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Abstract

We revisit first-order optimization under local information constraints such as local
privacy, gradient quantization, and computational constraints limiting access to
a few coordinates of the gradient. In this setting, the optimization algorithm is
not allowed to directly access the complete output of the gradient oracle, but only
gets limited information about it subject to the local information constraints. We
study the role of adaptivity in processing the gradient output to obtain this limited
information from it, and obtain tight or nearly tight bounds for both convex and
strongly convex optimization when adaptive gradient processing is allowed.

1 Introduction

Distributed optimization has emerged as a central tool in federated learning for building statistical
and machine learning models for data distributed across users. In addition, large scale optimization is
typically implemented in a distributed fashion over multiple machines or multiple cores within the
same machine. These distributed implementations fit naturally in the oracle framework of first-order
optimization (see [22]) where in each iteration a user or machine computes the gradient oracle
output. Due to practical local constraints such as communication bandwidth, privacy concerns,
or computational issues, the entire gradient cannot be directly made available to the optimization
algorithm. Instead, the gradients must be passed through a randomized mechanism which, respectively,
ensures privacy of user data (local privacy constraints); or compresses them to a small number of
bits (communication constraints); or only computes a few coordinates of the gradient (computational
constraints). Motivated by these applications, we consider first-order optimization under such local
information constraints placed on the gradient oracle.

When designing a first-order optimization algorithm under local information constraints, one not
only needs to design the optimization algorithm itself, but also the algorithm for local processing of
the gradient estimates. Many such algorithms have been proposed in recent years; see, for instance,
[12], [1], [6], [15], [29], [16], and the references therein for privacy constraints ; [28], [7], [30], [18],
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[14], [25], [4], [11], [17], [20], [19], [27], and the references therein for communication constraints;
[24, 26] for computational constraints. However, these algorithms primarily consider nonadaptive
procedures for gradient processing (with the exception of [14]): that is, where the scheme used to
process the gradients at any iteration cannot depend on information gleaned from previous iterations.
As a result, the following question remains largely open:

Can adaptively processing gradients improve convergence in information-constrained optimization?

In this paper, we study this question for optimization over both convex and strongly convex function
families and under the three different local constraints mentioned above: local privacy, communication,
and computational. For each of these constraints, we establish lower bounds on convergence rates
which hold even when the gradients are adaptively processed. In the next sections, we cover prior
related work, before elaborating on our results and techniques.

1.1 Prior work

The model studied here can be viewed as extension of the classical query complexity model in [22].
Without information constraints, [5] study this setting and provide a general recipe for proving convex
optimization lower bounds for different function families. Specifically, they reduce the problem of
optimization with a first-order oracle to a mean estimation problem whose probability of error is
lower bounded using Fano’s method (cf. [31]). While our work also relies on a reduction to mean
estimation, we deviate from their approach, using instead Assouad’s method to prove lower bounds
for various function families. This different approach in turn enables us to derive lower bounds for
adaptive processing of gradients.

In the information-constrained setting, motivated by privacy concerns, [12] consider the problem
where the gradient estimates must pass through a locally differentially private (LDP) channel. How-
ever, in their setting the LDP channels for all time steps are selected at the start of optimization
algorithm – in other words, the channel selection strategy is nonadaptive. Similarly, [20] and [19]
consider a similar problem and impose the constraint that the gradient estimates be quantized to a
fixed number of bits. They, too, fix the quantization channels used at each time step at the start of
optimization algorithm. In contrast, in this paper, we allow for adaptive channel selection strategies;
as a result, the lower bounds established in these papers do not apply to our setting, and are more
restrictive than our bounds.

The results of Duchi and Rogers [13] for Bernoulli product distributions could be combined with
our construction to obtain tight lower bounds for optimization in p ∈ [1, 2] under LDP constraints,
but would not extend to the entire range of p. The work of Braverman, Garg, Ma, Nguyen, and
Woodruff [9] on communication constraints, also for p ∈ [1, 2], is relevant as well; however, their
bounds on mutual information cannot be applied directly, as their setting (Gaussian distributions)
would not satisfy our almost sure gradient oracle assumption.

[14] provide adaptive quantization schemes for convex and `2 Lipschitz function family. While the
worst-case convergence guarantees for the quantizers in [14] are similar to those in [7] and [20], it
shows some practical improvements over the state-of-the-art for some specific problem instances.
This suggests that while adaptive quantization may not help in the worst case for non-smooth convex
optimization, it may be useful for a smaller subclass of convex optimization problems.

1.2 Our contributions

We consider a general formulation for first-order optimization under local information constraints
where the output of the gradient oracle must be passed through a channel W selected from a fixed
channel family W . This family W captures the information constraints; see Section 2.3 for a
description of the channel families corresponding to our constraints of interest. Specifically, the
gradient is sent as input to this channel W , and the algorithm receives the output. In each iteration of
the algorithm, the channel to be used in that iteration can be selected adaptively based on previously
received channel outputs by the algorithm or channels to be used throughout can be fixed upfront,
nonadaptively. The detailed problem setup is given in Section 2.1. We obtain general lower bounds
for optimization of convex and strongly convex functions usingW , when adaptivity is allowed. These
bounds are then applied to the specific constraints of interest to obtain our main results.
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Our first contribution is in showing that adaptive gradient processing does not help for some of
the most typical optimization problems. Namely, we prove that for most regimes of local privacy,
communication, or computational constraints, adaptive gradient processing has nearly the same
convergence rate as nonadaptive gradient processing for both convex and strongly convex function
families. As a consequence, this shows that the nondaptive LDP algorithms from [12] and nonadap-
tive compression protocols from [20], [19] are optimal for private and communication-constrained
optimization, respectively. In another direction, under computational constraints, where we are
allowed to compute only one gradient coordinate, we show that standard RCD (cf. [10, Section 6.4]),
which employs uniform (nonadaptive) sampling of gradient coordinates, is optimal for convex and
strongly convex function families. This proves that adaptive sampling of gradient coordinates does
not improve over nonadaptive sampling strategies.

As previously discussed, prior work in both the local privacy and communication-constrained settings
concerned itself with the family of convex functions, with no lower bounds known for the more
restricted family of strongly convex functions, even for nonadaptive gradient processing protocols.
The key obstacle is the fact that during the reduction from optimization to mean estimation, the
known difficult case for the strongly convex family, even when analyzed for nonadaptive protocols,
leads to an estimation problem using adaptive protocols, and the lack of known lower bounds for
adaptive information-constrained estimation prevented this approach from succeeding. Specifically,
this difficult case has gradients that can depend on the query point which in turn can be chosen based
on previously observed channel outputs, an issue which does not arise in the case of the convex
family, where the lower bounds are derived using affine functions for which the gradients do not
depend on query point. We manage to circumvent this issue, by relying on a different reduction which
lets us capitalize on a recent lower bound for adaptive mean estimation. Crucially, this recent lower
bound does apply to adaptive estimation algorithms as well, bringing the last missing piece to the
puzzle. This lets us derive lower bounds for both convex Lipschitz and strongly convex functions
under adaptive gradient processing.

For general function classes, the results discussed above show that adaptive processing of gradients
does not help. This begs the question of whether there are natural function families where adaptive
gradient processing can lead to significant savings. Our third contribution is to provide an example of
such a family: specifically, we exhibit a natural optimization problem (entailing `2 minimization)
under computational constraints for which adaptive gradient processing provides a polynomial factor
improvement in convergence rates compared to nonadaptive processing. The key feature of this
optimization problem is that the resulting gradients have structured sparsity; adaptivity then allows
for a two-phase optimization procedure, where the algorithm first “explores” to find the structure
before, in a second phase, “exploiting” it to obtain more focused information about the function to
minimize. However, nonadaptive gradient processing protocols cannot easily exploit this hidden
structure, as finding it is now akin to locating a needle in a haystack; and thus exhibit much slower
convergence rates.

Notation: Throughout the paper q denotes the Hölder conjugate of p (that is, q = p/(p− 1)). a ∨ b
and a ∧ b denote. . . max{a, b} and min{a, b}, respectively. We denote by log the logarithm to the
base 2 and by ln the logarithm to the base e. The information-theoretic quantities, such as mutual
information and KL divergence, are defined using ln. ln∗(a) denotes the number of times ln must be
iteratively applied to a before the result is at most 1. {e1, ..., ed} denotes the standard basis of Rd.

2 Setup and preliminaries

2.1 Optimization under information constraints

We consider the problem of minimizing an unknown convex function f : X → R over its domain
X using oracle access to noisy subgradients of the function (cf. [22]). In our setup, the gradient
estimates supplied by the oracle must pass through a channel W ,5 chosen from a fixed set of channels
W , and the optimization algorithm π only has access to the output of this channel. The channel
familyW represents our information constraints.

5 A channel W with input alphabetX and output alphabetY , denoted W : X → Y , represents the conditional
distribution of the output of a randomized function given its input. In particular, W (·|x) is the conditional
distribution of the channel given that the input is x ∈ X .
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In detail, the framework is as follows:

1. At iteration t, the optimization algorithm π makes a query for point xt to the oracle O.
2. Upon receiving the point xt, the oracle outputs ĝ(xt), where E [ĝ(xt) | xt] ∈ ∂f(xt) and
∂f(xt) is the subgradient set of function f at xt.

3. The subgradient estimate ĝ(xt) is passed through a channel Wt ∈ W , and the output of the
channel Wt along with outputs of channels {Wi}i∈[t−1], where [n] = {1, . . . , n}, can be
used by the first order optimization algorithm to further update xt to xt+1.

Denote by π the first-order optimization algorithm which is allowed T queries to the oracle O and,
after the tth query, gets back the output Yt with distribution Wt(· | ĝ(xt)). Denote the set of all such
optimization algorithms by Πt.

Our goal is to select channels Wts and an optimization algorithm π to get a small worst-case opti-
mization error. Two classes of channel selection strategies are of interest: adaptive and nonadaptive.

Adaptive channel selection strategies can be described as follows. The channel Wt selected at time t
may depend on the previous outputs of channels {Wi}i∈[t−1]. Specifically, denoting by Yt and Yt,
respectively, the output alphabet and the output for the channel used at time t, the adaptive channel
selection strategy S := (S1, . . . , ST ) over T iterations comprises mappings St : Yt−1 →W taking
Y1, . . . Yt−1 as input and yielding a channel inW as output. We write SW,T for the collection of all
such channel selection strategies.

For nonadaptive channel selection strategies, we fix the channels {Wt}t∈[T ] ∈ Wobl through which
all the gradient estimates must pass at the start of the optimization algorithm.6 Denote the class of all
nonadaptive strategies by SNA

W,T .

We measure the performance of an optimization protocol π and a channel selection strategy S for a
given function f and oracle O using the metric E(f,O, π, S) defined as

E(f,O, π, S) := E
[
f(xT )−min

x∈X
f(x)

]
, (1)

where the expectation is over the randomness in xT .

For various function and oracle classes, denoted by O, the channel constraint familyW , and the
number of iteration T , we will characterize the adaptive minmax optimization error

E∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SW,T

sup
(f,O)∈O

E(f,O, π, S) (2)

and the corresponding nonadaptive minmax optimization error

ENA∗(X ,O, T,W) = inf
π∈ΠT

inf
S∈SNA

W,T

sup
(f,O)∈O

E(f,O, π, S) . (3)

Since nonadaptive channel selection strategies are a subset of adaptive channel selection strategies,
we have ENA∗(X ,O, T,W) ≥ E∗(X ,O, T,W).

2.2 Function classes

We define the function classes we consider, and a structured optimization problem for which we show
that adaptivity in the choice of channels helps.

Convex and `p Lipschitz function family. Our first set of function families are parameterized by a
number p ∈ [1,∞]. Throughout, we restrict ourselves to convex functions over a domain X , i.e.,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ X , ∀λ ∈ [0, 1]. (4)

Further, for a family parameterized by p, we assume that the subgradient estimates returned by the
first-order oracle for a function f satisfy the following two assumptions:

E [ĝ(x) | x] ∈ ∂f(x), (Unbiased estimates) (5)

Pr
(
‖ĝ(x)‖2q ≤ B2 | x

)
= 1, (Bounded estimates) (6)

6That is, Wt is selected independently of the t − 1 gradient observations received by the optimization
algorithm at step t.
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where ∂f(x) is the set of subgradient for f at x and q := p/(p− 1) is the Hölder conjugate of p. We
denote by Oc,p the set of all pairs of functions and oracles satisfying assumptions (4), (5), and (6).

We note that (5) is standard in stochastic optimization literature (cf. [22], [21], [10], [5]). To prove
convergence guarantees on first-order optimization in the classic setup (without any information
constraints on the oracle), it is enough to assume E

[
‖ĝ(x)‖2q

]
≤ B2. We make a slightly stronger

assumption in this case since the more relaxed assumption leads to technical difficulties in finding
unbiased quantizers for gradients; see [20, 19]. Also, observe that assumption (6) imposes a
restriction on the functions allowed in this class. Note that by (5) and (6) for every x ∈ X there exists
a vector g ∈ ∂f(x) such that ‖g‖q ≤ B. Further, since f is convex, f(x)− f(y) ≤ gT (x− y) for
every g ∈ ∂f(x), whereby |f(x)− f(y)| ≤ B‖x− y‖p. Namely, f is B-Lipschitz continuous in the
`p norm.7

Remark 1 (Convergence rate for convex functions). Without any information constraints (when
gradient estimates are directly observed), upper bounds of c1DB

√
log d√
T

and c1DBd
1/2−1/p
√
T

on the
error are achievable for `1 and `p, p ∈ [2,∞], convex family, respectively. Moreover, these rates
are orderwise optimal. In particular, from [5, Appendix C] we have the following result: For p = 1,
stochastic mirror descent algorithm with mirror map Φa(x) = 1

a−1‖x‖
2
a, where a = 2 log d

2 log d−1 ,

achieves the orderwise convergence rate; for p ∈ [2,∞], stochastic gradient descent achieves the
orderwise optimal convergence rate.

Strongly convex and `2 Lipschitz function family. We now consider a special subset of the convex
and `2 Lipschitz family described above, where the functions are strongly convex. For α > 0, a
function f is α-strongly convex on X if the function h defined below is convex:

h(x) = f(x)− α

2
‖x‖22, ∀x ∈ X . (7)

We denote by Osc the set of all pairs of functions and oracles satisfying (4), (5), (6), and (7), where
(6) is satisfied for q = 2.

The strong convexity parameter α is related to the parameter B, the upper bound on the `2 norm of
the gradient estimate. We state a relation between them when the domain X contains an `∞ ball of
radius D centered at the origin, as this will be of interest while proving lower bounds.

Lemma 1. For any X ⊇ {x : ‖x‖∞ ≤ D}, we have B
α ≥

Dd1/2

4 .

Remark 2 (Convergence rate for strongly convex functions). Without information constraints,
stochastic gradient descent achieves an upper bound of 2B2

T+1 ([21]) for the strongly convex family,
and this rate is optimal; see [5].

Mean estimation as an optimization problem. Our final optimization problem entails a structured
`2 minimization problem. We first define s-block sparsity which is needed for our function classes.
Definition 1. A vector v ∈ Rd is s-block sparse if (i) there exists an i such that vj = 0 for all
j /∈ {is+ 1, . . . ,min{i(s+ 1), d}} and (ii) the non-zero coordinates have the same absolute value
in [0, 1]. Let Bs be the set of all s-block sparse vectors in d dimensions.8

For v ∈ Bs, we define a function fv over X = [−1, 1]d as fv(x) = ‖x− v‖22, x ∈ X . Further, we
associate with each function fv an oracle Ov as follows. Let X be a random variable over {−1, 1}d
with E [X] = v (i.e., its mean is the s-block sparse vector v parameterizing fv). The gradient estimate
output of the oracle Ov at x and at time t is 2(x−Xt), where {Xt}∞t=1 are i.i.d. random variables
with the same distribution as X . Note that the expected value of this gradient estimate is∇f(x).
Definition 2. Let Oblsp,s denote the collection of pairs of functions and oracles described above.

Observe that the first-order optimization described above is the standard `2 mean estimation problem
cast as an optimization problem, since the function fv is minimized at x∗ := E [X]. Moreover, the
essential information supplied by the oracle are the i.i.d. samplesXt (since the optimization algorithm
already knows the queries x).

7The same could be said under the weaker assumption E
[
‖ĝ(x)‖2q

]
≤ B2.

8We assume throughout, for simplicity, that d/s is an integer.
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2.3 Information constraints

We describe three specific constraints of interest to us: local privacy, communication, and computation.
The first two are well-studied; the third arises in procedures such as random coordinate descent.

Local differential privacy. To model local privacy, we define the ε-locally differentially private
(LDP) channel familyWpriv,ε.

Definition 3. A channelW : Rd → Rd is ε-locally differentially private (ε-LDP) if for all x, x′ ∈ Rd,

W (Y ∈ S | X = x)

W (Y ∈ S | X = x′)
≤ eε

for all Borel measurable subsets S of Rd. We denote byWpriv,ε the set of all ε-LDP channels.

When operating under local privacy constraints, oracle’s subgradient estimates are passed through a
ε-LDP channel, and only the output is available to the optimization algorithm. Thus, the data of
individual users, accessed in each oracle query, remains differentially private, a notion of privacy that
is now widely agreed upon.

Communication constraints. To model communication constraints, we define theWcom,r the r-bit
communication-constrained channel family, as follows.
Definition 4. A channel W : Rd → {0, 1}r constitutes an r-bit communication-constrained channel.
We denote byWcom,r the set of all r-bit communication-constrained channels.

Computational constraints. For high-dimensional optimization, altogether computing the subgradi-
ent estimates can be computationally expensive. Often in such cases, one resorts to computing only
a few coordinates of the gradient estimates and using only them for optimization ([24, 26]). This
motivates the oblivious sampling channel familyWobl, where the optimization algorithm gets to see
only one randomly chosen coordinate of the gradient estimate.
Definition 5. An oblivious sampling channelW is a channelW : Rd → Rd specified by a probability
vector (pi)i∈[d], i.e., a vector p such that pi ≥ 0 for all i and

∑
i∈[d] pi = 1. For an input g ∈ Rd,

the output distribution of W is given by W (g(i)ei | g) = pi,∀i ∈ [d]. We denote byWobl the set of
all oblivious sampling channels.

Therefore, at most one coordinate of the oracle’s the gradient estimate can be used by the optimization
algorithm. Further, this coordinate is sampled obliviously to the input gradient estimate itself. We
note that the special case of p = 1

d1d corresponds to sampling employed by standard Random
Coordinate Descent (RCD) (cf . [10, Section 6.4]), where at each time step only one uniformly
random coordinate of the gradient is used by the gradient descent algorithm.

3 Main results

For p ∈ [1,∞] and D > 0, let Xp(D) := {X ⊆ Rd : maxx,y∈X ‖x− y‖p ≤ D} be the collection
of subsets of Rd whose `p diameter is at most D. In stating our results, we will fix throughout the
parameter B > 0, the almost sure bound on the gradient magnitude defined in (6), as well as the
strong convexity parameter α > 0 defined in (7) (which, implicitly, is required to satisfy Lemma 1).
Throughout this section, our lower bounds on minmax optimization error focus on tracking the
convergence rate for large T , a standard regime of interest for the stochastic optimization setting.

3.1 Lower bounds on locally private optimization under adaptive gradient processing

Throughout, we consider ε ∈ [0, 1], namely the high-privacy regime.

Convex function family. For the convex function family, we prove the following lower bounds.
Theorem 1. Let p = 1, ε ∈ [0, 1], and D > 0. There exists a constant c0 such that for T = Ω(d/ε2),

sup
X∈X1(D)

E∗(X ,Oc,1, T,Wpriv,ε) ≥
c0DB√

T
·
√

d

ε2
.
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Theorem 2. Let p ∈ [2,∞], ε ∈ [0, 1], and D > 0. There exists a constant c0 such that for
T = Ω(d2/ε2),

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wpriv,ε) ≥
c0DBd

1/2−1/p

√
T

·
√

d

ε2
.

Remark 3 (Tightness of bounds for convex functions and LDP constraints). [12, Theorem 4 and 5]
provide nonadaptive LDP algorithms which show that Theorem 1 is tight up to logarithmic factors
for p = 1 and Theorem 2 is tight up to constant factors for all p ∈ [2,∞]. Therefore, adaptive
processing of gradients under LDP cannot significantly improve the convergence rate for convex
function families.

Interestingly, for p = 1, [12] also provide a slightly stronger lower bound of c0DB√
T
·
√

d log d
ε2 for

nonadaptive protocols, which matches the performance of their nonadaptive protocols up to constant
factors. This points to a minor gap in our understanding of adaptive protocols: Can we establish a
stronger lower bound for adaptive protocols to match the performance of the nonadaptive algorithm
of [12], or does there exist a better adaptive protocol? We believe that the latter option is correct,
and conjecture that the

√
d log d dependence is tight even for adaptive protocols.

From Remark 1, the standard optimization error for `1 and `p, p ∈ [2,∞], convex family blows up

by a factor of
√

d
ε2 when the gradient estimates are passed through an ε-LDP channel.

Remark 4. We note that our techniques also yield lower bounds for p ∈ (1, 2), a range that has not
been considered in prior works on information-constrained gradient processing to the best of our
knowledge. These bounds are given in the full version [2]. Deriving tight upper bounds for this range
is an interesting open question, which we leave for future exploration.

Strongly convex family. We prove the following result for strongly convex functions.
Theorem 3. Let p = 2, ε ∈ [0, 1], and D > 0. There exists a constant c0 > 0 such that for

T ≥ Ω
(

B2

α2D2 · dε2
)

,

sup
X∈X2(D)

E∗(X ,Osc, T,Wpriv,ε) ≥
c0B

2

αT
· d
ε2
.

Remark 5 (Tightness of bounds for strongly convex functions and LDP constraints). One can use
stochastic gradient descent with the nonadaptive protocol from [12, Appendix C.2] to obtain a
nonadaptive protocol with convergence rate matching the lower bound in Theorem 3 up to constant
factors, establishing that adaptivity does not help for strongly convex functions.

From Remark 2, the standard optimization error for strongly convex functions blows up by a factor of
d
ε2 when the gradient estimates are passed through an ε-LDP channel.

3.2 Lower bounds on communication-constrained optimization

Convex function family. For convex functions we prove the following lower bounds.
Theorem 4. Let p = 1. There exists a constant c0 > 0 such that for r ∈ N, T = Ω(d/r), and D > 0

sup
X∈X1(D)

E∗(X ,Oc,1, T,Wcom,r) ≥
c0DB√

T
·
√

d

d ∧ r
.

Theorem 5. Let p ∈ [2,∞]. There exists a constant c0 > 0 such that for r ∈ N, and T = Ω
(

d2

2r∧d

)
,

and D > 0

sup
X∈Xp(D)

E∗(X ,Oc,p, T,Wcom,r) ≥

(
c0DBd

1/2−1/p

√
T

·
√

d

d ∧ 2r

)
∨

(
c0DB√

T
·
√

d

d ∧ r

)
.

Remark 6 (Tightness of bounds for convex functions and communication constraints). In the full
version of the paper [2], we provide a scheme which matches the lower bound in Theorem 4 up to
constant factors for any r. Since each coordinate of oracle output is bounded by B for p = 1, we
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simply can use an unbiased 1-bit quantizer for each coordinate. The proposed scheme uses such a
quantizer for each coordinate and makes d/r repeated queries to the oracle for the same point, but
gets 1-bit information about r different coordinates in each query.

For p ∈ [2,∞], we can use the quantizer SimQ+ from [19] with k = r and appropriate mirror
descent algorithms to get upper bounds that match the lower bounds in Theorem 5, up to an additional
O(log d) factor. For p = 2, we can use the quantizer RATQ from [20] to improve this match to an
O(ln ln∗ d) factor.

From Remark 1, the standard optimization errors for `1 and `p, p ∈ [2,∞], convex family blow up

by a factor of
√

d
d∧r and

√
d

d∧2r ∨
√

d2/p

d∧r , respectively, when the gradient estimates are compressed
to r bits.

Remark 7. Finally, we remark that our techniques also extend to lower bounds for communication-
constrained optimization of `p, p ∈ (1, 2), convex family, which we prove in the proofs section, but
the known upper bounds in the previous works are not tight for this family for r ≤ d.

Strongly convex family. We prove the following result for strongly convex functions.

Theorem 6. Let p = 2 and D > 0. There exists a constant c0 > 0 such that, for r ∈ N and
T = Ω

(
B2

α2D2 · dr
)

,

sup
X∈X2(D)

E∗(X ,Osc, T,Wcom,r) ≥
c0B

2

αT
· d

d ∧ r
.

Remark 8 (Tightness of bounds for strongly convex functions and communication constraints). We
note that the nonadaptive scheme RATQ in [20] along with stochastic gradient descent matches the
lower bound in Theorem 6 up to a ln ln∗ d factor for r = Ω(ln ln∗ d).

From Remark 2, the standard optimization error for strongly convex functions blows up by a factor of
d
r when the gradient estimates are compressed to r bits.

3.3 Lower bounds on computationally-constrained optimization

Our motivation for studying the oblivious sampling channel is to derive lower bounds for random
coordinate descent methods. Since such optimization methods are natural to the `2 space, we restrict
our attention to the convex family and `2 Lipschitz family in this section.

Theorem 7 (Convex family). Let p = 2. There exists a constant c0 > 0 such that, for T = Ω(d) and
D > 0,

sup
X∈X2(D)

E∗(X ,Oc,2, T,Wobl) ≥
c0
√
dDB√
T

.

The standard Random Coordinate Descent (RCD) (see for instance [10, Theorem 6.6]), which employs
uniform sampling, matches this lower bound up to constant factors. The optimality of standard RCD
reinforces the folklore approach of uniformly sampling coordinates for random coordinate descent
unless there is an obvious structure to exploit (as in [23]). This establishes that adaptive sampling
strategies do not improve over nonadaptive sampling strategies for the family Wobl. Also from
Remark 1, the standard optimization error for `2 convex family blows up by a factor of

√
d when the

gradients are sampled obliviously.

Theorem 8 (Strongly convex family). Let p = 2. There exists a constant c0 > 0 such that for
T = Ω(d B2

α2D2 ), and D > 0

sup
X∈X2(D)

E∗(X ,Osc, T,Wobl) ≥
c0dB

2

αT
.

Once again, the standard RCD algorithm matches this lower bound, which shows that adaptive sam-
pling strategies do not improve over nonadaptive sampling strategies for strongly convex optimization.
Further, from Remark 2, the standard optimization error for strongly convex family blows up by a
factor of

√
d when the gradients are sampled obliviously.
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3.4 An example where adaptivity helps

Until now we showed that for information-constrained first-order optimization over the standard
function and oracle classes using popular channel families, adaptive channel selection strategies offer
no better convergence guarantees than nonadaptive strategies.

We will consider the function and oracle class as Oblsp,s (Definition 2) using information constraint
family asWobl (Definition 5) and show that adaptive channel selection strategies strictly outperform
the nonadaptive ones. Towards that, we first derive a lower bound for nonadaptive strategies, and
then we present an adaptive scheme which improves over this bound.

Recall that ENA∗(X ,Oblsp,s, T,Wobl) ≥ E∗(X ,Oblsp,s, T,Wobl). We will show a strict separation
between the two quantities: for s :=

√
d, the error incurred by any nonadaptive strategy is at least

Ω(d3/2/T ), while there exists an adaptive strategy achieving error O((d log d)/T ).

Lower bound for nonadaptive channel selection strategies. We show the following.
Theorem 9. Let X = [−1, 1]d. Then, there exists absolute constants c0, c1, c2 > 0, such that for any
s ≥ c0 and T ≥ c1d, we have

ENA∗(X ,Oblsp,s, T,Wobl) ≥ c2 ·
sd

T
.

An upper bound for adaptive channel selection strategies. We now prove a O((d log(d/s) +
s2)/T ) upper bound on the error for adaptive strategies, by exhibiting an adaptive channel selection
strategy and optimization procedure we term Adaptive Coordinate Descent (ACD), denoted πACD.

First, note that the only new information that the oracles present at each iteration is about the random
variable X with E [X] = v underlying the oracle associated with some function fv(x) = ‖x− v‖22
in our family Oblsp,s. Thus, the problem at hand becomes that of estimating the mean v using
independent copies of X . See the supplemental for a detailed description.

Keeping this in mind, our adaptive channel selection strategy is divided in two phases, each making
T/2 queries to the oracle: the exploration phase and the exploitation phase. In the exploration phase,
we select each block’s first coordinate as a representative coordinate for that block and query each
representative coordinate Ts/(2d) times. At the end of this phase, an estimate of the mean is formed
for each representative coordinate. Next, we select the block whose representative coordinate has
the sample mean with the highest absolute value. Then, in the exploitation phase each coordinate
of the selected block is queried T/(2s) times. Our optimization algorithm estimates the means of
coordinates in the selected block using the sample mean of the values received in the exploitation
phase. For the rest of the coordinates, the mean estimate is zero. Finally, our algorithm returns the
overall estimated mean vector as the estimated minimizer of the function.

Recall that in RCD, the oracle returns the gradient along a randomly chosen coordinate. In contrast,
ACD gets gradient for a particular coordinate in each round, and the choice of the coordinates used in
the exploitation phase depends on the observations of the exploration phase. Also, we note that it
is possible to interpret our procedure as a coordinate descent algorithm. However, for the ease of
presentation, we simply retain the form above. The performance of πACD is characterized below.

Theorem 10. Fix any 1 ≤ s ≤ d, and (f,O) ∈ Oblsp,s.9 Let Ŷ ∈ Rd be the point returned by πACD
after T oracle queries to O. Then,

E[f(Ŷ )] ≤
36d ln d

s + 2s2

T
.

4 Sketch of proof for our lower bounds

The proofs of all our lower bounds follow the same general template, summarized below.

Step 1. Relating optimality gap to average information: We consider a family of functions
G = {gv : v ∈ {−1, 1}d} satisfying suitable conditions and associate with it a “discrepancy metric”

9 That is, f(x) = fv(x) = ‖x − v‖2 for some v with block sparsity structure and O gives independent
copies of random variable X with E [X] = v.
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ψ(G) that allows us to relate the optimality gap of any algorithm to an average mutual information
quantity. Specifically, for V distributed uniformly over {−1, 1}d, we show that the output xT of any
optimization algorithm satisfies10

E[gV (xT )−min
x∈X

gV (x)] ≥ dψ(G)

6

(
1−

(1

d

d∑
i=1

I
(
V (i) ∧ Y T

))1/2)
,

Yt is the channel output for the gradient in the tth iteration and Y T := (Y1, . . . , YT ). Heuristically,
we have related the gap to optimality to the difficulty of inferring V by observing Y1, . . . , Y

T . We
note that the bound above is similar to that of [5], but instead of mutual information I

(
V ∧ Y T

)
we get average mutual information per coordinate. This latter quantity is amenable to analysis for
adaptive protocols.

Step 2. Average information bounds: To bound the average mutual information per coordinate,
1
d

∑d
i=1 I

(
V (i) ∧ Y T

)
, we take recourse to recently proposed bounds from [3]. These bounds hold

for Y T which is output of adaptively selected channels from a fixed channel familyW , with i.i.d.
input XT = (X1, . . . , XT ) generated from a family of distributions {pv, v ∈ {−1, 1}d. We view the
output of oracle as inputs XT and derive the required bound. While results in [3] provided bounds for
Wpriv,ε andWcomm,r, we extend the approach to handleWobl. Specifically, under a smoothness and
symmetry condition on {pv, v ∈ {−1, 1}d}, which has a parameter γ associated with it, we show
the following. For |X | <∞ and Xi := {x(i) : x ∈ X}, i ∈ [d], we have

d∑
i=1

I
(
V (i) ∧ Y T

)
≤ C

2
· Tγ2,

where the constant C > 0 depends only on {pv, v ∈ {−1,+1}d} and, denoting , is given by
C = (maxi∈[d] |Xi| − 1) ·maxx∈X maxv∈{−1,+1}d maxi∈[d]

pv⊕i (X(i)=x(i))

pv(X(i)=x(i)) .

Step 3. Use appropriate difficult instances: To prove lower bounds for the convex family, we will
use the class of functions Gc = {gv(x) : v ∈ {−1, 1}d} defined on the domain X = {x ∈ Rd :
‖x‖∞ ≤ b} comprising functions gv given below:

gv(x) = a ·
d∑
i=1

|x(i)− v(i) · b|, ∀x ∈ X , v ∈ {−1, 1}d.

On the other hand, to prove lower bounds for the strongly convex family, we will use the class of
functions Gsc = {gv(x) : v ∈ {−1, 1}d} on X = {x ∈ Rd : ‖x‖∞ ≤ b} given by

gv(x) = a

d∑
i=1

(
1 + 2δv(i)

2
f+
i (x) +

1− 2δv(i)

2
f−i (x)

)
, ∀x ∈ X , v ∈ {−1, 1}d,

where,for i ∈ [d], f+
i (x) = θb|x(i)+b|+ 1−θ

4 (x(i)+b)2 and f−i (x) = θb|x(i)−b|+ 1−θ
4 (x(i)−b)2.

Step 4. Carefully combine everything: We obtain our desired bounds by applying Steps 1 and 2
to difficult instances from Step 3. Since the difficult instance for convex family comprises linear
functions, the gradient does not depend on x. Thus, we can design oracles which give i.i.d. output
with distribution independent of the query point xt, whereby the bound in Step 2 can be applied.
Interestingly, we construct different oracles for p = 1 and p ≥ 2.

However, the situation is different for the strongly convex family. The gradients now depend on the
query point xt, whereby it is unclear if we can comply with the requirements in Step 2. Interestingly,
for communication and local privacy constraints, we construct oracles that allow us to view messages
Y T as output of adaptively selected channels applied to independent samples from a common
distribution pv. While it is unclear if the same can be done for computational constraints as well,
we use an alternative approach and exhibit an oracle for which we can find an intermediate message
vector Z1, . . . , ZT such that V and Y T are conditionally independent give ZT and the message ZT
satisfies the requirements of Step 2.

10For tuples of random variables X and Y , I(X ∧ Y ) denotes the mutual information between X and Y .
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