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Abstract

Last-layer retraining (LLR) methods — wherein the last layer of a neural network is
reinitialized and retrained on a held-out set following ERM training — have garnered
interest as an efficient approach to rectify dependence on spurious correlations and improve
performance on minority groups. Surprisingly, LLR has been found to improve worst-group
accuracy even when the held-out set is an imbalanced subset of the training set. We initially
hypothesize that this “unreasonable effectiveness” of LLR is explained by its ability to
mitigate neural collapse through the held-out set, resulting in the implicit bias of gradient
descent benefiting robustness. Our empirical investigation does not support this hypothesis.
Instead, we present strong evidence for an alternative hypothesis: that the success of LLR is
primarily due to better group balance in the held-out set. We conclude by showing how the
recent algorithms CB-LLR and AFR perform implicit group-balancing to elicit a robustness
improvement.

1 Introduction

The standard neural network training procedure of empirical risk minimization (ERM) (Vapnik, 1998), which
minimizes the average classification loss, is well-known to overfit to spurious correlations in the training
set (Geirhos et al., 2020). The conjunction of target labels and spurious features form groups within the
dataset; the smallest groups in each class, termed minority groups, are often most difficult to correctly
classify at test time (Oren et al., 2019). While ERM may exhibit high average accuracy on these datasets,
performance on minority groups can be no better than random guessing (Shah et al., 2020). Therefore, when
robust minority group performance is critical, worst-group accuracy (WGA) is often a more useful metric.
Due to the prevalence of spurious features and minority groups (race, gender, age, etc.) in high consequence
applications such as medicine (Zech et al., 2018) and criminal justice (Chouldechova, 2016), significant work
has focused on algorithms which maximize WGA — also called group robustness (Sagawa et al., 2020a).

A promising family of group robustness methods are based on last-layer retraining (LLR), wherein the last
layer is reinitialized and retrained on a held-out set following ERM training. The original LLR method, called
deep feature reweighting (DFR), requires the held-out set to comprise an equal amount of data from each
group (Izmailov et al., 2022; Kirichenko et al., 2023). This limits its practical application, as the groups are
often unknown ahead of time or difficult to annotate.1 While DFR still performs the best, group information
(even on the validation set) was recently found to be unnecessary to observe some non-trivial gain in WGA
over ERM (Qiu et al., 2023; LaBonte et al., 2023). In particular, LaBonte et al. (2023) find that LLR on a
held-out i.i.d. subset of the training set — suffering from the same group imbalance as the training set —
is sufficient for improved WGA. This surprising observation led LaBonte et al. (2023) to term LLR a “free
lunch” for group robustness, but why this “free lunch” arose in the first place remained unclear.

Contributions. In this paper, we take a “scientific method” approach to investigate why LLR on an
imbalanced held-out subset of the training set can perform so well. We make the following main contributions:

1However, DFR compares favorably in this respect to methods which require group annotations for the entire training set,
such as group distributionally robust optimization (DRO) (Sagawa et al., 2020a).
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• We propose an initial hypothesis, visualized in Figure 1, that neural collapse on the training set
results in a biased ERM classifier since the class means are dominated by majority group data.
Since features are not collapsed on the held-out set (Hui et al., 2022), this would lead to varying
behavior on majority and minority group data. Our hypothesis is that the implicit bias of gradient
descent during LLR then elicits a maximum-margin linear classifier on the features, which has been
connected in some settings to better robustness guarantees (Chaudhuri et al., 2023).

• We put forth evidence which does not support our initial hypothesis. In particular, we show that
neural collapse does not seem to occur during the standard number of epochs on four benchmark
datasets. Moreover, we show that convergence of the LLR classifier to the maximum-margin solution
is extremely slow. Since computation of the neural collapse metric NC1 was previously infeasible
for large-scale models, we propose a memory-efficient algorithm to compute a stochastic estimate of
NC1 via the Hutchinson trace estimator (Hutchinson, 1989).

• We present strong evidence for an alternative hypothesis: that the success of LLR is primarily due to
better group balance.2 Our experiments indicate that LLR does not improve over ERM when the
held-out set has the same group balance as the training set. On the other hand, LLR with a better
group balance enjoys drastically improved WGA, and vice versa. We show that the test WGA of
LLR is highly correlated with the test WGA of ERM when controlling for data quantity and group
balance, with Pearson correlation coefficient r > 0.9 on Waterbirds and CivilComments.

• Ultimately, we reevaluate the “free lunch” interpretation of LLR by showing that class balanced LLR
(CB-LLR) (LaBonte et al., 2023) and automatic feature reweighting (AFR) (Qiu et al., 2023) owe
their improved WGA primarily to implicit group-balancing on the held-out set. On a positive note,
we show that LLR can recover the WGA of an optimally class-balanced model even when ERM
was not optimally class-balanced. More broadly, LLR remains an effective method to achieve group
robustness using group annotations only on the held-out set (or even proxies thereof, such as in
SELF (LaBonte et al., 2023) and AFR (Qiu et al., 2023)). When group annotations are expensive,
LLR on a more group-balanced held-out set is therefore an attractive improvement over ERM.

1.1 Related work

Spurious correlations. Reliance on spurious correlations is a widely-studied phenomenon in machine
learning which is known to exacerbate bias and hinder generalization (see, e.g., Beery et al. (2018); Geirhos
et al. (2020); Xiao et al. (2021)). Much work has been devoted to mitigating the adverse affects from spurious
correlations (Sagawa et al., 2020a). Methods which have been demonstrated to reduce the bias caused by
spurious correlations without the need for large quantities of group labels, such as Just Train Twice (Liu
et al., 2021a), Deep Feature Reweighting (Kirichenko et al., 2023), and class-balancing (Idrissi et al., 2022;
Chaudhuri et al., 2023; Shwartz-Ziv et al., 2023; LaBonte et al., 2024), are of particular interest. While an
understanding of why shortcut learning occurs is still incomplete (Izmailov et al., 2022), recent studies are
beginning to unravel the joint dynamics of core and spurious feature learning (Qiu et al., 2024).

Last-layer retraining (LLR). Proposed as Deep Feature Reweighting by Izmailov et al. (2022); Kirichenko
et al. (2023), LLR has recently garnered interest as an efficient approach to improve group robustness in
a variety of settings (Qiu et al., 2023; LaBonte et al., 2023; Stromberg et al., 2024; Park et al., 2025; Qiao
et al., 2025). The success of LLR is predicated on ERM learning both core and spurious features during
training, but relying too heavily on spurious features within the last layer (Kirichenko et al., 2023; Ye et al.,
2023). Practically, LLR is appealing because of its ability to achieve much of the benefit of full fine-tuning at
a fraction of the computational cost while only requiring limited use of group annotations.

Neural collapse. We study how LLR interacts with the phenomenon of neural collapse, first identified
by Papyan et al. (2020); Han et al. (2022). Neural collapse describes the collapse of feature variability during

2We define better group balance with respect to the uniform distribution over groups. This may not induce the highest
possible WGA via last-layer retraining, though it is often close (Qiao et al., 2025).
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(a) Collapsed Training Fea-
tures with Biased Classifier

(b) Uncollapsed Held-out Fea-
tures with Biased Classifier (c)

Uncollapsed Held-out Fea-
tures with Max-Margin Clas-
sifier

Figure 1: Visualization of our initial hypothesis. In Figure 1(a), we represent training set features
collapsing to their class means, dominated by majority group data. The resulting ERM classifier is biased on
unseen data, i.e., the LLR held-out set or the test set. Figure 1(b) shows how the biased classifier performs
poorly on uncollapsed minority group features while still successfully classifying uncollapsed majority points.
In Figure 1(c), we present the final step of our hypothesis. During LLR, the features are not collapsed on
the held-out set, and so the implicit bias of gradient descent elicits a maximum-margin classifier which is
invariant to the spurious feature. Importantly, our empirical investigation does not support this hypothesis.
Instead, we find that the success of LLR is primarily explained by better group balance in the held-out set.

training — in other words, the features of each datapoint within a given class collapse to the mean feature
vector inside that class. Recently, neural collapse has been studied in connection with fairness and spurious
correlations in the context of ERM by Lu et al. (2024); Wang et al. (2024); Chen et al. (2024); Xu et al.
(2025). Additionally, investigations of neural collapse in imbalanced data settings (though mostly focused
on minority classes) (Fang et al., 2021; Thrampoulidis et al., 2022; Dang et al., 2023; Hong & Ling, 2023)
provide motivation for studying the impact of minority group collapse. The role neural collapse plays in
group robust ERM performance is still unclear. Neural collapse has been observed to produce less biased
(Xu et al., 2025), but also less separable group representations (Lu et al., 2024). Importantly for our purposes,
neural collapse has been classified as an optimization phenomenon, meaning it occurs only on the training set
and not on held-out data (Hui et al., 2022). Our initial hypothesis is that this difference in feature behavior
between seen and unseen data can help explain why ERM underperforms LLR (due to the fact that LLR has
additional access to the unseen held-out set as a result of its two-stage training protocol).

Implicit bias and margin. The second stage of LLR is simply logistic regression performed on the learned
ERM features (Kirichenko et al., 2023). Therefore, we expect implicit bias results for logistic regression to
apply to our setting. We draw on the literature studying the implicit bias of gradient descent in logistic
regression toward the maximum ℓ2-margin classifier, studied in the separable case by Soudry et al. (2018)
and in the non-separable case by Ji & Telgarsky (2019). Large minimum margin over the training data
(which is the default definition of margin) can imply good generalization upper bounds (Bartlett et al., 1998;
Koltchinskii & Panchenko, 2002). Recent results suggest that, under certain conditions, the maximum-margin
classifier coincides with the classifier achieving optimal worst-group accuracy (Chaudhuri et al., 2023), offering
a possible bridge between implicit-bias theory and robust-optimization perspectives on group fairness.

2 Preliminaries

Problem Setup. We study classification with input domain X and label set Y in the presence of spurious
features S, where each example x ∈ X is associated with exactly one spurious feature s(x) ∈ S. The training,
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validation, and test datasets are partitioned into groups G := Y ×S; let Ωg ⊆ {1, . . . , m} and Ωy ⊆ {1, . . . , m}
denote the indices of training points in group g ∈ G and class y ∈ Y, respectively. We call groups with
maximal |Ωg| in the training set the majority groups and the rest minority groups; the worst group(s) are
those with the lowest test accuracy. (In general, the majority and minority groups will not vary between the
training and test sets.) Our objective is to learn models that perform uniformly well across groups despite
imbalance, quantified by worst-group accuracy (WGA) — the minimum accuracy over all groups in G (Sagawa
et al., 2020a).

Class-balancing. We adopt the definition of a class-balanced dataset as one where the expected number of
samples from every class in the label space Y is identical. Adhering to the framework established by LaBonte
et al. (2024), we evaluate three distinct balancing strategies: subsetting, upsampling, and upweighting.

• Subsetting: This method enforces balance by strictly limiting the size of all classes to match that of the
minority class. We achieve this by uniformly subsampling the majority classes without replacement. It
is important to note that this subset is generated once prior to training and remains static throughout
the optimization process.

• Upsampling: This approach utilizes the full dataset but modifies the sampling distribution. To ensure
that mini-batches are class-balanced in expectation, we adopt a two-step generative process for
drawing a training example: first, we sample a label y ∼ Unif(Y), and subsequently sample an input
x from the class-conditional empirical distribution p̂(· | y).

• Upweighting: Rather than altering the data distribution, this method modifies the objective function.
We define the class-imbalance ratio, γ, as the ratio of the majority class size to the minority class size.
We then scale the contribution of minority samples to the loss by γ. Formally, for a model f , input x,
and label y, the modified loss function is defined by Lbalanced(f(x), y) = wy · ℓ(f(x), y). Here, wy = γ
if y belongs to the minority class, and wy = 1 otherwise. Upweighting is mathematically equivalent
to upsampling in expectation over the sampling probabilities.

Datasets. We evaluate our approach on four standard benchmarks: Waterbirds (Welinder et al., 2010; Wah
et al., 2011; Sagawa et al., 2020a), CelebA (Liu et al., 2015; Sagawa et al., 2020a), CivilComments (Borkan
et al., 2019; Koh et al., 2021), and MultiNLI (Williams et al., 2018; Sagawa et al., 2020a). For each dataset,
we define the input x, the target label y, and the spurious attribute a. Note that Waterbirds is the only
dataset exhibiting a distribution shift between training and held-out sets, while MultiNLI is the only dataset
that is class-balanced a priori.

• Waterbirds (Welinder et al., 2010; Wah et al., 2011; Sagawa et al., 2020a): x consists of bird images
classified by species into y ∈ {landbird, waterbird}. The spurious feature a represents the background
environment (land vs. water), where backgrounds are highly correlated with their corresponding
species classification.3

• CelebA (Liu et al., 2015; Sagawa et al., 2020a): x consists of celebrity face images where the
target y is hair color (blond vs. non-blond). The spurious attribute a is gender; specifically, the
training distribution is skewed such that the intersectional group of blond males is significantly
underrepresented.

• CivilComments (Borkan et al., 2019; Koh et al., 2021): x comprises online comments where the
target y is toxicity. The spurious feature a captures the presence of demographic identities (e.g.,
race, gender, religion). Following Sagawa et al. (2020a); Idrissi et al. (2022); Izmailov et al. (2022);
Kirichenko et al. (2023); LaBonte et al. (2023), we aggregate these identity categories into a single
feature a, which is correlated with the toxicity label y.4

3The Waterbirds dataset is known to contain incorrect labels (Taghanaki et al., 2022). We utilize the standard uncorrected
labels for all of our results.

4There exists another version of CivilComments (used by Liu et al. (2021a); Zhang et al. (2022); Qiu et al. (2023)) where
identity categories are not merged into one spurious feature. Both versions of CivilComments use the WILDS split (Koh et al.,
2021).
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• MultiNLI (Williams et al., 2018; Sagawa et al., 2020a): x consists of sentence pairs for natural
language inference where y ∈ {contradiction, entailment, neutral}. The spurious feature a denotes
the presence of negation words in the second sentence; these negations are spuriously correlated with
the contradiction class.

For Waterbirds and CelebA we fine-tune ResNet-50 (He et al., 2016) pretrained on ImageNet-1K (Russakovsky
et al., 2015); for CivilComments and MultiNLI we use BERT-Base (Devlin et al., 2019) pretrained on
BookCorpus and English Wikipedia (Zhu et al., 2015). Our last-layer retraining (LLR) implementation uses
SGD without scheduling or explicit regularization. Following common practice, the held-out set is 20% of the
training data for Waterbirds and half of the validation set for the other datasets (Kirichenko et al., 2023; Qiu
et al., 2023; LaBonte et al., 2023). Dataset specifics and training details appear in Appendices B.1 and B.2.

Methods. We adopt a unified terminology for the family of two-stage retraining methods we study:

• Last-layer Retraining (LLR) refers to any procedure that (i) trains a feature extractor using standard
ERM on the training set, and (ii) reinitializes and retrains only the final linear layer on a held-out
dataset not seen during the first stage. Importantly, generic LLR makes no assumption about the
distribution of this held-out data—it may be arbitrarily imbalanced across classes or groups.

• Deep Feature Reweighting (DFR) (Izmailov et al., 2022; Kirichenko et al., 2023) is a specific instance
of LLR in which the held-out dataset is explicitly group-balanced: each group g ∈ G is equally
represented. In practice, DFR freezes the ERM-trained feature extractor, constructs a subsampled
group-balanced held-out set (requiring access to group annotations), and fits a new linear classifier
on this held-out set. DFR can thus be viewed as an “idealized” variant of LLR designed to directly
improve worst-group accuracy.

• Class-balanced Last-layer Retraining (CB-LLR) (LaBonte et al., 2023) denotes another LLR variant
where the held-out data are balanced across classes rather than groups. While class proportions are
equalized, group imbalance within each class often remains.

• Automatic Feature Reweighting (AFR) (Qiu et al., 2023) refers to the LLR variant in which the
held-out set is drawn from the same distribution as the training data, but the last layer is retrained
using a weighted loss function intended to implicitly encourage group balance. The weighted loss
function in AFR prioritizes points upon which the ERM model performs poorly. In particular, AFR
introduces a weight ωi for each held-out example i as follows:

ωi = βyi exp(−γp̂i)∑M
j βyj

exp(−γp̂j)
, (1)

where βy is one divided by the number of examples belonging to class y in the held-out set, M is the
total number of points in the held-out set, p̂i is the probability for the correct class yi and γ ≥ 0 is a
tunable inverse temperature parameter.

3 Neural collapse and implicit bias do not explain LLR

The interpretation of LLR methods as logistic regression on convergent ERM features lends itself to a possible
understanding combining a nonlinear model training phenomenon (neural collapse) and a logistic regression
phenomenon (implicit bias). We focus on the weakest measure of the neural collapse phenomenon, namely
that the penultimate layer features collapse to their class means over the course of ERM training (Papyan
et al., 2020). Importantly, neural collapse has been described as an optimization phenomenon, occurring only
on the training set and not on held-out data (Hui et al., 2022). Therefore, while all group features collapse to
their class means on the training set, groups will not be collapsed in the held-out set. On the other hand,
implicit bias results state that linear classifiers trained via gradient descent with the unregularized logistic
loss — like the LLR classifier on the held-out set — converge in direction to the maximum-margin SVM
solution (Soudry et al., 2018; Ji & Telgarsky, 2019).
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Algorithm 1 Memory efficient computation of NC1 estimate. Our method combines the Hutchinson
trace estimator (Hutchinson, 1989) with efficient matrix-vector products for ΣA and ΣR to estimate NC1 in
O(N) memory, instead of the O(N2) memory required to compute NC1 exactly.
Require: Number of samples K, access to matrix–vector products ΣAx and ΣRx.
Ensure: Approximation N̂ C1 ≈ 1

|Y| tr(ΣAΣ†
R).

1: for j = 1, . . . , K do
2: Sample random vector zj ∼ N (0, IN ) ▷ Or Rademacher {±1}N

3: Solve ΣRxj = zj for xj using an iterative solver ▷ xj ≈ Σ†
Rzj

4: Compute yj ← ΣAxj

5: Compute scalar estimate sj ← z⊤
j yj

6: end for
7: return N̂ C1 ← 1

K|Y|
∑K

j=1 sj

Combining these two ideas, we developed the following initial hypothesis (visualized in Figure 1). We
hypothesized that the model undergoes neural collapse during ERM training, causing the features to collapse
to their class means. These class means, however, are dominated by the largest groups in each class —
resulting in ERM learning a biased classifier. Nevertheless, during LLR, the features are not collapsed as the
held-out set was not seen during ERM (Hui et al., 2022). Since LLR learns a linear classifier on the held-out
set features, the implicit bias of gradient descent would then elicit a maximum-margin classifier that might
enjoy better robustness guarantees (see, e.g. (Chaudhuri et al., 2023)).

In this section, we present evidence which does not support our initial hypothesis. Specifically, we find
that neural collapse either does not occur or occurs after the standard number of epochs of ERM training.
Moreover, convergence of the LLR classifier to the maximum-margin solution is extremely slow, and the
minimum ℓ2-margin over the training data is not well-correlated with group accuracy.

3.1 Neural collapse may not occur during standard ERM training

We will measure the collapse of variability among class representations via a metric called NC1 (Han et al.,
2022). For each class y ∈ Y and each training example i ∈ Ωy in that class, we denote the penultimate layer
feature vector of i as fy,i. Neural collapse posits that features collapse to their respective class means

µy := 1
|Ωy|

∑
i∈Ωy

fy,i.

We compute an empirical metric of this collapse using the intra-class covariance matrix ΣA :=
1
m

∑
y∈Y

∑
i∈Ωy

(fi − µy)(fi − µy)⊤, the global feature mean µG := 1
|Y|

∑
y∈Y µy, and the inter-class co-

variance matrix ΣR := 1
|Y|

∑
y∈Y(µy − µG)(µy − µG)⊤. We then define

NC1 := 1
|Y|

tr(ΣAΣ†
R),

where Σ†
R denotes the pseudo-inverse of ΣR. Neural collapse is formalized by NC1 → 0 (Han et al., 2022;

Kothapalli, 2023).5

Algorithm Design. Computing the neural collapse metric NC1 exactly requires constructing and storing
the matrices ΣA and ΣR, each of dimension N ×N , where N is the feature dimension of the penultimate
layer. For modern neural networks, storing these matrices explicitly is memory-prohibitive. For example, in
the case of BERT-Base trained on CivilComments, N exceeds 150,000. To address this issue, we propose a
memory-efficient approximation based on the Hutchinson trace estimator (Hutchinson, 1989).

The Hutchinson estimator provides a stochastic approximation for the trace of a matrix:

tr(A) = E[z⊤Az] ≈ 1
K

K∑
i=1

z⊤
i Azi,

5A slightly less precise formulation ΣA → 0 was studied by Papyan et al. (2020).
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Table 1: Computing a stochastic estimate of NC1 using Algorithm 1 is drastically more memory
efficient than computing NC1 exactly. We display the vectorized feature dimensions N for ResNet-50 on
the vision datasets and BERT-Base on the language datasets. Exact computation NC1 requires storing two
N ×N matrices of double-precision floating-point numbers, while our estimate of NC1 only requires storing
three N dimensional vectors of double-precision floating-point numbers. We see that our stochastic estimate
of NC1 requires many orders of magnitude less memory.

Dataset Waterbirds CelebA CivilComments MultiNLI
Vectorized Feature Dimension N 100,352 100,352 168,960 98,304
Memory Requirement of Exact

NC1 Computation 150.06 GiB 150.06 GiB 425.4 GiB 144 GiB

Memory Requirement of Algorithm 1 2.297 MiB 2.297 MiB 3.867 MiB 2.25 MiB

where A ∈ RN×N , each random vector zi ∈ RN satisfies E[ziz
⊤
i ] = I, and K is the number of random

samples used to approximate the expectation. Typically, zi is drawn from a Rademacher or standard normal
distribution, but any isotropic distribution suffices.

In our setting, we wish to approximate NC1 without ever explicitly forming ΣA or ΣR. Note that both
matrices admit efficient matrix–vector products:

ΣAx = 1
m

∑
y∈Y

∑
i∈Ωy

(fi − µy)
(
(fi − µy)⊤x

)
,

ΣRx = 1
|Y|

∑
y∈Y

(µy − µG)
(
(µy − µG)⊤x

)
,

where µy is the class mean and µG the global mean. These expressions can be computed by streaming over the
data, requiring only a constant number of N -dimensional vectors in memory. Combining these observations
yields a stochastic algorithm (Algorithm 1) capable of estimating NC1 with only O(N) memory, compared to
the O(N2) memory required to compute NC1 exactly. We compare the precise memory requirements of both
methods in Table 1.

This procedure introduces two sources of error:

1. Linear solve error : Each iterative solve of ΣRxj = zj is performed to finite precision.

2. Monte Carlo error : The Hutchinson estimator uses finite samples K to approximate an expectation.

Both sources of error can be reduced arbitrarily by increasing computation time. Notably, the variance of the
Hutchinson estimator decreases with the feature dimension N (Hutchinson, 1989). We show in Appendix C
(Proposition 1) that the relative variance of N̂ C1 scales as O(1/KN), so fewer samples K are required for
larger models, corresponding to our regime of primary interest.

Results. If neural collapse plays a significant role in ERM learning a biased classifier prior to LLR, then a
collapse in feature variability should be observed during a standard number of ERM training steps. We display
NC1 for a ResNet-50 on Waterbirds and CelebA and for a BERT-Base for CivilComments and MultiNLI
in Figure 12. We train on both datasets for much longer than normal and denote the standard number of
training steps in the spurious correlations literature (Sagawa et al., 2020a; Kirichenko et al., 2023) as dotted
vertical lines in Figure 12.

In Figure 12, we do not see strong evidence that neural collapse occurs on any dataset during the standard
number of training steps. In fact, even after training more than 3× the standard number of steps we still
do not see NC1 → 0. Beyond an initial decrease in the first few epochs of training, NC1 computed on the
training set remains relatively constant and comparable to NC1 computed on the held-out. For all datasets,
NC1 computed on the training sets and NC1 computed on the held-out sets are within an order of magnitude.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 2: Collapse of class feature variability occurs after standard ERM training, if at all. We
plot a stochastic estimate of the empirical metric of neural collapse NC1 using Algorithm 1 throughout
training a ResNet-50 on Waterbirds and CelebA and a BERT-Base on CivilComments and MultiNLI. For
Waterbirds and CelebA, NC1 is computed using K = 10 random vectors, while for CivilComments and
MultiNLI, NC1 is computed using K = 3 random vectors. Each plot displays the mean and standard
deviation for NC1 computed across 3 experimental seeds. We also display the mean NC1 metric computed
on the features of the held-out set at the end of training (EoT).

Thus, it is unlikely that neural collapse significantly influences the behavior of the ERM classifier prior to
LLR in standard group robustness benchmarks and training protocols.

3.2 The minimum margin of LLR is not predictive of robust generalization

In classical learning theory, maximizing minimum ℓ2 training margin is well understood to provide good
generalization upper bounds (Bartlett et al., 1998; Koltchinskii & Panchenko, 2002). Therefore, assuming
that the features of the held-out set are similar in distribution to the features of the test set, we should expect
that choosing a classifier which maximizes the ℓ2 margin on the held-out set will lead to good generalization.

Let fθ : X → {−1, 1} be a binary linear classifier defined by

fθ(x) = x⊤θ + b.

Let D := {(xi, yi)}n
i=1 ⊆ X × {−1, 1} be the training set and C := {xi : yif(xi) > 0} be the set of points

correctly classified by fθ. Then, we define the minimum ℓ2-margin of fθ to be

min
xi∈C

yifθ(xi).

The hard margin SVM is a binary linear classifier formulated through the following optimization problem:

min
θ,b

1
2 ||θ||

2
2 s.t. ∀(xi, yi) ∈ D, yi(x⊤

i θ + b) ≥ 1.

The classifier θSVM learned by a hard margin SVM is the separating hyperplane which maximizes the minimum
ℓ2-margin. Soudry et al. (2018) show that linear classifiers trained via GD with the unregularized logistic
loss converge in direction to θSVM. In particular, || θGD

||θGD||2
− θSVM

||θSVM||2
||2 → 0 at a worst-case rate of O( log log t

log t )
where t is the number of gradient steps. This result can also be extended to the nonseparable case, though
as one might expect, the implicit bias is more complex (Ji & Telgarsky, 2019). The SVM solution was
recently studied in the context of group robustness by Chaudhuri et al. (2023), who showed that under certain
conditions on the tail of the data distribution, θSVM converges to the classifier with optimal worst-group
accuracy as the number of data points goes to infinity.

If LLR maximizes the minimum training margin on the held-out set and this results in a debiased classifier,
then we should see a high correlation between the size of group minimum margin and group test accuracy
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Table 2: Group test accuracy is not well-correlated with the minimum ℓ2 margin on the held-
out set. We compute the Pearson correlation coefficient between the test group accuracy of a ResNet-50
(BERT-Base) trained on Waterbirds and CelebA (CivilComments and MultiNLI) and the minimum margin
of each group in the held-out set across 3 experimental seeds. We see that held-out set minimum ℓ2 margin is
not well correlated with test accuracy. A complete breakdown of each dataset including distribution and
group sizes is included in Table 7.

Dataset Group 0 Group 1 Group 2 Group 3 Group 4 Group 5
Waterbirds 0.279 0.285 0.288 0.266 — —
CelebA 0.526 0.473 0.458 0.478 — —
CivilComments -0.074 -0.143 -0.008 0.055 — —
MultiNLI 0.303 0.497 0.279 0.210 0.221 0.431

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 3: Convergence of LLR to the maximum-margin SVM solution is extremely slow. We
plot the mean and standard deviation over 3 experimental seeds of the directional error Êrr between the
last layer weights of a neural network model and an SVM (both trained on the features of the held-out set).
We use a ResNet-50 for Waterbirds and CelebA and a BERT-Base for CivilComments and MultiNLI. Here,
Êrr := || θNN

||θNN||2
− θSVM

||θSVM||2
||2, where θNN denotes the last layer weights and θSVM denotes the weights of an

SVM trained on the held-out set features.

(i.e., minority group points lie near the decision boundary). However, in Table 2, we find that the minimum
training margin for a group is not correlated with the test accuracy for that group.

Moreover, convergence towards θSVM is slow in practice. We perform LLR on the held-out sets of Waterbirds,
CelebA and CivilComments via SGD with learning rate 0.001 and unregularized logistic loss, and we plot the
directional error with θSVM in Figure 3. In line with the slow O( log log t

log t ) rate from Soudry et al. (2018), we
find that even after 10× the number of standard training steps, the LLR classifier has yet to converge to
θSVM. As the minimum ℓ2-margin is not well-correlated with group test accuracy and convergence to θSVM is
slow, we conclude that our initial hypothesis does not sufficiently explain the robustness gains of LLR on an
imbalanced held-out set.

4 LLR performance is primarily due to group balance in the held-out set

The negative results of Section 3 prompted us to reconsider our initial hypothesis. We now present strong
evidence for an alternative hypothesis: that the success of LLR is primarily due to better group balance in the
held-out set as compared to the training set. In particular, we argue that the “free lunch” interpretation of
CB-LLR (LaBonte et al., 2023) is more likely to arise due to improving class balancing over the ERM baseline
than an implicit-bias advantage of LLR. Similarly, AFR (Qiu et al., 2023) performs implicit group-balancing
via loss reweighting on the held-out set. While LLR may not be as “unreasonably effective” as previously
claimed, we do see that it can surprisingly recover the WGA of an optimally class-balanced model even when
ERM was not optimally class-balanced. Generally, LLR remains a highly effective technique when group
annotations (or proxies thereof) are available only on the held-out set.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 4: LLR performance is determined by held-out set group balance. We compare the test
WGA of ERM and LLR models while controlling the group balance of the training and held-out sets. We
use ResNet-50 for the vision datasets and BERT-Base for the language datasets, and we plot the mean and
standard deviation over 3 experimental seeds. We compute the Pearson correlation coefficient between the
ERM test WGA and the LLR test WGA for each dataset; the presented coefficients are averaged over all 5
group ratios. We find that LLR worst-group accuracy correlates strongly with change in group balance; in
particular, LLR tends to improve over ERM if and only if the held-out set has better group balance.

4.1 LLR worst-group accuracy correlates strongly with ERM vs LLR group ratio

To isolate the effect of group balance on LLR, we perform an ablation study on the ERM and LLR group
ratios. We directly control the group ratio — defined as the ratio between the number of minority group
points and the number of majority group points — by removing data from the held-out set until the desired
group ratio is achieved for each class, keeping the total data in each stage constant. Fixing majority and
minority group sizes also ensures that each dataset is ultimately class-balanced (i.e., we use the subsetting
class-balancing technique).

We vary the group ratios for both the ERM training set and the LLR held-out set between 0.05 and 1.0. A
group ratio of 1.0 corresponds to the majority and minority groups having equal size, whereas a group ratio
of 0.05 implies that the minority groups are 5% the size of the majority groups. Our results are detailed in
Figure 4. For a fair comparison, the ERM-trained models are trained with the held-out set added in; as an
example, on Waterbirds we compare LLR with 20% of data following an ERM with 80% of data (colored line)
to an ERM with 100% of data (gray line). Note that LLR with a group ratio of 1.0 corresponds to DFR, as
this reflects perfectly group-balanced data.

We find that LLR performance correlates strongly with the change in group balance between the training
and held-out datasets. LLR only shows significant gains over ERM when it is trained on a held-out set with
a higher group ratio than the ERM training set, and vice versa. Moreover, the test WGA of LLR trained
with a fixed group ratio is remarkably similar to the test WGA of ERM trained with that same group ratio
(observed most impressively on CivilComments). In Figure 4, we detail the average Pearson correlation
coefficients between ERM test WGA and LLR test WGA. Specifically, we compute the Pearson correlation
coefficients between ERM test WGA (gray line) and LLR test WGA (colored line) for all group ratios in
(0.05, 0.1, 0.2, 0.5, 1.0), and average over group ratios. These average correlation coefficients reveal a strong
trend, with r > 0.9 on Waterbirds and CivilComments. We include the full (non-averaged) coefficients in
Appendix A.

These results indicate that the two-stage training procedure of LLR methods is not fundamentally oriented
towards learning a debiased classifier as we initially hypothesized. Rather, some form of group-balancing is
generally necessary to maximally capture LLR robustness benefits. Moreover, our results suggest that LLR
methods are limited by how well they improve the group ratio, and thus DFR likely upper bounds the WGA
of any LLR method which does not utilize group annotations.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 5: LLR can recover optimally class-balanced WGA. We compare the test WGA of ERM
(trained on 100% of the data) against LLR (trained on a held-out subset with the same group ratio). For both
approaches, we evaluate four class-balancing strategies: no class balancing (No CB), upsampling, subsetting,
and upweighting (defined in Section 2). We use ResNet-50 for the vision datasets and BERT-Base for the
language datasets. We plot mean and standard deviation across 3 seeds. Each x-axis group corresponds to
the class-balancing method used to train the ERM baseline (gray bar). Within each group, we compare this
ERM model to the four LLR variants (colored bars), each using the corresponding class-balancing method.

4.2 LLR can recover optimally class-balanced WGA

In the previous section, we explicitly controlled group ratios to evaluate LLR worst-group accuracy in a
fine-grained ablation study. A remaining question is whether our insights hold in more realistic settings,
i.e., across benchmark datasets with standard group ratios and data balancing methodologies. This section
answers this question in the affirmative through an empirical study on the interaction between LLR and
class-balancing, a common data pre-processing method shown to approach more complicated group robustness
algorithms (Idrissi et al., 2022). Because groups are defined as a refinement of classes, each of these class-
balancing strategies implicitly induces some degree of group-balancing without requiring group labels. This
makes class-balancing a natural baseline for understanding when explicit group-balancing is necessary and
how much robustness can be achieved without group annotations.

We utilize three standard techniques for class-balancing, detailed in Section 2: subsetting, wherein the size of
each class is reduced to match that of the smallest class; upsampling, wherein sampling probabilities for each
class are adjusted so that mini-batches are class-balanced in expectation; and upweighting, wherein minority
class samples are assigned larger loss weights (LaBonte et al., 2024). We compare ERM and LLR trained
with all permutations of these class-balancing methods and display the results in Figure 5.

Our first finding is that our insights from Section 4.1 hold in realistic benchmark datasets with standard
group ratios (without our explicit control from earlier). In particular, consider only ERM and LLR with no
class-balancing — the leftmost gray and blue “No CB” bars respectively in each subplot of Figure 5. We
can see that in all four subplots, No CB LLR either worsens No CB ERM worst-group accuracy, or they lie
within one standard deviation of each other. This suggests that without additional intervention in the form
of class-balancing, LLR does not improve over ERM with the same group ratio. This is especially apparent
in MultiNLI, the only dataset which is class-balanced a priori; ERM is more robust than any instantiation of
LLR on this dataset, echoing earlier findings of LaBonte et al. (2023).

Our second, and more surprising, finding is that CB-LLR (with any class-balancing method) can recover
optimally class-balanced WGA even when ERM was not optimally class-balanced. For example, upweighting
ERM is very poor on CelebA, but running CB-LLR recovers the (best) subsetting ERM worst-group accuracy
within one standard deviation. Prior work (LaBonte et al., 2024) has shown that subsetting on Waterbirds,
and upsampling and upweighting on CelebA and CivilComments, can cause substantial degradation in WGA.
Importantly, this degradation arises from the optimization dynamics of ERM rather than the class distribution
itself. Because CB-LLR performs only linear retraining on a fixed representation, it does not suffer from the
same instability.
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Before moving on, we remark that Figure 5 suggests LLR may yet trump optimally class-balanced ERM in
certain edge cases. Specifically: subsetting ERM/upweighting LLR on CelebA, upsampling ERM/subsetting
LLR on CivilComments, and upweighting ERM/upsampling LLR on CivilComments exceed all ERMs by
at least one standard deviation. It is possible that characteristics of the specific data selected for LLR are
influential in these cases (see, e.g., previous work by LaBonte et al. (2023); Qiao et al. (2025)).

4.3 Recent LLR methods succeed via implicit group-balancing

In this section, we reconcile our findings with the literature by asking the following question: if LLR on
an equally-imbalanced held-out set does not significantly improve WGA, how do LLR methods like CB-
LLR (LaBonte et al., 2023) and AFR (Qiu et al., 2023) achieve state-of-the-art group robustness without
group annotations? We argue that these techniques enjoy success primarily due to implicit group-balancing,
wherein the held-out set is effectively more group-balanced than the training set due to user interventions.

The CB-LLR results of LaBonte et al. (2023) use class-balanced upsampling for both ERM and LLR. Since
upsampling is a suboptimal procedure for ERM on CelebA and CivilComments (see Figure 5 as well as LaBonte
et al. (2024)), LLR has considerably more room to improve over this baseline. In other words, the strong
CB-LLR performance is largely explained by the fact that the ERM model it starts from is itself degraded by
suboptimal class-balancing. The improved WGA on Waterbirds is more simply explained: following standard
practice (Kirichenko et al., 2023), CB-LLR is run on 50% of the Waterbirds validation set (which is more
group-balanced!) instead of 20% of the training set, which is group-imbalanced as we do in Figure 5.

Compared to standard LLR, which utilizes the cross-entropy loss only, AFR incorporates a weighted loss
function which prioritizes points upon which the ERM model performs poorly (detailed in Equation 1).
Specifically, AFR introduces a weight for each held-out example i proportional to exp(−γp̂i), where p̂i is
the probability for the correct class yi and γ ≥ 0 is a tunable temperature parameter.6 Therefore, the AFR
held-out set effectively has better group balance than the training set, in the sense of the upweighting method.
Notably, the ablations of Qiu et al. (2023) show that setting γ = 0 reduces to CB-LLR with upweighting!

A positive takeaway from our analysis in this section is that LLR is exceptional at leveraging data interventions
on exclusively the held-out set. That is, given a principled technique to increase group balance (e.g., class-
balancing in CB-LLR, loss-based upweighting in AFR, or disagreement in SELF (LaBonte et al., 2023)),
one need only apply the intervention to a limited number of held-out data and retrain the last layer to
observe robustness gains matching or exceeding that obtained by applying the same method to ERM (which
would require applying the intervention to the much larger training set). Overall, the strength of LLR is its
group-annotation and computational efficiency, and it remains a powerful method for group robustness.

5 Discussion

In this paper, we proposed and eventually rejected a hypothesis explaining the success of LLR through neural
collapse and the implicit bias of gradient descent. However, we also presented strong evidence supporting
an alternate hypothesis: that the improved WGA of LLR is primarily due to improved group balance in
the held-out set. One consequence of this observation is that LLR can recover the WGA of an optimally
class-balanced model, even if ERM was not optimally class-balanced. Overall, LLR remains an effective
method to improve worst-group accuracy, especially if a limited number of group annotations are available
(e.g., DFR), or in conjunction with implicit group-balancing techniques (e.g., CB-LLR, SELF, and AFR).

Our work highlights the need for further research towards two open questions. First, how do neural networks
learn both core and spurious features during ERM training? Recent progress towards this question, e.g.,
by Qiu et al. (2024), is heartening, but the fact remains that we have no substantial theoretical justification
for this key assumption underlying LLR (Izmailov et al., 2022). Second, what is the mechanism by which LLR
with better group ratio than ERM reweights the core and spurious features? Addressing this second question
is necessary for a complete understanding of LLR, and it is possible this mechanism could be leveraged to
design algorithms which target WGA more explicitly than reweighting via logistic regression.

6Loss-based adjustments are common among group robustness methods not using group annotations, e.g., Liu et al. (2021a).
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A Additional experiments

In this section, we present additional experiments deferred from the main body of the work.

A.1 Explicit group-balancing

First, we study an extension of the implicit group-balancing discussion from Section 4.3 to explicit group-
balancing. As discussed in Section 2, we investigate three explicit balancing methods: subsetting, upsampling,
and upweighting. It has previously been observed that using upsampling or upweighting for class-balancing
can result in drastic decreases to test WGA during training (LaBonte et al., 2024). If the performance
improvement from LLR is indeed primarily due to the implicit group-balancing achieved by class-balancing,
we would expect similar degradation when we explicitly group-balance using these same techniques.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 6: Group-balancing with upsampling and upweighting can lead to catastrophic collapse.
We compare three group-balancing methods: subsetting, upsampling, and upweighting. We plot the mean and
standard deviation over 3 experimental seeds for a ResNet-50 on the vision datasets and a BERT-Base on
the language datasets. We note a dramatic decrease in test WGA during training for both upsampling and
upweighting on CelebA and CivilComments. We also see a collapse in WGA for upweighting on MultiNLI.

Figure 6 shows how different group-balancing methods affect WGA during training. Similar to the class-
balancing results, we find that upsampling and upweighting cause substantial degradation on CelebA and
CivilComments. Additionally, group-balanced upweighting leads to degradation on MultiNLI and a mild
decrease in WGA on Waterbirds. Overall, the training dynamics induced by subsetting, upweighting, and
upsampling for group-balancing resemble those observed for class-balancing in LaBonte et al. (2024): most
group-balancing methods behave similarly and do not exhibit degradation.

The key exceptions are MultiNLI—where the dataset is naturally class-balanced but not group-balanced—and
subsetting on Waterbirds. For MultiNLI, the lack of class imbalance causes group-balanced upweighting
to overweight noisy minority signals, leading to degradation. For Waterbirds, class-balanced subsetting
disproportionately removes examples from its already small minority groups, harming performance, whereas
group-balanced subsetting avoids this issue and therefore performs well.

In Figure 7, we compare the test WGA of class-balanced ERM and group-balanced DFR. This comparison is
motivated by the practical reality that class-balancing is widely used when group annotations are unavailable,
and is often assumed to provide a good surrogate for group-balancing. However, recent work suggests that
class-balancing can interact with robustness in subtle and dataset-dependent ways. By directly contrasting
class-balanced ERM with group-balanced DFR, we aim to isolate the extent to which robustness gains arise
from improved representations versus improved group balance. Our results show that while class-balancing
affects ERM and DFR substantially, explicit group-balancing still yields consistent WGA improvements,
demonstrating its unique value when group annotations—even limited ones—are available.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 7: Choice of group-balancing method is important to DFR success. We compare class-balanced
ERM to group-balanced DFR across three balancing methods: subsetting, upsampling, and upweighting.
We plot the mean and standard deviation over 3 experimental seeds for a ResNet-50 on the vision datasets
and a BERT-Base on the language datasets. We note that the choice of balancing method has a dramatic
effect on the test WGA for both ERM and DFR. For instance, on CelebA, DFR with subsetting consistently
outperforms DFR with upsampling or upweighting, regardless of the ERM balancing method used.
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A.2 Supplemental plots for average accuracy

In this section, we provide corresponding figures to those in the main text displaying average accuracy (AA)
instead of worst-group accuracy. While group robustness methods are known in some cases to degrade average
accuracy (Sagawa et al., 2020b; Liu et al., 2021a), our results show that LLR generally enjoys similar average
accuracy compared to ERM.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 8: Test average accuracy (AA) for ERM, upsampling, subsetting, and upweighting across the
Waterbirds, CelebA, CivilComments, and MultiNLI datasets. Across all four benchmarks, average accuracy
remains uniformly high and nearly identical across class-balancing methods, indicating that these interventions
primarily affect minority-group robustness rather than overall predictive performance.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 9: Test average accuracy (AA) over training epochs for ERM, upsampling, subsetting, and upweighting
on the Waterbirds, CelebA, CivilComments, and MultiNLI datasets. With the exception of subsetting —
which consistently underperforms due to lack of data – the class-balancing strategies produce only modest
variation in average accuracy compared to their much larger impact on worst-group accuracy.
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(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 10: Test average accuracy of last-layer retraining (LLR) when the underlying ERM model is trained with
no class-balancing, upsampling, subsetting, or upweighting, across the Waterbirds, CelebA, CivilComments,
and MultiNLI datasets. Across all benchmarks, LLR produces similar Test AA regardless of the ERM
class-balancing strategy, indicating that the overall predictive performance of LLR is largely insensitive to
the class distribution used during ERM training, even though worst-group accuracy differs substantially in
the corresponding WGA results.

(a) Waterbirds (b) CelebA (c) CivilComments (d) MultiNLI

Figure 11: Test average accuracy of last-layer retraining (LLR) under varying group ratios, evaluated across
Waterbirds, CelebA, CivilComments, and MultiNLI. For each dataset, we report LLR performance when
applied to ERM models trained with subsetting, upsampling, and no class-balancing. Across all group ratios,
Test AA remains remarkably stable, indicating that LLR’s overall predictive performance is largely insensitive
to the choice of regularization — even though worst-group accuracy can vary substantially under the same
settings.
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A.3 Supplemental correlation coefficients

In this section, we provide full Pearson correlation coefficients for the plots with averaged coefficients over
group ratios, namely Figure 4 and Figure 11.

Table 3: Full Pearson correlation coefficients for Figure 4. Note that the displayed Pearson correlation
coefficients in Figure 4 are the coefficients in this table averaged across rows.

LLR Group Ratio 0.05 0.1 0.2 0.5 1.0
Waterbirds 0.915 0.950 0.961 0.937 0.898

CelebA 0.793 0.929 0.348 0.820 0.834
CivilComments 0.999 0.999 0.998 0.996 0.995

MultiNLI 0.740 0.757 0.786 0.823 0.871

Table 4: Full Pearson correlation coefficients for Figure 11. Note that the displayed Pearson correlation
coefficients in Figure 11 are the coefficients in this table averaged across rows.

LLR Group Ratio 0.05 0.1 0.2 0.5 1.00
Waterbirds 0.791 0.791 0.791 0.535 0.875

CelebA -0.707 0.195 -0.022 0.457 -0.468
CivilComments 0.970 0.975 0.984 0.989 0.979

MultiNLI 0.976 0.976 0.976 0.966 0.967

21



Under review as submission to TMLR

A.4 Swin Transformer Experiments

We reproduce the results from Sections 3 and 4 on Waterbirds using a Swin Transformer (Liu et al., 2021b)
model instead of a ResNet. For all experiments in this section a Swin-Tiny was used, which has a similar
number of parameters as a ResNet-50. We see that the Swin results match those produced by the ResNet,
implying that the phenomena discussed in Sections 3 and 4 are agnostic to convolutional vs. Transformer-based
models.

Table 5: Algorithm 1 is drastically more memory efficient for computing NC1 on Swin-Tiny. We
display the vectorized feature dimensions N for Swin-Tiny on the vision datasets Waterbirds and CelebA.
Exact computation of NC1 requires storing two N ×N matrices of double-precision floating-point numbers,
while our estimate of NC1 computed with Algorithm 1 requires storing only three N dimensional vectors of
double-precision floating-point numbers. We see that our stochastic estimate of NC1 requires many orders of
magnitude less memory.

Dataset Waterbirds & CelebA
Vectorized Feature Dimension N 37,632
Memory Requirement of Exact

NC1 Computation 21.10 GiB

Memory Requirement of Algorithm 1 0.2871 MiB

Waterbirds

Figure 12: Collapse of class feature variability in Swin-Tiny occurs after standard ERM training
on Waterbirds, if at all. We plot a stochastic estimate of the empirical metric of neural collapse NC1
using Algorithm 1 throughout training a Swin-Tiny on Waterbirds. NC1 is computed using K = 10 random
vectors. The mean and standard deviation for NC1 computed across 3 experimental seeds is displayed. We
also display the mean NC1 metric computed on the features of the held-out set at the end of training (EoT).

Table 6: Group test accuracy of Swin-Tiny is not well-correlated with the minimum ℓ2 margin
on the held-out set of Waterbirds. We compute the Pearson correlation coefficient between the test
group accuracy of a Swin-Tiny trained on Waterbirds and the minimum margin of each group in the held-out
set across 3 experimental seeds. We see that held-out set minimum ℓ2 margin is not well correlated with test
accuracy. A complete breakdown of Waterbirds including distribution and group sizes is included in Table 7.

Dataset Group 0 Group 1 Group 2 Group 3
Waterbirds 0.160 0.215 0.175 0.234
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Waterbirds

Figure 13: Convergence of Swin-Tiny last layer to the maximum-margin SVM solution is
extremely slow during LLR. We plot the mean and standard deviation over 3 experimental seeds of the
directional error Êrr between the last layer weights of a neural network model and an SVM (both trained on
the features of the held-out set). For the neural network, we use a Swin-Tiny trained on Waterbirds. Here,
Êrr := || θNN

||θNN||2
− θSVM

||θSVM||2
||2, where θNN denotes the last layer weights and θSVM denotes the weights of an

SVM trained on the held-out set features.

Waterbirds

Figure 14: Swin-Tiny LLR performance is determined on Waterbirds by held-out set group
balance. We compare the test WGA of Swin-Tiny trained with ERM and LLR on Waterbirds while
controlling the group balance of the training and held-out sets. We plot the mean and standard deviation
over 3 experimental seeds. We compute the Pearson correlation coefficient between the ERM test WGA
and the LLR test WGA; the presented coefficient is averaged over all 5 group ratios. We find that LLR
worst-group accuracy correlates strongly with change in group balance; in particular, LLR tends to improve
over ERM if and only if the held-out set has better group balance.
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Waterbirds

Figure 15: Swin-Tiny trained with LLR can recover optimally class-balanced WGA. We compare
the test WGA of Swin-Tiny trained using ERM (trained on 100% of the data) against Swin-Tiny trained
using LLR (trained on a held-out subset with the same group ratio). For both approaches, we evaluate four
class-balancing strategies: no class balancing (No CB), upsampling, subsetting, and upweighting (defined
in Section 2). We plot mean and standard deviation across 3 seeds. Each x-axis group corresponds to the
class-balancing method used to train the ERM baseline (gray bar). Within each group, we compare this
ERM model to the four LLR variants (colored bars), each using the corresponding class-balancing method.

Waterbirds

Figure 16: Choice of group-balancing method is important to Swin-Tiny DFR success. We compare
a Swin-Tiny model trained with class-balanced ERM to a Swin-Tiny model trained with group-balanced DFR
across three balancing methods: subsetting, upsampling, and upweighting. We plot the mean and standard
deviation over 3 experimental seeds. We note that the choice of balancing method has a dramatic effect on
the test WGA for both ERM and DFR.
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B Additional dataset and training details

B.1 Dataset details

We study four benchmarks for group robustness across vision and language tasks, outlined in Section 2 and
detailed in Table 7.

Table 7: Dataset composition. The class probabilities change dramatically when conditioned on the
spurious feature. Note that Waterbirds is the only dataset that has a distribution shift and MultiNLI is
the only dataset which is class-balanced a priori. The minority groups within each class are denoted by an
asterisk in the “Num” column. Probabilities may not sum to 1 due to rounding.

Dataset Group g Training distribution p̂ Data quantity
Num Class y Spurious s p̂(y) p̂(g) p̂(y|s) Train Val Test

Waterbirds

0 landbird land
.768 .730 .984 3498 467 2225

1* landbird water .038 .148 184 466 2225
2* waterbird land

.232 .012 .016 56 133 642
3 waterbird water .220 .852 1057 133 642

CelebA

0 non-blond female
.851 .440 .758 71629 8535 9767

1* non-blond male .411 .980 66874 8276 7535
2 blond female

.149 .141 .242 22880 2874 2480
3* blond male .009 .020 1387 182 180

CivilComments

0 neutral no identity
.887 .551 .921 148186 25159 74780

1* neutral identity .336 .836 90337 14966 43778
2* toxic no identity

.113 .047 .079 12731 2111 6455
3 toxic identity .066 .164 17784 2944 8769

MultiNLI

0 contradiction no negation
.333 .279 .300 57498 22814 34597

1* contradiction negation .054 .761 11158 4634 6655
2 entailment no negation

.334 .327 .352 67376 26949 40496
3* entailment negation .007 .104 1521 613 886
4 neither no negation

.333 .323 .348 66630 26655 39930
5* neither negation .010 .136 1992 797 1148
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B.2 Training details

We utilize ResNet-50 (He et al., 2016) and Swin Transformer Tiny (Liu et al., 2021b) pretrained on ImageNet-
1K (Russakovsky et al., 2015) for Waterbirds and CelebA. We also utilize a BERT-Base (Devlin et al., 2019)
model pretrained on Book Corpus (Zhu et al., 2015) and English Wikipedia for CivilComments and MultiNLI.
These pretrained models are used as the initialization for ERM finetuning under the cross-entropy loss. We
use standard ImageNet normalization with standard flip and crop data augmentation for the vision tasks and
BERT tokenization for the language tasks (Izmailov et al., 2022). Our implementation uses the following
packages: NumPy (Harris et al., 2020), PyTorch (Paszke et al., 2017; 2019), Lightning (Falcon & the PyTorch
Lightning maintainers and contributors, 2019), TorchVision (TorchVision maintainers and contributors,
2016), Matplotlib (Hunter, 2007), Transformers (Wolf et al., 2020), and Milkshake (LaBonte, 2023).

To our knowledge, the licenses of Waterbirds and CelebA are unknown. CivilComments is released under the
CC0 license, and information about MultiNLI’s license may be found in Williams et al. (2018).

Our experiments were conducted on two local 24GB Nvidia RTX A5000 GPUs. We provide our ERM
finetuning hyperparameters in Table 8. Our LLR experiments were run for the same number of epochs as
ERM (unless otherwise mentioned) on a held-out dataset (20% of the training set for Waterbirds and half
the validation set for the other three datasets). We used SGD with learning rate 0.01 with no regularization
or learning rate schedule, except for Figure 3 where we used learning rate 0.001.

Table 8: Default ERM Hyperparameters. The below table details our default hyperparameters for ERM
only. Note that for LLR only, we used SGD with learning rate 0.01 with no regularization or learning rate
schedule, except for Figure 3 where we used learning rate 0.001.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay Epochs
Waterbirds AdamW 1× 10−5 Cosine 32 1× 10−4 100
CelebA AdamW 1× 10−5 Cosine 32 1× 10−4 20
CivilComments AdamW 1× 10−5 Linear 32 1× 10−4 20
MultiNLI AdamW 1× 10−5 Linear 32 1× 10−4 20
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C N̂ C1 Estimator Variance

As part of our analysis of Algorithm 1 we provide a description of the variance of the estimate N̂ C1.
Importantly, Proposition 1 enables us to compute the relative variance, defined as Var(N̂ C1)/(E[N̂ C1])2.

Proposition 1. Let M = ΣAΣ†
R ∈ RN×N be the matrix whose trace is estimated in Algorithm 1. Let {zj}K

j=1
be K independent random vectors sampled from a standard multivariate normal distribution N (0, IN ). The
estimator N̂ C1 is defined as:

N̂ C1 = 1
K|Y|

K∑
j=1

z⊤
j Mzj . (2)

The variance of this estimator is given by:

Var(N̂ C1) = 1
K|Y|2

[
tr(MM⊤) + tr(M2)

]
. (3)

Equivalently, letting S = 1
2 (M + M⊤) denote the symmetric part of M , the variance is:

Var(N̂ C1) = 2
K|Y|2

∥S∥2
F , (4)

where ∥ · ∥F denotes the Frobenius norm.

Proof. Let sj = z⊤
j Mzj . Since the vectors zj are independent and identically distributed, the variance of the

sample mean is:

Var(N̂ C1) = Var

 1
K|Y|

K∑
j=1

sj

 = 1
K|Y|2

Var(s1). (5)

We now derive Var(s) for a single vector z ∼ N (0, IN ). By definition, Var(s) = E[s2]− (E[s])2.

First Moment. Using the linearity of expectation and the fact that E[zizk] = δik (the Kronecker delta):

E[s] = E

∑
i,k

Mikzizk

 =
∑
i,k

Mikδik =
∑

i

Mii = tr(M). (6)

Second Moment. We expand the square s2 = (
∑

i,k Mikzizk)(
∑

p,q Mpqzpzq) and take the expectation:

E[s2] =
∑

i,k,p,q

MikMpqE[zizkzpzq]. (7)

By Isserlis’ Theorem (Isserlis, 1918) for Gaussian variables, the fourth moment is:

E[zizkzpzq] = δikδpq + δipδkq + δiqδkp. (8)

Substituting this back into the sum, we obtain three terms:

1.
∑

i,k,p,q MikMpqδikδpq = (
∑

i Mii)(
∑

p Mpp) = (tr(M))2.

2.
∑

i,k,p,q MikMpqδipδkq =
∑

i,k MikMik = tr(MM⊤).

3.
∑

i,k,p,q MikMpqδiqδkp =
∑

i,k MikMki = tr(M2).

Thus, E[s2] = (tr(M))2 + tr(MM⊤) + tr(M2).
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Variance Calculation. The variance for a single sample is:

Var(s) = E[s2]− (E[s])2 = tr(MM⊤) + tr(M2). (9)

Since z⊤Mz = z⊤Sz for the symmetric part S = 1
2 (M + M⊤), and for any symmetric matrix S, tr(SS⊤) =

tr(S2) = ∥S∥2
F , we have:

Var(s) = 2tr(S2) = 2∥S∥2
F . (10)

Combining this with the scaling factors K and |Y|, we arrive at the final expression:

Var(N̂ C1) = 1
K|Y|2

[
tr(MM⊤) + tr(M2)

]
= 2

K|Y|2
∥S∥2

F . (11)

This completes the proof.

Let us now analyze the relative variance of N̂ C1. By Proposition 1, we have

RelVar(N̂ C1) = tr(MM⊤) + tr(M2)
K(tr(M))2 . (12)

Let {λi}N
i=1 be the eigenvalues of M . The expression becomes:

RelVar(N̂ C1) =
∑

i |λi|2 +
∑

i λ2
i

K(
∑

i λi)2 . (13)

Under the assumption of a bounded spectral density, the numerator scales as O(N) while the denominator
scales as O(N2). Consequently, the relative variance scales as O(1/KN). This implies that as the feature
dimension N increases, the number of random samples K required to maintain a constant relative error
actually decreases, making the Hutchinson estimator increasingly efficient for large-scale models.
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D Broader impact statement

This work advances equitable and responsible AI development by providing methods to improve robust
performance of machine learning models on underrepresented groups, directly mitigating algorithmic bias
and promoting fairness across diverse user populations. Our research intends to produce systems that offer
more equitable outcomes, thereby increasing public trust and widening the societal benefits of AI technology.
However, the responsible deployment of these models, particularly in high-stakes applications, necessitates
additional comprehensive, multi-metric evaluation on a full spectrum of fairness criteria to prevent unintended
negative consequences and uphold the highest ethical standards.
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