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Abstract

This paper investigates approaches to enhance
the reasoning capabilities of Large Language
Model (LLM) agents using Reinforcement Learn-
ing (RL). Specifically, we focus on multi-turn tool-
use scenarios, which can be naturally modeled as
Markov Decision Processes (MDPs). While exist-
ing approaches often train multi-turn LLM agents
with trajectory-level advantage estimation in ban-
dit settings, they struggle with turn-level credit
assignment across multiple decision steps, lim-
iting their performance on multi-turn reasoning
tasks. To address this, we introduce a fine-grained
turn-level advantage estimation strategy to enable
more precise credit assignment in multi-turn agent
interactions. The strategy is general and can be
incorporated into various RL algorithms such as
Group Relative Preference Optimization (GRPO).
Our experimental evaluation on multi-turn reason-
ing and search-based tool-use tasks with GRPO
implementations highlights the effectiveness of
the MDP framework and the turn-level credit as-
signment in advancing the multi-turn reasoning
capabilities of LLM agents in complex decision-
making settings. Our method achieves 100% suc-
cess in tool execution and 50% accuracy in ex-
act answer matching, significantly outperforming
baselines, which fail to invoke tools and achieve
only 20–30% exact match accuracy.

1. Introduction
Reinforcement Learning (RL) has recently emerged as a
powerful approach for improving the reasoning capabilities
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of Large Language Models (LLMs), allowing them to ex-
plore and refine long Chains of Thought (CoT) (Wei et al.,
2022) in complex decision-making tasks. Building on this
paradigm, reasoning-based LLMs, such as OpenAI’s o1
(Jaech et al., 2024) and DeepSeek’s R1 (Guo et al., 2025),
demonstrate remarkable performance in textual reasoning
tasks by learning analytical thinking and self-reflection.

Despite these advancements, LLMs that rely solely on ex-
tended CoT textual reasoning remain limited in tasks that
require precise and complex numerical computation, infor-
mation retrieval from web pages or local databases, or code
execution. Equipping LLMs as autonomous agents with
access to external tools, such as search engines, scientific
calculators, or code interpreters, can significantly extend
their capabilities beyond pure text-based reasoning.

However, training LLMs to operate as autonomous agents
in interactive environments faces unique challenges. Agent
settings often require models to make sequential, multi-
turn decisions in complex reasoning tasks. Many exist-
ing approaches (Chen et al., 2025b; Jin et al., 2025; Feng
et al., 2025) formulate these multi-turn interactive tasks
as bandit problems, relying solely on outcome-level re-
wards such as answer or format correctness. Popular RL
algorithms, including Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) and Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), are commonly used
in this setting. However, the bandit formulation is inade-
quate for long-horizon reasoning as it treats the entire tra-
jectory as a single decision step, ignoring the multi-turn
structure of the tasks. In particular, it ignores turn-level
rewards—intermediate signals that indicate whether individ-
ual steps are helpful or harmful. Without access to turn-level
feedback, agents struggle to refine their behavior, making it
difficult to learn robust and coherent reasoning chains or to
interact effectively with dynamic environments over multi-
ple steps. For example, in a search agent, selecting a good
query early on is crucial for retrieving relevant information;
without turn-level feedback, the agent cannot learn which
queries contribute to correct answers.

While recent studies (Li et al., 2025; Qian et al., 2025; Wang
et al., 2025a; Labs, 2025; Wang et al., 2025b; Zhang et al.,
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Figure 1: Overview of the multi-turn LLM agent pipeline and comparison of different advantage estimation methods. The
agent interacts with the tool environment across multiple steps: reasoning, tool use, and answer generation, receiving both
turn-level and outcome-level rewards. GRPO is used as a representative algorithm to illustrate the different advantage
estimation strategies. GRPO-OR and GRPO-MR serve as baselines with trajectory-level advantage estimation, while
MT-GRPO is our proposed variant with fine-grained turn-level advantage estimation.

2025; Singh et al., 2025) incorporate turn-level rewards like
tool execution, they still treat agent tasks as bandit problems
and estimate advantages at the trajectory level by merging
outcome and turn-level rewards, which lacks fine-grained
credit assignment. When the rewards are used to assign
credit across an entire trajectory, it becomes difficult to
identify which specific decisions contributed positively or
negatively to the final result. Effective multi-turn reasoning
requires more precise, turn-level credit assignment to enable
the agent to refine individual steps, rather than treating all
actions as equally responsible for success or failure. The
lack of fine-grained credit assignment ultimately limits the
performance and adaptability of multi-turn LLM agents.

Inspired by recent work on credit assignment (Pignatelli
et al., 2023) for pure text reasoning tasks (Shao et al., 2024;
Cui et al., 2025; Cheng et al., 2025), in this paper, we intro-
duce a fine-grained turn-level credit assignment strategy for
multi-turn LLM agent training. Compared with textual rea-
soning tasks like mathematical problem solving, multi-turn
agent interactive tasks present a more intuitive setting to
highlight the importance of fine-grained credit assignment.
The key contributions are as follows:

• We propose modeling multi-turn long-horizon reason-

ing tasks in LLM agents as Markov Decision Pro-
cesses (MDPs), which naturally capture the sequential
decision-making structure of such problems. To train
multi-turn LLM agents effectively within the MDP
framework, we present a fine-grained turn-level ad-
vantage estimation strategy using both outcome and
turn-level rewards. In this work, we instantiate our
approach within the GRPO algorithm. Notably, our
strategy is general and can be compatible with a wide
range of RL methods.

• To highlight the importance of credit assignment mech-
anisms in multi-turn reasoning, we construct an agent
that performs question answering using a Wikipedia
search tool. The agent operates in multiple steps: rea-
soning, search, and answer summarization. It learns to
leverage the Wikipedia search engine to retrieve rele-
vant information in support of its final answer through
RL training. Figure 1 illustrates the multi-turn agent
workflow and compares baselines of trajectory-level
advantage estimation with our proposed GRPO-based
variant.

• Experimental results on multi-turn reasoning and
search tasks show that compared with baselines using
trajectory-level advantage estimation, our MDP for-
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mulation and fine-grained turn-level credit assignment
significantly improve the multi-turn reasoning perfor-
mance of LLM agents in complex decision-making
tasks. In particular, our method achieves 100% suc-
cess in tool invocation and 50% accuracy in exact an-
swer matching, significantly outperforming baselines,
which fail to invoke tools and achieve only 20–30%
exact match accuracy. Additionally, we find that our
method promotes more stable and consistent tool use
during training, whereas baselines with coarse-grained
trajectory-level credit assignment often forget to call
tools and exhibit higher variance. These findings fur-
ther highlight the critical role of precise credit assign-
ment in effective multi-turn agent training.

2. Related Work
2.1. LLM Agents

LLMs have demonstrated strong capabilities in interacting
with external tools by accessing local databases or structured
APIs, enabling both information retrieval (Nakano et al.,
2021; Schick et al., 2023) and action execution (Yao et al.,
2020; 2022) in stateful environments. Subsequent studies
have proposed structured workflows that integrate reasoning,
action, and reflection steps (Yao et al., 2023; Shinn et al.,
2023; Kim et al., 2023), as well as interaction through code
interpreters (Wang et al., 2024; Yang et al., 2023), to further
enhance performance. Other approaches have focused on
supervised fine-tuning using datasets of agent trajectories to
improve decision-making and execution capabilities (Chen
et al., 2023; Qin et al., 2023; Mitra et al., 2024).

2.2. RL for LLMs

RL has become a widely used method for improving the
reasoning capabilities of LLMs (Ziegler et al., 2019; Sti-
ennon et al., 2020; Ouyang et al., 2022). PPO (Schulman
et al., 2017) and its variants (Yuan et al., 2025b;a) are the
most prevalent methods. With the actor-critic paradigm,
these approaches alternate between training a value function
for the current policy and leveraging it to enhance policy
performance.

However, PPO requires training both policy and value mod-
els, which demands substantial GPU resources. GRPO
(Shao et al., 2024) eliminates the need for a value function
by estimating advantages in a group-relative manner, signifi-
cantly reducing GPU requirements. Subsequent studies (Liu
et al., 2025; Yu et al., 2025) extend GRPO by addressing
response-level length bias and question-level difficulty bias
to further improve training efficiency and stability. Beyond
GRPO, other RL algorithms explore alternative methods
of advantage estimation. RLOO (Kool et al., 2019; Ahma-
dian et al., 2024) introduces a sampling-based advantage

estimator using multiple rollouts from the same query in
a leave-one-out fashion. ReMax (Li et al., 2023) modifies
advantage estimation by incorporating a subtractive baseline
obtained from greedy sampling.

Recently, the credit assignment problem (Pignatelli et al.,
2023) in RL has received increasing attention in the con-
text of LLM reasoning (Shao et al., 2024; Cui et al., 2025;
Cheng et al., 2025). Dense process rewards offer an appeal-
ing alternative to sparse outcome-level rewards for training
LLMs with RL. PRIME (Cui et al., 2025) proposes online
process reward model (PRM) updates using only policy roll-
outs and outcome labels through implicit process rewards.
By fusing token-level dense implicit process rewards with
sparse outcome rewards to estimate advantages, PRIME
boosts the performance of various RL algorithms, including
GRPO and RLOO. PURE (Cheng et al., 2025) identifies
that summation-based credit assignment can cause LLMs
to exploit high-reward steps, leading them to prioritize ver-
bose thinking over actual problem-solving. To address this,
PURE introduces min-form credit assignment, which miti-
gates reward hacking associated with PRMs.

2.3. RL for LLM Agents

RL has been used to train long-horizon multi-turn LLM
agents in diverse domains such as search (Chen et al., 2025b;
Jin et al., 2025), tool calling (Feng et al., 2025; Li et al.,
2025; Qian et al., 2025; Wang et al., 2025a; Labs, 2025;
Zhang et al., 2025; Singh et al., 2025), text-based games
(Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang
et al., 2025b), web shopping (Yao et al., 2022), day-to-
day digital app interaction (Chen et al., 2025a) and mobile
device control (Bai et al., 2024). Most closely related to
our work are several studies (Chen et al., 2025b; Jin et al.,
2025; Feng et al., 2025; Li et al., 2025; Qian et al., 2025;
Wang et al., 2025a; Labs, 2025; Zhang et al., 2025; Singh
et al., 2025) that apply RL algorithms such as GRPO to train
tool-calling LLM agents, including math calculators, code
interpreters, and search engines, enabling LLM agents to
learn to reason with tool use.

However, these approaches typically formulate the agent
tasks as bandit problems even when turn-level rewards are
involved (Li et al., 2025; Qian et al., 2025; Wang et al.,
2025a; Labs, 2025; Wang et al., 2025b; Zhang et al., 2025;
Singh et al., 2025). They compute advantages at the tra-
jectory level by summing outcome and turn-level rewards.
None of these methods considers fine-grained turn-level
credit assignment across multiple decision steps to enhance
multi-turn reasoning in LLM agents.
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3. Multi-Turn Tool-Calling LLM Agent
System

Before presenting our fine-grained turn-level credit assign-
ment for various RL algorithms, we first describe the ex-
perimental environment of the multi-turn tool-calling LLM
agent system.

3.1. Task Formulation

To emphasize the importance of fine-grained credit assign-
ment in multi-turn agent interactions, we formulate the task
under the MDP framework, involving multiple steps of rea-
soning, tool use, and answer summarization for question
answering. Specifically, our tool-use environment is mod-
eled on a Wikipedia search setup, where the agent learns
to leverage a Wikipedia search engine to retrieve relevant
information and generate accurate answers. The goal is to
improve the agent’s performance through effective integra-
tion of external tool use. Without tool calling, the agent
must rely solely on its internal knowledge to answer ques-
tions, which can limit accuracy, especially for fact-based
queries requiring up-to-date or domain-specific information.

To clearly illustrate the impact of credit assignment, we
design a simplified two-turn tool-use environment in which
the LLM agent can interact with the search tool environ-
ment for a maximum of two turns. In this setup, the agent
is allowed to call the Wikipedia search engine at most once
before submitting an answer to the question. Figure 1 il-
lustrates the pipeline of the multi-turn, tool-calling LLM
agent system. Given a system prompt and a question, the
LLM agent first performs a reasoning step and issues a
tool call, specifying both the tool name and a query de-
rived from its reasoning. The external tool environment
processes the query and returns a search result. Based on
the retrieved result, the agent performs a second round of
reasoning to summarize the information and generate the
final answer. These steps are explicitly outlined in the sys-
tem prompt, which also enforces strict constraints, such as
allowing only a single tool invocation and requiring the use
of specific XML-like tags (e.g., <reasoning>, <tool>,
<result>, <answer>) to delineate each stage of the in-
teraction. The full system prompt is provided in Appendix A.
Table 2 presents an example rollout in which the agent suc-
cessfully calls the search tool. If the tool name or argument
format is incorrect, the tool environment returns an error
message, indicated by the response beginning with “Error:”.
If the agent fails to include a tool-calling command in the
first reasoning step, the tool environment will not be invoked.
If the XML format or tag usage is incorrect—for example,
if tags are missing, nested improperly, or misnamed—the
environment may fail to parse the agent’s response, resulting
in an error or a skipped tool invocation. Additional rollout
examples where the agent fails to call the tool correctly are

provided in Appendix B.

Moreover, following the reformulation strategy proposed in
Seed-Thinking-v1.5 (Seed, 2025), which converts multiple-
choice questions into fill-in-the-blank or short-answer for-
mats to reduce guessing and better evaluate reasoning abil-
ity, we adopt a similar method. Specifically, we convert
our tasks into short-answer form and evaluate the model’s
responses based on exact match with the ground-truth an-
swers.

3.2. Reward Design

To align with the environment of the aforementioned tool-
calling LLM agent, we design two types of verifiable reward
functions.

Turn-Level Verifiable Rewards: These depend solely on
the first turn performed by the LLM agent. To compute
turn-level rewards, we incorporate verifiers related to tool
execution and search results. These verifiers ensure that the
search engine is correctly invoked and that the ground-truth
answer appears in the retrieved results.

• Tool Execution Reward: Awards 0.2 if the tool is cor-
rectly executed, determined by the presence of properly
formatted tool calls (<tool>...</tool>) and suc-
cessful responses (i.e., the environment’s response does
not begin with “Error:”).

• Search Result Answer Presence: Awards 0.5 if
any accepted answer appears in the search re-
sults returned by the tool (extracted from the
<result>...</result> tag), using a case-
insensitive comparison.

Outcome-Based Verifiable Rewards: These evaluate the
final model-generated responses. Specifically, they assess
both the correctness of the answer and its formatting, ensur-
ing that the output aligns with the expected structure and
content.

• Final Answer Presence Reward: Awards 0.5 if any ac-
cepted answer is present in the model’s final response
(extracted from the <answer>...</answer>
tag).

• Exact Match Reward: Awards 1.0 if the model’s answer
(extracted from <answer>...</answer>) exactly
matches any accepted answer after standard text prepro-
cessing (i.e., lowercasing and stripping whitespace).

• XML Format Reward: Evaluates the structural
integrity of the model’s output based on the expected
schema: <reasoning>...</reasoning>
followed by either <tool>...</tool> or
<answer>...</answer>. See the agent’s
pipeline in Figure 1. Checks include: (1) the presence
of at least one expected field (<reasoning>,
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<tool>, <answer>), (2) correct spacing (no leading
or trailing whitespace within tags), (3) message
starting with <reasoning>, and (4) message ending
with </tool> or </answer>. Partial credit is
awarded based on these criteria (weighted: 40% field
presence, 20% spacing, 20% correct starting tag, 20%
correct ending tag), and the final score is scaled by 0.2.

• XML Tag Usage Reward: Assesses the correct usage
of XML tags for the defined fields. For each tag, the
reward verifies that exactly one opening and one clos-
ing tag are present. The reward is the proportion of
correctly used tags (normalized by the number of tags
checked), scaled by 0.2.

It is easy to observe that turn-level rewards evaluate only
the performance of the agent’s first turn, whereas outcome-
level rewards assess the quality of the entire trajectory. This
distinction leads to several characteristic scenarios:

• Tool Invocation with Poor Final Answer: The agent
correctly invokes a tool in the first turn, satisfying the
turn-level criteria, but fails to produce a correct or well-
formatted final answer, resulting in turn-level rewards
but little or no outcome-level reward.

• Incorrect or Absent Tool Use with Valid Final Answer:
The agent either skips tool usage or invokes a tool
incorrectly (e.g., due to malformed syntax or an er-
ror response), yet still generates a correct and well-
structured final answer. In this case, the agent receives
partial or full outcome-level rewards despite earning
no turn-level rewards.

• Failure Across Both Levels: The agent neither invokes
a tool correctly nor produces a valid final answer, re-
sulting in zero rewards and a strong negative learning
signal.

4. Methodology
In this section, we first review existing trajectory-level ad-
vantage estimation implementations for multi-turn LLM
agent training and discuss their limitations, and then present
the fine-grained turn-level credit assignment for various RL
algorithms.

4.1. Trajectory-Level Advantage Estimation for
Multi-Turn LLM Agents

Existing approaches typically formulate multi-turn agent-
interactive tasks as contextual bandit problems and apply
RL algorithms with trajectory-level advantage estimation
for training. Formally, we denote the policy model before
and after the update as πold and πθ. Given a question q, a
response o generated by πold, the general form of the loss

function is

J(θ) = Et

[
min

(
rtÂt, clip (rt, 1− ϵ, 1 + ϵ) Ât

)]
(1)

where rt =
πθ(ot|q,o<t)
πθold (ot|q,o<t)

is the importance sampling ratio,
ϵ is a clipping parameter. We ignore the KL divergence for
simplicity.

Here, the advantage function Ât is computed at the trajec-
tory level and is shared across all tokens within the response
o:

Â1 = Â2 = · · · = Ât = · · · = Â|oi|. (2)

This design aligns with the bandit setting, where the ad-
vantage is assigned uniformly across the entire trajectory,
without distinguishing the contributions of individual tokens.
In the following, we will discuss the different advantage es-
timation methods.

• GPRO (Shao et al., 2024): GRPO estimates the advan-
tages in a group-relative manner. The behavior policy
πold samples a group of G individual responses for a
given question q. The advantage of the i-th response
is calculated by normalizing the group-level rewards
({Ri}Gi=1):

Âi,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
(3)

The GRPO objective can be written as

JGPRO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
rtÂi,t,

clip (rt, 1− ϵ, 1 + ϵ) Âi,t

)]
(4)

• RLOO (Ahmadian et al., 2024): RLOO estimates the
advantages in a leave-one-out manner. Like GRPO, it
requires sampling a group of G responses. The advan-
tage of the i-th response is calculated as

Âi,t =
G

G− 1

(
Ri − mean({Ri}Gi=1)

)
(5)

• REINFORCE (Williams, 1992): REINFORCE uses
the total return R as the advantage estimate:

Ât = R (6)

We can see that these advantage estimation methods can be
written in a unified trajectory-level form:

Âi,t = TrajAdv(Ri) (7)

In the context of multi-turn LLM agent training, many
existing approaches (Chen et al., 2025b; Jin et al., 2025;
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Feng et al., 2025) only involve outcome rewards, that is,
Ri = RO

i . Recently studies (Li et al., 2025; Qian et al.,
2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b;
Zhang et al., 2025; Singh et al., 2025) start to incorporate
turn-level rewards RT

i as well. In multi-turn interactive
tasks, such turn-level rewards are often critical for effec-
tively guiding the agent’s behavior. Despite this, these
methods still estimate advantage at the trajectory level
by summing both outcome and turn-level rewards, i.e.,
Ri = RO

i + RT
i , which fails to account for the individ-

ual contributions of turns within the trajectory. In contrast,
standard RL algorithms like PPO (Schulman et al., 2017)
and Actor-Critic (Konda & Tsitsiklis, 1999) use action-level
advantage functions, often derived from a learned value
function that estimates the expected return for each state.
This enables these algorithms to assign credit to individ-
ual actions, a crucial capability for long-horizon reasoning
tasks.

4.2. Proposed Method: Turn-Level Credit Assignment
for Multi-Turn LLM Agents

In this work, we treat each interaction between the LLM
agent and the environment as a turn within the MDP frame-
work. This perspective enables us to design a turn-level
advantage function that effectively captures the contribution
of each turn within a trajectory. Given outcome rewards RO

i

and turn-level rewards RT
i , the general form of turn-level

advantage estimation can be expressed as follows:

Âi,t = TurnAdv(RO
i , R

T
i ) (8)

We now introduce the detailed implementations of turn-level
advantage estimation tailored to our two-turn LLM agent
setting. We adopt GPRO as a representative algorithm to
derive the turn-level credit assignment strategy, referring to
the resulting approach as Multi-Turn GPRO (MT-GPRO).
Inspired by (Cui et al., 2025; Cheng et al., 2025), in MT-
GPRO, the advantages in the first and second turns can be
computed as

ÂMT-GRPO
i,1 = ÂT

i + λÂO
i , ÂMT-GRPO

i,2 = ÂO
i . (9)

where λ is the turn-level advantage coefficient, ÂT
i and ÂO

i

are computed:

ÂT
i =

RT
i − mean({RT

i }Gi=1)

std({RT
i }Gi=1)

, (10)

ÂO
i =

RO
i − mean({RO

i }Gi=1)

std({RO
i }Gi=1)

. (11)

Figure 1 shows a comparison of different advantage estima-
tion methods. Notably, our turn-level advantage estimation
strategy can be incorporated into other RL algorithms. See
Appendix C for more details.

5. Experiments
In this section, we describe the experimental setup and
present the main results to analyze the impact of credit
assignment on training LLM agents for multi-turn tool-use
tasks.

5.1. Evaluated Methods

We compare our proposed MT-GPRO with vanilla GRPO.

• GRPO: original GRPO with trajectory-level advantage
estimation

– GRPO-OR: GRPO using only outcome rewards

– GRPO-MR: GRPO using merged outcome and
turn-level rewards

• MT-GRPO (ours): GPRO variant with turn-level ad-
vantage estimation using both outcome and turn-level
rewards

These configurations allow us to assess the influence of
turn-level verifiable rewards and credit assignment on the
dynamics of the LLM agent.

5.2. Experiment Setup

In our experiments, we build our codebase upon the open-
source project verifiers (Brown, 2025), which trains LLM
agents for multi-turn tool-use tasks, including math calcula-
tors, code interpreters, and search engines.

Task, Dataset. We focus on the multi-turn reasoning and
search-based tool-use task. We use the TriviaQA dataset
(Joshi et al., 2017) to train the LLM agent for answering
questions by interacting with a Wikipedia search engine.
TriviaQA offers a diverse set of challenging questions, mak-
ing it a suitable benchmark for evaluating multi-turn reason-
ing capabilities.

Training Details. We use Qwen2.5-7B (Yang et al., 2024)
as the base model. Experiments are conducted on a node
equipped with 8 NVIDIA H100 GPUs: one GPU is dedi-
cated to rollout generation, while the remaining seven GPUs
are used for model training. Rollout generation is handled
by vLLM (Kwon et al., 2023). Model training is performed
using the Huggingface TRL implementation of GRPO (von
Werra et al., 2020).

Hyperparameters. For all methods, the number of rollout
generations is set to 21. The maximum completion length
during generation is set to 1024 tokens. The KL divergence
penalty is disabled by setting β = 0. The learning rate is
fixed at 1× 10−6. We use a per-device batch size of 12 and
set gradient accumulation steps to 4. Each batch undergoes
two training iterations. The total number of training steps is
set to 300.
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Figure 2: Curves for different training reward components during training with various algorithms (MT-GRPO, GRPO-OR,
and GRPO-MR). Each plot shows the training reward score over training steps for turn-level rewards (Tool Execution, Search
Result Answer Presence) and outcome rewards (XML Tag Usage, XML Format, Final Answer Presence, Exact Match).
Dotted lines represent the average reward across 10 runs, while solid lines show trends smoothed using the Exponential
Moving Average (EMA).

5.3. Main Results

Figure 2 shows reward component curves during training
across various algorithms. From the answer presence and
exact match reward curves, it is evident that MT-GRPO
outperform GRPO-OR and GRPO-MR, demonstrating that
fine-grained credit assignment enhances the performance of

multi-turn LLM agents.

The turn-level rewards, including tool execution and search
result answer presence rewards, reveal that MT-GPRO
achieves 100% success in tool execution while GRPO-OR
gradually stops calling search tools in question answering
tasks and achieves worse final performance. This is be-
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Table 1: Performance comparison across different methods on reward scores evaluated on the validation set. Values in
parentheses indicate the reward range for each metric. Bold numbers indicate the best performance for each reward type.

Model
Turn-Level Reward Outcome Reward

Tool Execution
(0-0.2)

Search Answer
(0-0.5)

XML Format
(0-0.2)

Exact Match
(0-1)

Qwen2.5-7B-Base 0.0559 0.0934 0.1562 0.0469

Qwen2.5-7B-Instruct 0.1626 0.2814 0.1982 0.1559

Qwen2.5-7B-Base + GRPO-OR 0 0 0.04 0

Qwen2.5-7B-Base + GRPO-MR 0.2 0.3724 0.1994 0.3346

Qwen2.5-7B-Base + MT-GRPO 0.2 0.3926 0.1996 0.5010

cause GRPO-OR does not incorporate turn-level rewards
effectively in its advantage estimation, which indicates the
importance of turn-level feedback in multi-turn interaction
tasks.

Figures 3, 4, and 5 in Appendix D illustrate reward compo-
nent curves during training with different algorithms, where
shaded regions represent the range between the maximum
and minimum values across 10 runs, showcasing the vari-
ability in learning performance. Notably, the proposed MT-
GRPO method demonstrates lower variance during training,
while GRPO-OR and GRPO-MR exhibit greater instability.
An interesting observation is that the tool execution curve of
MT-GRPO temporarily drops sharply around step 230–250
but subsequently recovers and stabilizes. This demonstrates
that even if the agent forgets to call search tools in the mid-
dle of the training, it eventually learns to incorporate them
in the final stages. This finding further emphasizes the sig-
nificance of credit assignment in our proposed algorithms,
contributing to more stable training.

Table 1 presents the validation reward scores across different
models. MT-GRPO achieves the highest performance in all
reward metrics. Compared to GRPO-MR, which reaches
0.3724 in final search answer and 0.3346 in exact match,
MT-GRPO demonstrates clear improvements, especially in
exact match with a margin of +0.1664. In contrast, GRPO-
OR performs poorly across all metrics, scoring 0 in turn-
level rewards and only 0.04 in XML format. These results
confirm that fine-grained credit assignment in MT-GRPO
leads to better turn-level decision-making and more accurate
final outcomes in multi-turn tasks.

6. Conclusion and Future Work
In this work, we investigate the role of credit assignment in
RL algorithms for enhancing the multi-turn reasoning capa-

bilities of LLM agents. By constructing a two-turn tool-use
environment, we demonstrate that trajectory-level advan-
tage functions in existing RL algorithms like GRPO fail to
effectively capture the individual contributions of actions
within a trajectory. To address this limitation, we propose
novel variants of the GRPO algorithm that enable turn-level
credit assignment, tailored for multi-turn reasoning tasks.
Through experiments on a Wikipedia search task, where the
LLM agent learns to utilize a search engine to answer ques-
tions from the TriviaQA dataset, the results show that the
proposed methods significantly improve both tool execution
success rates and answer correctness compared to existing
baselines. More specifically, our method achieves 100%
success in tool execution and 50% accuracy in exact answer
matching, significantly outperforming baselines, which fail
to call tools and achieve only 20–30% exact match accuracy.
These results highlight the critical importance of turn-level
credit assignment in advancing the multi-turn reasoning
capabilities of LLM agents.

The current work primarily focuses on the two-turn tool-
use environment, which serves as a simplified testbed to
demonstrate the importance of credit assignment in multi-
turn reasoning tasks. For future work, we aim to extend our
methods to more complex multi-turn tool-use tasks involv-
ing longer horizons and interactions. Additionally, we plan
to explore more flexible RL training pipelines and frame-
works that do not rely on predefined turn-level verifiable
rewards, enabling broader applicability in multi-turn reason-
ing tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. System Prompt

System Prompt

You have access to the following tools to help solve problems:

{tool_descriptions}

Follow these steps exactly once:

1. Think through your reasoning inside <reasoning> tags

2. Use a tool by writing a JSON command inside <tool> tags with:

• "name": the tool to use
• "args": the arguments for the tool

3. You will see the tool’s output inside <result> tags

4. Think through the tool’s output inside <reasoning> tags

5. Based on your reasoning, provide your final answer inside <answer> tags

Important:

• Use the tool exactly once – DO NOT attempt to call the tool again even if the first search isn’t helpful

• Work with both your prior knowledge and the single tool call

• If the tool result is unhelpful, rely on your prior knowledge

• Tools expect valid JSON – follow the examples carefully

• Do not invent tools or arguments that aren’t listed

• Analyze the result in a reasoning step before giving your answer

• Your answer should match the expected ground-truth

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article content.

Arguments:
- query
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B. Rollout Examples

Table 2: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl space, was known as
the “Killer Clown”?

<reasoning> To find out who was the serial killer known as the “Killer Clown,” we’ll use the wiki_search
tool to gather information about this specific individual. </reasoning>
<tool>

{
"name": "wiki_search",
"args": {

"query": "Killer Clown serial killer buried remains in Chicago crawl space"
}

}
</tool>

<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 – May 10, 1994) was an American serial killer
who raped, tortured, and murdered at least 33 teenage boys and young men between 1972 and 1978 in Cook County,
Illinois (a part of metropolitan Chicago). All of Gacy’s known murders were committed inside his Norwood Park
ranch house. . . </result>
<reasoning> From the information provided, John Wayne Gacy, referred to as the “Killer Clown,” was a serial
killer known for burying the remains of at least 26 of his victims in his Chicago crawl space. He gained notoriety
for using various methods to subdue his victims, including deceiving young males into wearing handcuffs and using
methods like garroting and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise questions about his
broader involvement in criminal activity. </reasoning>
<answer> John Wayne Gacy </answer>

Table 3: A rollout example of failing to call the search tool and producing a wrong answer.

Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film “Them!”, the main creatures were giant ants. I know this because I remember from
my general knowledge that “Them!” is a 1954 science fiction horror film about giant ants and the damage they cause
in a coastal town. So, to answer the question, the creatures in “Them!” were giant ants. </reasoning>
<answer> Giant </answer>
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Table 4: A rollout example of generating a response with an incorrect format.

Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards who released over 200
recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007, who won eight Grammy
Awards and released over 200 recordings. This person’s name should be easy to find with a Wikipedia search since
the question specifies Grammy Awards and a long recording history. Once I find the Wikipedia article, I can read
about the pianist’s career to confirm the details mentioned in the question. </reasoning>
Error: Tool command not found or invalid XML format. Please ensure correct formatting.
<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson, born in 1925 and deceased
in 2007, was a Canadian jazz pianist who won eight Grammy Awards and released over 200 recordings. </reason-
ing><answer>Oscar Peterson<answer><result><answer>Oscar Peterson</answer>

C. Turn-Level Advantage Estimation for other RL Algorithms
In the main body, we present our implementation of turn-level advantage estimation for GRPO. Here, we extend this
approach to other RL algorithms. Below, we provide an example to show how to extend our current advantage estimation
method to the RLOO algorithm.

MT-RLOO. The advantages in the first and second turns can be computed as

ÂMT-RLOO
i,1 = ÂT

i + λÂO
i , ÂMT-RLOO

i,2 = ÂO
i . (12)

where λ is the turn-level advantage coefficient, ÂT
i and ÂO

i are computed:

ÂT
i =

G

G− 1

(
RT

i − mean({RT
i }Gi=1)

)
, ÂO

i =
G

G− 1

(
RO

i − mean({RO
i }Gi=1)

)
. (13)

D. Additional Experiment Results
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Figure 3: Curves for different training reward components during training using GRPO-OR, where shaded regions represent
the range between the maximum and minimum values across 10 runs.
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Figure 4: Curves for different training reward components during training using GRPO-MR, where shaded regions represent
the range between the maximum and minimum values across 10 runs.
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Figure 5: Curves for different training reward components during training using MT-GRPO, where shaded regions represent
the range between the maximum and minimum values across 10 runs.
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