

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMMERSIVE MULTIMODAL TRANSLATION: A PROXY TASK FOR CROSS-MODAL AND OBJECTIVE EVALUA- TION OF UNIFIED MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Unified multimodal models that jointly perform image understanding and generation have achieved substantial progress. However, a critical challenge persists in establishing rigorous evaluation protocols. Existing benchmarks typically assess generation and understanding tasks independently and rely on large multi-modal language models (MLLMs) for scoring. Such approaches introduce language-centric biases and lack objective ground truth, thereby limiting the reliability and fairness of model assessment. To address this, we propose Immersive Multi-modal Translation (IMT), a novel proxy task that requires models to translate textual content within images while preserving visual context. IMT naturally captures cross-modal synergy between understanding and generation, while enabling transparent, objective evaluation through established metrics from natural language processing and computer vision. To support systematic study, we construct IMTBench, a benchmark spanning three scenarios, including document, webpage, and scene image, with nine languages, and 2,000 carefully curated samples. IMTBench incorporates a three-dimensional evaluation framework measuring translation quality, background fidelity, and visual text rendering accuracy. Extensive experiments across diverse unified multi-modal architectures reveal that current open-source models still fall significantly short of commercial expert systems. By providing objective, cross-modal evaluation protocols, we believe that IMT and IMTBench can offer actionable guidance for future research in unified multi-modal intelligence.

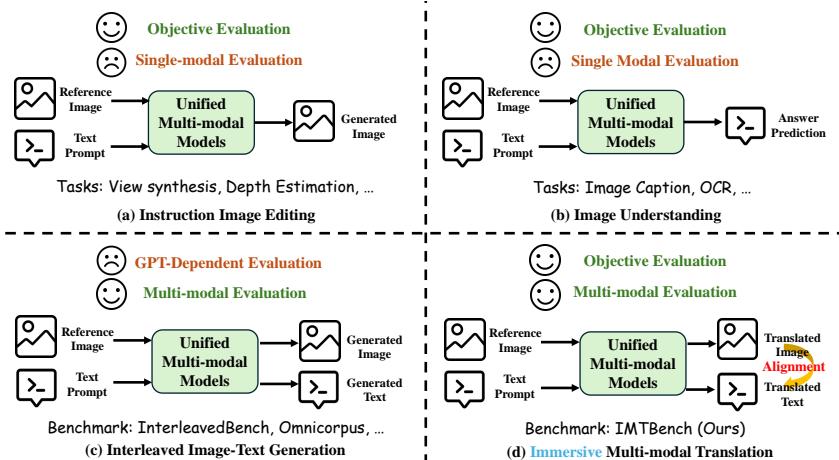


Figure 1: Comparison of existing evaluation tasks for unified multimodal generation and understanding models and our proposed Immersive Multi-modal Translation (IMT) task. Unlike prior tasks, IMT simultaneously supports objective evaluation and cross-modal assessment. The term “Immersive” emphasizes that the generated text and images must remain aligned in between text and image.

054 **1 INTRODUCTION**

055

056 Recent advances in image understanding and generation have fueled growing interest in unified
 057 multi-modal models that jointly handle both modalities. A range of frameworks have been proposed,
 058 spanning proprietary systems such as GPT-Image-1 (OpenAI, 2025) and Banana-nano¹, and open-
 059 source efforts including Qwen-Image (Wu et al., 2025a), Bagel (Deng et al., 2025), Blip-3o (Chen
 060 et al., 2025a), and UniWorld (Lin et al., 2025a). These systems employ diverse paradigms, in-
 061 cluding autoregressive, diffusion-based, cascaded, hybrid, and have achieved notable success across
 062 tasks such as image generation, editing, and understanding. However, despite rapid progress, it re-
 063 mains unclear which paradigm offers the most promise for general-purpose multimodal intelligence.
 064 Addressing this question critically depends on how we evaluate such models.

065 As shown in Fig. 1(a) and (b), current practice typically assesses generation and understanding
 066 tasks (Downs et al., 2022; Silberman et al., 2012; Liu et al., 2024c;b) in isolation, neglecting the
 067 original motivation for unification: to achieve synergy between cross-modal comprehension and
 068 contextual generation. In addition, most benchmarks for image-text generation (Xiao et al., 2025;
 069 Liu et al., 2024a) and editing (Ye et al., 2025; Liu et al., 2025) rely heavily on large multimodal lan-
 070 guage models (MLLMs) such as GPT-4o (OpenAI, 2024) for scoring Fig. 1(c). While such models
 071 provide valuable reference signals, they introduce two major limitations: (1) Many generation or un-
 072 derstanding task can only evaluate performances only in a single modality, and (2) their judgments
 073 depend on Multi-modal Large Language Model (MLLM), which is influenced by pretraining data.
 074 So they cannot be regarded as truly objective metrics, undermining the credibility of evaluation. As
 075 a result, existing frameworks fail to provide a fair and rigorous assessment of unified models.

076 To address these limitations, we introduce Immersive Multimodal Translation (IMT), a novel proxy
 077 task designed to evaluate unified image generation and understanding models. Illustrated by
 078 Fig. 1(d), IMT requires models to produce text–image aligned translations: given an image
 079 containing text and a target language, the model generates a faithful translation seamlessly integrated
 080 into the visual context. Crucially, IMT captures both objective evaluation and cross-modal synergy
 081 and decomposes into three subtasks: (1) translating the textual content, (2) rendering the translated
 082 text in the image, and (3) preserving the original background and layout. Each subtask aligns with
 083 established problems in NLP or computer vision, enabling validated metrics for transparent, large-
 084 model-independent assessment. Beyond methodological rigor, IMT supports practical applications
 085 in tourism, education, workplace collaboration, and social communication.

086 To facilitate systematic study, we construct IMTBench, a benchmark for evaluating unified multi-
 087 modal models on IMT. IMTBench spans three scenarios, including documents, webpages, and scene
 088 images, with nine languages, comprising 2k carefully annotated samples. Building on insights from
 089 translation and vision research (Rei et al., 2020; Zhang et al., 2018), we design a three-dimensional
 090 evaluation protocols covering three subtasks above mentioned, covering visual, text and alignment
 091 score. Extensive experiments on IMTBench with commercial pipelines and unified multi-modal
 092 models reveal that existing models still lag behind expert systems in multi-modal translation, high-
 093 lighting substantial room for improvement and structural trade-offs among paradigms. Furthermore,
 094 we fine-tune on IMT-1M, which are curated with the same pipeline as IMTBench, substantially
 095 boosts model performance on IMT task. Several fine-tuning observations are reported in this work,
 096 with the aim of providing insights for the community on training unified generation and understand-
 097 ing models. Our main contributions are summarized as follows:

098 • We propose **Immersive Multimodal Translation (IMT)** as a new proxy task for evaluating uni-
 099 fied image generation and understanding models, alleviating the subjectivity and bias issues of
 100 prior evaluation methods that rely heavily on large-model-based scoring.

101 • We introduce **IMTBench**, a benchmark spanning a three-dimensional evaluation protocol cover-
 102 ing (i) cross-modal contextual comprehension, (ii) background coherence in context-aware image
 103 editing, and (iii) semantic–visual synergistic generation.

104 • Through extensive evaluations of both open-source and commercial unified multimodal architec-
 105 tures, we reveal substantial performance gaps in immersive multi-modal translation tasks quan-
 106 titatively. External fine-tuning experiments on IMT-1M uncover the critical structural trade-offs
 107 across different paradigms.

¹aistudio.google.com/models/gemini-2-5-flash-image

108

2 RELATED WORKS

109

110 2.1 UNIFIED MULTI-MODAL UNDERSTANDING AND GENERATION MODELS

111
 112 Recent research has increasingly focused on unified multi-modal architectures that integrate
 113 image understanding and generation within a single framework. According to the decoding
 114 paradigm (Zhang et al., 2025a), we categorize these unified multi-modal models into three cat-
 115 egories: diffusion-based, auto-regressive-based, and hybrid-based methods. Diffusion-based ex-
 116 tend diffusion models to multi-modal generation. Dual Diffusion introduces dual-branch denoising
 117 for text and image latents with cross-modal attention. UniDisc (Swerdlow et al., 2025) unifies
 118 modalities in a discrete token space, while FUDOKI (Wang et al., 2025a) replaces timestep-based
 119 diffusion with discrete flow matching for better global reasoning. Mudit (Shi et al., 2025) and
 120 MMArDA (Yang et al., 2025b) scale these ideas using shared transformers and reinforcement learning
 121 for enhanced alignment. Despite progress, unified diffusion models still face challenges in inference
 122 efficiency, sparse supervision, and architectural limitations, motivating further research in scalable,
 123 efficient multi-modal generation. Another major direction in unified multi-modal understanding
 124 and generation models adopts auto-regressive architectures. Some methods like TokLIP (Lin et al.,
 125 2025b), Harmon (Wu et al., 2025b), Chameleon (Team, 2024), Emu3 (Wang et al., 2024), etc, uti-
 126 lize the VQGAN-style tokenizer to compress the high-dimensional pixel space into a compact latent
 127 space and obtain the pixel-level features. In addition to overcoming the semantic limitations in-
 128 herent in pixel-based encoders, OmniGen (Xiao et al., 2025), UniWorld (Lin et al., 2025a), and
 129 ILLUME (Huang et al., 2025) facilitate CLIP-like encoders to extract high-level semantic infor-
 130 mation to improve the convergence of the generation branch. Furthermore, hybrid-based methods
 131 preserve symbolic reasoning capabilities, while employing diffusion processes for image genera-
 132 tion to enhance global consistency and visual quality. Representative works include Show-o (Xie
 133 et al., 2024) and BAGEL (Deng et al., 2025). The former typically leverages pixel-level or con-
 134 tinuous latent representations combined with bidirectional attention to achieve cross-modal alignment,
 135 whereas hybrid encoding methods such as BAGEL (Deng et al., 2025) integrate semantic features
 136 with pixel-level latent spaces to jointly support both understanding and generative capacities.

137

138 2.2 END-TO-END IMAGE TRANSLATION

139 End-to-end image translation can be categorized into two sub-tasks based on the target modality:
 140 Text Image Translation (TIT) and In-Image Translation (IIT). TIT focuses on translating visual text
 141 in the source language into text in the target language, representing a cross-modal process between
 142 image and text.

143 Most existing end-to-end image translation approaches concentrate on TIT, and many representative
 144 methods have been proposed (Chen et al., 2021; Su et al., 2021; Zhu et al., 2023; Lan et al., 2023;
 145 Salesky et al., 2024; Liang et al., 2024; Zhang et al., 2025c). CLTIR (Chen et al., 2021) first proposes
 146 the instance-level translation and regards it as a cross-linguistic recognition task. PEIT (Zhu et al.,
 147 2023) proposes an end-to-end image translation framework that bridges the modality gap with pre-
 148 trained models. (Lan et al., 2023) constructs a multi-stage training framework to mitigate the error
 149 propagation of OCR and machine translation. (Liang et al., 2024) and (Zhang et al., 2025b) are
 150 TIT methods in document domain to solve the problem of dense texts in various layouts. (Wang
 151 et al., 2025b) makes a comprehensive analysis of existing MLLM for TIT task.

152 In contrast, IIT aims to directly replace the source language text within the image with the corre-
 153 sponding target language text, without generating textual output as an intermediate result. (Qian
 154 et al., 2024) merges the TIT model and text editing model for IIT task, and (Lan et al., 2024)
 155 proposes an auto-regressive model to achieve IIT tasks in synthetic images. (Tian et al., 2025b;a)
 156 collect the caption data of videos as in-image translation translation. However, the instability of the
 157 generation model limits the development of IIT in practice.

158

159 3 IMTBENCH

160 In this section, we first define the immersive multi-modal translation task. Then we describe the
 161 dataset collection method of our dataset. Finally, a comprehensive evaluation protocol is introduced.

162
163

3.1 PROBLEM DEFINITION

164
165
166
167
168
169
170
171
172

In contrast to prior methods, we propose a novel end-to-end image translation task tailored for the era of unified multi-modal models. Given an image in source language I_{src} , the task is conditioned on a prompt $P(\cdot)$ which specifies both the source language l_{src} and target language l_{tgt} . The model \mathcal{M} , designed as a unified end-to-end multi-modal translator, produces dual-modal outputs: the translated text T_{tgt} and the translated image I_{tgt} , which visually embeds the translated content. The overall process is formalized in Eq. (1). Importantly, and in alignment with the assumptions of prior end-to-end image translation tasks, we restrict the model from accessing the original embedded text T_{src} as an explicit input. This ensures the model performs holistic cross-modal translation without relying on intermediate text recognition.

173
174

3.2 DATA CURATION

175
176
177
178
179
180

To solve the immersive multi-modal translation problem, we first construct a comprehensive dataset, IMTBench, which is constructed through three complementary data collection pipelines, each targeting different sources and modalities to ensure both diversity and quality. The detailed process is introduced in Appendix C.

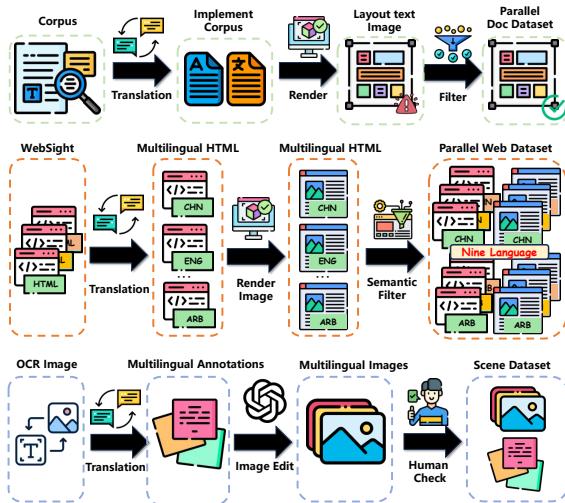


Figure 2: The curation description of IMTBench. From top to bottom: (1) *Document* focuses on multilingual document translation with structured layouts, (2) *Web* targets text rendering and fidelity in webpage-style images, and (3) *Scene* emphasizes instruction-driven editing of scene text in natural images.

205

languages, capturing real-world webpage structures and multilingual contexts.

206
207
208
209
210
211
212

Scene. The third pipeline focuses on real-world images containing textual content. Optical Character Recognition (OCR) is applied to extract the embedded text, which is then translated into multiple languages. The translated annotations are reintegrated into the images via editing, generating multilingual variants of the original image. Human verification ensures accuracy and naturalness. This procedure produces a Real-World Multilingual Image Dataset with high fidelity to authentic visual environments.

213
214

3.3 EVALUATION PROTOCOLS

215

In this section, we introduce the key evaluation metrics used to assess both the textual and visual quality of our system’s outputs. We employ COMET (Rei et al., 2020) for translation quality, OCR

Document. We begin with large-scale parallel textual corpora cross language, which are implemented into nine target languages. These translated documents are then implemented into structured layouts and rendered into image form. To guarantee dataset reliability, we apply filtering procedures to remove low-quality or noisy samples. The resulting Parallel Document Dataset contains well-aligned multilingual text–image pairs suitable for training cross-lingual multimodal models.

Web. The second pipeline leverages multilingual web resources. Starting from raw HTML pages collected via WebSight (Laurençon et al., 2024), we perform automatic translation into several target languages. The translated HTML content is rendered into corresponding multilingual images, followed by semantic filtering to ensure alignment across languages. This process yields a large-scale Parallel Web Dataset spanning nine languages.

accuracy to measure text fidelity, and a masked variant of LPIPS (Zhang et al., 2018) to evaluate the perceptual consistency of edited images, focusing on background preservation. Accordingly, we denote the three metrics as S_{text} , S_{align} and S_{vision} based on their respective modalities.

COMET. To evaluate the quality of machine translation outputs, we employ Crosslingual Optimized Metric for Evaluation of Translation (COMET) (Rei et al., 2020) as one of our primary evaluation metrics. COMET is a neural-based metric that leverages multilingual pre-trained language models and is fine-tuned on human-annotated data. Formally, given a source sentence T_{src} , a reference translation T_{tgt} , and a candidate translation \hat{T}_{tgt} , COMET computes a quality score S_{text} as Eq. (2), where f_θ denotes the neural scoring model, which outputs a scalar value representing the predicted translation quality.

$$S_{text} = f_\theta(T_{src}, T_{tgt}, \hat{T}_{tgt}). \quad (2)$$

OCR Accuracy. We evaluate text editing performance using the OCR score S_{align} , based on word-level normalized edit distance with optimal alignment. Given the target text T_{tgt} and the OCR-recognized prediction $M_{ocr}(\hat{I}_{pred})$, we segment them into word sequences $G = \{g_i\}_{i=1}^n$ and $P = \{p_j\}_{j=1}^m$. A cost matrix of normalized edit distances $C_{ij} = \frac{E(g_i, p_j)}{\max(|g_i|, |p_j|)}$ is constructed, and the best matching is obtained to compute as Eq. (3). This metric captures word-level accuracy between predicted and target texts across languages.

$$S_{align} = 1 - \frac{1}{K} \sum_{(i,j) \in \Pi} \frac{E(g_i, p_j)}{\max(|g_i|, |p_j|)}, \quad K = \min(n, m). \quad (3)$$

Mask LPIPS. To better evaluate the perceptual quality of edited images, we adopt the Learned Perceptual Image Patch Similarity (LPIPS) metric (Zhang et al., 2018), which measures perceptual distances in deep feature space. Given a binary mask $M \in \{0, 1\}^{H \times W}$, where $M_{hw} = 1$ indicates the target background region and $M_{hw} = 0$ corresponds to the edited textual or foreground region, we modify the LPIPS calculation as Eq. (4). This formulation ensures a more faithful evaluation of whether the background consistency is preserved during the editing process, while ignoring the intended modifications inside the edited text areas. To facilitate consistent comparison across settings, we normalize S_{vision} vision using a $1 -$ transformation.

$$S_{vision} = 1 - \sum_l \frac{1}{\sum_{h,w} M_{hw}} M_{hw} \omega_l \|\phi_l(I_{tgt} - \phi_l(\hat{I}_{tgt}))\|_2^2. \quad (4)$$

At last, we propose the aggregated score S , calculated by above three protocols. S is defined the mean value of three normalized sub-metrics $S = \frac{1}{3}(S_{text} + S_{align} + S_{vision})$.

4 EMPIRICAL EXPERIMENTS

Following the construction of IMTBench, we systematically evaluated a diverse set of models, including representative commercial cascaded APIs (Tencent² and Youdao³), proprietary unified multimodal generation and understanding models (Seedream and GPT-4o), and open-source unified generation and understanding models (Qwen-Image, Janus-Pro, Bagel, and Uniworld). Empirical analyses were conducted across varying model architectures (Section 4.1), application scenarios (Section 4.2, and input–output languages (Section 4.3). All experiments employed the official pre-trained weights and inference scripts, ensuring reproducibility, with detailed configurations provided in the Appendix.

4.1 PERFORMANCES ON DIFFERENT PARADIGMS

Table 1 presents the immersive multi-modal translation performance of representative methods under different paradigms. Commercial multi-stage pipeline methods achieve the highest S_{text} and S_{align} , while maintaining the lowest S_{vision} across most scenarios. The multi-stage pipeline architecture,

²tmt.tencentcloudapi.com

³<https://openapi.youdao.com/ocrtransapi>

270
 271 Table 1: Immersive multi-modal translation performances of representative methods in different
 272 paradigms. All reported values in the table are percentages. S_{avg} indicates the average value of
 273 aggregated score S . **Bold numbers denote the best performance in each column.**

Methods	Document			Web			Scene			S_{avg}
	S_{text}	S_{align}	S_{vision}	S_{text}	S_{align}	S_{vision}	S_{text}	S_{align}	S_{vision}	
<i>Commercial Multi-stage Pipeline</i>										
Tencent Translation	64.3	79.0	88.2	77.2	75.8	86.4	61.6	55.2	38.0	73.1
Youdao Translation	60.8	77.8	87.6	73.1	75.8	85.5	64.3	59.0	45.5	72.7
<i>Proprietary Unified Multi-modal Model</i>										
Seedream3.0 (Gao et al., 2025)	46.2	35.7	81.4	66.3	26.5	78.6	39.5	5.0	52.6	51.1
GPT-4o (OpenAI, 2024)	56.9	27.2	57.8	77.5	26.3	75.0	68.6	12.5	51.8	51.6
<i>Open-source Unified Multi-modal Model</i>										
Qwen-Image (Wu et al., 2025a)	49.0	5.7	48.8	66.6	7.4	82.8	44.2	2.0	47.2	40.9
Janus-Pro (Chen et al., 2025c)	30.3	1.0	45.0	20.3	0.6	50.5	31.2	0.1	49.2	25.1
Bagel (Deng et al., 2025)	31.0	1.9	72.6	31.0	3.0	84.1	31.6	0.4	50.9	35.3
UniWorld (Lin et al., 2025a)	48.3	7.2	65.5	59.4	7.1	78.6	44.4	2.7	40.1	41.3

284
 285 typically combining dedicated OCR modules and mature machine translation systems, benefits from
 286 specialized component optimization.

287 Proprietary unified multi-modal models in this study cannot generate text and images simultaneously.
 288 To approximate unified generation and understanding, we evaluated them by pairing their
 289 respective generation APIs (GPT-Image-1 and Seedream-3.0) with corresponding understanding
 290 APIs (GPT-4o and Doubao1.6). For understanding-focused tasks such as machine translation, they
 291 achieve performance comparable to commercial multi-stage pipelines. However, significant mis-
 292 alignment between generated content and images was observed, likely due to multi-step inference.
 293 On the S_{vision} metric, Seedream excels in simple-background scenarios, indicating strong back-
 294 ground adherence, whereas GPT tends to excessively modify original images, reflecting limited
 295 preservation of visual fidelity.

296 The final part of Table 1 indicates that open-source generation and understanding models still have
 297 substantial room for improvement. This may be attributed to resource limitations, which have pre-
 298 vented these models from being trained on proprietary tasks or multilingual datasets. Notably,
 299 Qwen-Image and UniWorld, which are based on Qwen2.5VL-7B, demonstrate relatively strong
 300 performance on translation tasks. However, their performance on the S_{align} metric, reflecting text-
 301 editing ability, and the S_{vision} metric, reflecting instruction-following capability, remains consider-
 302 ably lower than that of the previously discussed pipelines. Furthermore, JanusPro and Bagel, which
 303 employ more lightweight architectures, exhibit significantly lower generation and understanding
 304 scores across all metrics. These findings suggest that the current unified fine-tuning strategies for
 305 generation and understanding modules may not effectively promote true synergy between content
 306 generation and comprehension.

307 **Finding 1:** Both open-source and closed-source generative-understanding models exhibit a
 308 considerable performance gap compared with existing commercial cascaded pipelines on the
 309 IMT task, suggesting that unified multimodal models still have substantial room for improve-
 310 ment in coordinating understanding and generation.

312 4.2 PERFORMANCES ON DIFFERENT SCENARIOS

314 Unified generation and understanding models also exhibit intriguing patterns across different sce-
 315 narios. For multi-stage pipeline approaches, *Document* and *Web* scenarios are relatively simple, and
 316 using text erasure combined with manual rendering has little impact on the *Scene* images, resulting
 317 in consistently low S_{vision} scores. In contrast, real-world settings, which involve complex factors
 318 such as natural lighting, occlusions, and authentic noise, impede the performance of multi-stage
 319 pipelines. Although unified generation and understanding models cannot generalize well to IMT
 320 tasks, their exposure to large-scale image generation and editing data endows them with a strong
 321 ability to preserve image naturalness, highlighting their substantial potential—particularly in com-
 322 plex, real-world scenarios. For example, compared with the *Document* and *Web* subsets, the S_{vision}
 323 gap is notably reduced in the *Scene* subset, indicating improved alignment under more complex
 visual conditions.

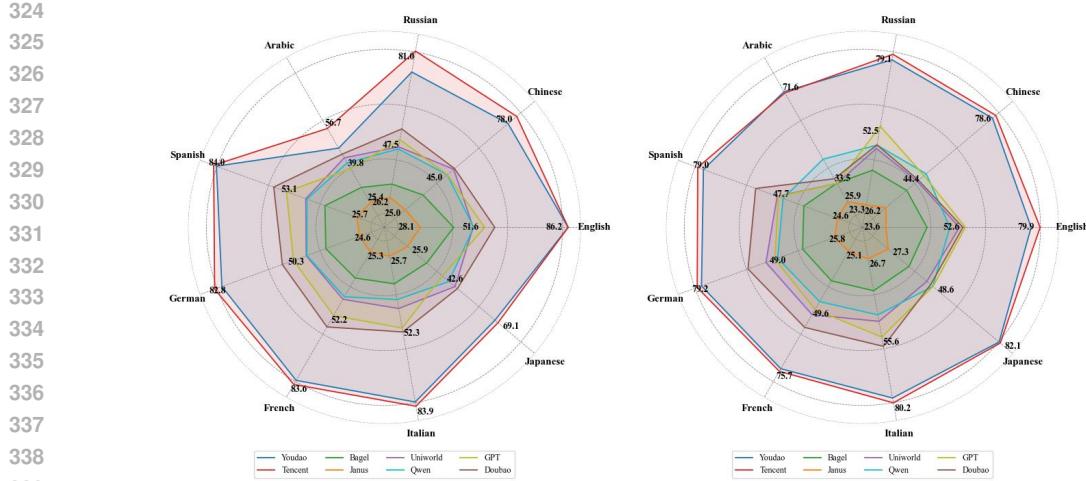


Figure 3: Performance comparison of different immersive translation solutions across multiple languages. Results on the left panel show performance when varying the target language, while results on the right panel illustrate performance when varying the source output language. We show the number label of Tencent, GPT-Image, and Janus.

Finding 2: Unified generation and understanding models demonstrate strong potential in preserving image naturalness, particularly in complex real-world scenarios, yet their performance on multimodal translation and instruction-following tasks remains limited, highlighting the need for improved strategies to effectively coordinate content generation and comprehension.

4.3 PERFORMANCES ON DIFFERENT LANGUAGES

In the IMT setting, multilinguality poses an additional challenge beyond perception–understanding synergy, as unified multi-modal models are expected to operate robustly across diverse linguistic contexts. We evaluate performance under varying source l_{src} and target l_{tgt} languages using an aggregate metric S .

As shown in Fig. 3, while Latin languages (English, French, German, Spanish, Italian), Cyrillic (Russian), and Chinese are relatively well supported, Arabic and Japanese exhibit significant performance drops. This gap is largely attributable to data scarcity and script-specific challenges: Japanese, despite its partial overlap with Chinese characters, lacks sufficient training resources to generalize effectively; Arabic further suffers from limited annotated corpora, and its unique orthography and right-to-left writing system exacerbate difficulties in both understanding and generation.

To complement the above analysis on target languages, we further examine the impact of different source languages. As shown in the right panel of Fig. 3, the overall conclusions remain consistent with the target-language evaluation; however, the performance gaps across source languages are notably smaller. This suggests that the primary cross-lingual disparity arises at the output level, whereas the input side exerts comparatively limited influence.

Finding 3: These Finding highlight the uneven cross-lingual generalization of current models, and underscore that unified generation understanding models, while effective in high-resource languages, require more balanced multilingual resources and tailored design to handle low-resource, non-Latin scenarios.

4.4 VISUALIZATION

Figure 4 presents qualitative results from IMTBench across three scenarios and multiple languages, comparing representative multimodal models. Due to space constraints, we include the Tencent API as a commercial cascade-based translation system, SeedEdit and GPT-Image as closed-source unified generation and understanding models, and Qwen-Image as an open-source counterpart. The visualizations are consistent with the quantitative analysis in Table 1. Specifically, the Tencent API performs strongly in document and webpage scenarios, but suffers in real-world settings where ren-

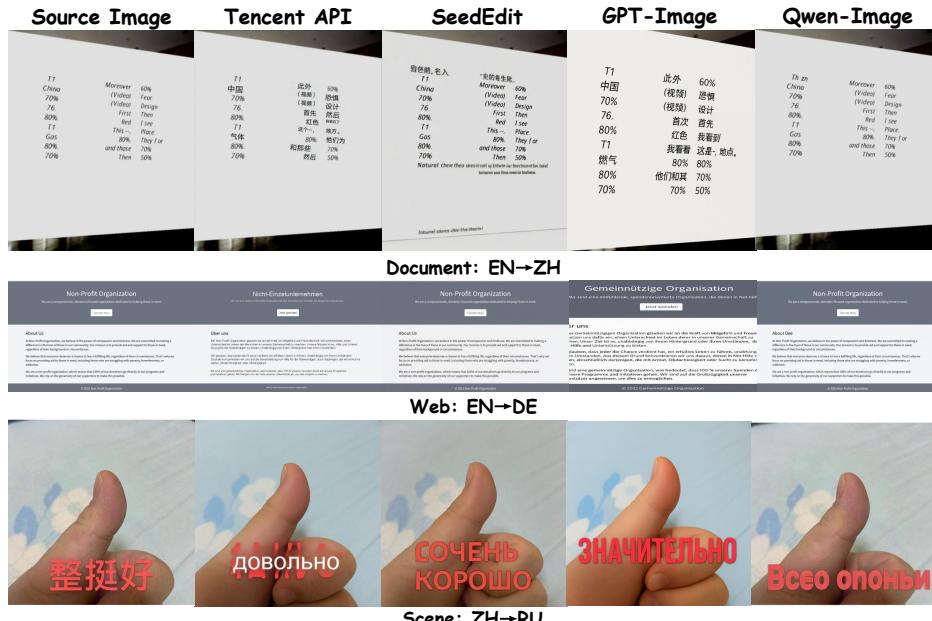


Figure 4: Visualization of unified multi-modal models with different architectures on the IMT task.

Table 2: Comparison of UniWorld model performance before and after fine-tuning on the *Scene* benchmark. All reported values in the table are percentages.

Settings	S_{text}	S_{align}	S_{vision}
UniWorld	44.4	2.7	40.1
+ Fine-tuning	57.5 (+13.1)	13.8(+11.1)	47.8(+7.7)

dered text often appears misaligned with the background due to the limitations of its cascade design. SeedEdit and Qwen-Image exhibit limited IMT capabilities in text-dense scenes, yet achieve more coherent results in real-world cases, indicating their potential for this task. GPT-Image demonstrates the strongest overall ability, successfully handling translation across all three scenarios and producing visually harmonious outputs, but tends to over-modify the original content, particularly in background adherence during editing tasks.

5 MORE FINE-TUNING EXPLORATION

Furthermore, we fine-tune open-source training scripts of unified generation and understanding models, including Janus-Pro (Chen et al., 2025c;b), UniWorld (Lin et al., 2025a; Wang et al., 2025c), and Bagel (Deng et al., 2025). Following the data collection pipeline described in Section 3.2, we construct approximately 1M parallel images across nine languages, termed as IMT-1M, with the majority drawn from Document and Web scenarios, and additional Scene samples curated outside IMTBench. For fairness, we adopt the training configurations from the original papers, and discuss results separately for both the convergence behavior and the generation branch variants.

5.1 CONVERGENCE

Fig. 5 presents the loss curves of three representative models trained on IMT-1M until convergence, revealing markedly different optimization behaviors for the IMT task. Bagel, which jointly optimizes generation and understanding, exhibits a rapid initial loss decrease followed by a slower convergence, reaching stability around 40k steps. UniWorld, leveraging the pre-trained Qwen2.5VL (Bai et al., 2025) and FLUX-KonText model (Labs et al., 2025), starts from a substantially lower loss due to strong pre-training and experiences oscillatory decay over the subsequent 35k steps. In contrast, Janus, representing a purely autoregressive unified model, converges more slowly; around 10k steps it briefly becomes trapped in a local optimum before gradually decreasing. These observations indicate that in unified generation and understanding models, purely autoregres-

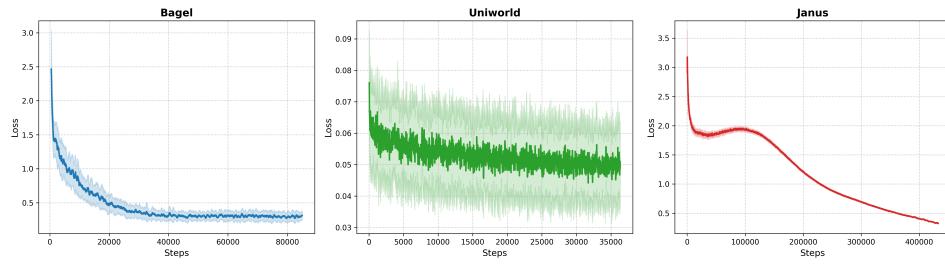


Figure 5: Loss of Finetuning on IMT-1M.

Figure 6: Visualization of Finetuning on IMT-1M. The prompt is “*Translate Chinese into French.*”

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

sive architectures are limited by slower convergence, whereas strong diffusion-based pre-training enables faster generalization on the IMT task.

Finding 4: *A strong foundation of pre-trained understanding and generation components is a critical prerequisite for effective synergy during fine-tuning on the IMT task.*

5.2 RESULTS

Based on the above Finding, we report the performance of the UniWorld model before and after fine-tuning, focusing on the variant that achieved the best convergence. To simplify the experimental setup, we evaluate on the *Scene* subset. As shown in Table 2, fine-tuning brings substantial improvements across all three metrics; however, there remains a notable gap compared to the multi-stage expert pipeline in Table 1. This suggests that fine-tuning the DiT alone, while effective in boosting performance, is insufficient for fully aligning the generation and understanding components. We further visualize model outputs before and after fine-tuning and observe a clear progression. As shown in Fig. 6, the unified generation and understanding model initially lacks immersive multi-modal translation capability, then gradually learns target-language glyph information, and eventually acquires correct semantic knowledge to produce accurate translations. These insights may inspire future efforts toward developing unified multi-modal models with stronger synergy between generation and understanding.

Finding 5: *The unified generation-understanding model learns in a progressive, hierarchical manner, first acquiring glyph and shape information before mastering the semantic knowledge required for accurate translation.*

6 CONCLUSION

In this work, we propose Immersive Multimodal Translation (IMT) as a novel proxy task to evaluate unified multimodal generation and understanding models. We introduce IMTBench, a systematic benchmark spanning diverse scenarios and languages, and conduct extensive evaluations and fine-tuning to reveal structural and performance gaps across models. We believe this task can inspire the community to enhance generation and understanding synergy and guide targeted optimization of unified multimodal models.

486 REPRODUCIBILITY STATEMENT
487

488 We have made extensive efforts to ensure that the results reported in this work are reproducible.
489 All model architectures, training procedures, and hyperparameter settings are described in the main
490 text (Sections 3) and detailed further in the Appendix (Appendix C–E). For the datasets used in our
491 experiments, we provide complete descriptions of preprocessing and filtering steps in the supple-
492 mentary materials. All evaluation metrics are formally defined in Section 3.3, enabling consistent
493 replication of our analysis. Additionally, the source code and scripts used for training, inference,
494 and evaluation will be made publicly available as anonymized supplementary material, facilitating
495 direct reproduction of the reported results. Readers are referred to these resources for all necessary
496 details to reproduce the experiments and analyses presented in this work.

497
498 ETHICS STATEMENT
499

500 All authors have read and adhered to the ICLR Code of Ethics. This work focuses on constructing
501 a proxy task for evaluating unified multi-modal generation and understanding models. We use ob-
502 jective evaluation protocols, which do not involve direct experimentation on human subjects. All
503 datasets used are either publicly available or used under appropriate licenses, and any personal in-
504 formation has been anonymized to protect privacy. We are aware of potential societal impacts of
505 multimodal AI systems, including misuse for generating misleading content or biased outputs. In
506 our experiments, we take care to evaluate model behavior across diverse languages and scenarios to
507 mitigate unintended bias. No datasets or methods used are expected to cause harm to individuals
508 or communities. We encourage responsible use and recommend that future users of the proposed
509 models follow relevant legal, privacy, and fairness guidelines. Any conflicts of interest have been
510 disclosed, and all research practices adhere to established standards of scientific integrity.

511 REFERENCES
512

513 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
514 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
515 2025.

516 Jiupei Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
517 Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
518 models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.

519 Junying Chen, Zhenyang Cai, Pengcheng Chen, Shunian Chen, Ke Ji, Xidong Wang, Yunjin Yang,
520 and Benyou Wang. Sharegpt-4o-image: Aligning multimodal models with gpt-4o-level image
521 generation. *arXiv preprint arXiv:2506.18095*, 2025b.

522 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
523 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
524 scaling. *arXiv preprint arXiv:2501.17811*, 2025c.

525 Zhuo Chen, Fei Yin, Xu-Yao Zhang, Qing Yang, and Chena-Lin Liu. Cross-lingual text image
526 recognition via multi-task sequence to sequence learning. In *2020 25th International Conference
527 on Pattern Recognition (ICPR)*, pp. 3122–3129. IEEE, 2021.

528 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
529 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
530 preprint arXiv:2505.14683*, 2025.

531 Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
532 Thomas B McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset
533 of 3d scanned household items. In *2022 International Conference on Robotics and Automation
534 (ICRA)*, pp. 2553–2560. IEEE, 2022.

535 Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian,
536 Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. *arXiv preprint arXiv:2504.11346*,
537 2025.

540 Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou,
 541 Wei Zhang, Lanqing Hong, Hengshuang Zhao, et al. Illume+: Illuminating unified mllm with
 542 dual visual tokenization and diffusion refinement. *arXiv preprint arXiv:2504.01934*, 2025.

543 Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
 544 Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document un-
 545 derstanding transformer. In *European Conference on Computer Vision*, pp. 498–517. Springer,
 546 2022.

547 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 548 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
 549 Flow matching for in-context image generation and editing in latent space. *arXiv preprint*
 550 *arXiv:2506.15742*, 2025.

551 Zhibin Lan, Jiawei Yu, Xiang Li, Wen Zhang, Jian Luan, Bin Wang, Degen Huang, and Jin-
 552 song Su. Exploring better text image translation with multimodal codebook. *arXiv preprint*
 553 *arXiv:2305.17415*, 2023.

554 Zhibin Lan, Liqiang Niu, Fandong Meng, Jie Zhou, Min Zhang, and Jinsong Su. Translatotron-v
 555 (ison): An end-to-end model for in-image machine translation. In *Findings of the Association for*
 556 *Computational Linguistics ACL 2024*, pp. 5472–5485, 2024.

557 Hugo Laurençon, Léo Tronchon, and Victor Sanh. Unlocking the conversion of web screenshots
 558 into html code with the websight dataset. *arXiv preprint arXiv:2403.09029*, 2024.

559 Bo Li, Shaolin Zhu, and Lijie Wen. Mit-10m: A large scale parallel corpus of multilingual image
 560 translation. In *Proceedings of the 31st International Conference on Computational Linguistics*,
 561 pp. 5154–5167, 2025.

562 Yupu Liang, Yaping Zhang, Cong Ma, Zhiyang Zhang, Yang Zhao, Lu Xiang, Chengqing Zong, and
 563 Yu Zhou. Document image machine translation with dynamic multi-pre-trained models assem-
 564 bling. In *Proceedings of the 2024 Conference of the North American Chapter of the Association*
 565 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 566 7084–7095, 2024.

567 Bin Lin, Zongjian Li, Xinhua Cheng, Yuwei Niu, Yang Ye, Xianyi He, Shenghai Yuan, Wangbo Yu,
 568 Shaodong Wang, Yunyang Ge, et al. Uniworld: High-resolution semantic encoders for unified
 569 visual understanding and generation. *arXiv preprint arXiv:2506.03147*, 2025a.

570 Haokun Lin, Teng Wang, Yixiao Ge, Yuying Ge, Zhichao Lu, Ying Wei, Qingfu Zhang, Zhenan
 571 Sun, and Ying Shan. Toklip: Marry visual tokens to clip for multimodal comprehension and
 572 generation. *arXiv preprint arXiv:2505.05422*, 2025b.

573 Minqian Liu, Zhiyang Xu, Zihao Lin, Trevor Ashby, Joy Rimchala, Jiaxin Zhang, and Lifu Huang.
 574 Holistic evaluation for interleaved text-and-image generation. *arXiv preprint arXiv:2406.14643*,
 575 2024a.

576 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 577 Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
 578 editing. *arXiv preprint arXiv:2504.17761*, 2025.

579 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 580 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 581 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024b.

582 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 583 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 584 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024c.

585 OpenAI. Hello GPT-4o. <https://openai.com/index/gpt-4v-system-card>, 2024.
 586 Accessed: 2024-12-29.

587 OpenAI. Introducing our latest image generation model in the API. <https://openai.com/index/image-generation-api/>, 2025. Accessed: 2025-04-23.

594 Zhipeng Qian, Pei Zhang, Baosong Yang, Kai Fan, Yiwei Ma, Derek Wong, Xiaoshuai Sun, and
 595 Rongrong Ji. Anytrans: Translate anytext in the image with large scale models. In *Findings of*
 596 *the Association for Computational Linguistics: EMNLP 2024*, pp. 2432–2444, 2024.

597

598 Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. Comet: A neural framework for mt
 599 evaluation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language*
 600 *Processing (EMNLP)*, pp. 2685–2702, 2020.

601 Elizabeth Salesky, Philipp Koehn, and Matt Post. Benchmarking visually-situated translation of text
 602 in natural images. In *Proceedings of the Ninth Conference on Machine Translation*, pp. 1167–
 603 1182, 2024.

604 Qingyu Shi, Jinbin Bai, Zhuoran Zhao, Wenhao Chai, Kaidong Yu, Jianzong Wu, Shuangyong Song,
 605 Yunhai Tong, Xiangtai Li, Xuelong Li, et al. Mudit: Liberating generation beyond text-to-image
 606 with a unified discrete diffusion model. *arXiv preprint arXiv:2505.23606*, 2025.

607

608 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
 609 port inference from rgbd images. In *European conference on computer vision*, pp. 746–760.
 610 Springer, 2012.

611 Tonghua Su, Shuchen Liu, and Shengjie Zhou. Rtnet: An end-to-end method for handwritten text
 612 image translation. In *International Conference on Document Analysis and Recognition*, pp. 99–
 613 113. Springer, 2021.

614

615 Alexander Swerdlow, Mihir Prabhudesai, Siddharth Gandhi, Deepak Pathak, and Katerina Fragki-
 616 adaki. Unified multimodal discrete diffusion. *arXiv preprint arXiv:2503.20853*, 2025.

617 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 618 *arXiv:2405.09818*, 2024.

619

620 Yanzhi Tian, Zeming Liu, Zhengyang Liu, Chong Feng, Xin Li, Heyan Huang, and Yuhang
 621 Guo. Prim: Towards practical in-image multilingual machine translation. *arXiv preprint*
 622 *arXiv:2509.05146*, 2025a.

623 Yanzhi Tian, Zeming Liu, Zhengyang Liu, and Yuhang Guo. Exploring in-image machine translation
 624 with real-world background. *arXiv preprint arXiv:2505.15282*, 2025b.

625 Jin Wang, Yao Lai, Aoxue Li, Shifeng Zhang, Jiacheng Sun, Ning Kang, Chengyue Wu, Zhenguo
 626 Li, and Ping Luo. Fudoki: Discrete flow-based unified understanding and generation via kinetic-
 627 optimal velocities. *arXiv preprint arXiv:2505.20147*, 2025a.

628

629 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 630 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 631 *arXiv preprint arXiv:2409.18869*, 2024.

632

633 Xintong Wang, Jingheng Pan, Yixiao Liu, Xiaohu Zhao, Chenyang Lyu, Minghao Wu, Chris Bie-
 634 mann, Longyue Wang, Linlong Xu, Weihua Luo, et al. Rethinking multilingual vision-language
 635 translation: Dataset, evaluation, and adaptation. *arXiv preprint arXiv:2506.11820*, 2025b.

636

637 Yuhang Wang, Siwei Yang, Bingchen Zhao, Letian Zhang, Qing Liu, Yuyin Zhou, and Cihang
 638 Xie. Gpt-image-edit-1.5 m: A million-scale, gpt-generated image dataset. *arXiv preprint*
 639 *arXiv:2507.21033*, 2025c.

640

641 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 642 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 643 2025a.

644

645 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Zhonghua Wu, Qingyi Tao, Wentao Liu, Wei Li,
 646 and Chen Change Loy. Harmonizing visual representations for unified multimodal understanding
 647 and generation. *arXiv preprint arXiv:2503.21979*, 2025b.

648

649 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 650 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. In *Proceed-
 651 ings of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.

648 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 649 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 650 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.
 651

652 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 653 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 654 arXiv:2505.09388*, 2025a.

655 Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
 656 Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025b.
 657

658 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
 659 Imgedit: A unified image editing dataset and benchmark. *arXiv preprint arXiv:2505.20275*, 2025.
 660

661 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 662 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 663 computer vision and pattern recognition*, pp. 586–595, 2018.

664 Xinjie Zhang, Jintao Guo, Shanshan Zhao, Minghao Fu, Lunhao Duan, Jiakui Hu, Yong Xien Chng,
 665 Guo-Hua Wang, Qing-Guo Chen, Zhao Xu, Weihua Luo, and Kaifu Zhang. Unified multimodal
 666 understanding and generation models: Advances, challenges, and opportunities. *arXiv preprint
 667 arXiv:2505.02567*, 2025a.

668 Zhiyang Zhang, Yaping Zhang, Yupu Liang, Cong Ma, Lu Xiang, Yang Zhao, Yu Zhou, and
 669 Chengqing Zong. Reading when translating: Multi-modal document image machine translation
 670 with reading flow prediction. *IEEE Transactions on Audio, Speech and Language Processing*,
 671 2025b.

672 Zhiyang Zhang, Yaping Zhang, Yupu Liang, Cong Ma, Lu Xiang, Yang Zhao, Yu Zhou, and
 673 Chengqing Zong. Understand layout and translate text: Unified feature-conductive end-to-end
 674 document image translation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 675 2025c.

676 Shaolin Zhu, Shangjie Li, Yikun Lei, and Deyi Xiong. Peit: bridging the modality gap with pre-
 677 trained models for end-to-end image translation. In *Proceedings of the 61st Annual Meeting of
 678 the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13433–13447, 2023.
 679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 The appendix includes the following aspects:
 703

704 • **A:** Use of Large Language Models
 705 • **B:** Comparisons of different machine translation benchmarks.
 706 • **C:** Details of IMTBench curation.
 707 • **D:** Details of Experiment Settings.

709
 710 **A USE OF LARGE LANGUAGE MODELS**
 711

712 In this work, large language models (LLMs) are used solely as generally purpose assistive tools to
 713 improve the clarity, grammar, and readability of the manuscript. LLMs are not used for research
 714 ideation, data analysis, model development, or any other scientific decision-making. All scientific
 715 content, ideas, results, and conclusions presented in this paper are independently produced by the
 716 authors. The authors take full responsibility for the accuracy and integrity of the work, including
 717 any content that was refined or edited with the assistance of LLMs. No information generated by
 718 LLMs that could constitute plagiarism, fabrication, or scientific misconduct has been included.
 719

720 **B COMPARISONS OF DIFFERENT MACHINE TRANSLATION BENCHMARKS.**
 721

722 As an extension of multimodal machine translation, Immersive Multi-modal Translation (IMT) re-
 723 quires the joint construction of image–text inputs and outputs, making dataset creation more chal-
 724 lenging than in Text Image Translation (TIT) and In-Image Translation (IIT). As summarized in
 725 Table 3, our dataset is competitive in scale and uniquely characterized by multilingual parallelism,
 726 cross-modal input–output, and real-world scenarios. Multilingual parallelism enhances data effi-
 727 ciency, cross-modal input–output enables the assessment of generation and understanding synergy
 728 in unified multimodal models, and real-world data provides conditions for practical applications.
 729 Moreover, the cross-modal setting can also provide additional data support for TIT and IIT tasks.
 730

731 Table 3: The comparison between multi-modal translation dataset. * indicates the original paper
 732 reports the instance number, rather than the number of images.

733 Dataset	734 Train	735 Eval	736 Languages	737 Parallel	738 Modality	739 Real Scene
<i>TIT Datasets</i>						
740 OCRMT-30K (Zhu et al., 2023)	741 30k	742 1.2k	743 2	744 ✗	745 Text-Only	746 ✓
747 MTIT6 (Qian et al., 2024)	748 -	749 6k	750 4	751 ✗	752 Text-Only	753 ✓
754 AibTrans (Wang et al., 2025b)	755 -	756 7k	757 8	758 ✓	759 Text-Only	760 ✓
761 MIT-10M * (Li et al., 2025)	762 10M	763 10.4k	764 14	765 ✓	766 Text-Only	767 ✓
<i>IIT Datasets</i>						
770 Translatotron-V (Lan et al., 2024)	771 81.7k	772 3.5k	773 4	774 ✓	775 Image-Only	776 ✗
777 DebackX (Tian et al., 2025b)	778 75k	779 8.2k	780 2	781 ✗	782 Image-Only	783 ✗
785 PRIM (Tian et al., 2025a)	786 6.8M	787 17k	788 6	789 ✗	790 Image-Only	791 ✓
<i>IMT Datasets</i>						
795 IMTBench (Ours)	800 1M	805 2k	810 9	815 ✓	820 Image-Text Pair	825 ✓

745
 746 **C DETAILS OF IMTBENCH CURATION.**
 747

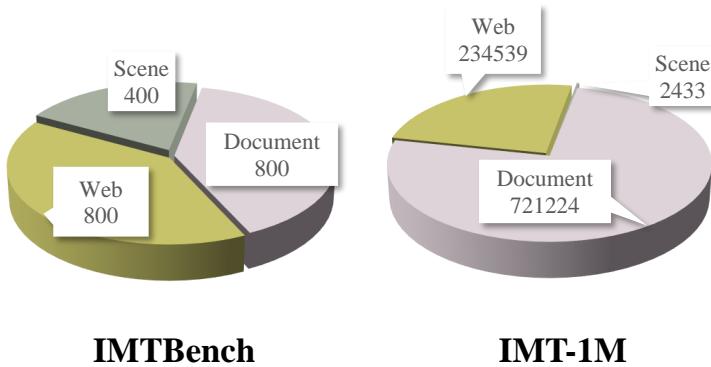
748 **C.1 DATA COLLECTION**
 749

750 While Section 3.2 offers a concise overview of the IMT data construction process owing to space
 751 limitations, this section provides a comprehensive account with sufficient details to guarantee repro-
 752 ducibility.

753 **Document.** In the Document subset, we employ the SynthDoG engine to simulate rich-text docu-
 754 ment images resembling real-world scenarios. We first collect parallel corpora⁴, using subtitle files

755 ⁴<https://github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus>

756
757
758
759
760
761
762
763
764
765
766
767
768
769



770 Figure 7: Visualization of the data distribution of IMTBench and IMT-1M across the three scenarios,
771 illustrating the relative proportions of samples in *Document*, *Web*, and *Scene* settings.

772
773 from TED talks as the primary source. Although these subtitles are multilingual and roughly aligned,
774 inconsistencies in word order across languages make direct utilization infeasible. To address this,
775 we leverage a lightweight translation expert model⁵ (0.6B parameters) to complete the parallel cor-
776 pus efficiently at scale, followed by SynthDoG (Kim et al., 2022) rendering to generate structured
777 document images. To ensure translation quality, we further apply automatic filtering with Qwen3-
778 8B (Yang et al., 2025a). For IMTBench construction, we select 100 nine-way parallel samples that
779 cover diverse content, and randomly assign one language as the source, yielding 800 test cases in
780 total. For IMT-1M, we generate around 80k parallel samples (720k images), as shown in Fig. 7.

781 **Web.** In the Web subset, we build upon WebSight v2 (Laurençon et al., 2024), a synthetic dataset
782 containing 2 million pairs of HTML code and corresponding screenshots. Compared to WebSight
783 v1, this version explicitly encodes the placement of illustrations, better reflecting realistic webpage
784 layouts. However, most illustrations are invalid URL placeholders. To address this, we collected
785 icon images from the public web and adaptively scaled them according to the resolution specified in
786 the original URLs, thereby preserving the original page structure. For translation, we adopt the same
787 lightweight expert model used in the Document subset. We further crawl over 30k raw webpages and
788 render them with Selenium. Since Selenium-based rendering can produce misalignments between
789 text and screenshots, we apply Qwen2.5VL-7B for automatic filtering. As a result, we obtain a
790 parallel dataset of over 20k webpages, comprising more than 234k aligned text–image pairs.

791 **Scene.** Compared with the Document and Web subsets, the Scene subset lacks a stable data con-
792 struction engine that can perform large-scale editing and translation of scene images. To address
793 this limitation, we adopt an integrated strategy to construct real-scene data. We first collect a set
794 of real-world images from OCR datasets, which contain precise OCR annotations. Based on these
795 annotations, we build parallel text labels in nine languages. Next, for each pair of original and trans-
796 lated text, we provide the inputs to two editing models with strong text-editing capabilities, namely
797 GPT-Image and SeedEdit. Unlike the evaluation setting, the prompts here explicitly include both the
798 source and translated text to reduce the difficulty of model comprehension. In practice, we find that
799 SeedEdit adheres more faithfully to the original image, but performs poorly in Japanese, Russian,
800 and Arabic. Therefore, we adopt SeedEdit outputs for Latin languages and supplement the three
801 challenging languages with GPT-Image results. All generated images are further manually verified,
802 retaining only those with natural and correct rendering. This process results in 2,833 paired sam-
803 ples, from which we randomly select 400 for IMTBench, while the remaining are incorporated into
804 IMT-1M to enhance the realism of the training set.

805 C.2 DATA STATISTICS

806 Our IMTBench comprises multilingual multi-modal translation samples covering nine languages.
807 To illustrate the data characteristics, we provide three complementary visualizations. Figure Fig. 9

808
809
5⁵<https://huggingface.co/facebook/nllb-200-distilled-600M>

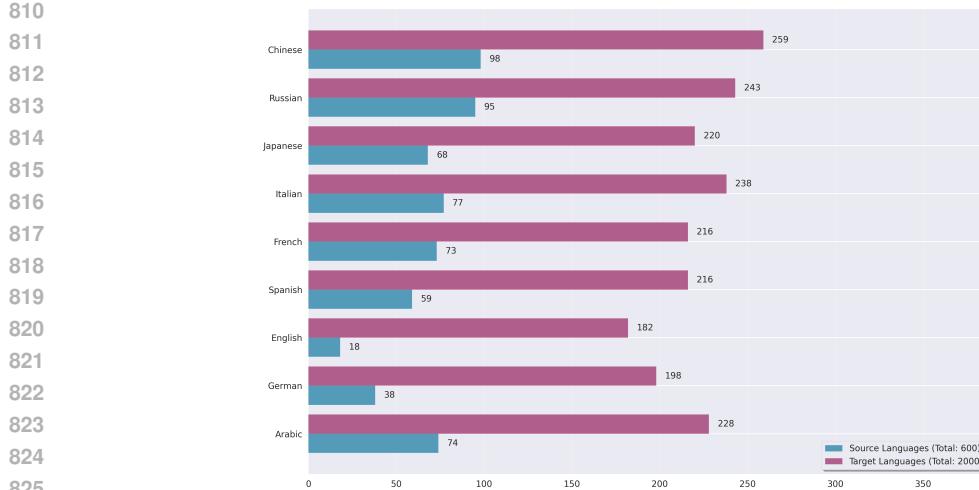


Figure 8: Data distribution across nine languages in IMTBench. Due to data organization constraints, the benchmark contains 600 reference images and 2,000 target images, yielding 2,000 test cases.



Figure 9: Word clouds showcasing top questions in various languages.

presents word clouds highlighting the most frequent tokens across different languages, reflecting the vocabulary diversity. Fig. 8 shows the frequency distribution of each language as source and target, demonstrating the balance between input and output directions. Figure Fig. 10 further reports the token length distribution of both source and target texts, where tokenization is performed using the Qwen2.5VL-7B tokenizer. In conclusion, these statistics provide a comprehensive view of the dataset composition and linguistic variation.

C.3 VISUALIZATION OF IMTBENCH.

Fig. 11 illustrates the parallel visualization of IMTBench in nine languages. By leveraging a limited number of images, this data construction approach scales to a vast number of translation pairs, significantly enhancing the efficiency of data utilization. Fig. 12 shows the annotation form, corresponding to the second column of Fig. 11.

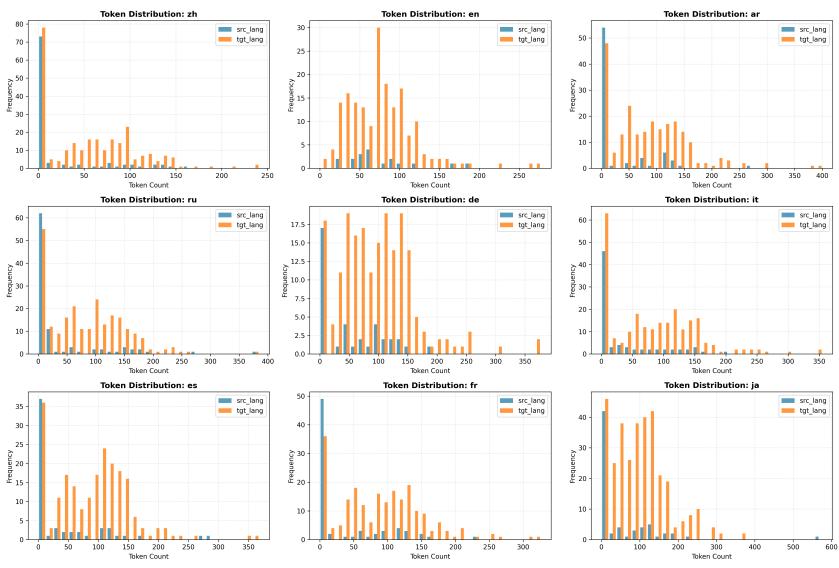


Figure 10: Token length distribution across nine languages in IMTBench. Due to data organization constraints, the benchmark contains 600 reference images and 2,000 target images, yielding 2,000 test cases.

D DETAILS OF EXPERIMENT SETTINGS.

D.1 INFERENCE SETTINGS

For models that cannot generate both text and images simultaneously, we employed a comprehension model from the same developer to produce the corresponding text–image translations. The details of settings are illustrated by Table 4. **We argue that this setup, using a paired understanding model, can effectively simulate the inference behavior of unified generation and understanding models.** For the experiments reported in Table 1, we used a minimal prompt format, as follows:

“Translate all texts in this image from $\{l_{src}\}$ to $\{l_{tgt}\}$, and replace all texts with translated texts.”

Table 4: Practical implementation of evaluation experiments for unified generation and understanding models.

Methods	Implementation
GPT-4o	GPT-4o + GPT-Image-1
Seedream3.0	Doubao1.6 + SeedEdit3.0
Qwen-Image	Qwen2.5VL-7B + Qwen-Image-Edit

For Janus-Pro and UniWorld, we inference on IMTBench with the edit-version Shared-GPT4o-Image (Chen et al., 2025b) and GPT-Edit-1.5M (Wang et al., 2025c), which has editing capability of general image editing. The detailed hyper-parameters follows official settings.

D.2 FINE-TUNING SETTINGS

To improve the performance of open-source generation–understanding models on the IMT task, we fine-tuned three models—Bagel, Janus-Pro, and UniWorld—on the IMT-1M dataset. The pre-trained checkpoints used were Bagel-MoT-7B, Janus-Pro-7B, and GPT-Image-Edit (with FLUX-Kontext). All experiments were conducted on 8 NVIDIA H100 GPUs.

For Janus-Pro, key training settings included 1 epoch, a per-GPU batch size of 2, gradient accumulation over 8 steps, and a learning rate of 5e-5. Training was launched with 8 processes on a single machine using the standard DeepSpeed multinode launcher.

Figure 11: Visualization of IMTBench.

For UniWorld, we followed a similar setup with 1 training epoch, a batch size of 1, gradient accumulation of 16 steps, and a learning rate of 1e-5 using the AdamW optimizer. Mixed precision (bf16) and gradient checkpointing were enabled, and the model was fine-tuned on the textual and visual branches jointly.

For Bagel, fine-tuning was performed from the pre-trained Bagel-MoT-7B checkpoint with a maximum latent size of 64, learning rate of 2e-5, automatic checkpoint resume, and a per-GPU batch size of 1.

972 "source_lang": "ru",
973 "source_text": "Третий (Музыка) Газ Вы знаете? Я помню. Взрослый Конечно, это так. Почему? Об
974 щественное здоровье Они должны мыть руки. Доход семьи Это не новое научное исследование. Втор
975 ой ребенок сказал: Высокое давление И никому (Смех) Сделайте... И легкие. И в одной руке. Что интер
976 есно? Они волшебны. Это всего лишь человеческая природа. И затем И тогда Почему? Искусство Что э
977 то такое? В этот раз 70 лет 1986 год Кто это будет? (Смех)",
978 "source_image_path": "ru_image_1715.jpg",
979 "all_languages": [[
980 "en": [[
981 "text": "Third (Music) Gas Do you know? I recall has appeared Certainly The reason. Public he
982 alth They should wash their hands. Family income aspect This is not a new science. The third child said: Un
983 der high pressure and to anyone (Laughter) Cut--
984 And leptons. With one hand, Interestingly They are amazing. That's just human nature. Then Then Why? Ar
985 t, The things - This encounter seventy 1986 year Who will speak? (Audience laughs)",
986 "image_path": "en_image_1715.jpg"
987],
988 "zh": [[
989 "text": "第三 (音乐) 气体 大家知道吗? 我想起 已经出现 肯定会 的原因。公众健康, 他们应该洗
990 手。家庭收入方面 这并不是个新兴科学, 第三个孩子说: 经过高压 并向任何人(众人)切- 和轻子。用一只手, 有
991 趣的是 它们很神奇。那只是人类的本性。接着 然后 为什么? 艺术、的事物- 这次邂逅 七十 1986年 谁会来说 (观
992 众笑) ",
993 "image_path": "zh_image_1715.jpg"
994],
995 "ar": [[
996 "text": "الثالثة (موسيقى) الغاز هل تعلمون؟ أذكر لقد ظهر بالتأكيد السبب صحية العامة يجب أن يغسلوا يدهم إلـا
997 دخل العائلي هذا ليس علىـاً حديثـاً. وقال الطفل الثالث: الضغط العالـي ولم يعطـنـي أي شخص (ضحكـ) -
998 تقـطـعـ وخفـقـةـ بـيـدـ وـاحـدـةـ المـتـنـرـ لـلـاتـهـامـ إنـاـهـاـ هوـ طـبـيـعـةـ الإـنـسـانـ تمـ لـمـادـ؟ـ الفـنـ أـشـيـاءـ\"ـهـذـهـ الـمـرـةـ 70ـ عـامـ 1986ـ مـنـ سـيـاسـيـ (ضـحكـ)ـ.",
999 "image_path": "ar_image_1715.jpg"
1000],
1001 "de": [[
1002 "text": "Die dritte (Musik) Gas Wissen Sie das? Ich denke, Es gibt Das ist sicher. Die Ursache, Di
1003 e Gesundheit der Öffentlichkeit Sie sollten sich waschen. Familieneinkommen Das ist keine neue Wissensc
1004 haft. Das dritte Kind sagt: Über hoher Druck Und niemandem (Lachen) Ich habe... Und leicht, mit einer Hand,
1005 Das ist interessant. Sie sind wunderbar. Das ist nur menschliches Wesen. Dann Dann Warum? Kunst, Die Di
1006 nge Das ist ein Schlag. Siebzig 1986: Wer wird kommen? (Lachen)",
1007 "image_path": "de_image_1715.jpg"
1008],
1009 "it": [[
1010 "text": "Terzo (Musica) Gas Lo sapete? Mi ricordo. E' già apparso -
1011 Si, certo. Perché? La salute pubblica Dovrebbero lavare le mani. Income per famiglie Non è una scienza em
1012 ergente. Il terzo bambino dice: La pressione alta E a chiunque (Risate) -
1013 Che cosa? E leggero. Con una mano, E' interessante Sono meravigliose. È la natura umana. E poi E poi Perc
1014 hé? L'arte Le cose che Questa volta 70 anni Nel 1986 Chi ci sarà? (Risate)",
1015 "image_path": "it_image_1715.jpg"
1016],
1017 "es": [[
1018 "text": "El tercer (Música) El gas ¿Saben todos? Me acuerdo. Ya ha aparecido Eso si. ¿Por qué
1019 ? La salud pública, Deberían lavarse las manos. El ingreso familiar No es una ciencia nueva. El tercer niño di
1020 jo: Después de la presión Y a nadie (Risas) -
1021 ¿Qué es eso? Y las pequeñas. Con una mano, Lo interesante es que Son maravillosos. Es la naturaleza hum
1022 ana. Después Y luego ¿Por qué? El arte ¿Qué es eso? Esta vez, el perro. Se veía El año 1986 ¿Quién vendrá?
1023 (Risas)",
1024 "image_path": "es_image_1715.jpg"
1025],
1026 "fr": [[
1027 "text": "Troisième (Musique) Le gaz Vous savez ? Je me souviens. Il est apparu Je le sais. Pour
1028 quoi ? La santé publique Ils devraient se laver les mains. Le revenu familial Ce n'est pas une science émerg
1029 ente. Le troisième enfant dit: La pression est élevée Et à qui que ce soit (Rires) Je suis en train de... Avec le
1030 petit. Avec une main, C'est intéressant Ils sont magiques. C'est la nature humaine. Puis Puis Pourquoi ? L'a
1031 t, Les choses Cette fois-ci, 70 ans 1986 Qui va venir ? (Rires)",
1032 "image_path": "fr_image_1715.jpg"
1033],
1034 "jp": [[
1035 "text": "3つの(音楽)ガス 知っているか? 思い出しました 登場しました 間違いくな 原因は 公共
1036 衛生 洗濯物を洗うべきだった 家庭收入 進化論は、科学の発展を図る 赤ちゃんは「いいえ!」と答えました 圧力が高
1037 かった 保護された (笑) 切って 軽い手を一つで面白いのは 魔法のように見える ヒトの本質は後にになぜ? 芸
1038 術物語の物語の 70 年代 1986 年来るの誰? (観客の笑)",
1039 "image_path": "jp_image_1715.jpg"
1040]
1041]
1042]

Figure 12: Annotations of IMTBench.

This setup ensured a consistent and comparable training protocol across all open-source models while adapting them to the IMT task.