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ABSTRACT

While large language models (LLMs) appear to be increasingly capable of solving
compositional tasks, it is an open question whether they do so using compositional
mechanisms. In this work, we investigate how feedforward LLMs solve two-hop
factual recall tasks, which can be expressed compositionally as g(f(x)). We first
confirm that modern LLMs continue to suffer from the “compositionality gap™: i.e.
their ability to compute both z = f(x) and y = g(z) does not entail their ability
to compute the composition y = g(f(z)). Then, using logit lens on their residual
stream activations, we identify two processing mechanisms, one which solves tasks
compositionally, computing f(x) along the way to computing g(f(z)), and one
which solves them directly, without any detectable signature of the intermediate
variable f(x). Finally, we find that which mechanism is employed appears to be
related to the embedding space geometry, with the idiomatic mechanism being
dominant in cases where there exists a linear mapping from x to g(f(z)) in the
embedding spaces.

1 INTRODUCTION

Compositional behavior (McCurdy et al.l [2024) is widely considered essential for flexible and
general intelligence (Szabd} 2024). A long-running debate has asked whether compositional behavior
necessarily entails compositional representations and processes. One the one hand, formal languages
based on compositional syntax and semantics are guaranteed to support certain types of invariance
and generalization, making them compelling models for how humans might achieve abstract cognitive
abilities like language and logic (Fodor, [1975; |Quilty-Dunn et al.l 2023). On the other hand, critics
are quick to point out that humans frequently deviate from ideal compositional and logical behavior,
suggesting that some other mechanism must underlie our advanced cognition (Kahneman & Tversky|
1972} [Evans), [2002)).

Large language models (LLMs) provide an opportunity to revisit this debate in a new light. LLMs
exhibit behavior that is at least ostensibly compositional, and which is not easily explained away
by trivially non-compositional mechanisms (McCoy et al., 2023} |Griffiths et al., [2025). However,
LLMs also lack the kinds of explicit symbolic architectural components that have long been assumed
necessary for such compositionality. This provides an opportunity to ask: do LLMs produce
compositional behavior by invoking compositional processes, or do they rely on something more
idiomatic instead?

We offer an initial investigation into this question, focusing on a set of two-hop factual retrieval tasks,
such as: given a book’s title, output that book’s author’s birth year. All of the tasks we consider
can be formally expressed as y = g(f(z)) and are thus defensibly “compositional” in the sense
invoked in traditional symbolic models. We are interested in whether LLMs solve such tasks by
approximating the mapping from z to y compositionally, by computing the intermediate variable
z = f(x), or directly, without a readily-detectable representation of any such z. We find that:

1. Models’ ability to compute both x — f(x) and f(z) — g(f(x)) does not entail their ability
to compute x — g(f(x)). This extends earlier findings on the “compositionality gap” (Press
et al.| |[2022), showing that the gap holds for modern models and on a larger set of tasks.
This gap is not trivially reduced in larger models or even necessarily by reasoning models

(Sec.3).



Under review as a conference paper at ICLR 2026

2. Models exhibit both compositional processing mechanisms and direct processing mecha-
nisms, as defined above. The type of mechanism is only weakly associated with accuracy,
suggesting that LLMs are able to use both effectively to compute correct answers (Sec. ).

3. The choice of mechanism is mediated by the geometry of the input embedding space.
Specifically, when there exists a linear mapping from x in the input embedding space to
g(f(x)) in the output unembedding space, the LLM tends to favor direct computation over
compositional processing (Sec. [3).

2 TASK SETUP

Our tasks involve solving a composition g(f(z)) from an input x, using in-context learning (ICL)
and where f and g are some pre-defined functions. See Table [I]for the full list of tasks we use. We
choose common functions f and ¢ that models might learn through their pre-training and for which
the inputs and outputs are lexical units. This enables us to use well-established tools for analyzing
the mechanisms and latent computations in Transformer models, focusing on a few token positions
(i.e. residual streams) and a single autoregressive forward pass.

We design the set of tasks in our investigation to cover a qualitative variety of functions, such
as arithmetic, factual recall, lexical functions, translation, rotation, and string manipulation. By
construction, all of our tasks can be computed by applying f and then g, yielding the causal hops
xz — f(z) = g(f(z)). Some tasks (e.g. commutative tasks) can also be computed through the hops
x — g(x) — g(f(x)) — in which case, the intermediate z may also equal g(z). We differentiate
these further, and also describe our dataset construction methodologies (including our sources and
pre-processing), in Appendix [A]

In our experiments, we randomly sample 10 in-context examples for a given task and query. Each
in-context example is formatted with a “Q: {input} \n A: {output} \n\n” prompting structure
and the test query is formatted with “Q: {input} \n A:”.

Limitations Our experimental design primarily focuses on autoregressive language models per-
mitted one token for generation (rather than e.g. reasoning models) and on mechanisms that are
discoverable using current widely-accepted interpretability methods. There are certainly many inter-
esting compositional and non-compositional mechanisms that are employed by LLMs which are not
in the scope of the present study. The mechanisms we describe here are part of the larger story and
thus warrant study, but we do not intend to imply that such mechanisms are the whole story of how
LLMs process complex tasks.

Table 1: List of our tasks. The compositional function (g o f) is constructed by f and g here. We list
the number of examples (#) in each task’s dataset, along with the variables z, f(z), and g(f(z)) for
one random example. We list g(x) and f(g(z)) for tasks that define them in Appendix E}

! g | # z = fx) = g(f(2))
Word — Antonym English — Spanish 2398 bogus — authentic — auténtico
Word — Antonym English — German 2398 philosophical — practical — praktisch
Word — Antonym English — French 2398 excessive — insufficient — insuffisant
Book — Author Author — Birth Year | 2228 The Boy in the Striped Pyjamas — John Boyne — 1971
Song — Artist Artist — Birth Year 958 Heartbreak Hotel — Elvis Presley — 1935
Landmark — Country Country — Capital 1385 Taq-i Kisra — Iraq — Baghdad
Park — Country Country — Capital 743 | Mount Rainier National Park — United States — Washington, D.C.
Movie — Director Director — Birth Year | 2180 Cape Fear — Martin Scorsese — 1942
Person — University University — Year 4992 | Andi Gutmans — Technion — Israel Institute of Technology — 1924
Person — University ~ University — Founder | 4996 Ezra Abbot — Bowdoin College — James Bowdoin
Product — Company Company — CEO 1904 NES-101 — Nintendo — Shuntaro Furukawa
Product — Company Company — HQ 2276 Toyota Alphard — Toyota — Toyota
x+10 2x 1000 699 — 709 — 1418
x + 100 2x 1000 922 — 1022 — 2044
x mod 20 2x 1000 891 — 11 — 22
Word — Numeric 2x 1000 one hundred and forty-eight — 148 — 296
Word[:-1] Word[::-1] 2946 responsible — responsibl — lbisnopser
Rotate(RGB, 120°) RGB — Name 1000 8a735a — 598a73 — dimgray
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Figure 1: Compositionality gap for Llama 3 (3B) on our tasks. Red bar represents examples for which
the model is able to solve all causal hops, out of all examples (absolute). Blue and yellow bars are
relative to the red bar: they show proportions of examples out of those in the red bar. Blue represents
the same examples as red and yellow represents those for which the model is able to additionally
solve the composition. Correlation between red and yellow bars is 72 = 0.00.

3 COMPOSITIONALITY GAP

(2022) documented a “‘compositionality gap” in LLMs, showing that they consistently fail
to solve compositions, despite solving the hops independently. (2022) tested the GPT-3
family of models with natural language questions about celebrities and encyclopedic knowledge that
required two-hops of factual recall. We confirm and extend this finding by testing modern LLMs on a
larger set of compositional tasks.

3.1 EXPERIMENTAL DESIGN

We prompt models with input — output mappings between lexical unitsEl We measure models’
predictive accuracies using the ICL prompts from Sec. |2 greedy sampling, and the exact match
evaluation metric. The compositionality gap is defined as the proportion of examples for which a
model answers both x — f(z) and f(x) — g(f(x)) correctlyf*|but z — g(f(z)) incorrectly.

We test the Llama 3 (3B) model on all of our tasks, using all available examples. We also test a wider
set of models (including those from Llama 3, OLMo 2, DeepSeek, and GPT model families) on 4 tasks:
antonym-spanish, plus-100-times-2, park-country-capital, and book-author-birthyear
(which capture a representative set of processing signatures from Sec. ). We aggregate metrics over
these tasks and use 100 examples per task for testing.

3.2 RESULTS

We show performance of the Llama 3 (3B) model on our tasks in Fig.[I] We clearly find a com-
positionality gap: the model is unable to solve the composition in 20-100% (varying by task) of
examples for which it can solve all hops. We show the performances of our other models in Fig.

'Note that this represents a methodological difference fr0m12022 , who prompted with long-form
questions. Our format is chosen to fit with the interpretability methods we use in later sections.

*We extend this definition to further require success at z — g(z) and g(x) — g(f(z)) in tasks where these
are valid hops.
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Figure 2: Compositionality gap (dashed purple line; lower is better) of various models aggregated
over 4 tasks (100 examples each). Blue, yellow, and red lines show proportions of examples for
which models correctly solve combinations of hops and the composition. Purple line shows the
relative gap between yellow and red: the proportion of examples for which the model cannot solve
the composition, out of those for which it can solve all hops. “-I”” indicates the instruction-tuned
variant of Llama 3 (405B). Error bands show interquartile range.

We find the compositionality gap does reduce with size from 72% — 39% (Llama 3, 1B — 405B)
and 74% — 49% (OLMo 2, 1B — 32B). However, the gap clearly remains and we find monotonically
diminishing improvements for both model families with respect to size. We plot the gap against
model parameters and layers in Appendix [C] In fact, the gap shows no improvement at all between
the 70B and (instruction-tuned) 405B parameter Llama 3 models.

We also compare reasoning models (04-mini and DeepSeek-R1; allotted a budget of 2000 reasoning
tokens) against same-generation, non-reasoning models (GPT-40 and DeepSeek-V3) in Fig.[2] We
find some reduction (41% — 31%) in the compositionality gap in the case of DeepSeek’s reasoning
model and significant reduction (49% — 18%) in the case of 04-mini. As o4-mini is proprietary (and
both this and GPT-40 have additional “external tool-use” capabilities), it is difficult to speculate about
the exact causes for these improvements. However, it is notable that even with advanced reasoning
models, the gap does not necessarily disappear entirely.

4  ANALYZING PROCESSING MECHANISMS

We next try to understand how the model correctly computes compositions in cases where it is
successful. Our intuition is based on prior work from [Merullo et al.| (2024)) which identifies a
processing signature in models that solve one-hop relational tasks. That work shows that models
predicting y = f(x) iteratively surface vocabulary representations — first for  and then for y — in
the residual stream. This “crossover” point was interpreted as evidence of the function f being applied
to the argument x in order to yield the final answer f(z) and was localized to specific computations
in the MLPs.

In this section, we ask whether an analogous signature will emerge in the case of compositional
functions, g(f(x)). That is, can we find distinct intermediate representations for z, followed by f(x),
and then g(f(z)) during the model’s processing?

Here, we employ analyses most similar to Biran et al.|(2024) and |Yang et al.| (2025)) in the context
of our evaluation (see Sec.|/|for further discussion on these works). We also join other works in
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identifying stages of processing within language models (Tenney et al.,|2019; Merullo et al.| 2024}
Lepori et al., [2024)).

4.1 EXPERIMENTAL DESIGN

We rely on existing methods which allow us to analyze processing signatures that are interpretable
using the vocabulary space of the model (nostalgebraist, 2020; |Geva et al., 2022)). We specifically
use logit lens (nostalgebraist, [2020), a method which projects intermediate representations into the
vocabulary space using the language modeling head. We also include results in Appendix [Fusing the
token identity patchscope (Ghandeharioun et al.,[2024)) as an alternative decoding method to logit
lens. We find that both methods yield similar findings.

We follow the approach from Merullo et al.|(2024) to identify the processing signature of models that
solve our compositional tasks and, in particular, representations of the intermediate variables, f(x)
and g(z), prior to those for g(f(z)). We specifically use logit lens to analyze the residual streams
corresponding to the computation z — ¢(f(x)) and measure the reciprocal rank of our variables
at each layer (see Appendix [B|for more details). We also use the maximum reciprocal rank of our
intermediate variables across the layers as a heuristic for their overall presence in the computation.

We conduct this analysis with the Llama 3 (3B) model. @ We exclusively analyze ex-
amples where the model can solve all requisite hops. To ensure sufficient sam-
ple sizes, we exclude any task with fewer than 10 such examples where the model
can also successfully solve the composition. In particular, these excluded tasks
include song-artist-birthyear, person-university-year, person-university-founder,
mod-20-times-2, word-truncate-reverse, and rgb-rotate-name. We show results for these
tasks in Appendices [D]and [E]

4.2 RESULTS

Fig. 34 shows the relative presence of each of the variables, across layers and aggregated over all
instances in which the model ultimately produced the correct answer. In such cases, we see a very
clear peak signal for the intermediate variable f(x), as expected, between those for « and g(f(z)).
Interestingly, this signal is much less clear for cases in which the model ultimately produces the
incorrect answer (Fig. . However, upon further inspection, there is little evidence of a causal
relationship here, which we discuss further in Appendix [E]

There are also plenty of individual examples in which the model produces a correct answer without
showing any signature of the intermediate variables, and there is only a weak correlation by task
(r? = 0.22) between predictive accuracy (measured as in Sec. and the presence of intermediate
variables as measured by our heuristic (Sec. [4.)).

Figs. [3c|to |3f] show model processing signatures for a few tasks, aggregated over cases in which
the model produces correct answers. We see, for example, that there is a clear signature in the
antonym-spanish task (Fig. for the intermediate computation of f(z), the word’s antonym,
before it is translated into Spanish. In contrast, for the movie-director-birthyear task (Fig.[3d),
there is no decodable signal for f(z), the movie’s director, before the model produces their birth year.
This variation can be seen in qualitatively similar tasks as well: tasks with the same basic arithmetic
structure (Figs. [3¢|and [3f) only sometimes carries detectable signatures of f(z) or g(z), depending
on the task’s operand (e.g. 10 or 100). We show processing signatures for the remaining tasks in
Appendix [D]and for all tasks, aggregated over unsuccessful cases, in Appendix [E]

5 COMPOSITIONAL PROCESSING AND EMBEDDING SPACE LINEARITY

Given that there is significant variation in whether or not the LLM solves a task compositionally
(i.e. how strongly they appear to compute the intermediate variables), we next ask why this variation
occurs. It is well-known that embedding spaces can capture relational information in their geometry
(Mikolov et al., 2013} Hewitt & Manning}, 2019). Moreover, Hernandez et al.| (2024)) shows that some
subject — object relations can be represented by a single linear transformation from a language
model’s residual stream activations to its unembedding space. Following this, we propose and test a



Under review as a conference paper at ICLR 2026

plus-10-times-2

Correct Examples antonym-spanish
=x = f(x) = g(x) = g(f(x)) = f(9(x)) =x = f(x) = g(x) = g(f(x)) =x = f(x) = g(x) = g(f(x)) = f(a(x)
1.0 ) 1.0 7 1.0
£ 1| €5 -y
0.8 7 . J .
So7 / So7 [/ o7
§ 0.6 / § 0.6 ) § 0.6 o ;;
0.5 gos 905 4
=04 aO.4 A 50.4 v A
203 S03 At Sos Y A
@ 0.2 @ 0.2 J @ 0.2 '~
n:0‘1... LT &o.1 ity pverds’ Eo1
X LT T TR LA A 0.0 Sesasdlc 0.0
0 4 8 12 16 20 2428 0 4 8 12 16 20 2428 0 4 8 12 16 20 2428
Layer Layer Layer
(@) (©) (e)
Incorrect Examples movie-director-birthyear plus-100-times-2
=x = f(x) = g(x) = g(f(x)) = f(g(x)) =x = f(x) = g(f(x)) =x = f(x) = g(x) = g(f(x)) = f(g(x)
1.0 y 1.0 .
~x 09 / ~ 09
< 0.8 N C 0.8
&o7 / So7
=06 = 0.6
005 / 005
S04 / =04
=03 / =0.3
@ 0.2 ’ @ 0.2
0.1 | 0.1 :
R —— 0.0 mm—————. = 5 2o 5258 0.0 |
0 4 8 12 16 20 2428 0 4 8 12 16 20 2428 0 4 8 12 16 20 2428
Layer Layer Layer
(b) d (®

Figure 3: (a-b) Processing signatures aggregated over examples (across all tasks) in which Llama 3
(3B) solves all hops correctly, but the composition (a) correctly or (b) incorrectly. (c—f) Processing
signatures for particular tasks — aggregated over examples where the model correctly solves all hops
and the composition. (a—f) Lines show reciprocal ranks of relevant variables (decoded using logit
lens) from residual streams corresponding to « — g(f(z)). Intermediate variables are shown with
dashed lines. The incorrect composition, f(g(z)), is shown by the red line when not distinct from

9(f(x)).

hypothesis that language models could process compositional functions in one hop if they are directly
represented as a linear transformation between the embedding and unembedding spaces.

5.1 EXPERIMENTAL DESIGN

To investigate our hypothesis, we fit a linear transformation for each task using least squares regression
from z (average embedding across tokens) to g( f(x)) (first token unembedding) on 100 examples
We quantify the “linearity” of this transformation using its reconstruction accuracy (measured via
cosine similarity) on the remaining examples. We quantify how “compositional” the processing is
using our heuristic metric which captures the strength of the signal for the intermediate variables,
f(z) and g(z) (see Sec. E[) We again restrict our analysis to examples where the model is successful
on all hops and the composition, as well as tasks with at least 10 such examples.

5.2 RESULTS

Fig. shows the that there is a a strong inverse correlation (72 = 0.53) between the linearity of the
representation and the compositionality of the processing. That is, the more linear the representation
of a relation is in the embedding spaces, the more likely the model is to display idiomatic (as opposed

to compositional) processing.
This correlation is computed by averaging linearity and compositionality across instances for each
task. Fig. [Ab] shows the de-aggregated distribution of our “compositionality” metric across the

3See Appendix @ for additional analyses which consider correlations with the linearities of the individual

hops (rather than the compositional task).
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Figure 4: (a) Strong correlation across tasks between presence of intermediate variables (heuristic
from Sec.[d.1|based on reciprocal rank; on average across examples) and embedding space linearity
(r? = 0.53). Conversely, accuracy is weakly correlated with these intermediate variable (2 = 0.22)
and linearity (r? = 0.13) metrics. (b) Distribution of examples for each task, shown as a histogram
of intermediate variable reciprocal ranks. (a—b) Colors refer to corresponding tasks between points in
(a) and histograms in (b).

examples. For some tasks, it appears that nearly all individual examples behave the same way. For
example, nearly every instance of the antonym-spanish task displays a compositional processing
signature, while almost every instance of the movie-director-birthyear task displays an idiomatic
one. On the other hand, this distribution is more uniform for other tasks, such as plus-100-times-2.
This distribution appears to be bimodal across all examples: 82% have very low (< 0.1) or high
(> 0.5) values for compositionality.

6 DISCUSSION

Summary of Findings Our results suggest that tasks which appear to have the same computational
structure may nonetheless be processed differently by LLMs. In particular, we consider functions
which appear compositional in a formal sense — i.e. they can be represented as y = g(f(z)) for some
reasonably defined f and g. We find evidence that LLMs only sometimes process such functions
compositionally, showing evidence of representing or computing the value of z = f(z) on the way
to computing y. In other cases, LLMs appear to map x to y directly. Which of these processes is
invoked appears to be related to how well the relationship between x and y is represented in the
embedding space, e.g. as a result of pretraining (Merullo et al., 2025)).

Implications for Theories of Compositionality There is a long-running debate about the degree
to which compositional behavior (McCurdy et al., [2024)) requires compositionality at the level of
mechanisms. The two sides of this debate have often talked past each other, often using different
types of computational architectures in order to model different aspects of behavior, for example,
using explicitly compositional symbolic systems to model formal domains (Lake et al., 2017} |[Ellis
et al.,[2023)) and using distributional or neural systems to model humans’ more idiomatic performance
(Erkl 2012; Lampinen et al., 2024).

Attempts to find compromises or “hybrid” systems often consist of neuro-symbolic systems which
are designed top-down (Andreas et al., 2016; [Ellis et al.l [2018)). Large language models offer an
alternative approach for advancing this debate. LLMs have proven capable of a range of behaviors
that have traditionally required compositionality — e.g. generating language and writing formal
computer code. However, LLMs lack the explicit symbolic mechanisms traditionally associated
with such behaviors. Using methods from interpretability to understand how LLMs represent such
functions internally enables us to approach the question in a “bottom up” manner, potentially offering
novel hypotheses about the mechanisms that can generate behavior that is sometimes systematic and
other times heuristic, as is the case in humans (Russin et al., 2025]).
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Our results suggest that LLMs employ a mix of compositional and idiomatic processing, and that the
choice of mechanism is related to the representations of the functions that result from pretraining.
This offers an interesting perspective on one question that is frequently at the heart of discussions of
compositionality — i.e. what are the primitives and where do they come from |Carey|(2011)? The
relationship between linearity in embedding space and compositionality of processing presented here
suggests an attractive hypothesis that the primitives are those things which are well represented as a
result of (pre-)training, and that compositional mechanisms are invoked to handle those things which
are not sufficiently well represented. Future work in this direction would likely yield interesting new
results and topics for debate.

Relationship to work on compositional generalization The work presented here concerns the
(apparent) compositionality of the processing mechanism, but does not directly relate this mechanism
to an LLM’s capacity for compositional generalization. The majority of work on compositionality
in neural networks (and LLMs) concerns compositional generalization, and the compositionality
researchers surveyed by [McCurdy et al.[(2024) overwhelmingly agree that existing language models
are insufficient in this regard. This belief is supported by evidence from many prior works (Sec.
and our investigation in Sec.[3]

Our work suggests that models employ both compositional and direct mechanisms to solve tasks.
Intuitively, we would expect there to be a relationship between the use of the mechanism and the
ability to generalize — i.e. the compositional mechanism should support generalization better than
the idiomatic mechanism (“memorization”). However, we do not test this intuition directly in this
paper. Future work could do so by employing causal interventions on the intermediate variables, for
example (see Appendix [G]for some initial investigations). This would likely present new complexities
and challenges that would enrich our understanding of compositionality, and of the relationships
between mechanisms and behaviors in LLMs in general.

7 RELATED WORK

Latent multi-hop reasoning Our work is most closely related to recent or concurrent works
which also study latent two-hop reasoning in large language models. |Yang et al.|(2024a)) use causal
interventions to identify the existence of the hops in the latent computation and whether they co-occur.
Biran et al.| (2024) employ the entity description patchscope (Ghandeharioun et al., 2024) to inspect
intermediate representations and localize the hops, finding they are resolved in different layers and
token positions. They propose a representational intervention (“backpatching”) to correct failures
based on this finding. Finally,|Yang et al.|(2025) use logit lens to analyze intermediate representations
and consistently find a “compositional” processing signature across their tasks. Our work employs all
of these interpretability methods (Sec.dand Appendices[Fand[G) to analyze the hops, but specifically
highlights and investigates the duality of the compositional vs. direct processing mechanisms. All
works (including our own) test different sets of tasks, make experimental design decisions according
to their independent goalsﬂand make findings in context of their own experiments.

Among other works in this domain, Wang et al.| (2024) trains a language model on synthetic composi-
tional data and identifies a multi-hop reasoning circuit in this model. Shalev et al.|(2024)) conduct a
distributional analysis (considering semantic category spaces, rather than individual tokens) using
logit lens. |Li et al.|(2024); Yu et al.| (2025) also propose interventions on intermediate representations
and mechanisms to solve failure cases. [Yang et al.[|(2024b) conduct an evaluation that is intentionally
designed to omit opportunities for models to exploit shortcuts.

Compositionality Compositionality is long-studied (Fodor & Pylyshynl 1988} [Partee, |2004) but
exact definitions evade general consensus. Russin et al.[(2024) and McCurdy et al.| (2024)) offer
recent overviews on the topic in the context of large language models. Russin et al.|(2024) provide a
historic account of compositionality and review studies of compositionality generalization in neural
networks. McCurdy et al.| (2024) survey compositionality researchers on how to define and evaluate
compositional behavior in neural networks. These researchers agree that our current representational

*One notable example is that, while [Yang et al.| (2024a) and Biran et al.|(2024) prompt their models with f
and g (e.g. “The mother of the singer of {x} is {y}”), we omit this information from our prompts (i.e.
more simply “Q: {x} \n A: {y}”) to avoid inducing bias towards the compositional mechanism.
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analyses are insufficient for evaluating models, but are divided about whether our behavioral analyses
are sufficient.

In a partial effort towards defining compositionality, Hupkes et al.| (2020) identify five particular as-
pects of compositionality and propose tests for each using a synthetic, fully compositional translation
task. Systematicity is one such aspect and is prominently studied: see |Vegner et al.| (2025) for a
survey of benchmarks for systematic generalization. Our work — in which we test whether f(z) is
evaluated before g(f(z)) — is closest toHupkes et al.| (2020)’s aspect of localism, in which “smaller
constituents are evaluated before larger constituents”.

Among many other works, |Johnson et al.| (2017), (Keysers et al., 2019), [Lake & Baroni| (2018)),
Hupkes et al.|(2020), and Kim & Linzen| (2020) offer prominent benchmarks that behaviorally test for
compositional generalization in neural networks trained from scratch on compositional data. These
works generally show that such models perform poorly on generalization, or at least poorly implement
the compositional processes that underlie the data. |Press et al.|(2022) and Ma et al.| (2023)) continue
to show significant failures in compositional generalization in pre-trained models. On the other
hand, [Furrer et al.|(2020) points out that pre-training a masked language model rivals or outperforms
architectures specifically designed for the SCAN (Lake & Baroni, |2018) and CFQ (Keysers et al.}
2019) generalization benchmarks. [Lepori et al.|(2023)) finds that neural networks learn to implement
compositionality structurally in their weights, supporting this claim against the need for specialized
symbolic mechanisms.

Compositionality of functions Several works consider how language models solve compositions
of functions (rather than specifically multi-hop reasoning tasks). |Dziri et al.| (2023) studies how
language models autoregressively solve such tasks, like multi-digit multiplication, by inspecting their
scratchpads. [Wattenberg & Viégas|(2024) propose mechanisms which neural networks could use to
implement relational compositions. |Yu et al.|(2023)); Todd et al.| (2024)) propose zero-shot methods
to invoke compositions of functions in language models that have learned the primitive functions.
Zhou et al.|(2024)) find that language models can compose functions with meta-learning in a way that
imitates human behavior.

LIMITATIONS

In this work, we primarily analyze the computation that occurs in a single forward pass of the Llama
3 (3B) model. It is also necessary to understand how other models (e.g. larger models, reasoning
models, or those with different inductive biases) implement compositional functions. Our findings
reflect the tasks we happen to test (often, factual recall) under our specific experimental design.
Further work should test other kinds of compositional functions, and try to more deeply understand
the relationship between compositional mechanisms, behavior, and generalization.

We investigate a limited subset of mechanisms in language models and use current methods to conduct
our analyses. These permit us to decode some, but not all, relevant representational structure. Some
signals that we do decode may be a result of feature multiplicity or are not guaranteed to be causal.
Finally, some of our tasks (e.g. arithmetic) may be solved by algorithms that we do not consider.

REPRODUCIBILITY STATEMENT

We make our code fully available so that all of our experiments can be replicated as closely as
possible and all computational artifacts (datasets, plots, results) can be reconstructed. We do our best
to include all experimental details in the main text and appendices of our paper.
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A DATA CREATION

Table 2: List of our tasks, showing z, g(z), and f(g(z)) for the random example in Table[I] Tasks
with neither g(z) nor f(g(z)) are omitted. f(g(z)) only shown if distinct from g(f(x)).

f g \ x | g(x) | flg(2))
Word — Antonym  English — Spanish bogus false —
Word — Antonym  English — German philosophical philosophisch —
Word — Antonym  English — French excessive excessive —
x+ 10 2x 699 1398 1408
x + 100 2x 922 1844 1944
x mod 20 2x 891 1782 2
Word — Numeric 2x one hundred and forty-eight | two hundred and ninety-six —
Word[:-1] Word[::-1] responsible elbisnopser elbisnopse
Rotate(RGB, 120°) RGB — Name 8a735a dimgray —

All tasks in Table [2| permit the additional computational pathway z — g(z) — g(f(x)). Those
which don’t list f(g(z)) are commutative and so f(g(x)) = g(f(z)) and applying f to g(x) results
in g(f(x)). The remaining tasks are not commutative, but their formal construction permits the hop
g(x) = g(f(x)) anyway. In particular, g( f(z)) equals g(x)+20 in plus-10-times-2, g(x)+200 in
plus-100-times-2, g(z) mod 40 in mod-20-times-2, and g(x)[1:] in word-truncate-reverse.

A.1 TASK CONSTRUCTION

Antonyms & Translations We obtain a list of antonyms from Todd et al.| (2024)) — further derived
from Nguyen et al.| (2017) — and obtain translations from Opus-MT (Tiedemann & Thottingall
2020).

Factual Relations We obtain various factual relations from WikiData and IMDb Non-Commercial
Datasets (Vrandeci¢ & Krotzschl 2014 [IMDb.com, Inc.| 2024} Bast & Buchhold| [2017). We apply
a number of heuristics to obtain well-known and unambiguous mappings. For example, we filter
entities by their “sitelinks” on WikiData or “votes” on IMDB (heuristics for popularity) to obtain
well-known subjects. To avoid ambiguity, we identify subjects (songs, books, movies, people, etc.)
with a single corresponding object (authors, attended universities, etc.). We omit parks and landmarks
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that exist in their country’s capital. Our exact queries for generating each task can be found in our
source code.

Arithmetic We use the range of numbers from 0 to 999 as x in our tasks. These numbers typically
result in one token. We use the num2words|library to obtain a mapping between words and numeric
values. We use the list of antonyms as our list of words for the word-truncate-reverse task.

Colors Inthe rgh-rotate-name task, we randomly sample RGB colors, rotate them 120° by their
hue, and map the resulting color value to that color’s name (using the webcolors|library and the
common CSS 3 specification).

B IMPLEMENTATION DETAILS

Examples & Prompts We prevent sampling of in-context examples that intersect in the vari-
ables {z, f(x), g(z), g(f(x)), f(g(z))} with the query. And, as mentioned in Sec. we exclude
examples in Secs. [] and [5] which overlap in the first token among their variables. So, although
x = “excessive” for the antonym-french task is listed in Table[2} this trivially shares the same first
token as g(x) = “excessive” and would be omitted from our analyses.

Our prompts are tokenized differently when predicting numbers or words, e.g. “... \n A: 99”
results in [ J[99] whereas “. .. \n A: modern” results in [ modern]. We accordingly include the
trailing space in our prompts when predicting numbers and omit it otherwise. We would then test for
the single-token prediction of [99] and [ modern] in this example.

Representational analysis In Sec. 4} we analyze the model’s computation from z — g(f(z)).
Consider the query for “Heartbreak Hotel” — “1935: i.e. “... Q: Heartbreak Hotel \n A: ”.
Here, multiple tokens ([ Heart][break][ Hotel][ \1[nI[ A:1[ J]) are central to the computation.
We therefore analyze all residual streams for these tokens. At each layer, we measure the signal for
each variable by its maximum reciprocal rank across the streams. This procedure yields processing
signatures, which quantify the presence of our variables at every layer.

We additionally represent each variable by its first token (since our decoding methods can only produce
single-token probabilities) and exclude examples where different variables share the same first token
and would be hard to differentiate. For example, f(z) = “ modern” and g(f(z)) = “ moderno” both
share the first token [ modern].

C COMPOSITIONALITY GAP BY SIZE
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Figure 5: We illustrate the monotonically diminishing improvements to the compositionality gap
resulting from increased model size (layers and parameters). We re-visualize results for the OLMo 2
and Llama 3 model families from Fig.
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D PROCESSING SIGNATURES (CORRECT)
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Figure 6: Aggregate processing signatures for each of our tasks, in which Llama 3 (3B) correctly
solves all hops and the composition for at least 10 examples.
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Figure 7: Aggregate processing signatures for each of our tasks, in which Llama 3 (3B) correctly
solves all hops and the composition for less than 10 examples.

E PROCESSING SIGNATURES (INCORRECT)

Although we see a difference in aggregate processing signatures (Figs. [3a)and [3b), where the signal
for the intermediate variables is clearer in the correct cases than the incorrect cases, this does not
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appear to be generally true (and is more likely due to data imbalances). We can see significant
presence of the intermediate variables when considering incorrect examples, de-aggregated by task

(Fig. B).
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Figure 8: Aggregate processing signatures for each of our tasks, in which Llama 3 (3B) correctly
solves all hops but not the composition for at least 10 examples.
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Figure 9: Aggregate processing signatures for each of our tasks, in which Llama 3 (3B) correctly
solves all hops but not the composition for less than 10 examples.
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F TOKEN IDENTITY PATCHSCOPE

Here, we repeat the analyses in Secs. [ and 5] but use the token identity patchscope (Ghandeharioun
2024) instead of logit lens. This method is proposed as one that is more closely aligned with a
language model’s computation than other methods (such as logit lens).

We would specifically like to use this method to decode a representation into vocabulary-space logits.
To do so, we prompt a model with the “token identity prompt”, in which random tokens are repeated
twice each, such as “[A] [A] ; [B] [B] ; ... ; [?]1”. We patch our representation of interest
into the residual stream of this forward pass (at the corresponding layer and final token position).
The language modeling logits resulting from our intervention then serve as the decoding for our
representation.

We generally find similarities with our logit lens analyses: in tasks with “compositional” processing
signatures, we continue to see growth of the signals for the intermediate variables with or before
that for g(f(x)). Please zoom in to observe simultaneous growth, which may be difficult to see due
to overlapping lines. And, although these plots may show growth of f(x) and g(f(x)) in the same
layers, recall that these computations can occur in different (e.g. earlier or later) residual streams
(Appendix [B).
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Figure 10: Aggregate processing signatures (using the token identity patchscope) for each of our
tasks, in which Llama 3 (3B) correctly solves all hops and the composition for at least 10 examples.
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Figure 11: Aggregate processing signatures (using the token identity patchscope) for each of our tasks,
in which Llama 3 (3B) correctly solves all hops but not the composition for at least 10 examples.

810,
g 0.9
808
e
T 0.6
(1] ]
Eo0s5
-t
= 0.4
503
o
g 0.2
»n 0.1
[}

1 [ ]
a 0.0

0.6 0.7 0.8

0.9

* word-int-times-2
plus-10-times-2

» antonym-spanish
antonym-french

« antonym-german
landmark-country-capital

« park-country-capital
plus-100-times-2

« product-company-hq

« product-company-ceo

« book-author-birthyear

* movie-director-birthyear

Embedding Space Task Linearity

Figure 12: Correlation across tasks (72 = 0.35) for embedding space task linearity and presence of
intermediate variables. Analogous to Fig.[a] using the intermediate variable metric from the token

identity patchscope.
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G CAUSALITY OF INTERMEDIATE VARIABLES

We would like to determine whether the variables, f(x) and g(x), we identify in models’ intermediate
representations have a causal effect on the outcome. We describe a preliminary investigation below.

We use activation patching (Vig et al.,[2020), a common method for conducting causal interventions
in interpretability, and patch representations across tasks.

We first identify tasks with the same f but different g, such as antonym-spanish (g o f) and
antonym-german (¢’ o f). For some x and z’, we extract a single intermediate representation from
the forward pass of ¢'(f(z’)) and patch it into the forward pass of g(f(x)). On average (over many x
and z’), we measure the causal effects on the predictions g(f(z)), g(f(2')), ¢'(f(z)), and ¢’ (f (z")).

We extract the representation from ¢’(f(«’)) at the position and layer where f(x) or g(x) have
the highest reciprocal rank (and only use instances where this value is at least 0.5). We patch this
representation into the forward pass for g(f(z)) at the median location where intermediate values are
highest (layer 18 and 71st percentile query token position; identified among variables that reach RR
> 0.5). We apply this intervention to two groups: instances with intermediate values that reach a peak
RR < 0.2 and > 0.5. In other words, instances with direct or compositional processing signatures.

antonym-french - antonym-german antonym-french - antonym-spanish antonym-german - antonym-french
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= g(f()) = g(f(x)) = g'(fx) = g'(f(x))

Figure 13: Causal effects on predicted values after patching from ¢’(f(2')) to g(f(x)) for instances
with compositional processing signatures.
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Figure 14: Causal effects on predicted values after patching from ¢’(f(«')) to g(f(x)) for instances
with direct processing signatures.

The Antonym-Translation tasks (which tend to have compositional signatures) show the most
significant causal effect: on average, g(f(z)) and ¢'(f(z)) decrease by -0.95 and -0.4, and g(f(z’))
and ¢'(f(«')) increase by 0.20 and 0.24. The effect on g(f(«')) clearly implicates the existence and
causality of f(«’) in the patched activation; that on ¢’(f(2)) indicates the additional existence of
either itself or the function vector (Todd et al.}[2024) for ¢’ in that representation. The causal effects
on compositional instances of product-company-hqg and product-company-ceo are smaller.

But we can also see a clear difference between the causal effects on the compositional and direct
instances. Indeed, the effects on product-company-hq and product-company-ceo are larger in
their compositional instances. Patching activations from plus-10-times-2 into plus-100-times-2
primarily decreases g(f(x)) and increases g'(f(z’)), perhaps only implying the existence of the
representation for ¢'(f(z’)) in the patched activation.

H LINEARITY CORRELATIONS

Similarly to the experiment in Sec. [5] and Fig. we investigate the relationship between our
compositionality heuristic and embedding space linearity for variations of the hops (rather than of the
compositional task).
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Figure 15: Relationships between presence of intermediate variables and embedding space linearity
for the hops. We find weaker correlations in all cases. 72 = 0.01 against the linearity of the first hop;
r2 = (.28 against the second hop; > = 0.05 using the minimum linearity between the hops; and
r2 = 0.20 using the maximum.
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