0.00 87.00 58.00 91.00 8600  81.00 16.82 26,00
10-0.2 44.00 800 5525 13.00 3400 7233 4000 37.83 0.00 86.00 59.00 89.00 86.00  80.00 16.24 25.00
2002 42,00 1000 5650 1500 3307 746 41.67 39.00 0.00 88.00 63.00 86.00 9100 81.00 15.95 24.00
10.0.2 43.00 9.00 51600 3450 7250 4233 37.83 0.00 88.00 65.00 87.00 9100 83.00 15.99 23.00
ML10 44.00 700 5525 1400 3600 7283 4167 36.67 0.00 86.00 60.00 87.00 8800 81.00 16.71 25.00
IN_10 42,00 600 5475 1100 3683 73.00 4133 3717 0.00 86.00 58.00 88.00 9100 80.00 16.60 25.00
baseline  44.00 700 5650 1500 3567 73.07 4200 37.83 0.00 87.00 63.00 87.00 89.00  81.00 16.79 26.00

Table 8: Results of HELMET benchmark under 64k context.

17



Under review as a conference paper at ICLR 2026

Recall

RAG
JSONKV NQ  TriviaQA _HotpotQA

Re-ranking

Lon,

QA

model MK Needle MK UUID MV PopQA  MS MARCO TREC Coarse TREC Fine BANKING77 CLINC150 NLU Infbench QA Infbench MC
Llama-32-3B

20-0.2 72.00 13.00 47.00 57.00 35.83 77.17 37.33 40.67 4.74 89.00 77.00 92.00 92.00 88.00

10-0.2 76.00 20.00 51.75 59.00 80.83 41.67 12.67 4.62 90.00 81.00 92.00 91.00 87.00

2002 84.00 2300 6150 60.00 81.33 4300 4200 6.78 89.00 76.00 92.00 9300 89.00

10.0.2 87.00 2500 5375 62.00 81.67 14.00 13.00 6.56 89.00 76.00 93.00 9300 90.00

bascline  86.00 2600 5800 6400 3717 8183 4333 an 5.53 90.00 81.00 93.00 9300 89.00

Llama-3.2-3B-Instruct

2002 60.00 5.00 89.50 32.00 77.17 44.00 39.50 0.32 83.00 67.00 90.00 93.00 90.00 20.50 39.00
10--0.2 68.00 00 95.00 33.00 81.83 46.33 43.17 0.05 83.00 67.00 92.00 93.00 91.00 19.39 42.00
2002 75.00 6.00 96.25 44.00 81.33 49.33 45.33 0.00 84.00 66.00 91.00 92.00 91.00 18.29 31.00
1002 75.00 7.00 96.00 42.00 83.33 51.00 46.00 0.26 84.00 67.00 92.00 92.00 90.00 19.37 28.00
ML10 78.00 6.00 93.00 44.00 42.00 79.50 4833 43.17 0.00 85.00 66.00 92.00 91.00 91.00 19.11 27.00
IN_10 75.00 8.00 98.25 41.00 4533 82.67 51.67 44.50 0.20 84.00 69.00 93.00 92.00 91.00 19.51 42.00
baseline 73.00 5.00 97.50 39.00 45.83 85.00 50.00 45.50 0.74 83.00 70.00 91.00 94.00 92.00 19.46 37.00
Qwen2.5-7B

20-0.2 8.00 5.00 30.50 12.00 18.50 42.00 29.00 24.83 0.24 76.00 16.00 59.00 82.00 76.00

10-0.2 9.00 SO0 3075 1300 1633 4283 2567 2483 0.12 77.00 43.00 61.00 S100 7400

2002 9.00 000 3075 1100 1533 4367 2367 2467 031 74.00 16.00 58.00 8300 77.00

10.0.2 8.00 100 3100 1300 1500 4350 2633 2500 0.00 75.00 18.00 60.00 8100 7400

bascline 9.0 200 3075 1300 1533 4233 2567 2633 0.00 77.00 45.00 62.00 8200 7400

Qwen2.5-7B-Instruct

2002 5.00 0.00 2475 8.00 21 5217 22.00 24.83 79.00 40.00 68.00 81.00 9.00 5.52 33.00
10--0.2 8.00 2.00 26.50 10.00 21.00 54.50 20.00 26.50 81.00 42.00 64.00 83.00 80.00 5.39 35.00
2002 8.00 1.00 27.50 9.00 54.1 2233 28.50 76.00 46.00 65.00 74.00 78.00 5.35 40.00
1002 8.00 1.00 28.25 9.00 54.33 28.33 77.00 43.00 65.00 80.00 78.00 5.11 38.00
ML10 8.00 0.00 27.00 9.00 56.17 26.50 79.00 44.00 64.00 81.00 78.00 5.34 35.00
IN_10 9.00 1.00 26.50 8.00 53.50 21.67 28.50 79.00 43.00 63.00 81.00 79.00 5.15 36.00
baseline 8.00 2.00 26.50 10.00 20.83 53.67 22.00 27.67 79.00 41.00 65.00 82.00 78.00 5.10 37.00
Ministral-8B-Instruct-2410

20-0.2 15.00 4.00 22.75 10.00 19.67 56.33 32.00 30.67 0.00 86.00 67.00 81.00 93.00 77.00 12.51 29.00
10-0.2 15.00 4.00 2250 11.00 22.00 56.50 3233 31.67 0.00 87.00 68.00 82.00 93.00 76.00 12.55 29.00
2002 13.00 2.00 23.00 9.00 21.67 57.33 34.00 29.50 0.00 89.00 68.00 84.00 94.00 77.00 12.88 29.00
10.0.2 13.00 200 2300 900 2117 5767 3233 30.50 0.00 87.00 67.00 83.00 9400 5000 13.63 30.00
ML10 16.00 400 2300 900 21 57.17 3333 2933 0.00 86.00 65.00 79.00 9400 78.00 12.10 32.00
IN_10 16.00 3.00 2325 9.00 21.50 56.83 32.00 29.33 0.00 85.00 69.00 80.00 92.00 78.00 12.55 30.00
baseline 14.00 400 2300 1000 2017 57.50 3500 3017 0.00 87.00 69.00 82.00 9400 79.00 12.40 3100

Table 9:

Results of HELMET benchmark under 128k context.

Model Recall RAG Re-ranking ICL Long QA  Overall Average
Llama-3.2-3B

20-0.2  82.50 58.00 38.15 60.20 - 59.71
1002 88.62 59.42 42.31 61.20 - 62.89
20.0.2 89.38 6142 46.21 65.80 - 65.70
10.0.2 90.81 62.12 42.41 66.00 - 65.34
baseline 90.62 61.46 43.52 64.40 - 65.00
Llama-3.2-3B-Instruct

20-0.2 9425 61.25 35.19 66.00 25.23 56.38
10--0.2 98.25 62.79 36.71 65.20 26.49 57.89
20.0.2 98.44 6596 48.37 65.00 22.81 60.11
10.0.2 98.25 66.62 46.90 66.20 20.44 59.68
MI_10 9775 66.25 46.37 66.20 20.95 59.51
IN_10 98.44  65.62 47.15 64.80 2191 59.58
baseline  99.25 65.33 41.68 65.40 23.24 58.98
Qwen2.5-7B

20-0.2 9775 61.25 48.67 68.20 - 68.97
10-0.2 9838 61.92 48.55 68.80 - 69.41
20.0.2 97.81 62.71 44.94 67.60 - 68.26
10.0.2 97.81 62.92 46.52 68.80 - 69.01
baseline  98.50  62.79 47.44 68.60 - 69.33
Qwen2.5-7B-Instruct

20-0.2 9850 62.08 58.53 71.00 32.09 64.44
1002 98.62 62.58 56.51 71.00 32.22 64.19
20.0.2 98.81 65.29 56.25 69.40 32.60 64.47
10.0.2 98.81 65.12 56.98 70.20 33.27 64.88
MI_10 99.12  64.79 57.33 70.80 32.45 64.90
IN_10 99.12  64.71 57.76 70.60 32.80 65.00
baseline  98.94 64.25 57.54 70.80 32.06 64.72
Ministral-8B-Instruct-2410

20-0.2  98.44  66.04 65.00 71.60 31.15 66.45
10-0.2  98.69 65.46 64.95 71.80 31.94 66.57
20.0.2 98.88 67.21 66.88 72.00 29.52 66.90
10.0.2 98.81  66.92 65.80 71.60 28.19 66.26
MI_10 98.81  66.92 67.59 72.00 30.44 67.15
IN_10 98.88 67.21 68.42 71.40 30.68 67.32
baseline  99.00 66.92 66.32 71.80 32.05 67.22

Table 10: Category average results of HELMET benchmark under 8k context.
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Model Recall RAG Re-ranking ICL Long QA  Overall Average

Llama-3.2-3B

20-0.2 5550 50.38 6.83 85.20 - 49.48
10-0.2  64.56  53.96 6.24 86.20 - 52.74
20.0.2 66.31  56.46 7.08 85.40 - 53.81
10.0.2 65.69 55.83 9.27 85.40 - 54.05
baseline  65.50 54.83 7.29 86.20 - 53.46
Llama-3.2-3B-Instruct

20-0.2  56.38 56.75 3.77 83.80 28.64 45.87
10--0.2  61.06 58.33 2.44 85.00 30.38 47.44
20.0.2 65.81  59.21 2.72 83.40 28.23 47.87
10.0.2 64.25  59.79 3.10 84.20 26.80 47.63
MI_10 64.50  59.00 3.13 84.20 25.29 47.23
IN_10 66.12  60.17 4.16 84.00 29.07 48.70
baseline 64.12  59.96 3.77 85.00 31.13 48.80
Qwen2.5-7B

20-0.2  42.06 41.96 1.30 77.40 - 40.68
10-0.2  45.00 43.42 2.64 77.40 - 42.11
20.0.2 46.56  43.08 1.19 77.60 - 42.11
10.0.2 46.56  43.62 1.07 78.80 - 42.51
baseline 45.19 44.12 1.88 78.00 - 42.30
Qwen2.5-7B-Instruct

20-0.2  46.31  43.96 11.92 78.80 22.07 40.61
10-0.2  46.38 44.42 12.21 78.60 21.66 40.65
20-0.2 51.38  46.88 10.28 78.20 22.95 41.94
10.0.2 49.25 47.79 11.66 78.20 23.94 42.17
MI_10 46.50 45.83 12.32 79.00 22.16 41.16
IN_10 47.81 47.33 11.84 77.80 21.25 41.21
baseline 47.88  46.54 11.88 78.60 2243 41.46
Ministral-8B-Instruct-2410

20-0.2  30.56  46.17 0.00 80.60 21.41 35.75
10-0.2  30.06 46.04 0.00 80.00 20.62 35.34
20.0.2 30.88  47.12 0.00 81.80 19.98 35.96
10-0.2 31,19 46.79 0.00 82.80 19.49 36.05
MI_10 30.06 46.79 0.00 80.40 20.86 35.62
IN_10 28.44  47.08 0.00 80.60 20.80 35.38
baseline 30.62 47.17 0.00 81.40 21.40 36.12

Table 11: Category average results of HELMET benchmark under 64k context.

Model Recall RAG Re-ranking ICL Long QA  Overall Average

Llama-3.2-3B

20-02 4725 4775 4.74 87.60 - 46.83
1002 51.69 50.12 4.62 88.20 - 48.66
20.0.2 57.12  51.17 6.78 87.80 - 50.72
10.0.2 5694 5142 6.56 88.20 - 50.78
baseline  58.50 51.17 5.53 89.20 - 51.10
Llama-3.2-3B-Instruct

20-02 4662 51.21 0.32 84.60 29.75 42.50
10--0.2 53.67 0.05 85.20 30.70 44.07
20.0.2 54.83 0.00 84.80 24.64 43.92
10.0.2 56.08 0.26 85.00 23.69 44.01
MI_10 53.25 0.00 85.00 23.06 43.31
IN_10 : 56.04 0.20 85.80 30.76 45.67
baseline  53.6 56.58 0.74 86.00 28.23 45.04
Qwen2.5-7B

20--0.2 13.88  28.58 0.24 67.80 - 27.62
10-0.2 1444 2742 0.12 67.80 - 27.44
20.0.2 12.69 26.83 0.31 67.60 - 26.86
10.0.2 1325 2746 0.00 67.60 - 27.08
baseline  13.69 27.42 0.00 68.00 - 27.28
Qwen2.5-7B-Instruct

20-0.2 9.44  30.04 1.25 69.40 19.26 25.88
1002 11.62  30.50 1.34 70.00 20.19 26.73
20.0.2 11.38 31.12 1.92 67.80 22.68 26.98
10.0.2 11.56  31.75 2.25 68.60 21.56 27.14
MI_10 11.00 31.33 1.43 69.20 20.17 26.63
IN_10 11.12  31.50 1.74 69.00 20.57 26.79
baseline 11.62 31.04 1.82 69.00 21.05 2691
Ministral-8B-Instruct-2410

20--0.2 1294 34.67 0.00 80.80 20.76 29.83
10--0.2 13.12 35.62 0.00 81.20 20.77 30.14
20.0.2 11.75  35.62 0.00 82.40 20.94 30.14
10.0.2 11.75 3542 0.00 82.20 21.81 30.24
MI_10 13.00 35.25 0.00 80.40 22.05 30.14
IN_10 12.81  34.92 0.00 80.80 21.28 29.96
baseline 1275 3571 0.00 82.20 21.70 30.47

Table 12: Category average results of HELMET benchmark under 128k context.
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model MK Needle MKUUID MV~ JSONKV NQ  TriviaQA HotpotQA PopQA MSMARCO TREC Coarse TREC Fine BANKING77 CLINCIS0 NLU Infbench QA  Infbench MC ~ STD
Llama-3.2-3B 2191 2535 2394 2319 2044 2188 2091 2370 2374 29.52 30.02 9.78 2657 2373 - - 481
Llama- B-Instruct 31.85 2934 2442 34.02 2253 2678 2481 2590 30.04 5352 3539 2645 3176 3167 18.61 28.49 771
Qwen2.5-7B 16.80 6.39 835 661 925 10.63 8.82 1003 535 31.29 20.61 3.40 1172 1063 - - 724
Qwen2.5-7B-Instruct 20.07 18.41 1042 687 697 889 9.10 1069 418 3332 23.57 358 9.67 786 017 0.28 8.87
Ministral-8B-Instruct-2410 22,45 15.48 1476 14.56 1159 1652 15.89 2063 1232 2698 12.92 9.70 1621 1471 17.16 20.32 4.39

Table 13: Sink contextual scores (%) and its standard deviation (STD) under 8k contexts (average

top-5 contextual heads).

of

model MK Needle MK UUID MV~ JSONKV NQ  TriviaQA HotpotQA PopQA MSMARCO TREC Coarse TREC Fine BANKING77 CLINCIS0O NLU Infbench QA  Infbench MC ~ STD
Llama-3.2-3B 21.60 23.61 2668 2263 1963 2151 19.82 2183 2243 2928 23.04 778 19.70 - - 721
Llama-3.2-3B-Instruct 3253 23.09 2301 2937 2228 2565 24.15 2400 3252 4459 36.98 2230 24.11 17.69 3137 9.33
Qwen2.5-7B 13.61 525 644 643 8.68 971 774 9.15 453 30.56 6.50 2.80 4.49 - - 6.94
Qwen_Qwen2.5-7B-Instruct  9.45 5.00 804 489 755 1015 8.57 9.23 5.98 19.65 6.96 245 481 0.25 043 470
Ministral-8B-Instruct-2410  19.87 12.69 1241 - - 13.26 13.02 1648 1044 1629 12,64 6.81 11.28 11.02 1521 455

Table 14: Sink contextual scores (%) and its standard deviation (STD) under 16k contexts (average of
top-5 contextual heads).

20



	Introduction
	Cause of distraction
	Identifying contextual heads
	Properties of contextual heads
	Attention compensation on contextual heads

	Eliciting attention on relevant contexts via focus direction
	Obtaining focus direction 
	Inference time intervention with focus direction
	Experiment settings
	Results
	A proper amount of attention activation matters

	Focus directions are generalizable to different tasks
	Discussion
	Related work
	Conclusion
	Experiment details
	Details of Experiment on HELMET benchmark

	Additional results
	Automated magnitude control
	Motivations
	Method
	Results

	Miscellaneous
	LLM usage


