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ABSTRACT

Unified multimodal models that jointly perform image understanding and genera-
tion have achieved substantial progress. However, a critical challenge persists in
establishing rigorous evaluation protocols. Existing benchmarks typically assess
generation and understanding tasks independently and rely on large multi-modal
language models (MLLMs) for scoring. Such approaches introduce language-
centric biases and lack objective ground truth, thereby limiting the reliability and
fairness of model assessment. To address this, we propose Immersive Multi-modal
Translation (IMT), a novel proxy task that requires models to translate textual con-
tent within images while preserving visual context. IMT naturally captures cross-
modal synergy between understanding and generation, while enabling transparent,
objective evaluation through established metrics from natural language process-
ing and computer vision. To support systematic study, we construct IMTBench,
a benchmark spanning three scenarios, including document, webpage, and scene
image, with nine languages, and 2,000 carefully curated samples. IMTBench in-
corporates a three-dimensional evaluation framework measuring translation qual-
ity, background fidelity, and visual text rendering accuracy. Extensive experiments
across diverse unified multi-modal architectures reveal that current open-source
models still fall significantly short of commercial expert systems. By providing
objective, cross-modal evaluation protocols, we believe that IMT and IMTBench
can offer actionable guidance for future research in unified multi-modal intelli-
gence.
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Figure 1: Comparison of existing evaluation tasks for unified multimodal generation and under-
standing models and our proposed Immersive Multi-modal Translation (IMT) task. Unlike prior
tasks, IMT simultaneously supports objective evaluation and cross-modal assessment. The term
“Immersive” emphasizes that the generated text and images must remain aligned in between text
and image.
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1 INTRODUCTION

Recent advances in image understanding and generation have fueled growing interest in unified
multi-modal models that jointly handle both modalities. A range of frameworks have been proposed,
spanning proprietary systems such as GPT-Image-1 (OpenAI, 2025) and Banana-nano 1, and open-
source efforts including Qwen-Image (Wu et al., 2025a), Bagel (Deng et al., 2025), Blip-3o (Chen
et al., 2025a), and UniWorld (Lin et al., 2025a). These systems employ diverse paradigms, in-
cluding autoregressive, diffusion-based, cascaded, hybrid, and have achieved notable success across
tasks such as image generation, editing, and understanding. However, despite rapid progress, it re-
mains unclear which paradigm offers the most promise for general-purpose multimodal intelligence.
Addressing this question critically depends on how we evaluate such models.

As shown in Fig. 1(a) and (b), current practice typically assesses generation and understanding
tasks (Downs et al., 2022; Silberman et al., 2012; Liu et al., 2024c;b) in isolation, neglecting the
original motivation for unification: to achieve synergy between cross-modal comprehension and
contextual generation. In addition, most benchmarks for image-text generation (Xiao et al., 2025;
Liu et al., 2024a) and editing (Ye et al., 2025; Liu et al., 2025) rely heavily on large multimodal lan-
guage models (MLLMs) such as GPT-4o (OpenAI, 2024) for scoring Fig. 1(c). While such models
provide valuable reference signals, they introduce two major limitations: (1) Many generation or un-
derstanding task can only evaluate performances only in a single modality, and (2) their judgments
depend on Multi-modal Large Language Model (MLLM), which is influenced by pretraining data.
So they cannot be regarded as truly objective metrics, undermining the credibility of evaluation. As
a result, existing frameworks fail to provide a fair and rigorous assessment of unified models.

To address these limitations, we introduce Immersive Multimodal Translation (IMT), a novel proxy
task designed to evaluate unified image generation and understanding models. Illustrated by
Fig. 1(d), IMT requires models to produce text–image aligned translations: given an image con-
taining text and a target language, the model generates a faithful translation seamlessly integrated
into the visual context. Crucially, IMT captures both objective evaluation and cross-modal synergy
and decomposes into three subtasks: (1) translating the textual content, (2) rendering the translated
text in the image, and (3) preserving the original background and layout. Each subtask aligns with
established problems in NLP or computer vision, enabling validated metrics for transparent, large-
model-independent assessment. Beyond methodological rigor, IMT supports practical applications
in tourism, education, workplace collaboration, and social communication.

To facilitate systematic study, we construct IMTBench, a benchmark for evaluating unified multi-
modal models on IMT. IMTBench spans three scenarios, including documents, webpages, and scene
images, with nine languages, comprising 2k carefully annotated samples. Building on insights from
translation and vision research (Rei et al., 2020; Zhang et al., 2018), we design a three-dimensional
evaluation protocols covering three subtasks above mentioned, covering visual, text and alignment
score. Extensive experiments on IMTBench with commercial pipelines and unified multi-modal
models reveal that existing models still lag behind expert systems in multi-modal translation, high-
lighting substantial room for improvement and structural trade-offs among paradigms. Furthermore,
we fine-tune on IMT-1M, which are curated with the same pipeline as IMTBench, substantially
boosts model performance on IMT task. Several fine-tuning observations are reported in this work,
with the aim of providing insights for the community on training unified generation and understand-
ing models. Our main contributions are summarized as follows:

• We propose Immersive Multimodal Translation (IMT) as a new proxy task for evaluating uni-
fied image generation and understanding models, alleviating the subjectivity and bias issues of
prior evaluation methods that rely heavily on large-model–based scoring.

• We introduce IMTBench, a benchmark spanning a three-dimensional evaluation protocol cover-
ing (i) cross-modal contextual comprehension, (ii) background coherence in context-aware image
editing, and (iii) semantic–visual synergistic generation.

• Through extensive evaluations of both open-source and commercial unified multimodal architec-
tures, we reveal substantial performance gaps in immersive muti-modal translation tasks quan-
titatively. External fine-tuning experiments on IMT-1M uncover the critical structural trade-offs
across different paradigms.

1aistudio.google.com/models/gemini-2-5-flash-image
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2 RELATED WORKS

2.1 UNIFIED MULTI-MODAL UNDERSTANDING AND GENERATION MODELS

Recent research has increasingly focused on unified multi-modal architectures that integrate
image understanding and generation within a single framework. According to the decoding
paradigm (Zhang et al., 2025a), we categorize these unified multi-modal models into three cat-
egories: diffusion-based, auto-regressive-based, and hybrid-based methods. Diffusion-based ex-
tend diffusion models to multi-modal generation. Dual Diffusion introduces dual-branch denoising
for text and image latents with cross-modal attention. UniDisc (Swerdlow et al., 2025) unifies
modalities in a discrete token space, while FUDOKI (Wang et al., 2025a) replaces timestep-based
diffusion with discrete flow matching for better global reasoning. Muddit (Shi et al., 2025) and
MMaDA (Yang et al., 2025b) scale these ideas using shared transformers and reinforcement learning
for enhanced alignment. Despite progress, unified diffusion models still face challenges in inference
efficiency, sparse supervision, and architectural limitations, motivating further research in scalable,
efficient multi-modal generation. Another major direction in unified multi-modal understanding
and generation models adopts auto-regressive architectures. Some methods like TokLIP (Lin et al.,
2025b), Harmon (Wu et al., 2025b), Chameleon (Team, 2024), Emu3 (Wang et al., 2024), etc, uti-
lize the VQGAN-style tokenizer to compress the high-dimensional pixel space into a compact latent
space and obtain the pixel-level features. In addition to overcoming the semantic limitations in-
herent in pixel-based encoders, OmniGen (Xiao et al., 2025), UniWorld (Lin et al., 2025a), and
ILLUME (Huang et al., 2025) facilitate CLIP-like encoders to extract high-level semantic infor-
mation to improve the convergence of the generation branch. Furthermore, hybrid-based methods
preserve symbolic reasoning capabilities, while employing diffusion processes for image genera-
tion to enhance global consistency and visual quality. Representative works include Show-o (Xie
et al., 2024) and BAGEL (Deng et al., 2025). The former typically leverages pixel-level or contin-
uous latent representations combined with bidirectional attention to achieve cross-modal alignment,
whereas hybrid encoding methods such as BAGEL (Deng et al., 2025) integrate semantic features
with pixel-level latent spaces to jointly support both understanding and generative capacities.

2.2 END-TO-END IMAGE TRANSLATION

End-to-end image translation can be categorized into two sub-tasks based on the target modality:
Text Image Translation (TIT) and In-Image Translation (IIT). TIT focuses on translating visual text
in the source language into text in the target language, representing a cross-modal process between
image and text.

Most existing end-to-end image translation approaches concentrate on TIT, and many representative
methods have been proposed (Chen et al., 2021; Su et al., 2021; Zhu et al., 2023; Lan et al., 2023;
Salesky et al., 2024; Liang et al., 2024; Zhang et al., 2025c). CLTIR (Chen et al., 2021) first proposes
the instance-level translation and regards it as a cross-linguistic recognition task. PEIT (Zhu et al.,
2023) proposes an end-to-end image translation framework that bridges the modality gap with pre-
trained models. (Lan et al., 2023) constructs a multi-stage training framework to mitigate the error
propagation of OCR and machine translation. (Liang et al., 2024) and (Zhang et al., 2025b) are
TIT methods in document domain to solve the problem of dense texts in various layouts. (Wang
et al., 2025b) makes a comprehensive analysis of existing MLLM for TIT task.

In contrast, IIT aims to directly replace the source language text within the image with the corre-
sponding target language text, without generating textual output as an intermediate result. (Qian
et al., 2024) merges the TIT model and text editing model for IIT task, and (Lan et al., 2024)
proposes an auto-regressive model to achieve IIT tasks in synthetic images. (Tian et al., 2025b;a)
collect the caption data of videos as in-image translation translation. However, the instability of the
generation model limits the development of IIT in practice.

3 IMTBENCH

In this section, we first define the immersive muti-modal translation task. Then we describe the
dataset collection method of our dataset. Finally, a comprehensive evaluation protocol is introduced.

3
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3.1 PROBLEM DEFINITION

In contrast to prior methods, we propose a novel end-to-end image translation task tailored for the era
of unified multi-modal models. Given an image in source language Isrc, the task is conditioned on a
prompt P (·) which specifies both the source language lsrc and target language ltgt. The model M,
designed as a unified end-to-end multi-modal translator, produces dual-modal outputs: the translated
text Ttgt and the translated image Itgt, which visually embeds the translated content. The overall
process is formalized in Eq. (1). Importantly, and in alignment with the assumptions of prior end-to-
end image translation tasks, we restrict the model from accessing the original embedded text Tsrc as
an explicit input. This ensures the model performs holistic cross-modal translation without relying
on intermediate text recognition.

[Itgt, Ttgt] = M(Isrc, P (lsrc, ltgt)). (1)

3.2 DATA CURATION

To solve the immersive muti-modal translation problem, we first construct a comprehensive dataset,
IMTBench, which is constructed through three complementary data collection pipelines, each tar-
geting different sources and modalities to ensure both diversity and quality. The detailed process is
introduced in Appendix C.
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Figure 2: The curation description of IMTBench. From top
to bottom: (1) Document focuses on multilingual document
translation with structured layouts, (2) Web targets text ren-
dering and fidelity in webpage-style images, and (3) Scene
emphasizes instruction-driven editing of scene text in natu-
ral images.

Document. We begin with large-
scale parallel textual corpora cross
language, which are implemented
into nine target languages. These
translated documents are then imple-
mented into structured layouts and
rendered into image form. To guaran-
tee dataset reliability, we apply filter-
ing procedures to remove low-quality
or noisy samples. The resulting
Parallel Document Dataset contains
well-aligned multilingual text–image
pairs suitable for training cross-
lingual multimodal models.

Web. The second pipeline leverages
multilingual web resources. Starting
from raw HTML pages collected via
WebSight (Laurençon et al., 2024),
we perform automatic translation into
several target languages. The trans-
lated HTML content is rendered into
corresponding multilingual images,
followed by semantic filtering to
ensure alignment across languages.
This process yields a large-scale Par-
allel Web Dataset spanning nine lan-

guages, capturing real-world webpage structures and multilingual contexts.

Scene. The third pipeline focuses on real-world images containing textual content. Optical Charac-
ter Recognition (OCR) is applied to extract the embedded text, which is then translated into multiple
languages. The translated annotations are reintegrated into the images via editing, generating mul-
tilingual variants of the original image. Human verification ensures accuracy and naturalness. This
procedure produces a Real-World Multilingual Image Dataset with high fidelity to authentic visual
environments.

3.3 EVALUATION PROTOCOLS

In this section, we introduce the key evaluation metrics used to assess both the textual and visual
quality of our system’s outputs. We employ COMET (Rei et al., 2020) for translation quality, OCR

4
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accuracy to measure text fidelity, and a masked variant of LPIPS (Zhang et al., 2018) to evaluate
the perceptual consistency of edited images, focusing on background preservation. Accordingly, we
denote the three metrics as Stext, Salign and Svision based on their respective modalities.

COMET. To evaluate the quality of machine translation outputs, we employ Crosslingual Optimized
Metric for Evaluation of Translation (COMET) (Rei et al., 2020) as one of our primary evaluation
metrics. COMET is a neural-based metric that leverages multilingual pre-trained language models
and is fine-tuned on human-annotated data. Formally, given a source sentence Tsrc, a reference
translation Ttgt, and a candidate translation T̂tgt, COMET computes a quality score Stext as Eq. (2),
where fθ denotes the neural scoring model, which outputs a scalar value representing the predicted
translation quality.

Stext = fθ(Tsrc, Ttgt, T̂tgt). (2)

OCR Accuracy. We evaluate text editing performance using the OCR score Salign, based on word-
level normalized edit distance with optimal alignment. Given the target text Ttgt and the OCR-
recognized prediction Mocr(Îpred), we segment them into word sequences G = {gi}ni=1 and P =

{pj}mj=1. A cost matrix of normalized edit distances Cij =
E(gi,pj)

max(|gi|,|pj |) is constructed, and the
best matching is obtained to compute as Eq. (3). This metric captures word-level accuracy between
predicted and target texts across languages.

Salign = 1− 1

K

∑
(i,j)∈Π

E(gi, pj)

max(|gi|, |pj |)
, K = min(n,m). (3)

Mask LPIPS. To better evaluate the perceptual quality of edited images, we adopt the Learned
Perceptual Image Patch Similarity (LPIPS) metric (Zhang et al., 2018), which measures perceptual
distances in deep feature space. Given a binary mask M ∈ {0, 1}H×W , where Mhw = 1 indicates
the target background region and Mhw = 0 corresponds to the edited textual or foreground region,
we modify the LPIPS calculation as Eq. (4). This formulation ensures a more faithful evaluation of
whether the background consistency is preserved during the editing process, while ignoring the in-
tended modifications inside the edited text areas. To facilitate consistent comparison across settings,
we normalize Svision vision using a 1− transformation.

Svision = 1−
∑
l

1∑
h,w Mhw

Mhwωl||ϕl(Itgt − ϕl(Îtgt)||22. (4)

At last, we propose the aggregated score S, calculated by above three protocols. S is defined the
mean value of three normalized sub-metrics S = 1

3 (Stext + Salign + Svision).

4 EMPIRICAL EXPERIMENTS

Following the construction of IMTBench, we systematically evaluated a diverse set of models, in-
cluding representative commercial cascaded APIs (Tencent2 and Youdao3), proprietary unified mul-
timodal generation and understanding models (Seedream and GPT-4o), and open-source unified
generation and understanding models (Qwen-Image, Janus-Pro, Bagel, and Uniworld). Empirical
analyses were conducted across varying model architectures (Section 4.1), application scenarios
(Section 4.2, and input–output languages (Section 4.3). All experiments employed the official pre-
trained weights and inference scripts, ensuring reproducibility, with detailed configurations provided
in the Appendix.

4.1 PERFORMANCES ON DIFFERENT PARADIGMS

Table 1 presents the immersive muti-modal translation performance of representative methods under
different paradigms. Commercial multi-stage pipeline methods achieve the highest Stext and Salign,
while maintaining the lowest Svision across most scenarios. The multi-stage pipeline architecture,

2tmt.tencentcloudapi.com
3https://openapi.youdao.com/ocrtransapi
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Table 1: Immersive muti-modal translation performances of representative methods in different
paradigms. All reported values in the table are percentages. Savg indicates the average value of
aggregated score S. Bold numbers denote the best performance in each column.

Methods Document Web Scene
SavgStext Salign Svision Stext Salign Svision Stext Salign Svision

Commercial Multi-stage Pipeline
Tencent Translation 64.3 79.0 88.2 77.2 75.8 86.4 61.6 55.2 38.0 73.1
Youdao Translation 60.8 77.8 87.6 73.1 75.8 85.5 64.3 59.0 45.5 72.7

Proprietary Unified Multi-modal Model
Seedream3.0 (Gao et al., 2025) 46.2 35.7 81.4 66.3 26.5 78.6 39.5 5.0 52.6 51.1
GPT-4o (OpenAI, 2024) 56.9 27.2 57.8 77.5 26.3 75.0 68.6 12.5 51.8 51.6

Open-source Unified Multi-modal Model
Qwen-Image (Wu et al., 2025a) 49.0 5.7 48.8 66.6 7.4 82.8 44.2 2.0 47.2 40.9
Janus-Pro (Chen et al., 2025c) 30.3 1.0 45.0 20.3 0.6 50.5 31.2 0.1 49.2 25.1
Bagel (Deng et al., 2025) 31.0 1.9 72.6 31.0 3.0 84.1 31.6 0.4 50.9 35.3
UniWorld (Lin et al., 2025a) 48.3 7.2 65.5 59.4 7.1 78.6 44.4 2.7 40.1 41.3

typically combining dedicated OCR modules and mature machine translation systems, benefits from
specialized component optimization.

Proprietary unified multi-modal models in this study cannot generate text and images simultane-
ously. To approximate unified generation and understanding, we evaluated them by pairing their
respective generation APIs (GPT-Image-1 and Seedream-3.0) with corresponding understanding
APIs (GPT-4o and Doubao1.6). For understanding-focused tasks such as machine translation, they
achieve performance comparable to commercial multi-stage pipelines. However, significant mis-
alignment between generated content and images was observed, likely due to multi-step inference.
On the Svision metric, Seedream excels in simple-background scenarios, indicating strong back-
ground adherence, whereas GPT tends to excessively modify original images, reflecting limited
preservation of visual fidelity.

The final part of Table 1 indicates that open-source generation and understanding models still have
substantial room for improvement. This may be attributed to resource limitations, which have pre-
vented these models from being trained on proprietary tasks or multilingual datasets. Notably,
Qwen-Image and UniWorld, which are based on Qwen2.5VL-7B, demonstrate relatively strong
performance on translation tasks. However, their performance on the Salign metric, reflecting text-
editing ability, and the Svision metric, reflecting instruction-following capability, remains consider-
ably lower than that of the previously discussed pipelines. Furthermore, JanusPro and Bagel, which
employ more lightweight architectures, exhibit significantly lower generation and understanding
scores across all metrics. These Finding suggest that the current unified fine-tuning strategies for
generation and understanding modules may not effectively promote true synergy between content
generation and comprehension.

Finding 1: Both open-source and closed-source generative–understanding models exhibit a
considerable performance gap compared with existing commercial cascaded pipelines on the
IMT task, suggesting that unified multimodal models still have substantial room for improve-
ment in coordinating understanding and generation.

4.2 PERFORMANCES ON DIFFERENT SCENARIOS

Unified generation and understanding models also exhibit intriguing patterns across different sce-
narios. For multi-stage pipeline approaches, Document and Web scenarios are relatively simple, and
using text erasure combined with manual rendering has little impact on the Scene images, resulting
in consistently low Svision scores. In contrast, real-world settings, which involve complex factors
such as natural lighting, occlusions, and authentic noise, impede the performance of multi-stage
pipelines. Although unified generation and understanding models cannot generalize well to IMT
tasks, their exposure to large-scale image generation and editing data endows them with a strong
ability to preserve image naturalness, highlighting their substantial potential—particularly in com-
plex, real-world scenarios. For example, compared with the Document and Web subsets, the Svision

gap is notably reduced in the Scene subset, indicating improved alignment under more complex
visual conditions.
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Figure 3: Performance comparison of different immersive translation solutions across multiple lan-
guages. Results on the left panel show performance when varying the target language, while results
on the right panel illustrate performance when varying the source output language. We show the
number label of Tencent, GPT-Image, and Janus.

Finding 2: Unified generation and understanding models demonstrate strong potential in pre-
serving image naturalness, particularly in complex real-world scenarios, yet their performance
on multimodal translation and instruction-following tasks remains limited, highlighting the
need for improved strategies to effectively coordinate content generation and comprehension.

4.3 PERFORMANCES ON DIFFERENT LANGUAGES

In the IMT setting, multilinguality poses an additional challenge beyond perception–understanding
synergy, as unified multi-modal models are expected to operate robustly across diverse linguistic
contexts. We evaluate performance under varying source lsrc and target ltgt languages using an
aggregate metric S.

As shown in Fig. 3, while Latin languages (English, French, German, Spanish, Italian), Cyril-
lic (Russian), and Chinese are relatively well supported, Arabic and Japanese exhibit significant
performance drops. This gap is largely attributable to data scarcity and script-specific challenges:
Japanese, despite its partial overlap with Chinese characters, lacks sufficient training resources to
generalize effectively; Arabic further suffers from limited annotated corpora, and its unique orthog-
raphy and right-to-left writing system exacerbate difficulties in both understanding and generation.

To complement the above analysis on target languages, we further examine the impact of different
source languages. As shown in the right panel of Fig. 3, the overall conclusions remain consistent
with the target-language evaluation; however, the performance gaps across source languages are
notably smaller. This suggests that the primary cross-lingual disparity arises at the output level,
whereas the input side exerts comparatively limited influence.

Finding 3: These Finding highlight the uneven cross-lingual generalization of current models,
and underscore that unified generation understanding models, while effective in high-resource
languages, require more balanced multilingual resources and tailored design to handle low-
resource, non-Latin scenarios.

4.4 VISUALIZATION

Figure 4 presents qualitative results from IMTBench across three scenarios and multiple languages,
comparing representative multimodal models. Due to space constraints, we include the Tencent
API as a commercial cascade-based translation system, SeedEdit and GPT-Image as closed-source
unified generation and understanding models, and Qwen-Image as an open-source counterpart. The
visualizations are consistent with the quantitative analysis in Table 1. Specifically, the Tencent API
performs strongly in document and webpage scenarios, but suffers in real-world settings where ren-

7
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Source Image Tencent API SeedEdit GPT-Image Qwen-Image

Document: EN→ZH

Web: EN→DE

Scene: ZH→RU

Figure 4: Visualization of unified multi-modal models with different architectures on the IMT task.

Table 2: Comparison of UniWorld model performance before and after fine-tuning on the Scene
benchmark. All reported values in the table are percentages.

Settings Stext Salign Svision

UniWorld 44.4 2.7 40.1
+ Fine-tuning 57.5 (+13.1) 13.8(+11.1) 47.8(+7.7)

dered text often appears misaligned with the background due to the limitations of its cascade design.
SeedEdit and Qwen-Image exhibit limited IMT capabilities in text-dense scenes, yet achieve more
coherent results in real-world cases, indicating their potential for this task. GPT-Image demon-
strates the strongest overall ability, successfully handling translation across all three scenarios and
producing visually harmonious outputs, but tends to over-modify the original content, particularly
in background adherence during editing tasks.

5 MORE FINE-TUNING EXPLORATION

Furthermore, we fine-tune open-source training scripts of unified generation and understanding mod-
els, including Janus-Pro (Chen et al., 2025c;b), UniWorld (Lin et al., 2025a; Wang et al., 2025c),
and Bagel (Deng et al., 2025). Following the data collection pipeline described in Section 3.2, we
construct approximately 1M parallel images across nine languages, termed as IMT-1M, with the
majority drawn from Document and Web scenarios, and additional Scene samples curated outside
IMTBench. For fairness, we adopt the training configurations from the original papers, and discuss
results separately for both the convergence behavior and the generation branch variants.

5.1 CONVERGENCE

Fig. 5 presents the loss curves of three representative models trained on IMT-1M until con-
vergence, revealing markedly different optimization behaviors for the IMT task. Bagel, which
jointly optimizes generation and understanding, exhibits a rapid initial loss decrease followed by
a slower convergence, reaching stability around 40k steps. UniWorld, leveraging the pre-trained
Qwen2.5VL (Bai et al., 2025) and FLUX-KonText model (Labs et al., 2025), starts from a substan-
tially lower loss due to strong pre-training and experiences oscillatory decay over the subsequent
35k steps. In contrast, Janus, representing a purely autoregressive unified model, converges more
slowly; around 10k steps it briefly becomes trapped in a local optimum before gradually decreasing.
These observations indicate that in unified generation and understanding models, purely autoregres-
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Figure 5: Loss of Finetuning on IMT-1M.
Source Image Target ImageAfter Fine-tuningBefore Fine-tuing

Figure 6: Visualization of Finetuning on IMT-1M. The prompt is “Translate Chinese into French.”

sive architectures are limited by slower convergence, whereas strong diffusion-based pre-training
enables faster generalization on the IMT task.

Finding 4: A strong foundation of pre-trained understanding and generation components is
a critical prerequisite for effective synergy during fine-tuning on the IMT task.

5.2 RESULTS

Based on the above Finding, we report the performance of the UniWorld model before and after
fine-tuning, focusing on the variant that achieved the best convergence. To simplify the experimental
setup, we evaluate on the Scene subset. As shown in Table 2, fine-tuning brings substantial improve-
ments across all three metrics; however, there remains a notable gap compared to the multi-stage
expert pipeline in Table 1. This suggests that fine-tuning the DiT alone, while effective in boost-
ing performance, is insufficient for fully aligning the generation and understanding components.
We further visualize model outputs before and after fine-tuning and observe a clear progression.
As shown in Fig. 6, the unified generation and understanding model initially lacks immersive multi-
modal translation capability, then gradually learns target-language glyph information, and eventually
acquires correct semantic knowledge to produce accurate translations. These insights may inspire
future efforts toward developing unified multi-modal models with stronger synergy between gener-
ation and understanding.

Finding 5: The unified generation-understanding model learns in a progressive, hierarchical
manner, first acquiring glyph and shape information before mastering the semantic knowledge
required for accurate translation.

6 CONCLUSION

In this work, we propose Immersive Multimodal Translation (IMT) as a novel proxy task to evaluate
unified multimodal generation and understanding models. We introduce IMTBench, a systematic
benchmark spanning diverse scenarios and languages, and conduct extensive evaluations and fine-
tuning to reveal structural and performance gaps across models. We believe this task can inspire
the community to enhance generation and understanding synergy and guide targeted optimization of
unified multimodal models.

9
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure that the results reported in this work are reproducible.
All model architectures, training procedures, and hyperparameter settings are described in the main
text (Sections 3) and detailed further in the Appendix (Appendix C–E). For the datasets used in our
experiments, we provide complete descriptions of preprocessing and filtering steps in the supple-
mentary materials. All evaluation metrics are formally defined in Section 3.3, enabling consistent
replication of our analysis. Additionally, the source code and scripts used for training, inference,
and evaluation will be made publicly available as anonymized supplementary material, facilitating
direct reproduction of the reported results. Readers are referred to these resources for all necessary
details to reproduce the experiments and analyses presented in this work.

ETHICS STATEMENT

All authors have read and adhered to the ICLR Code of Ethics. This work focuses on constructing
a proxy task for evaluating unified multi-modal generation and understanding models. We use ob-
jective evaluation protocols, which do not involve direct experimentation on human subjects. All
datasets used are either publicly available or used under appropriate licenses, and any personal in-
formation has been anonymized to protect privacy. We are aware of potential societal impacts of
multimodal AI systems, including misuse for generating misleading content or biased outputs. In
our experiments, we take care to evaluate model behavior across diverse languages and scenarios to
mitigate unintended bias. No datasets or methods used are expected to cause harm to individuals
or communities. We encourage responsible use and recommend that future users of the proposed
models follow relevant legal, privacy, and fairness guidelines. Any conflicts of interest have been
disclosed, and all research practices adhere to established standards of scientific integrity.
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The appendix includes the following aspects:

• A: Use of Large Language Models
• B: Comparisons of different machine translation benchmarks.
• C: Details of IMTBench curation.
• D: Details of Experiment Settings.

A USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used solely as generally purpose assistive tools to
improve the clarity, grammar, and readability of the manuscript. LLMs are not used for research
ideation, data analysis, model development, or any other scientific decision-making. All scientific
content, ideas, results, and conclusions presented in this paper are independently produced by the
authors. The authors take full responsibility for the accuracy and integrity of the work, including
any content that was refined or edited with the assistance of LLMs. No information generated by
LLMs that could constitute plagiarism, fabrication, or scientific misconduct has been included.

B COMPARISONS OF DIFFERENT MACHINE TRANSLATION BENCHMARKS.

As an extension of multimodal machine translation, Immersive Multi-modal Translation (IMT) re-
quires the joint construction of image–text inputs and outputs, making dataset creation more chal-
lenging than in Text Image Translation (TIT) and In-Image Translation (IIT). As summarized in
Table 3, our dataset is competitive in scale and uniquely characterized by multilingual parallelism,
cross-modal input–output, and real-world scenarios. Multilingual parallelism enhances data effi-
ciency, cross-modal input–output enables the assessment of generation and understanding synergy
in unified multimodal models, and real-world data provides conditions for practical applications.
Moreover, the cross-modal setting can also provide additional data support for TIT and IIT tasks.

Table 3: The comparison between multi-modal translation dataset. ⋆ indicates the original paper
reports the instance number, rather than the number of images.

Dataset Train Eval Languages Parallel Modality Real Scene
TIT Datasets

OCRMT-30K (Zhu et al., 2023) 30k 1.2k 2 % Text-Only !

MTIT6 (Qian et al., 2024) - 6k 4 % Text-Only !

AibTrans (Wang et al., 2025b) - 7k 8 ! Text-Only !

MIT-10M ⋆ (Li et al., 2025) 10M 10.4k 14 ! Text-Only !
IIT Datasets

Translatotron-V (Lan et al., 2024) 81.7k 3.5k 4 ! Image-Only %

DebackX (Tian et al., 2025b) 75k 8.2k 2 % Image-Only %

PRIM (Tian et al., 2025a) 6.8M 17k 6 % Image-Only !
IMT Datasets

IMTBench (Ours) 1M 2k 9 ! Image-Text Pair !

C DETAILS OF IMTBENCH CURATION.

C.1 DATA COLLECTION

While Section 3.2 offers a concise overview of the IMT data construction process owing to space
limitations, this section provides a comprehensive account with sufficient details to guarantee repro-
ducibility.

Document. In the Document subset, we employ the SynthDoG engine to simulate rich-text docu-
ment images resembling real-world scenarios. We first collect parallel corpora4, using subtitle files

4https://github.com/ajinkyakulkarni14/TED-Multilingual-Parallel-Corpus
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Figure 7: Visualization of the data distribution of IMTBench and IMT-1M across the three scenarios,
illustrating the relative proportions of samples in Document, Web, and Scene settings.

from TED talks as the primary source. Although these subtitles are multilingual and roughly aligned,
inconsistencies in word order across languages make direct utilization infeasible. To address this,
we leverage a lightweight translation expert model5 (0.6B parameters) to complete the parallel cor-
pus efficiently at scale, followed by SynthDoG (Kim et al., 2022) rendering to generate structured
document images. To ensure translation quality, we further apply automatic filtering with Qwen3-
8B (Yang et al., 2025a). For IMTBench construction, we select 100 nine-way parallel samples that
cover diverse content, and randomly assign one language as the source, yielding 800 test cases in
total. For IMT-1M, we generate around 80k parallel samples (720k images), as shown in Fig. 7.

Web. In the Web subset, we build upon WebSight v2 (Laurençon et al., 2024), a synthetic dataset
containing 2 million pairs of HTML code and corresponding screenshots. Compared to WebSight
v1, this version explicitly encodes the placement of illustrations, better reflecting realistic webpage
layouts. However, most illustrations are invalid URL placeholders. To address this, we collected
icon images from the public web and adaptively scaled them according to the resolution specified in
the original URLs, thereby preserving the original page structure. For translation, we adopt the same
lightweight expert model used in the Document subset. We further crawl over 30k raw webpages and
render them with Selenium. Since Selenium-based rendering can produce misalignments between
text and screenshots, we apply Qwen2.5VL-7B for automatic filtering. As a result, we obtain a
parallel dataset of over 20k webpages, comprising more than 234k aligned text–image pairs.

Scene. Compared with the Document and Web subsets, the Scene subset lacks a stable data con-
struction engine that can perform large-scale editing and translation of scene images. To address
this limitation, we adopt an integrated strategy to construct real-scene data. We first collect a set
of real-world images from OCR datasets, which contain precise OCR annotations. Based on these
annotations, we build parallel text labels in nine languages. Next, for each pair of original and trans-
lated text, we provide the inputs to two editing models with strong text-editing capabilities, namely
GPT-Image and SeedEdit. Unlike the evaluation setting, the prompts here explicitly include both the
source and translated text to reduce the difficulty of model comprehension. In practice, we find that
SeedEdit adheres more faithfully to the original image, but performs poorly in Japanese, Russian,
and Arabic. Therefore, we adopt SeedEdit outputs for Latin languages and supplement the three
challenging languages with GPT-Image results. All generated images are further manually verified,
retaining only those with natural and correct rendering. This process results in 2,833 paired sam-
ples, from which we randomly select 400 for IMTBench, while the remaining are incorporated into
IMT-1M to enhance the realism of the training set.

C.2 DATA STATISTICS

Our IMTBench comprises multilingual multi-modal translation samples covering nine languages.
To illustrate the data characteristics, we provide three complementary visualizations. Figure Fig. 9

5https://huggingface.co/facebook/nllb-200-distilled-600M
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Figure 8: Data distribution across nine languages in IMTBench. Due to data organization con-
straints, the benchmark contains 600 reference images and 2,000 target images, yielding 2,000 test
cases.

Figure 9: Word clouds showcasing top questions in various languages.

presents word clouds highlighting the most frequent tokens across different languages, reflecting
the vocabulary diversity. Fig. 8 shows the frequency distribution of each language as source and
target, demonstrating the balance between input and output directions. Figure Fig. 10 further reports
the token length distribution of both source and target texts, where tokenization is performed using
the Qwen2.5VL-7B tokenizer. In conclusion, these statistics provide a comprehensive view of the
dataset composition and linguistic variation.

C.3 VISUALIZATION OF IMTBENCH.

Fig. 11 illustrates the parallel visualization of IMTBench in nine languages. By leveraging a lim-
ited number of images, this data construction approach scales to a vast number of translation pairs,
significantly enhancing the efficiency of data utilization. Fig. 12 shows the annotation form, corre-
sponding to the second column of Fig. 11.
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Figure 10: Token length distribution across nine languages in IMTBench. Due to data organization
constraints, the benchmark contains 600 reference images and 2,000 target images, yielding 2,000
test cases.

D DETAILS OF EXPERIMENT SETTINGS.

D.1 INFERENCE SETTINGS

For models that cannot generate both text and images simultaneously, we employed a comprehension
model from the same developer to produce the corresponding text–image translations. The details
of settings are illustrated by Table 4. We argue that this setup, using a paired understanding
model, can effectively simulate the inference behavior of unified generation and understanding
models. For the experiments reported in Table 1, we used a minimal prompt format, as follows:

“Translate all texts in this image from {lsrc} to {ltgt}, and replace all texts with translated texts.”

Table 4: Practical implementation of evaluation experiments for unified generation and understand-
ing models.

Methods Implementation

GPT-4o GPT-4o + GPT-Image-1
Seedream3.0 Doubao1.6 + SeedEdit3.0
Qwen-Image Qwen2.5VL-7B + Qwen-Image-Edit

For Janus-Pro and UniWorld, we inference on IMTBench with the edit-version Shared-GPT4o-
Image (Chen et al., 2025b) and GPT-Edit-1.5M (Wang et al., 2025c), which has editing capability
of general image editing. The detailed hyper-parameters follows official settings.

D.2 FINE-TUNING SETTINGS

To improve the performance of open-source generation–understanding models on the IMT task,
we fine-tuned three models—Bagel, Janus-Pro, and UniWorld—on the IMT-1M dataset. The pre-
trained checkpoints used were Bagel-MoT-7B, Janus-Pro-7B, and GPT-Image-Edit (with FLUX-
Kontext). All experiments were conducted on 8 NVIDIA H100 GPUs.

For Janus-Pro, key training settings included 1 epoch, a per-GPU batch size of 2, gradient accumu-
lation over 8 steps, and a learning rate of 5e-5. Training was launched with 8 processes on a single
machine using the standard DeepSpeed multinode launcher.
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Figure 11: Visualization of IMTBench.

For UniWorld, we followed a similar setup with 1 training epoch, a batch size of 1, gradient ac-
cumulation of 16 steps, and a learning rate of 1e-5 using the AdamW optimizer. Mixed precision
(bf16) and gradient checkpointing were enabled, and the model was fine-tuned on the textual and
visual branches jointly.

For Bagel, fine-tuning was performed from the pre-trained Bagel-MoT-7B checkpoint with a max-
imum latent size of 64, learning rate of 2e-5, automatic checkpoint resume, and a per-GPU batch
size of 1.
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Figure 12: Annotations of IMTBench.

This setup ensured a consistent and comparable training protocol across all open-source models
while adapting them to the IMT task.
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