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ABSTRACT

Post-training model quantization is a widely adopted technique for reducing the
memory and computational costs of large language models (LLMs). However,
most existing methods either fix a uniform bitwidth or rely on binary sensitivity
groupings (“sensitive” vs. “non-sensitive”) that treat all weights within a group
identically, ignoring how sensitive each weight actually is and leaving the degree of
sensitivity under-exploited. To address this, for the first time in the neural network
quantization literature, we introduce an explicit loss–bitwidth relation that links
layer-output distortion to the assigned precision, together with a sensitivity-guided
bit-allocation quantization (BAQ) framework. Under mild assumptions, this mod-
eling makes the layer-wise loss an explicit function of quantization bitwidth and
yields a convex resource-allocation problem with a closed-form solution that adapts
precision across weights. This choice is theoretically motivated by rate–distortion
theory and validated by extensive simulations. Inspecting the solution of the pro-
posed resource-allocation problem provides several insights (such as the equal-loss
structure), which are then exploited to design the proposed algorithm. The proposed
algorithm achieves a good trade-off between loss minimization and complexity
and allows BAQ to be integrated into standard quantization pipelines with minimal
overhead. Experimental results show that BAQ consistently outperforms GPTQ,
achieving up to 56× lower perplexity at the same bitwidth on large language mod-
els (e.g., OPT, Llama) ranging from 125M to 30B parameters. Leveraging our
analytical results derived from solving the optimal bit allocation problem, we also
provide a theoretical explanation for the observed gains.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of natural
language processing tasks (OpenAI). However, their immense scale poses significant challenges for
deployment in resource-constrained environments. Model quantization is one of the key techniques to
compress large neural networks (NNs) and thus for mitigating memory and compute costs. The current
literature shows how it is now possible to quantize large NN parameters with low-bit representations
(e.g., INT4) while maintaining good performance (Dettmers et al., 2023)(Frantar et al., 2023)(Wang
et al., 2023).

While recent post-training quantization (PTQ) methods such as GPTQ (Frantar et al., 2023) leverage
second-order information (e.g., proxy Hessians) to guide weight rounding, they typically operate
at a fixed bitwidth, leaving how to optimally allocate a given bit budget across weights largely
unaddressed. Weight sensitivity is considered in recent mixed-precision approaches (e.g., AWQ(Lin
et al., 2024), SpQR(Dettmers et al., 2024)), but mainly in a binary manner by classifying weight
columns as “sensitive” vs. “non-sensitive” and treating all members of a group identically, thereby
under-exploiting the degree of sensitivity and still overlooking the optimal allocation problem.

In this paper, we propose BAQ (Bit Allocation Quantization), a principled bit-allocation framework
for weight-only PTQ that explicitly minimizes the expected loss introduced by quantization under a
global bit budget. For the first time in neural network quantization, we introduce an explicit per-unit
loss model Lij(Rij) that links distortion to the assigned bitwidth, turning the layer-/component-
wise loss into an explicit function of the bit-allocation vector. The modeling choice is theoretically
motivated by rate-distortion theory, and yields a convex resource-allocation problem with a closed-
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form solution that adapts precision across weights. Interestingly, we show that this optimal allocation
satisfies an equal-loss principle, where each component/block contributes equally to the overall
quantization loss. This property not only provides insight into the nature of optimal precision
assignments, but also serves as a useful tool for designing loss-controlled quantization algorithms.

For deployment, we use a column-wise scheme (one bitwidth per weight column) that assigns bits
as a monotone function of the measured sensitivity and calibrates a single global level so the total
bits meet the budget. This rule is a lightweight, drop-in replacement for the fixed-bit module in
GPTQ-style pipelines, with negligible metadata (e.g., 16 bits per weight column to indicate its
bitwidth). Compared with prior sensitivity-based methods that use coarse (binary) groupings (e.g.,
“sensitive” vs. “non-sensitive”) and treat all items in a group identically, BAQ fills the allocation
gap by assigning bits proportionally to the measured degree of sensitivity, which is crucial in tight
budgets (notably 2-bit). We validate BAQ on the OPT and LLaMA families at 2- and 3-bit, showing
consistent perplexity improvements over existing PTQ methods.

Contributions. Beyond proposing yet another quantization scheme, we provide a novel analytical
framework BAQ for bit allocation that both guides algorithm design and yields explainable results.
First, inspired by rate-distortion theory, we introduce a per-unit loss–bitwidth mapping that makes
the dependency of layer output loss on quantization precision explicit. Second, we formulate the
bit allocation as a convex optimization problem and derive a closed-form solution that allocates bits
proportionally to the degree of sensitivity, in contrast to heuristic, category-based (binary) bitwidth
assignments. Third, we demonstrate consistent perplexity/accuracy improvements over GPTQ and
mixed-precision baselines by extensive experiments on OPT and LLaMA families , and provide
predictive explainability for these observed gains.

2 RELATED WORKS

Post-Training Quantization (PTQ). PTQ methods aim to convert pre-trained full-precision LLMs
into low-precision formats without requiring retraining, making them highly practical for deploy-
ment. These techniques are generally categorized into weight-only quantization, weight-activation
quantization (Xiao et al., 2023)(Shao et al., 2024), and KV (for Key and Value) cache quantization
(Hooper et al., 2024). Our work focuses on the weight-only PTQ setting. In this setup, notable
methods such as GPTQ (Frantar et al., 2023), QuIP (Chee et al., 2023), and AWQ (Lin et al., 2024)
achieve high accuracy by leveraging Hessian-informed loss approximations or outlier-aware scaling
strategies. These approaches often rely on estimating a proxy Hessian matrix from calibration data to
guide quantization. GPTQ, for instance, uses an Optimal Brain Compression framework with inverse
Hessian updates to minimize second-order loss. QuIP further enhances this by enforcing incoherence
between weights and the Hessian. Other PTQ works like OWQ (Lee et al., 2024), SqueezeLLM (Kim
et al., 2023), and SpQR (Dettmers et al., 2024) adopt sensitivity-based heuristics for identifying
important weights and allocating bits accordingly. However, these approaches typically use fixed or
coarse, rule-based assignments that give the same precision to all weights within a category (e.g.,
“salient” vs. “non-salient”). In contrast, BAQ provides a theoretically grounded mechanism to derive
optimal bit assignments based on a convex formulation of Hessian-weighted quantization loss.

OBS-based Compression. The Optimal Brain Surgeon (OBS) framework (Hassibi et al., 1993)
and its precursor OBD (LeCun et al., 1989) laid the foundation for second-order model compression
by quantifying the impact of weight removal on the loss function and compensating for it through
updates to remaining parameters. This foundational principle has inspired a variety of pruning and
quantization techniques that leverage Hessian matrix information to guide compression decisions. No-
tably, GPTQ (Frantar et al., 2023) extends this paradigm to post-training quantization by minimizing
a second-order Taylor expansion of the loss. SparseGPT (Frantar & Alistarh, 2023), OBC (Frantar &
Alistarh, 2022), and BiLLM (Huang et al., 2024) further generalize OBS methodology to structured
sparsity, joint quantization-pruning, and binary quantization, respectively. Our work draws from
this second-order perspective but shifts the focus from selecting or modifying weights to allocating
bitwidths under a global bit budget constraint. By minimizing a Hessian-weighted distortion objective,
BAQ introduces a low-overhead bit allocation strategy that enhances the efficiency of OBS-based
quantization pipelines.
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3 PROBLEM FORMULATION

The main problem under consideration in this paper is to quantize the weights of a large NN model.
For the sake of clarity and following related papers such as (Frantar et al., 2023), the layer or
component index will be removed from the notation but the considered operations can be performed
for any layer or any component of the NN. The focus will be primarily on feedforward architectures
but the results may potentially extend to models incorporating feedback loops. Denote by M ≥ 1
and N ≥ 1 the respective sizes of the layer output and input. The weight matrix associated with the
layer under consideration is denoted by W ∈ RM×N . Mainly for complexity reasons, it is assumed
that each entry of W is quantized with a scalar uniform quantizer and independently of the other
entries. Each entry wij , i{1, ...,M}, j{1, ..., N}, of the weight matrix is thus approximated by its
quantized version ŵij = Qij(wij), Qij being a scalar uniform quantization function. The number of
bits (referred to as the bitwidth) assigned to the quantizer Qij is denoted by Rij . As well motivated
by previous works such as (Hassibi et al., 1993) and (Frantar et al., 2023), a relevant loss function to
be considered for quantizing the weight wij is as follows:

Lij =
(wij −Qij(wij))

2

[H−1
F ]nijnij

, (1)

where HF is a proxy Hessian matrix corresponding to unquantized weights. Let X ∈ RN×P be the
input activation matrix to the layer, where P is the number of calibration samples. Then XF ⊂ X
denotes the submatrix formed by selecting the rows corresponding to unquantized weights, and the
Hessian matrix corresponding to unquantized weights is approximated as HF = 2XFX

⊤
F . The

diagonal entry [H−1
F ]nijnij quantifies the sensitivity of the loss with respect to perturbations in wij ,

where nij denotes the index of wij among the unquantized weights in row i.

In the existing literature, the bitwidths Rij are typically chosen to be identical for all weights.
However, empirical results on OPT models (Chee et al., 2023) indicates that quantization noise is
more influential in terms of NN final performance for some weights. Therefore, there is an incentive
to adapt Rij to the weight to be quantized. One of the motivations of this paper is precisely to
formulate and solve an optimization problem which produces the optimal bitwidths to be used to
quantize the NN. By optimality, it is meant in terms of the global loss associated with the considered
layer that is, L =

∑M
i=1

∑N
j=1 Lij . One of the major difficulties in doing so is that each component

Lij depends on Rij in a non-explicit and complicated way. To circumvent this difficulty, we propose
the following approximation:

Lij(Rij) ≈
1

[H−1
F ]nijnij

·
∆2

ij

12
=

1

[H−1
F ]nijnij

·
(wmax

ij − wmin
ij )2

12 · 22Rij
(2)

where: wmax
ij and wmin

ij denote the maximum and minimum bounds of the quantizer Qij , ∆ij =
wmax

ij −wmin
ij

2Rij
is the quantization step for the uniform scalar quantizer Qij . To build this approximation,

the rationale is as follows. First, to allocate a bitwidth to a given weight, one considers the mean of
the loss Lij instead of the loss itself. Second, we exploit a high-resolution approximation of this mean.
Indeed, it is known from (Gray & Neuhoff, 1998)(Cover, 1999) that the distortion for a scalar uniform
quantizer can be approximated in the high-resolution regime by ∆2

12 , ∆ being the quantization step.
Remarkably, as all our simulations have shown, this approximation remains relevant even when the
bitwidth is intermediate or low, which is also a behavior observed in image compression (Taubman
et al., 2002).

Finally, we introduce a total bit budget for the considered layer (or component of the NN), denoted
by Rsum. In practice, this constraint is key, for example, to enable the comparison of two model
compression techniques using the same resources, or to impose a given total size on the model (or
one of its components). The bit allocation problem to be solved thus writes as:

(OP-A) minimize
R11,...,RMN

M∑
i=1

N∑
j=1

cij · 2−2Rij (3)

subject to
M∑
i=1

N∑
j=1

Rij ≤ Rsum, Rij ≥ 0, ∀i, j (4)

3
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where

cij =
(wmax

ij − wmin
ij )2

12 · [H−1
F ]nijnij

.

In the proposed formulation, note that Rij is not required to be an integer. Therefore, the optimization
problem (OP-A) describes a relaxed version of the initial problem. In practice, (OP-A) is solved, and
the entries of the bit allocation vector are rounded according to a rule to be defined; one possible rule
is provided in the next section. The purpose of the next section is to solve the relaxed problem and
provide algorithms suitable for implementation.

4 ANALYTICAL SOLUTION AND ALGORITHM

4.1 OPTIMAL SOLUTION

In (OP-A), the bitwidth Rij for weight wij is assumed to be continuous, and (OP-A) can be checked
to be a convex problem which is strongly dual. The optimal solution can be proved to be as follows
(Gersho & Gray, 2012):

R⋆
ij = max

(
0,

1

2
log2

(cij
λ

))
, (5)

where λ ∝
∏MN

i=1 c
1/MN
ij is a normalization factor determined by enforcing the bud-

get constraint. By imposing λ to meet the latter constraint and assuming that Rsum
MN ≥

max(i,j)
1
2

[
− log2

cij

(
∏

(i,j) cij)
1/MN

]
, the interior solution can be rewritten as:

R⋆
ij =

1

2

log2
cij(∏

(i,j) cij

)1/MN

+
Rsum

MN
. (6)

Three interesting observations can be made. First, the obtained solution is markedly different from
the uniform bit allocation rule (namely, the rule used by state-of-the art solutions such as GPTQ)
when the cij vary widely. By inspecting the expression of cij , it is seen that this typically happens
when the weight have different ranges or the eigenvalues of the matrix H are very different (which
has been observed in (Chee et al., 2023)). Second, it can be checked that the optimal interior solution
satisfies the equal-loss principle:

cij · 2−2R⋆
ij = ckℓ · 2−2R⋆

kℓ , ∀(i, j), (k, ℓ). (7)

Third, the total quantization loss under the optimal allocation R⋆
ij is:

∑
i,j

cij · 2−2R⋆
ij = MN

∏
i,j

cij

 1
MN

· 2−2Rsum/MN , (8)

while uniform allocation yields a loss proportional to the arithmetic mean of {cij}. Thus, the relative
gain of optimal over uniform allocation is:

Lossoptimal

Lossuniform
=

(∏
i,j cij

)1/MN

1
MN

∑
i,j cij

. (9)

This shows that larger variance in {cij} leads to greater improvement from optimal bit allocation,
aligning with the equal-loss principle and justifying BAQ’s efficiency.

This structure is exploited for the design of the following practical algorithm. More precisely, the
practical weight quantization technique we propose consists of three sub-algorithms. The motivation
behind these algorithms is twofold: to trade off between performance gains and complexity; to allow
the proposed allocation rule to be integrated in existing model compression techniques. The following
three subsections describe the three proposed algorithms which allow the proposed quantization

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

technique to be implemented for large NN models such as LLMs. Leveraging the results established
so far we will introduce the BAQ algorithm, which efficiently assigns bitwidths to each column of the
weight matrix W based on Hessian-informed sensitivity. The algorithm is grounded in the equal-loss
principle, which suggests that optimal quantization is achieved when each column of W contributes
equally to the total loss.

4.2 COLUMN-WISE BIT ALLOCATION

Instead of assigning a distinct number of quantization bits to each individual weight, we consider a
simplified bit allocation scheme, in which a shared bitwidth is assigned to each entry of the column
of W . This approach is motivated by two key observations. First, the approximation of quantization
error by its expected value becomes more accurate at the column level, since the total quantization
error aggregates over multiple weights. Second, the bitwidth overhead required to encode per-weight
precision can be substantially reduced by sharing bitwidths across larger structures. The overhead
aspect is key for quantizing large models. Therefore, we introduce a reference quantization loss value
Lref, such that each column of W is quantized to ensure its individual loss equals Lref. Given the
column sensitivity coefficient Cj defined as:

Cj =

M∑
i=1

cij =

M∑
i=1

(wmax
i − wmin

i )2

12 · [H−1
F ]qijqij

, (10)

the required bitwidth for every entry of column j, denoted by Rj and imposed to satisfy the equal-loss
equality Cj · 2−2Rj = Lref, is given by:

Rj =
1

2
log2

(
Cj

Lref

)
. (11)

In practice, we round Rj to the nearest integer to obtain a hardware-friendly bit assignment and also
ensure Rj is non-negative. The following procedure summarizes this bit allocation strategy:

Algorithm 1 Bit Allocation Given Reference Loss

Require: Sensitivity coefficients {Cj}Nj=1, reference loss Lref

Ensure: Integer bit allocations {Rj}Nj=1
1: for each column j = 1 to N do
2: Rj ← 1

2 log2

(
Cj

Lref

)
3: Rj ← max(0, round(Rj))

4: return {Rj}Nj=1

4.3 LAYER-WISE REFERENCE LOSS ESTIMATION

As shown in equation (8), the total quantization loss for a layer is exponentially dependent on the
average bitwidth. This observation enables us to estimate an appropriate Lref for each layer based
on a desired average bitwidth Rref. Specifically, we begin by selecting an initial value Linit, which
corresponds to an initial average bitwidth Rinit computed via Algorithm 1. To align the final bit
allocation with a target average bitwidth Rref, we adjust the reference loss according to:

Lref = Linit · 22(Rinit−Rref), (12)

where Linit is an initial reference loss corresponding to an empirically estimated average bitwidth
Rinit. This formulation ensures that the resulting bit allocation is centered around the desired average
Rref.

It is important to note that different layers often exhibit vastly different sensitivity distributions and
quantization characteristics. As a result, achieving the same average bitwidth across layers typically
requires setting distinct values of Lref for each layer. Empirical observations confirm that using a
fixed global Lref can lead to substantial discrepancies in layer-wise average bitwidths Ravg, which in
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turn causes notable degradation in model performance. To ensure consistent accuracy and reliable
compression, it is essential to control Ravg within a narrow range across layers.

Algorithm 2 Reference Loss Estimation for Target Average Bitwidth

Require: Sensitivity coefficients {Cj}Nj=1, initial reference loss Linit, target average bitwidth Rref
Ensure: Updated reference loss Lref

1: Use Algorithm 1 with Linit to compute {Rj}Nj=1

2: Rinit ← 1
N

∑N
j=1 Rj

3: Lref ← Linit · 22(Rinit−Rref)

4: return Lref

4.4 FULL BAQ WORKFLOW AND INTEGRATION WITH EXISTING QUANTIZATION
TECHNIQUES

The BAQ algorithm described above can be readily integrated into existing quantization pipelines by
replacing their static or heuristic bit assignment with our sensitivity-guided bit allocation strategy.
In particular, methods such as GPTQ (Frantar et al., 2023), which apply fixed-bit quantization, can
benefit significantly from our layer-wise adaptive bitwidth assignment.

To demonstrate this, we present the full BAQ workflow as a drop-in replacement for the bit allocation
module in methods based on GPTQ.

Algorithm 3 Full BAQ Workflow with GPTQ-based Quantization

Require: Weight matrix W ∈ RM×N , inverse Hessian diagonal {[H−1
F ]qijqij}, target average

bitwidth Rref, initial reference loss Linit

Ensure: Quantized weights Ŵ
1: Compute sensitivity coefficients: Cj =

∑M
i=1

(wmax
i −wmin

i )2

12·[H−1
F ]qijqij

2: Estimate refined reference loss Lref using Algorithm 2
3: Compute optimal bitwidths {Rj} using Algorithm 1 with Lref
4: for each column j = 1 to N do
5: Quantize column W:,j using GPTQ with bitwidth Rj

6: return Quantized weight matrix Ŵ

For other model compression methods, as long as the loss induced by weight compression can be
explicitly expressed, our BAQ framework can be similarly applied. The key difference lies in how the
sensitivity coefficients Cj are calculated, which may vary depending on the specific compression
strategy employed. For instance, pruning-based or low-rank approximation methods may define
Cj using different second-order metrics or task-specific criteria. Nonetheless, once a meaningful
per-component loss approximation is available, BAQ provides a general mechanism to optimally
allocate quantization precision under a global budget.

5 EXPERIMENTS

Overview. We evaluate BAQ on the OPT (Zhang et al., 2022) and Llama2/3 model families across a
wide range of sizes (from 125M to 30B parameters), focusing exclusively on aggressive 2-bit/3-bit
weight-only quantization. Classical methods such as GPTQ are known to perform well in the 4-bit
setting, but often degrade significantly at very low bits. In contrast, BAQ enables high-accuracy
quantization even at low precision across diverse models. We show that (1) BAQ consistently
outperforms existing methods on both perplexity and accuracy metrics across diverse datasets,
especially at 2-bit regime, and (2) these gains primarily stem from BAQ’s ability to allocate bits more
efficiently by exploiting the heterogeneous sensitivity of individual weights.

Setup. Our experimental setup follows the GPTQ pipeline (Frantar et al., 2023), and we use
HuggingFace implementations of all models. We quantized all models using a single NVIDIA A100

6
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GPU with 80GB of memory. Our calibration dataset consists of 128 randomly sampled 2048-token
segments from the C4 dataset (Raffel et al., 2020), without any retraining or task-specific tuning. We
report perplexity on WikiText2 (Merity et al., 2016), PTB (Marcus et al., 1994), and C4, and zero-shot
accuracy on StoryCloze (Mostafazadeh et al., 2016), PIQA (Tata & Patel, 2003) and ARC-Easy
(Boratko et al., 2018). We use structured allocation to ensure each weight column uses the same
number of bits.

Methods. We compare BAQ with GPTQ/AWQ/SPQR across OPT and Llama2/3 models. In all cases,
BAQ uses our closed-form allocation rule (Section 4) for bit assignment.
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Figure 1: Comparison between BAQ-2bit and several baselines (GPTQ-2bit, GPTQ-3bit, RTN-16bit)
on two representative tasks: WikiText2 (left) and ARC-easy (right). BAQ-2bit consistently improves
over GPTQ-2bit.

Table 1: Comparison of BAQ and GPTQ on various OPT models and datasets with 2/3-bit quantiza-
tion. Perplexity (↓) and accuracy (↑) metrics are reported.

Perplexity (↓) Accuracy (↑)

Method Model Avg. Bits C4 WikiText2 PTB SC PIQA ARC-E

BAQ Llama2-7B 1.99 430.78 873.39 - 50.03 52.67 27.89
GPTQ Llama2-7B 2.00 2.2e3 1.1e4 - 50.03 52.18 25.26
AWQ Llama2-7B 2 2.2e5 1.7e5 - 49.98 52.39 24.75
SPQR Llama2-7B 2.1 1.2e3 3.7e3 2.2e4 49.01 51.74 28.60
BAQ Llama2-13B 2.01 71.45 142.86 1.2e3 53.66 53.75 28.95
GPTQ Llama2-13B 2.00 293.79 1.0e3 4.4e3 49.97 51.14 28.25
AWQ Llama2-13B 2 1.2e5 9.5e4 - - 53.26 23.04
SPQR Llama2-13B 2.1 292.97 1.0e3 3.4e3 - - -
BAQ Llama3-8B 1.99 3.7e3 3.2e4 2.1e4 - - -
GPTQ Llama3-8B 2.00 2.7e5 1.0e6 1.6e6 - - -
BAQ OPT-2.7B 1.92 126.50 282.47 326.53 - 55.17 32.11
GPTQ OPT-2.7B 2.00 4388 8949 8281 - 48.42 26.94
BAQ OPT-6.7B 2.07 33.64 52.71 70.84 - 63.87 43.16
GPTQ OPT-6.7B 2.00 500.7 2958 2521 - 55.11 31.86
BAQ OPT-30B 1.95 24.21 31.05 47.98 - 66.97 48.6
GPTQ OPT-30B 2.00 29.59 71.7 88.19 - 66.05 42.47
BAQ Llama2-7B 2.98 10.90 9.26 107.86 72.37 71.98 59.30
GPTQ Llama2-7B 3.00 10.39 9.50 7.3e3 71.51 70.78 60.18
AWQ Llama2-7B 3.00 23.85 24.00 - - 65.02 52.78
SPQR Llama2-7B 3.10 9.35 7.68 48.91 73.86 74.37 67.37
BAQ OPT-6.7B 3.00 16.78 16.25 22.32 70.92 73.07 60.88
GPTQ OPT-6.7B 3.00 15.41 15.14 18.46 69.86 73.01 59.47

Main results. As illustrated in Figure 1, with 2-bit quantization, BAQ consistently largely outperforms
existing methods (such as GPTQ, AWQ) across model scales on both perplexity and accuracy,
demonstrating superior performance in language modeling and zero-shot reasoning tasks. Table 1
presents a more detailed comparison between the proposed BAQ method and GPTQ across a range
of OPT models and evaluation tasks. Two metrics are reported: perplexity and accuracy. Perplexity
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measures how well the model predicts the next token in a sequence—lower values indicate better
language modeling performance. Accuracy, in this context, refers to performance on zero-shot
multiple-choice benchmarks such as PIQA, and ARC-easy. These tasks assess the model’s reasoning
and language understanding capabilities without any task-specific fine-tuning, and accuracy is
computed as the fraction of correct choices made over the evaluation set.

Several key observations emerge. First, BAQ consistently outperforms GPTQ in perplexity across
all OPT model sizes, indicating better preservation of token-level predictions under aggressive 2-
bit quantization. Second, BAQ yields substantial accuracy gains on downstream zero-shot tasks,
particularly for larger models for 2-bit regime. Third, for 3-bit quantization, BAQ have comparable
results to state-of-the-art methods. In this higher-bit regime, the overall resource budget is already
less constrained, so the relative gain from optimal allocation is smaller. Moreover, BAQ’s theoretical
advantage is partially offset by practical constraints, such as rounding continuous allocations to
integer bitwidths and using standard quantization approximations. Overall, these results validate the
core design of BAQ: bitwidths are allocated according to Hessian-based sensitivity to preserve model
semantics under quantization. The strong gains in both perplexity and accuracy, especially in low-bit
regimes, highlight BAQ’s effectiveness as a scalable, high-performance solution for post-training
quantization.

Running time. BAQ incurs approximately 1.5× running time compared to GPTQ, mainly due to the
additional computation for layer-wise bit allocation.

Table 2: Running time (in seconds) of GPTQ and BAQ for different OPT models.

Method OPT-2.7B OPT-6.7B OPT-13B OPT-30B

GPTQ 517.08 1194.45 2423.57 6220.92
BAQ 797.07 1734.22 3336.18 8211.75

Bitwidth histogram. To further understand the effectiveness of BAQ-2bit, we analyze the bit
allocation profile on OPT-2.7B, visualized in Figure 2. The figure plots the distribution of allocated
bitwidths across all weights in the model. While the majority of weights are still assigned the minimal
2-bit representation, a non-negligible portion of weights are allocated to lower or higher precision.
This illustrates that BAQ successfully integrates the bit allocation mechanism into the quantization
process, assigning fewer bits to more robust weights and more bits to sensitive ones.

0 2 4 6 8
Rate per element

0.0

0.5

1.0

1.5

2.0

Co
un

t

1e8 Histogram of Bitwidth

Figure 2: Distribution of assigned bitwidths Rj in OPT-2.7B under BAQ. While most weights are
quantized to 2 bits, BAQ adaptively allocates higher or lower precision to match weight sensitivity.
Layers with higher variance in sensitivity (as measured by {Cj}) exhibit broader bitwidth distribu-
tions, reflecting structural adaptivity.

Layer-wise loss analysis. Fig. 3 compares two metrics across transformer layers to explain the
effectiveness of BAQ from the layer-wise loss perspective: Ratio_L, the ratio of quantization loss
under BAQ to that under GPTQ (uniform 2-bit), and Ratio_C, the geometric-to-arithmetic mean
ratio of the sensitivity coefficients {Cj}. Quantization loss is approximated by

∑
j Cj2

−2Rj , where
uniform bitwidth yields loss scaling with the arithmetic mean, while optimal allocation achieves
scaling with the geometric mean.

8
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Figure 3: Layer-wise comparison of quantization efficiency with OPT-2.7B model. Ratio_C (geomet-
ric mean over arithmetic mean of {Cj}) characterizes the potential gain from optimal bit allocation.
Ratio_L measures the realized gain by BAQ compared to GPTQ. Layers with more dispersed sensi-
tivity (lower Ratio_C) benefit more from bit allocation.

Fig. 3 reveals that layers with low Ratio_C, which indicate diverse sensitivities on weights, show
greater improvement under BAQ (lower Ratio_L). This confirms that bit allocation is especially
effective in layers with heterogeneous sensitivity. Since Cj can be computed from the diagonal
entries of the Cholesky decomposition of the inverse Hessian H−1 (Frantar et al., 2023), a large
variation in {Cj} typically indicates that the original Hessian H has a wide spread of eigenvalues,
meaning some directions in the weight space are much more sensitive than others. In such layers,
uniform quantization inefficiently allocates bits to insensitive weights, while BAQ adaptively assigns
higher precision where it matters most. This adaptivity is reflected in the greater variance of bitwidths
observed in those layers.

Additional results. More results to illustrate the equal loss principle validation in BAQ, the integration
and discussion to the transformation-based method, and the detailed additional computation overheads
are shown in Appendix.

6 CONCLUSION

This paper introduced BAQ, a principled bit allocation framework for post-training model quantization.
By formulating bit allocation as a convex optimization problem over a sensitivity-aware loss model,
we derived a closed-form rule that assigns quantization precision to individual weights based on
their Hessian-informed importance. The resulting algorithm is simple, efficient, and compatible
with existing quantization pipelines such as GPTQ and QuIP. Experimental results demonstrate that
BAQ delivers substantial gains over uniform-bit quantization. Importantly, these improvements come
with negligible computational overhead, making BAQ highly practical for real-world deployment.
Our analysis also revealed a strong empirical correlation between the variance in Hessian-derived
sensitivity coefficients and the benefit of bit allocation, validating the theoretical underpinnings of
our approach. In addition, we showed that while transformation-based methods like QuIP tend
to uniformize weight sensitivities (thus limiting the gains from adaptive bitwidth), BAQ remains
effective and robust even without such preprocessing. Looking forward, an interesting direction
is to jointly optimize weight transformations and bit allocation to maximize their complementary
strengths. Overall, BAQ offers a lightweight, theoretically grounded, and high-performance solution
for aggressive quantization in modern LLMs.
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APPENDIX

The appendices provide additional technical content that supports and extends the main paper. First,
we present rigorous derivations for the optimal bit allocation problem introduced in Section 4.1,
including the closed-form solution, the equal-loss principle, and the geometric-vs-arithmetic mean
quantization loss ratio. Second, we demonstrate the generalizability of BAQ by applying it to more
models, confirming its efficacy across different architectures. Third, we show how BAQ can be
integrated into advanced transformation-based quantization methods like QuIP. Empirical results
reveal that while QuIP alone benefits from incoherence-promoting transformations, combining it with
BAQ yields further improvements, especially when sensitivity varies significantly across columns,
highlighting the flexibility and broad applicability of BAQ across a wide range of quantization settings.
At last, we provide the complexity and overhead analysis. All codes of this paper are available at
https://github.com/CSU-ModelCompression/BAQ.

A PROOF OF OPTIMAL BIT ALLOCATION RESULTS IN SEC 4.1

In this section, we rigorously prove the key theoretical results from Section 4.1 of the main paper,
including:

• the closed-form solution for the optimal bit allocation R∗
ij ,

• the equal-loss property,
• and the geometric-vs-arithmetic mean ratio for quantization loss.

We consider the relaxed optimization problem:

min
{Rij≥0}

∑
i,j

cij · 2−2Rij

subject to
∑
i,j

Rij ≤ Rsum,
(13)

A.1 CLOSED-FORM EXPRESSION FOR R∗
ij

We define the Lagrangian:

L({Rij}, λ) =
∑
i,j

cij · 2−2Rij + λ

∑
i,j

Rij −Rsum

 . (14)

Set the derivative with respect to Rij to zero:

∂L
∂Rij

= −2 ln(2) · cij · 2−2Rij + λ = 0. (15)

Solving the above equation yields:

R∗
ij = max

(
0,

1

2
log2

(cij
λ′

))
, λ′ =

λ

2 ln 2
. (16)

If the total budget Rsum is sufficiently large such that the optimal solution satisfies R∗
ij > 0 for all

(i, j), we can omit the max operator. In this case, to satisfy the constraint
∑

i,j R
∗
ij = Rsum, we

obtain:

λ′ =

∏
i,j

cij

1/MN

· 2−2Rsum/MN . (17)

Substituting into the expression gives:

R∗
ij =

1

2
log2

(cij
G

)
+

Rsum

MN
, (18)

where G =
(∏

i,j cij

)1/MN

represents the geometry mean of {cij}.

12
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A.2 EQUAL-LOSS PROPERTY

From optimality:

2−2R∗
ij =

λ′

cij
⇒ cij · 2−2R∗

ij = λ′. (19)

This result implies that all quantization-induced loss terms are equal across weights:

cij · 2−2R∗
ij = ckℓ · 2−2R∗

kℓ , ∀(i, j), (k, ℓ). (20)

A.3 QUANTIZATION LOSS RATIO: GEOMETRIC VS. ARITHMETIC MEAN

Under optimal allocation:

Lossoptimal =
∑
i,j

cij · 2−2R∗
ij = MN ·G · 2−2Rsum/MN . (21)

Under uniform allocation Runi
ij = Rsum/MN :

Lossuniform =
∑
i,j

cij · 2−2Rsum/MN = MN ·A · 2−2Rsum/MN , (22)

where A = 1
MN

∑
i,j cij represents the arithmetic mean of {cij}. Therefore, the ratio becomes:

Lossoptimal

Lossuniform
=

G

A
=

(
∏

cij)
1/MN

1
MN

∑
cij

. (23)

This confirms that the relative benefit of optimal allocation over uniform allocation increases with
greater variance in {cij}.

B EMPIRICAL VALIDATION OF THE EQUAL-LOSS PRINCIPLE

In this part, we provide an empirical check of the equal-loss principle on a representative layer.

For the second layer of the second Transformer block in LLaMA-2 7B, we compute the realized
per-column loss

Lj ≜ Cj 2
−2Rj ,

under two precision-allocation schemes: (i) Uniform (GPTQ-style equal bitwidth per column) and
(ii) BAQ (bit-allocation by our rule). We summarize the empirical distribution of {Lj} via its sample
mean and variance.

Table 3: Per-column loss statistics Lj = Cj2
−2Rj on LLaMA-2 7B (Transformer block 2, layer 2).

BAQ achieves both lower mean loss and markedly smaller variance than uniform allocation at the
same bit budget.

Allocation Mean Variance

Uniform (GPTQ) 14.89 3752.06
BAQ 3.98 1.2829

Two patterns are evident (Table 3): (i) the mean loss is substantially lower under BAQ for the same
bit budget, indicating more effective precision allocation; and (ii) the variance of per-column losses
is drastically reduced, showing that BAQ equalizes losses across columns—consistent with the
equal-loss principle.
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C INTEGRATION WITH TRANSFORMATION-BASED QUANTIZATION

As demonstrated in prior sections, our bit allocation algorithm provides significant improvements
over fixed-bit quantization schemes by adapting bitwidths to the sensitivity of individual weight
groups. A natural question arises: can BAQ further enhance advanced quantization pipelines such
as QuIP, which already use transformations to improve quantization robustness? To investigate this,
we integrated BAQ into QuIP by replacing its uniform bitwidth assignment with BAQ’s optimal
per-column bitwidths.

To study the interaction between BAQ and transformation-based quantization methods such as QuIP,
we consider the use of orthogonal linear transformations applied to the weight matrix W and its
corresponding Hessian approximation H, as originally proposed in QuIP. Specifically, QuIP leverages
transformation pairs (U,V) to map weights and curvature into an incoherent domain:

W 7→ U⊤WV, H 7→ V⊤HV,

where U,V are blockwise orthogonal matrices.

The choice of transformation matrices U and V plays a crucial role in transformation-based quantiza-
tion, as it directly affects the distribution of sensitivity coefficients {Cj} in the transformed domain.
Following the QuIP framework, we construct U and V as block-diagonal matrices composed of
smaller orthogonal blocks. Specifically, we build U = diag(U1, . . . ,UNp) and similarly for V,
where each Ui ∈ Rp×p is an orthogonal matrix.

To evaluate how the structure of these orthogonal blocks impacts quantization performance, we
consider three construction strategies:

• Mild transformation (σ = 10−2): Each block Ui ∈ Rp×p is constructed as the orthogonal
factor Q from the QR decomposition of a random matrix of the form I + σ ·G, where
G ∈ Rp×p is a matrix with i.i.d. entries sampled from N (0, 1). The resulting blocks are
close to identity and introduce limited incoherence.

• Moderate transformation (σ = 10−1): We apply the same procedure but increase the
noise level to σ = 10−1, generating blocks that are more randomized and less correlated
with the identity, thereby inducing stronger incoherence.

• Highly randomized transformation (σ →∞): Each block Ui is drawn as a fully random
orthogonal matrix of size p × p, typically sampled from the Haar distribution via QR
decomposition of a standard Gaussian matrix. This represents the limiting case of the
above construction with very large σ. This construction achieves high incoherence between
transformed features.

To assess the compatibility of BAQ with transformation-based quantization frameworks such as QuIP,
we apply linear transformations U and V to the input covariance matrix H and the weight matrix W,
respectively, following the design of QuIP. The bitwidths in QuIP are uniformly set per column, and
the quantization loss of each column is empirically measured. Using this, we estimate the sensitivity
coefficients Cj by rearranging the proxy loss expression Cj2

−2R, since all columns use the same
bitwidth R in the QuIP baseline. This enables us to approximate the induced loss from quantizing
column j, which forms the basis for evaluating the potential benefit of BAQ’s bit allocation.

We analyze how the effectiveness of BAQ varies under different transformation settings by comparing
QuIP and QuIP+BAQ across three increasingly incoherent configurations: mild, moderate, and highly
randomized. As shown in Table 4, applying BAQ yields substantial perplexity reductions in the
mild and moderate cases. For instance, under mild transformation, BAQ reduces the perplexity on
WikiText2 from 3032.47 to 647.92. This significant gain stems from the high variance in weight
sensitivities across columns, which allows BAQ to exploit bitwidth adaptation effectively.

To further interpret this behavior, we refer to the histograms of Ratio_C in Figure 4. Ratio_C
represents the geometric mean to arithmetic mean ratio of sensitivity coefficients {Cj}, which
approximates the percentage of loss reduction achievable by optimal bit allocation compared to
uniform allocation with the same average bitwidth. As shown in the histograms, under highly
randomized transformations, most Ratio_C values are close to 1, implying limited benefit from bit
reallocation. In contrast, with moderate or mild transformations, the Ratio_C values exhibit greater
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Table 4: Perplexity comparison of QuIP and QuIP+BAQ under three transformation settings (OPT-
125m), with an average bitwidth of 2 bits. BAQ is applied to adjust bitwidths per-column, while
preserving the same overall budget.

Transformation Dataset QuIP QuIP+BAQ

Mild
C4 1760.70 253.49
WikiText2 3032.47 647.92
PTB 3067.05 590.97

Moderate
C4 348.15 326.76
WikiText2 638.39 530.00
PTB 1686.45 644.29

Highly Randomized
C4 48.79 47.91
WikiText2 81.09 79.14
PTB 214.09 223.14

variation and are frequently much less than 1, indicating that BAQ can yield substantial improvements.
This structural variance enables BAQ to provide meaningful improvements by assigning more bits to
sensitive directions.

Thus, while BAQ consistently preserves the bit budget, its relative impact depends strongly on the
underlying sensitivity structure shaped by the transformation. These findings not only validate the
use of Ratio_C as a diagnostic metric for allocation benefit, but also highlight the complementary
nature of BAQ and incoherence processing.

These findings suggest that BAQ is especially advantageous in settings where incoherence is difficult
to achieve or the transformation quality is uncertain. Unlike QuIP, which relies on the accurate
construction and inversion of transformation matrices, BAQ provides a lightweight and robust
precision scheduling mechanism that adapts to structural sensitivity without introducing additional
inference-time overhead.

D COMPLEXITY AND OVERHEAD ANALYSIS

The BAQ algorithm brings minimal additional computational complexity, as it reuses quantities like
the inverse Hessian diagonal and weight statistics already computed in standard pipelines such as
GPTQ. Its core step, computing each bitwidth via equation (11), followed by rounding, involves only
cheap, element-wise operations, negligible compared to matrix or calibration computations.

In terms of encoding overhead, BAQ adopts a structured quantization scheme where all weights
in a column share the same bitwidth Rj . As such, it suffices to transmit one additional value per
column to indicate the bitwidth used. Since the number of bits typically ranges from 0 to 15, a 4-bit
header per column is sufficient to represent all bitwidths without loss. Given that a typical column
contains approximately 1000 weight elements, the overhead is only 0.004 bits per component, which
is negligible compared to the savings achieved through mixed-precision quantization.
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(a) Mild transformation

0.0 0.2 0.4 0.6 0.8
Ratio_C

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y

(b) Moderate transformation
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(c) Highly randomized transformation
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Figure 4: Histograms of Ratio_C = GM({Cj})/AM({Cj}) across different transformation strate-
gies. A lower value of Ratio_C indicates greater dispersion in the sensitivity coefficients {Cj},
which corresponds to higher potential gains from bit allocation. In mild and moderate transformations,
Ratio_C often falls significantly below 1, suggesting that BAQ can yield substantial improvement
over uniform quantization. In contrast, highly randomized transformations yield {Cj} distributions
that are nearly uniform, with Ratio_C ≈ 1, thus diminishing the relative benefit of bit allocation.
These patterns align with the performance differences observed in Table 4.

16


	Introduction
	Related Works
	Problem formulation
	Analytical solution and algorithm
	Optimal solution
	Column-wise Bit Allocation
	Layer-wise Reference Loss Estimation
	Full BAQ Workflow and Integration with Existing Quantization Techniques

	Experiments
	Conclusion
	Proof of Optimal Bit Allocation Results in Sec 4.1
	Closed-Form Expression for Rij*
	Equal-Loss Property
	Quantization Loss Ratio: Geometric vs. Arithmetic Mean

	Empirical validation of the equal-loss principle
	Integration with Transformation-Based Quantization
	Complexity and Overhead Analysis

