
MPO: Boosting LLM Agents with Meta Plan Optimization

Anonymous ACL submission

Abstract001

Recent advancements in large language mod-002
els (LLMs) have enabled LLM-based agents to003
successfully tackle interactive planning tasks.004
However, despite their successes, existing ap-005
proaches often suffer from planning hallucina-006
tions and require retraining for each new agent.007
To address these challenges, we propose the008
Meta Plan Optimization (MPO) framework,009
which enhances agent planning capabilities by010
directly incorporating explicit guidance. Un-011
like previous methods that rely on complex012
knowledge, which either require significant013
human effort or lack quality assurance, MPO014
leverages high-level general guidance through015
meta plans to assist agent planning and en-016
ables continuous optimization of the meta plans017
based on feedback from the agent’s task execu-018
tion. Our experiments conducted on three rep-019
resentative tasks demonstrate that MPO signif-020
icantly outperforms existing baselines. More-021
over, our analysis shows that MPO provides a022
portable solution that enhances both task com-023
pletion efficiency and generalization capabili-024
ties across new agents and unseen scenarios.025

1 Introduction026

Recent advancements in large language mod-027

els (LLMs) (Achiam et al., 2023; Liu et al., 2024;028

Yang et al., 2024a) have enabled LLM-based agents029

to tackle complex multi-step tasks, including em-030

bodied housework (Shridhar et al., 2020) and sci-031

ence experiments (Wang et al., 2022). These tasks032

require sophisticated planning abilities, as agents033

need to understand long-term dependencies (Zhang034

et al., 2024), reason about sequential actions, and035

adapt to dynamic environments (Yao et al., 2022b).036

The planning quality of these agents plays a crucial037

role in determining their overall performance.038

Current mainstream LLM-based agents primar-039

ily develop their planning capabilities through040

implicit methods, either directly leveraging the041
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Thought 1: ... I can check one
by one, from cabinet 1. 
Action 1: go to cabinet 1.

Thought N: ... I'll try to open
cabinet 4 instead. 
Action N: go to cabinet 4.

...

Step 1: go to where watch
may be placed.
Step 2: take watch from
where you found it.
Step 3: go to safe.
Step 4: open safe.
Step 5: put watch in/on safe.

Figure 1: Unlike previous implicit plan enhancing meth-
ods that require agent parameter updates, our method
incorporates meta plans into prompts for direct planning
guidance and can improve them based on feedback.

model’s inner ability or fine-tuning from expert tra- 042

jectories. For example, ReAct (Yao et al., 2022b) 043

and Reflexion (Shinn et al., 2024) perform plan- 044

ning on-the-fly during task execution and are prone 045

to getting lost due to planning hallucination (Zhu 046

et al., 2024). The works including AgentTun- 047

ing (Zeng et al., 2023), Lumos (Yin et al., 2023), 048

and ETO (Song et al., 2024b) employ trajectory 049

tuning to enhance implicit planning capabilities 050

and require retraining for each new agent, resulting 051

in huge computational cost (Figure 1(a)). 052

Beyond implicit planning, recent studies have 053

explored the use of human knowledge to guide 054

agents in task execution, capitalizing on the bene- 055

fits of explicit guidance and low integration costs 056

of such knowledge (Zhu et al., 2024; Qiao et al., 057

2024). However, these approaches face significant 058

challenges: they either require extensive manual 059

efforts or struggle to ensure quality in the process 060

of acquiring complex knowledge, potentially lead- 061

ing to inconsistent improvements in agent perfor- 062

mance (Wang et al., 2024). To overcome these 063
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limitations, we propose to automatically generate064

a high-level abstract guidance, termed Meta Plan,065

which emulates human prior knowledge. Unlike066

previous implicit plans derived during execution,067

meta plans are decoupled from specific environ-068

mental details and complex agent trajectories, re-069

ducing the difficulty of knowledge acquisition. Fig-070

ure 1(b) illustrates an abstract meta plan for the071

task "put some watch on safe". In contrast to the072

concrete plan in Figure 1(a), the meta plan omits073

fine-grained details (e.g., cabinet 4). To further074

enhance meta plan quality, we design a Meta Plan075

Optimization (MPO) framework that iteratively076

improves plans based on environmental feedback.077

This process mirrors how humans refine their strate-078

gies through experience, ensuring that meta plans079

evolve over time for optimal task execution.080

The MPO framework comprises two key compo-081

nents: a meta planner and an agent. The meta plan-082

ner generates high-level meta plans, while the agent083

provides execution feedback to evaluate the qual-084

ity of the input meta plans and guide meta planner085

refinement. Initially, we collect meta plans from086

expert trajectories and cold-start the meta planner087

through supervised fine-tuning. To further opti-088

mize the meta planner, we use Monte Carlo (MC)089

sampling to estimate the task completion rate of090

the agent as feedback. Specifically, given a task,091

the planner generates multiple meta plans through092

sampling. Then for each meta plan, the agent is093

also sampled to produce multiple execution trajec-094

tories, and the task completion rate is estimated095

accordingly. After identifying contrastive meta096

plan pairs—those yielding the highest and lowest097

task completion rates—we apply DPO (Rafailov098

et al., 2024) to refine the meta planner on these099

plan pairs. Finally, the trained meta planner can be100

detached from the MPO framework and function as101

a portable component, capable of generating high-102

quality meta plans for tasks in the target environ-103

ment. This facilitates task completion for any new104

agent without incurring additional training costs.105

We evaluate our approach on three representative106

benchmarks: ALFWorld (Shridhar et al., 2020) for107

embodied household tasks, ScienceWorld (Wang108

et al., 2022) for textual science experiment tasks109

and WebShop (Yao et al., 2022a) for online web110

navigation tasks. Across all test tasks, agents111

equipped with our meta planner consistently out-112

perform those without it, achieving at least a 5.6%113

average improvement in performance. Addition-114

ally, the meta planner is compatible with various115

agent training frameworks, and its meta plans can 116

be directly inserted into task instructions. Com- 117

bined with these methods, our approach yields even 118

greater performance gains, demonstrating effective- 119

ness in a larger application scope. Further analy- 120

sis reveals that our generated meta plans signifi- 121

cantly increase the agent’s average reward per ac- 122

tion, thereby improving task completion efficiency. 123

In summary, our contributions are as follows: 124

• We introduce the MPO, which leverages meta 125

plan optimization to improve the performance 126

of LLM agents. This progress provides an in- 127

novative approach to explicitly enhance agents’ 128

planning capabilities while maintaining compati- 129

bility with previous agent training frameworks. 130

• Extensive experiments conducted on three rep- 131

resentative benchmarks demonstrate that our 132

method has significantly improved the perfor- 133

mance of existing LLM agents. 134

• Further analysis indicates that: (1) Our proposed 135

method substantially boosts the agent’s task com- 136

pletion efficiency; (2) A lightweight meta planner 137

can guide more powerful agents in their planning. 138

and (3) MPO increases the correctness, followa- 139

bility, and standardization of the meta plan. 140

2 Task Formulation 141

LLM Agent Planning The primary scope of 142

this study is the planning of LLM agents interact- 143

ing with the environment and receiving feedback 144

for task solution. Following Song et al. (2024b), 145

the agent’s task planning trajectory can be repre- 146

sented as e = (u, a1, o1, . . . , an), where u ∈ U 147

is the task instruction, a ∈ A the agent actions, 148

and o ∈ O the observation from the environment. 149

At each time step t, the agent performs implicit 150

planning and generates the corresponding action 151

at ∼ πθ(·|u, a1, o1, . . . , ot−1). The probability of 152

generating the task planning trajectory is given by: 153

πθ(e|u) =
n∏

t=1

πθ(at|u, a1, o1, . . . , ot−1) (1) 154

Finally, the final reward r(u, e) ∈ [0, 1] represent- 155

ing the task completion rate is calculated. 156

Meta Plan The meta plan serves as high-level, 157

natural guidance to assist in agent planning. It out- 158

lines an abstract, general strategy for task comple- 159

tion that is decoupled from specific environmental 160

details, indicating its potential to generalize across 161
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Task: You are in ..., put some 
vase on safe.

Step 1: go to find vase.
Step 2: take vase from there.
Step 3: go to safe.
Step 4: open safe.
Step 5: put vase in/on safe.

SFT

Generate

Step 1: go to dresser; 
Step 2: take vase from dresser...

...

MP 1

Meta 
Planner

n-Rollout
Execution

Average
Reward

MP 2

MP m

...
DPO

Task: You are in ..., put 
some vase on safe.

Step 1: go to dresser; 
Step 2: take vase from ...

Step 1: locate the safe; 
Step 2: go to find the vase...

1. SFT Initialization 2. Meta Plan Generation 3. Meta Plan Evaluation 4. DPO Training

Task: You are in ..., put some 
vase on safe.

Expert Meta Plan (MP):

Meta Plan 1

Meta Plan 2
Step 1: retrieve the vase; 
Step 2: go to safe...

Meta Plan m
Step 1: locate the safe; 
Step 2: go to find the vase...

n-Rollout
Execution

n-Rollout
Execution

0.9

Average
Reward
0.3

0.1

Average
Reward

Chosen Meta Plan

Rejected Meta Plan

Figure 2: The overall architecture of MPO. The meta planner is first supervised fine-tuned on the seed meta
plan (MP) set. Then we optimize the meta planner through preference learning on contrastive meta plan pairs.

various agents. For instance, given the instruction162

"look at the CD under the desklamp", the meta163

plan could be: "1. Go to where the CD may be164

placed. 2. Take the CD from where you found it.165

3. Go to where the desklamp is located. 4. Use166

the desklamp to look at the CD." A low-quality167

meta plan might mislead the agent’s planning pro-168

cess. To ensure meta plan quality, MPO develops a169

lightweight parameterized meta planner πg to gen-170

erate meta plans, which can be further optimized171

to produce better results. After incorporating the172

meta plan p ∼ πg(·|u), the probability of the agent173

generating trajectory e is formulated as:174

πθ(e|u, p) =
n∏

t=1

πθ(at|u, p, a1, . . . , ot−1) (2)175

3 Method176

The overall framework of our method is illustrated177

in Figure 2. First, we construct a seed meta plan178

training set to initialize a basic meta planner (§ 3.1).179

Then, we develop the MC method to assess the180

quality of the meta plan through exploration (§ 3.2).181

Finally, we further enhance the meta planner via182

preference-based optimization using contrastive183

meta plan pairs (§ 3.3).184

3.1 Supervised Fine-tuning Initialization185

To equip the meta planner with the foundational186

capabilities to generate meta plans based on task187

instructions and the environmental state, we initial-188

ize the model using supervised fine-tuning. How-189

ever, existing agent datasets only provide golden190

task completion trajectories without corresponding 191

meta plans. Therefore, we first need to construct 192

a training dataset for meta plan generation. To 193

achieve this, we leverage GPT-4o to assist in cre- 194

ating the dataset. We provide the model with the 195

original task instruction u and the corresponding 196

golden trajectory e as the prompt, allowing it to 197

summarize a generalizable plan p from the trajec- 198

tory. The specific prompt template can be found in 199

Appendix E.1. To ensure the quality of the meta 200

plan p, we manually review the results generated 201

by GPT-4o and refine any meta plans that are incor- 202

rect, overly complex, or non-standard. This quality 203

control process ensures that each meta plan p rep- 204

resents a reusable planning strategy that effectively 205

assists agents in task completion. The detailed pro- 206

cess for controlling the quality of the seed meta 207

plan set can be found in Appendix C. Since the 208

meta planner needs to generate plans without ac- 209

cess to golden trajectories during inference, we 210

remove them from the training data, thus obtaining 211

the initialization dataset for the meta planner: 212

Ds =
{
(u, p)(i)

}|Ds|

i=1
(3) 213

We then fine-tune the model on the auto-regressive 214

loss the get the initialized meta planner πg: 215

LSFT = −E(u,p)∼Ds
[log πg(p|u)] (4) 216

3.2 Meta Plan Quality Evaluation 217

To further enhance the meta planner, we need to 218

evaluate the quality of its generated meta plans. 219

While prior studies typically rely on reward models 220
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trained on human preference annotations (Bai et al.,221

2022a; Ouyang et al., 2022; Dubey et al., 2024) or222

advanced AI (Bai et al., 2022b; Lee et al., 2023)223

models to assess model outputs, these approaches224

have limitations. They not only incur additional225

costs for human labeling or API calls, but may also226

be less applicable to LLM agents, as their prefer-227

ences for meta plans are not aligned with the agent228

or task environment. To circumvent these chal-229

lenges, we adopt an exploration-based approach to230

evaluate the quality of meta plans.231

Intuitively, a higher-quality meta plan should232

enable the agent to more easily succeed in the task.233

Therefore, for a give meta plan p, we insert it into234

the prompt of the agent and have the agent attempt235

to complete the task N times. This results in N236

task completion trajectories generated by the agent:237

{e(i)|i = 1, ..., N} ∼ πθ(e|u, p) (5)238

For each trajectory e(i), the environment returns the239

task completion rate r(u, e(i)). Thus, the quality of240

the meta plan p is determined by the agent success241

rate in completing the task based on it, which can242

be represented as:243

Q(p) =
1

N

N∑
i=1

r(u, e(i)) (6)244

In this paper, we use Llama-3.1-8B-Instruct (Dubey245

et al., 2024) as the agent to evaluate the quality of246

the meta plans. This model demonstrates strong247

instructing-following capabilities and is already ef-248

fective at completing agent tasks. Moreover, the249

meta plans evaluated with this model can be gener-250

alized to agents based on other models, which we251

verify in the experiments later.252

3.3 Meta Planner DPO Training253

After we are able to automatically evaluate the254

quality of meta plans, we can further optimize the255

SFT-initialized meta planner through reinforcement256

learning. We choose DPO (Rafailov et al., 2024)257

as our optimization algorithm due to its training258

stability and low resource consumption. The DPO259

algorithm requires paired preference data to opti-260

mize the meta planner, specifically pairs of high-261

and low-quality meta plans. We construct the DPO262

preference dataset Dc from the task training set,263

where the SFT-initialized meta planner generates264

M meta plans {pi|i = 1, ...,M} ∼ πg(p|u). We265

then compute scores for each meta plan using the266

MC method described in Section 3.2. The highest267

Dataset Train Test Seen Test Unseen Action Space

ScienceWorld 1483 194 241 19
ALFWorld 3321 140 134 13
WebShop 1624 200 - 8

Table 1: Statistics overview of test datasets. “Test Seen”
and “Test Unseen” are test set with seen and unseen
scenarios respectively.

and lowest quality meta plans are selected as the 268

chosen and rejected pairs pw and pl. If all meta 269

plans are of the same quality, we skip this sample. 270

This forms our preference training dataset: 271

Dc =
{
(u, pw, pl)

(i)
}|Dc|

i=1
(7) 272

Given the preference dataset Dc, DPO optimizes 273

the model to increase the likelihood of the chosen 274

meta plan pw over the rejected one pl. We fine-tune 275

the meta planner by minimizing the DPO loss: 276

LDPO(πθ;πref ) = −E(u,pw,pl)∼Dc

[
log σ(β log

πθ(pw|u)
πref (pw|u)

−β log
πθ(pl|u)
πref (pl|u)

)

]
,

(8) 277

This equation reflects the goal of maximizing the 278

probability of generating the higher-quality meta 279

plan pw over the lower-quality meta plan pl for a 280

given task instruction u. By constructing the pref- 281

erence dataset and applying DPO optimization, the 282

meta planner becomes more effective at generating 283

high-quality meta plans, therefore better guiding 284

the agent planning process. 285

4 Experiments 286

4.1 Experiment Settings 287

Datasets We conducted experiments on three rep- 288

resentative agent datasets: ScienceWorld (Wang 289

et al., 2022) for textual science experiment tasks, 290

ALFWorld (Shridhar et al., 2020) for embodied 291

household tasks, and WebShop for online web navi- 292

gation tasks (Yao et al., 2022a). Both ScienceWorld 293

and WebShop provide dense rewards ranging from 294

0 to 1, while ALFWorld offers only binary rewards 295

to indicate whether the task is completed. For de- 296

tails of the datasets, please refer to Appendix A. 297

The statistical information of our datasets is pre- 298

sented in Table 1. It is important to note that in addi- 299

tion to the in-distribution test sets, both ALFWorld 300

and ScienceWorld include test sets that include out- 301

of-distribution unseen variations. These additional 302

test sets enable us to evaluate the generalization 303

capabilities of the meta planner. 304
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Model w/o Exp. Guid. ScienceWorld ALFWorld WebShop Average
Seen Unseen Seen Unseen Seen

Agents w/o Training

GPT-4o (Achiam et al., 2023) ✗ 60.0 56.0 78.6 83.6 63.5 68.3
GPT-4o-mini (Achiam et al., 2023) ✗ 49.1 42.7 32.1 41.0 55.7 44.1
Llama-3.1-8B-Instruct (Dubey et al., 2024) ✗ 47.7 42.2 22.9 28.4 56.3 39.5
Qwen2.5-7B-Instruct (Yang et al., 2024a) ✗ 38.5 38.8 71.4 75.4 58.3 56.5
Llama-3.1-70B-Instruct (Dubey et al., 2024) ✗ 72.6 70.2 78.6 73.9 59.4 70.9

Llama-3.1-8B-Instruct + MPO ✓ 56.5 55.5 50.0 52.2 63.2 55.5
GPT-4o + MPO ✓ 67.3 67.8 89.3 93.3 66.3 76.8
Llama-3.1-70B-Instruct + MPO ✓ 80.4 79.5 85.7 86.6 65.1 79.5

Agents w/ Training

Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023) ✗ 65.3 57.0 79.3 71.6 63.3 67.3
Llama-3.1-8B-Instruct + ETO (Song et al., 2024b) ✗ 81.3 74.1 77.1 76.4 68.4 75.5
Llama-3.1-8B-Instruct + KnowAgent (Zhu et al., 2024) ✓ 81.7 69.6 80.0 74.9 64.8 74.2
Llama-3.1-8B-Instruct + WKM (Qiao et al., 2024) ✓ 82.1 76.5 77.5 78.2 66.9 76.2

Llama-3.1-8B-Instruct-SFT + MPO ✓ 70.2 65.9 80.7 81.3 65.5 72.7
Llama-3.1-8B-Instruct-ETO + MPO ✓ 83.4 80.8 85.0 79.1 70.2 79.7

Table 2: Performance of different methods on two datasets. MPO-optimized meta plans significantly improve
performance across various models or agent frameworks, surpassing other explicit guidance (Exp. Guid.) methods.

Implementation Details We use Llama-3.1-8B-305

Instruct (Dubey et al., 2024) as the base model to306

construct the meta planner. For SFT initialization,307

we set the batch size to 32, the learning rate to 1e-308

5 and employ a cosine scheduler with 3 training309

epochs. For DPO (Rafailov et al., 2024) training,310

we configure the meta planner to generate M = 5311

meta plans per task with a generation temperature312

of 0.7. To evaluate meta plan quality, we set the313

agents to generate N = 5 task completion trajec-314

tories for each meta plan, also using a temperature315

of 0.7. We utilize vLLM (Kwon et al., 2023) to ac-316

celerate the generation process. For DPO training,317

the batch size is 32, and the learning rate is 1e-5318

with a 3% warm-up phase, and a cosine scheduler319

is used. The β parameter in the DPO loss function320

is set to 0.1 for the ALFWorld, ScienceWorld and321

WebShop datasets, with training conducted over 3322

epochs. All training procedures are implemented323

using Llama-Factory (Zheng et al., 2024) with full324

parameter fine-tuning. The experiments are con-325

ducted on 8 NVIDIA A100 80GB GPUs.326

Base Agents We evaluate our method on two327

types of agents, guided by MPO-optimized meta328

plans: (1) Agents without training, which de-329

ploy the ReAct framework using foundation mod-330

els without additional training. We test two pro-331

prietary models, including GPT-4o and GPT-4o-332

mini (Achiam et al., 2023) as well as several open-333

source models, including Llama-3.1-8B-Instruct,334

Llama-3.1-70B-Instruct (Dubey et al., 2024), and335

Qwen2.5-7B-Instruct (Yang et al., 2024a). (2)336

Agents with training, which enhance agent plan- 337

ning capabilities via parameter updates to founda- 338

tion models. We examine two agent frameworks: 339

AgentTuning (Zeng et al., 2023), which uses Super- 340

vised Fine-Tuning from expert trajectories to im- 341

prove the agent capabilities of the base model, and 342

ETO (Song et al., 2024b), which learns from failed 343

trajectories and proposes an exploration-based tra- 344

jectory optimization method to enhance the task- 345

solving process. We also compare with KnowA- 346

gent (Zhu et al., 2024) and WKM (Qiao et al., 347

2024), which also inject explicit guidance into the 348

agent planning process. These two methods re- 349

quire fine-tuning the base models, making them 350

incompatible with other agent frameworks. 351

Evaluation To ensure experimental reproducibil- 352

ity, we set the decoding temperature to 0 for both 353

meta plan generation by the meta planner and task 354

trajectory generation by the agent. For meta plan 355

generation, we employ a zero-shot prompting ap- 356

proach. When generating task completion trajec- 357

tories, we include a 1-shot in-context example for 358

each task. The detailed prompts are provided in 359

Appendix E.2. Note that once the meta plans for 360

the test set tasks are generated by the meta plan- 361

ner, we use them across all agents without further 362

modification. Our primary evaluation metric is the 363

Average Reward, which calculates the mean re- 364

ward across all test set task instances. We also 365

report the Success Rate in Appendix B. We will 366

release the generated meta plans and parameters of 367

the optimized meta planner upon acceptance. 368
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Base LLM Setting SciWorld ALFWorld

GPT-4o

- 56.0 83.6
SFT 59.5 91.0
GPT 60.2 91.3
RFT 61.8 89.6
MPO 67.8 93.3

Qwen2.5-7B-Ins

- 38.8 75.4
SFT 37.4 73.9
GPT 38.3 75.6
RFT 41.9 78.3
MPO 43.7 82.8

Table 3: Ablation study on meta planner optimization
methods. “–” indicates no meta plan. RFT uses reject
sampling with only the best sampled meta plan for train-
ing. GPT directly prompts GPT-4o as the meta planner.

4.2 Results369

As shown in Table 2, the incorporation of MPO-370

optimized meta plans consistently improves agent371

performance across all tasks and frameworks, with372

the average performance increasing by up to 40.5%373

for the Llama-3.1-8B-Instruct based agent. More-374

over, our meta planner is compatible with other375

agent training frameworks. The MPO-enhanced376

Llama-3.1-8B-Instruct-ETO achieves an average377

reward 3.5 higher the the current SOTA explicit378

guidance method, WKM. These results demon-379

strate that our general high-level meta plan, op-380

timized through agent feedback, outperforms com-381

plex knowledge-based guidance that relies heavily382

on manual efforts, lacks generalization ability, and383

offers no quality assurance. This underscores the384

effectiveness of our approach in significantly boost-385

ing agent performance. Furthermore, our method386

demonstrates strong effectiveness in unseen sce-387

narios. For the unseen parts of ScienceWorld and388

ALFWorld, despite never having encountered these389

tasks, the meta planner is able to generalize to them390

and generate high-quality meta plans. This im-391

proves the success rate of GPT-4o on the unseen392

part of ALFWorld by 9.7, achieving a success rate393

of 93.3. These results highlight that MPO can fur-394

ther enhance the agent’s generalization capabilities,395

particularly in out-of-distribution scenarios.396

5 Analysis397

5.1 Ablation Study398

We conduct ablation experiments on the training399

methods of the meta planner. For ScienceWorld400

and ALFWorld, we evaluate on the unseen test set.401

As shown in Table 3, the meta planner optimized402

by MPO yields greater improvements in agent403

Base LLM Type SciWorld ALFWorld

GPT-4o
Inst. 67.8 93.3

Thou. 65.3 85.1
Obs. 67.6 91.8

Llama-3.1-8B
Inst. 55.5 52.2

Thou. 38.0 34.3
Obs. 53.3 50.8

Llama-3.1-8B-SFT
Inst. 65.9 81.3

Thou. 47.9 25.4
Obs. 60.6 67.2

Table 4: The impact of different meta plan insertion
positions on agent performance.
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Figure 3: The average reward per step.

performance compared to other training methods. 404

It also outperforms directly prompting GPT-4o 405

as the meta planner, which relies solely on its 406

prior knowledge without optimizing the meta plan 407

through environment exploration. This suggests 408

that exploring the environment and learning from 409

comparisons enable the meta planner to produce 410

higher-quality meta plans. Additionally, when us- 411

ing SFT-initialized meta plans, the performance of 412

the Qwen2.5-7B-Instruct model decreases on both 413

evaluation datasets, indicating that a low-quality 414

meta plan may mislead the agent planning process. 415

5.2 How to Use Meta Plan? 416

In our main experiments, the meta plan is incorpo- 417

rated into the task instructions to guide the agent 418

planning process. Here, we investigate the im- 419

pact of different insertion positions on agent per- 420

formance: in the task instruction, in the agent’s 421

thought process and in the environment observation. 422
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Figure 4: The effectiveness of MPO across agents with
different parameter sizes.

As shown in Table 4, we find that insertion into the423

task instruction consistently yields the best perfor-424

mance across all agents and tasks, while insertion425

into the thought process leads to the worst perfor-426

mance. This suggests that disrupting the agent’s427

normal reasoning process negatively affects plan-428

ning accuracy. Additionally, we observe that insert-429

ing the meta plan at other positions causes greater430

performance drops in agent frameworks with train-431

ing, likely because the training data does not in-432

volve meta plans. In contrast, insertion into the433

instruction causes minimal disruption to the origi-434

nal task completion process. These results suggest435

that inserting the meta plan in the task instruction436

ensures optimal performance.437

5.3 Efficiency Analysis438

Another advantage of incorporating high-quality439

meta plans is that it prevents agents from unneces-440

sary exploration, thus improving their task comple-441

tion efficiency. Following Xiong et al. (2024), we442

evaluate action efficiency using the average reward443

per step, calculated for each task as the ratio of444

the final reward to the number of steps required445

to complete the task, and then averaging these val-446

ues across the entire test set. Figure 3 shows the447

significant improvements in average step rewards448

achieved by our MPO compared to both the no-449
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Figure 5: Impact of sampling count N and M in con-
trastive meta plan construction on agent performance.

meta-plan (N/A) and SFT-initialized meta plans. It 450

is also clear that for the unseen test tasks, MPO 451

leads to an even greater increase in average reward 452

per step, demonstrating its strong generalization to 453

out-of-distribution tasks. These results underscore 454

the superior performance of MPO, confirming its 455

effectiveness in enhancing agent action efficiency. 456

5.4 Effect on Agents with Scaling Parameters 457

To further validate the effectiveness of our method, 458

we conduct experiments on models of varying pa- 459

rameter sizes. We choose the Qwen2.5-Instruct 460

family as test models, selecting a range of parame- 461

ter sizes from small to large: 3B, 7B, 14B, 32B, and 462

72B, and evaluate their performance on both the 463

seen and unseen parts of ScienceWorld and ALF- 464

World. As shown in Figure 4, MPO can enhance 465

agent performance across a wide range of parame- 466

ter sizes, with the most significant improvements 467

observed in agents with medium-sized parameters. 468

Moreover, as a lightweight model, the meta planner 469

has the potential to enhance more powerful agents 470

portably without requiring their retraining. 471

5.5 Effect of Sampling Count on Performance 472

We analyze how the sampling counts, M for meta 473

plan generation and N for task trajectory sampling 474

affect the trained meta planner’s performance. We 475

use the average score of the agent enhanced by the 476

optimized meta plans as the evaluation metric, vary- 477

ing one parameter while fixing the other. As shown 478

in Figure 5, lower sampling counts significantly 479

reduce meta plan quality, with N having a stronger 480

effect. This is likely because insufficient task tra- 481

jectories reduce the accuracy of meta plan quality 482

estimation. Moreover, the performance gains from 483

increasing N and M quickly saturate. Considering 484

sampling efficiency, we set N = M = 5 in the main 485

experiments, striking a balance between sampling 486

cost and meta planner performance gains. 487
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Figure 6: The comparison of SFT-initialized and MPO-optimized meta plans on ALFWorld.

5.6 What Makes a Good Meta Plan?488

We further investigate why the meta plans opti-489

mized through exploration in MPO outperform490

those obtained soly through SFT initialization. We491

evaluate the meta plans from three perspectives:492

correctness, followability, and standardization, us-493

ing GPT-4o for automated assessment. The eval-494

uation details and prompts can be found in Ap-495

pendix E.3. As shown in Figure 6, MPO-optimized496

meta plans consistently outperform SFT-initialized497

ones across all three dimensions. The advantages498

in correctness and followability make it easier for499

the agent to effectively plan and execute tasks, lead-500

ing to higher task completion rates. Please refer to501

Appendix D for a more detailed case study.502

6 Related Work503

LLM as Agents With advancements in reasoning504

and instruction-following capabilities of large lan-505

guage models (Wei et al., 2022a), researchers have506

begun using prompting methods (Wei et al., 2022b;507

Song et al., 2023) or more complex strategies (Koh508

et al., 2024) to build agents capable of leveraging509

tools (Qin et al., 2023), solving problems, writing510

code (Qian et al., 2023), and completing real-world511

tasks (Patil et al., 2023; Gur et al., 2023; Yang et al.,512

2024b). To enhance open-source models as agents,513

some works (Zeng et al., 2023; Song et al., 2024a)514

use expert trajectories for supervised fine-tuning515

LLMs, while others (Song et al., 2024b; Xiong516

et al., 2024; Zhao et al., 2024b) enable agents to ex-517

plore the environment autonomously and leverage518

reinforcement learning to learn from failed experi-519

ences. However, these methods require retraining520

each time a new agent is deployed, leading to sig-521

nificant computational overhead.522

Planning in LLM Agents Planning (Huang523

et al., 2024) is essential for intelligent agents to524

complete real-world tasks, involving the decompo-525

sition of complex instructions into sub-tasks and526

acting on them sequentially. Previous works (Yao 527

et al., 2022b; Shinn et al., 2024) primarily focus on 528

implicit planning, where planning occurs through 529

interleaved reasoning and action generation. To 530

address the challenges of myopic reasoning and 531

planning hallucination in implicit planning (Zhu 532

et al., 2024), some approaches (Guan et al., 2024; 533

Li et al., 2024; Zhao et al., 2024a; Zhu et al., 2024) 534

have explored using explicit knowledge to guide 535

task execution. However, these methods often re- 536

quire manually designed prompt templates or task 537

procedures, limiting their transferability across en- 538

vironments. Some works (Logeswaran et al., 2022; 539

Ye et al., 2023; Fu et al., 2024) use language mod- 540

els to automate task knowledge synthesis or sub- 541

goal planning, but the generated knowledge cannot 542

be further refined through exploration and envi- 543

ronmental feedback, leading to suboptimal perfor- 544

mance. In contrast, our MPO introduces an auto- 545

matically generated meta plan that provides high- 546

level, abstract guidance to assist in agent planning, 547

while allowing further quality enhancement based 548

on feedback from the task completion process. 549

7 Conclusion 550

In this paper, we introduce MPO, a novel frame- 551

work for enhancing the performance of LLM-based 552

agents. MPO incorporates abstract, high-level guid- 553

ance via meta plans, offering an innovative solution 554

to explicitly improve the agent’s planning capabil- 555

ities. By utilizing feedback from the agent’s task 556

execution, MPO enables continuous enhancement 557

of the meta plan quality. Extensive experiments on 558

three benchmarks demonstrate that our framework 559

consistently outperforms existing baselines and is 560

applicable to agents across a wide range of param- 561

eter sizes. These findings highlight the potential 562

of our approach to advance agent planning capa- 563

bilities, paving the way for future developments in 564

artificial general intelligence. 565
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Limitations566

Despite achieving superior performance compared567

to other baselines, it is important to acknowledge568

several limitations of this work. 1) Our approach569

uses Llama-3.1-8B-Instruct as the base model to570

construct the meta planner. However, it is worth571

exploring the potential differences when utilizing572

other base models or models with varying parame-573

ter sizes for the meta planner. Future work could574

investigate the use of more lightweight models,575

such as those with as few as 1B parameters, to576

enhance computational efficiency. 2) Our method577

only focuses on constructing a separate meta plan-578

ner for each individual task. However, building a579

meta planner that incorporates data from multiple580

tasks may allow it to learn from diverse knowledge581

sources, resulting in higher-quality meta plans. Fu-582

ture research could develop a unified meta planner583

that is applicable to various tasks. 3) In the meta584

planner DPO training, we employ simple sampling585

and Monte Carlo methods to construct contrastive586

meta plan pairs. Future work could explore the587

application of MCTS methods to improve the effi-588

ciency of the sampling process.589

Ethics Statement590

This work fully complies with the ACL Ethics Pol-591

icy. We declare that there are no ethical issues in592

this paper, to the best of our knowledge.593
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A Dataset Details803

ScienceWorld ScienceWorld (Wang et al., 2022)804

is a text-based virtual environment that provides805

a testing platform for AI research, specifically de-806

signed to evaluate and improve AI systems’ scien-807

tific reasoning abilities. Researchers can use this808

platform to assess the performance of AI agents in809

open, complex environments. ScienceWorld sim-810

ulates tasks from standard elementary school sci-811

ence curricula, covering areas such as state changes812

of matter, measurement, electricity, life sciences,813

plant growth, chemical reactions, and genetics.814

Agents are deployed in an embodied interactive815

environment to understand and apply complex sci-816

entific concepts. Tasks in ScienceWorld involve817

several subgoals, and the overall final reward is cal-818

culated based on the completion of these subgoals.819

The original test set of ScienceWorld includes820

unseen task variations. For example, in the train-821

ing set, a task may involve boiling water, while in822

the test set, the task may be boiling lead. Follow-823

ing Song et al. (2024b), we use the original test set824

to evaluate the generalization ability of our meta825

planner in unseen scenarios, and the original vali-826

dation set serves as our test set for seen scenarios.827

ALFWorld ALFWorld (Shridhar et al., 2020)828

are household tasks that require agents to explore829

rooms and use commonsense reasoning to perform830

tasks, such as "put a pencil on the desk". The en-831

vironment provides the outcome on whether the832

agent successfully completes the task within given833

steps. The original ALFWorld dataset comprises834

both seen and unseen evaluation sets. The seen set835

is designed to assess in-distribution generalization,836

whereas the unseen set with new tasks measures837

out-of-distribution generalization of the agents.838

WebShop WebShop (Yao et al., 2022a) is a simu-839

lated e-commerce website environment containing840

1.18 million real-world products. In this environ-841

ment, agents are required to navigate through vari-842

ous types of webpages and perform diverse actions843

to find, customize, and purchase items based on nat-844

ural language instructions. Once the agent clicks845

the "buy" option, the environment provides a final846

reward, which is calculated based on the matching847

heuristics of the product’s attributes and price.848

B Success Rate849

We report the success rate of our experiments in850

Table 6. Note that the definition of success rate dif-851

fers between the two tasks. For ScienceWorld, the 852

original paper does not provide a specific definition 853

for success rate. However, based on the official 854

environment, a trajectory is considered successful 855

if the agent reaches a predefined latent state, even 856

if the reward is not exactly 1.0. For ALFWorld, 857

since it only provides binary final rewards, the suc- 858

cess rate is equivalent to the average final reward. 859

After inserting the MPO-optimized meta plan, all 860

agents show consistent and significant success rate 861

improvements across both tasks. 862

C Seed Meta Plans Quality Control 863

A high-quality seed meta plan training set is crucial 864

for initializing a more effective meta planner. As 865

such, we carefully control the quality of the meta 866

plans generated by GPT-4o. We have identified 867

several key issues with the meta plans it produces: 868

(1) they often include excessively detailed steps 869

or environmental information, which makes them 870

difficult to generalize and optimize; (2) they some- 871

times feature manipulation types that are not appli- 872

cable to the environment; (3) they fail to adhere to 873

the predefined meta plan format. To address the 874

first two issues, we adjust the temperature during 875

GPT-4o’s generation and re-summarize the meta 876

plan. For the third issue, we additionally prompt 877

GPT-4o to extract correctly formatted meta plans 878

from the response. Although manual verification 879

is required to ensure quality, the human effort in- 880

volved in this process is negligible compared to 881

the manual construction of knowledge in Zhu et al. 882

(2024). 883

D Case Study 884

Here we provide a detailed comparison of agent 885

trajectories on the same task within ALFWorld, af- 886

ter inserting meta plans optimized by two different 887

methods: SFT and MPO. This comparison demon- 888

strates how MPO provides higher-quality plan guid- 889

ance. The case is shown in Figure 14. The agent 890

used in this case study is Llama-3.1-8B-Instruct. 891

In the ALFWorld scenario, the meta plan gener- 892

ated by the SFT-initialized meta planner mistakenly 893

includes the instruction "go to sidetable", which 894

misleads the agent into repeatedly executing the 895

erroneous plan "I can try to go to sidetable first," 896

resulting in plan hallucination. In contrast, the 897

MPO-optimized meta planner generates a higher- 898

quality meta plan: "go to where the first pillow 899

may be located." This plan outlines an abstract, 900
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Model w/o Meta Plan ScienceWorld ALFWorld Average
Seen Unseen Seen Unseen

Agents w/o Training

GPT-4o (Achiam et al., 2023)
✗ 60.0 56.0 78.6 83.6 69.6
✓ 67.3 67.8 89.3 93.3 79.4

GPT-4o-mini (Achiam et al., 2023)
✗ 49.1 42.7 32.1 41.0 41.2
✓ 55.7 52.8 64.3 79.9 63.2

Llama-3.1-8B-Instruct (Dubey et al., 2024)
✗ 47.7 42.2 22.9 28.4 35.3
✓ 56.5 55.5 50.0 52.2 53.6

Qwen2.5-7B-Instruct (Yang et al., 2024a)
✗ 38.5 38.8 71.4 75.4 56.0
✓ 41.7 43.7 81.4 82.8 62.4

Llama-3.1-70B-Instruct (Dubey et al., 2024)
✗ 72.6 70.2 78.6 73.9 73.8
✓ 80.4 79.5 85.7 86.6 83.1

Agents w/ Training

Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023)
✗ 65.3 57.0 79.3 71.6 68.3
✓ 70.2 65.9 80.7 81.3 74.5

Llama-3.1-8B-Instruct + ETO (Song et al., 2024b)
✗ 81.3 74.1 77.1 76.4 77.2
✓ 83.4 80.8 85.0 79.1 82.1

Table 5: The average reward comparison of different agents after incorporating MPO-optimized meta plans on two
datasets.

Model w/o Meta Plan ScienceWorld ALFWorld Average
Seen Unseen Seen Unseen

Agents w/o Training

GPT-4o (Achiam et al., 2023)
✗ 59.8 57.8 78.6 83.6 70.0
✓ 61.3 65.9 89.3 93.3 77.5

GPT-4o-mini (Achiam et al., 2023)
✗ 38.7 28.9 32.1 41.0 35.2
✓ 41.2 41.2 64.3 79.9 56.7

Llama-3.1-8B-Instruct (Dubey et al., 2024)
✗ 25.8 25.6 22.9 28.4 25.7
✓ 47.9 53.6 50.0 52.2 50.9

Qwen2.5-7B-Instruct (Yang et al., 2024a)
✗ 22.7 30.8 71.4 75.4 50.1
✓ 32.0 33.2 81.4 82.8 57.4

Llama-3.1-70B-Instruct (Dubey et al., 2024)
✗ 67.5 64.9 78.6 73.9 71.2
✓ 71.7 69.7 85.7 86.6 78.4

Agents w/ Training

Llama-3.1-8B-Instruct + SFT (Zeng et al., 2023)
✗ 59.3 64.9 79.3 71.6 68.8
✓ 68.6 72.0 80.7 81.3 75.7

Llama-3.1-8B-Instruct + ETO (Song et al., 2024b)
✗ 75.8 77.7 77.1 76.4 76.8
✓ 80.9 78.7 85.0 79.1 80.9

Table 6: The success rate comparison of different agents after incorporating MPO-optimized meta plans on two
datasets. For ALFWorld, the success rate is equivalent to the average final reward.
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general task completion strategy, decoupled from901

specific environmental details, and correctly guides902

the agent in planning to locate the pillow in the903

environment with "I can check one by one, starting904

from armchair 1."905

E Prompts Used in Our Work906

E.1 Prompt for Seed Meta Plans Collection907

We show the prompt for GPT-4o to generate the908

seed meta plan dataset based on the task instruc-909

tions. We provide the task instruction, environmen-910

tal information, and the current task completion911

trajectory, then prompt GPT-4o to extract a meta912

plan that includes environmental priors and can913

guide the task completion process. The prompt is914

shown in Figure 7, Figure 8 and Figure 9.915

E.2 Prompt for Evaluation916

We show the instruction prompts for ScienceWorld,917

ALFWorld and WebShop in Figure 10, 11 and 12,918

respectively.919

E.3 Prompt for GPT Automated Assessment920

We show the prompt in Figure 13 that enables921

GPT-4o to automatically evaluate the quality of922

the MPO-optimized meta plan from three aspects:923

correctness, followability, and standardization. Cor-924

rectness assesses whether the plan accurately ful-925

fills the task requirements, followability evaluates926

whether the plan is clear, easy to understand, and927

whether the steps are reasonable, while standard-928

ization checks if the meta plan follows a consistent929

and standardized format. For each dimension, GPT-930

4o is asked to first identify which set of plans is931

better and provide the reasoning procedure. Finally,932

an overall assessment is given.933
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Prompt for ScienceWorld Meta Plan Collection

Please generate a step-by-step meta plan for a scientific task:
<task>
You are a helpful assistant to do some scientific experiment in an environment.
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.
{task}
</task>

You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.
All containers in the environment have already been opened, you can directly get items from the
containers.

The available actions are:
open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room
examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
wait1: task no action for a step

Below is the standard and detailed procedure for solving this task:
<conversation>
{conversation}
</conversation>

You need to conclude abstract steps as a meta plan, which can be used to solve similar tasks in the
future.
The meta plan should be a commonly-reused routine of the tasks.
The generated meta plan should be written in the following format:
<meta_plan>
Step 1: ...
Step 2: ...
...
</meta_plan>

934
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Figure 7: Prompt for ScienceWorld Meta Plan Collection.

Prompt for ALFWorld Meta Plan Collection

Please generate a step-by-step meta plan for a house holding task:
<task>
{task}
</task>

The action list you can take:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep

where obj and recep correspond to objects and receptacles.

Below is the standard and detailed procedure for solving this task:
<conversation>
{conversation}
</conversation>

The generated meta plan should be written in the following format:
<meta_plan>
Step 1: ...
Step 2: ...
...
</meta_plan>

935

Figure 8: Prompt for ALFWorld Meta Plan Collection.

Prompt for WebShop Meta Plan Collection

Please generate a step-by-step meta plan for a webshopping task:
You are web shopping. I will give you instructions about what to do. You have to follow the
instructions.
<task>
{task}
</task>

Every round I will give you an observation and a list of available actions, you have to respond an
action based on the state and instruction. You can use search action if search is available. You can
click one of the buttons in clickables.

936
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The available actions are:
click[value]: click a button
search[keywords]: search for a keyword

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Below is the standard and detailed procedure for solving this task:
<conversation>
{conversation}
</conversation>

The generated meta plan should be written in the following format:
<meta_plan>
Step 1: ...
Step 2: ...
...
</meta_plan>

937

Figure 9: Prompt for WebShop Meta Plan Collection.

Instruction Prompt for ScienceWorld

You are a helpful assistant to do some scientific experiment in an environment.
In the environment, there are several rooms: kitchen, foundry, workshop, bathroom, outside, living
room, bedroom, greenhouse, art studio, hallway.
You should explore the environment and find the items you need to complete the experiment. You
can teleport to any room in one step.
All containers in the environment have already been opened, you can directly get items from the
containers.
For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
follow this format:"Action: your next action". Remember that you can only output one "Action:"
in per response.

The available actions are:
open OBJ: open a container
close OBJ: close a container
activate OBJ: activate a device
deactivate OBJ: deactivate a device
connect OBJ to OBJ: connect electrical components
disconnect OBJ: disconnect electrical components
use OBJ [on OBJ]: use a device/item
look around: describe the current room

938
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examine OBJ: describe an object in detail
look at OBJ: describe a container’s contents
read OBJ: read a note or book
move OBJ to OBJ: move an object to a container
pick up OBJ: move an object to the inventory
pour OBJ into OBJ: pour a liquid into a container
mix OBJ: chemically mix a container
teleport to LOC: teleport to a specific room
focus on OBJ: signal intent on a task object
wait: task no action for 10 steps
wait1: task no action for a step

- - -
Here is an example.
{example}
- - -

Now, it’s your turn and here is the task.
{task_instruction}

This meta plan maybe helpful for you to complete the task:
{meta_plan}

939

Figure 10: Instruction prompt for ScienceWorld.

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given the detailed description of the current environment and your
goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should choose from
two actions: "Thought" or "Action". If you choose "Thought", you should first think about the
current condition and plan for your future actions, and then output your action in this turn. Your
output must strictly follow this format:"Thought: your thoughts.\n Action: your next action"; If
you choose "Action", you should directly output the action in this turn. Your output must strictly
follow this format:"Action: your next action".
The available actions are:

1. go to recep
2. take obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep

where obj and recep correspond to objects and receptacles.
After your each turn, the environment will give you immediate feedback based on which you plan
your next few steps. if the envrionment output "Nothing happened", that means the previous action

940
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is invalid and you should try more options.
Reminder:
1. The action must be chosen from the given available actions. Any actions except provided
available actions will be regarded as illegal.
2. Think when necessary, try to act directly more in the process.

- - -
Here is an example.
{example}
- - -

Now, it’s your turn and here is the task.
{task_instruction}

This meta plan maybe helpful for you to complete the task:
{meta_plan}

941

Figure 11: Instruction prompt for ALFWorld.

Instruction Prompt for WebShop

You are web shopping. I will give you instructions about what to do. You have to follow the
instructions.
Every round I will give you an observation and a list of available actions, you have to respond an
action based on the state and instruction. You can use search action if search is available. You can
click one of the buttons in clickables.
An action should be of the following structure:

search[keywords]
click[value]

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.
Your response should use the following format:
Thought: I think ...
Action: click[something]

- - -
Here is an example.
{example}
- - -

Now, it’s your turn and here is the task.
{task_instruction}

This meta plan maybe helpful for you to complete the task:
{meta_plan}

942

Figure 12: Instruction prompt for WebShop.
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Instruction Prompt for GPT Automated Assessment

Please act as a professional instruction evaluator and assess the following two sets of meta plans.

Task description: {task}

DPO Plan:
{dpo}

SFT Plan:
{sft}

Please compare these two sets of meta plans across the following three dimensions:
1. Correctness - Does the meta plan accurately fulfill the task requirements?
2. Followability - Is the meta plan clear, easy to understand, and are the steps reasonable?
3. Standardization - Does the meta plan follow a consistent and standardized format?

For each dimension, please indicate which meta plan is better and provide reasoning. Finally,
provide an overall assessment.
Please output the result in JSON format, including the following fields:
{

"correctness_better": "dpo"/"sft"/"tie",
"correctness_reason": "reason",
"followability_better": "dpo"/"sft"/"tie",
"followability_reason": "reason",
"standardization_better": "dpo"/"sft"/"tie",
"standardization_reason": "reason",
"overall_better": "dpo"/"sft"/"tie"

}
943

Figure 13: Instruction prompt for GPT automated assessment.
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Case Study of ALFWorld

SFT
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
a cabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.
# Bad Meta Plan
Meta Plan: Step 1: go to sofa. Step 2: go to
sidetable. Step 3: take pillow from sidetable.
Step 4: go to sofa. Step 5: put pillow in/on sofa.
Step 6: go to sidetable. Step 7: take another
pillow from sidetable. Step 8: go to sofa. Step
9: put second pillow in/on sofa.
Thought: To solve the task, I need to find two
pillow and put them in sofa. The meta plan
suggests that I should go to sofa first, then go
to sidetable.
Action: go to sofa
Observation: Nothing happens.
Thought: It seems that the action "go to sofa"
is invalid. I can try to go to sofa again, or I can
try to go to sidetable first.
Action: go to sidetable
Observation: Nothing happens.
Thought: It seems that the action "go to
sidetable" is also invalid. I can try to go to
sofa again, or I can try to go to a cabinet or a
drawer instead.
Action: go to cabinet 1
Observation: The cabinet 1 is closed.
Thought: Now that I am in front of the cabinet
1, I can try to open it to see if there are any
pillow inside.
Action: open cabinet 1
Observation: You open the cabinet 1. The cab-
inet 1 is open. In it, you see a tissuebox 1.
Thought: It seems that there is no pillow in the
cabinet 1. I can try to go to sidetable again to
see if there is a pillow.
Action: go to sidetable
Observation: Nothing happens.

MPO
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
armchair 1, a cabinet 4, a cabinet 3, a cabinet 2,
a cabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan
1, a safe 1, a shelf 12, a shelf 11, a shelf 10, a
shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a
shelf 4, a shelf 3, a shelf 2, a shelf 1, a sidetable
1, and a sofa 1. Your task is to: find two pillow
and put them in sofa.
# Good Meta Plan
Meta Plan: Step 1: go to where the first pillow
may be located. Step 2: take first pillow. Step
3: go to where sofa is. Step 4: put first pillow
in/on sofa. Step 5: go to where the second
pillow may be located. Step 6: take second
pillow. Step 7: go back to sofa. Step 8: put
second pillow in/on sofa.
Thought: A pillow is more likely to appear
in armchair (1), cabinet (1-4), drawer (1-5),
dresser (1), shelf (1-12), sofa (1). I can check
one by one, starting with armchair 1.
Action: go to armchair 1
Observation: On the armchair 1, you see a
pillow 2, a pillow 1, and a remotecontrol 1.
Thought: Now I find the first pillow (1). Next,
I need to take it. I can find the second pillow
(2) later in armchair 1.
Action: take pillow 1 from armchair 1
Observation: You pick up the pillow 1 from
the armchair 1.
Thought: Now I take the first pillow (1). Next,
I need to put it in/on sofa. I can directly go to
sofa.
Action: go to sofa 1
Observation: On the sofa 1, you see nothing.
Thought: Now I go to sofa. Next, I need to put
the first pillow in/on sofa. I can directly put the
first pillow in/on sofa.
Action: put pillow 1 in/on sofa 1
Observation: You put the pillow 1 in/on the
sofa 1.
Thought: Now I put the first pillow in sofa.
Next, I need to find the second pillow. I can
directly go to armchair 1.

944
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Thought: It seems that the action "go to
sidetable" is still invalid. I can try to go to
sofa again to start the workflow.
Action: go to sofa
Observation: Nothing happens.
Thought: It seems that the action "go to sofa"
is still invalid. I can try to go to a drawer in-
stead, as the workflow does not specify which
drawer to go to.
Action: go to drawer 1
Observation: The drawer 1 is closed.
....
....
....
Thought: It seems that there is no pillow in the
cabinet 2. I can try to go to a different cabinet
or location.
Action: go to cabinet 3
Observation: The cabinet 3 is closed.
Thought: Now that I am in front of the cabinet
3, I can try to open it to see if there are any
pillow inside.
Action: open cabinet 3
Observation: You open the cabinet 3. The
cabinet 3 is open. In it, you see a box 3, and a
tissuebox 2.
Reward: 0.0

Action: go to armchair 1
Observation: On the armchair 1, you see a
pillow 2, and a remotecontrol 1.
Thought: Now I find the second pillow (2).
Next, I need to take it.
Action: take pillow 2 from armchair 1
Observation: You pick up the pillow 2 from
the armchair 1.
Thought: Now I take the second pillow (2).
Next, I need to put it in/on sofa.
Action: go to sofa 1
Observation: On the sofa 1, you see a pillow
1.
Thought: Now I go to sofa. Next, I need to put
the second pillow in/on sofa. I can directly put
the second pillow in/on sofa.
Action: put pillow 2 in/on sofa 1
Observation: You put the pillow 2 in/on the
sofa 1.
Reward: 1.0

945

Figure 14: Case study of ALFWorld.
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