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ABSTRACT

Explainable image representations are critical in medical imaging, where inter-
pretability is essential for both clinical trust and decision-making. We introduce
Attri-SSC-VAE, a novel framework that extends Structured Sparse Coding Varia-
tional Autoencoders (SSC-VAEs) with attribute regularization and multi-attribute
mapping. Our approach leverages sparse coding to discretize image representa-
tions into a dictionary of latent components while preserving generative flexibil-
ity through a VAE encoder–decoder structure. To enhance interpretability, we
impose attribute regularization on the coding coefficients, explicitly associating
dictionary elements with meaningful clinical attributes. Furthermore, a multi-
attribute mapping mechanism enables disentanglement across attributes, ensuring
that variations in specific coding coefficients correspond to consistent and explain-
able changes in image features. This property allows for controlled image edit-
ing, where manipulating the coefficients associated with target attributes results
in semantically aligned modifications in generated images. Experiments on med-
ical imaging datasets demonstrate that Attri-SSC-VAE not only achieves compet-
itive reconstruction and generation performance but also provides interpretable,
attribute-aware representations that improve trustworthiness and practical utility
in clinical applications.

1 INTRODUCTION

Latent image representation learning based on Variational Autoencoders (VAEs) has paved the foun-
dation for many generative models by encoding data into meaningful low-dimensional latent vectors,
typically drawn from a Gaussian prior. The Vector-Quantized VAE (VQ-VAE) (van den Oord et al.,
2017) further advanced this line of work by replacing continuous latent variables with a discrete
codebook of embeddings, enabling the model to preserve more information during image recon-
struction and generation. While these frameworks provide powerful and compact representations,
the roles of individual latent dimensions or codebook atoms are not directly interpretable. This
makes it unclear how image attributes are encoded or how they influence reconstruction and gen-
eration. This limitation is particularly critical in medical image analysis, where interpretability
is essential for doctors and patients to understand and trust model outputs. A central question is
whether clinically meaningful attributes (e.g., anatomical or pathological features) can be explicitly
embedded into hidden representations. Although such attributes are evident at the image level, cur-
rent research has rarely established explicit alignment with latent variables or codebook atoms. This
gap not only undermines explainability but also prevents direct control of image generation through
specific clinical attributes.

Existing research has attempted to enhance the explainability through disentanglement meth-
ods (Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018; Locatello et al., 2018), which
encourage factorization of the latent space so that each dimension encodes a distinct generative fac-
tor. However, purely unsupervised disentanglement is often fragile: results can vary depending on
network architecture, hyperparameters, or random initialization, and some degree of supervision is
typically required to obtain meaningful factors (Locatello et al., 2018). Moreover, since disentangle-
ment is usually learned without explicit meanings corresponding to specific image attributes, post-
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hoc analysis is usually needed to determine how specific attributes map to latent dimensions (Pati &
Lerch, 2020).

Attribute-based methods (Hadjeres et al., 2017; Lample et al., 2017; Bouchacourt et al., 2017; Pati &
Lerch, 2020) offer a more direct approach by explicitly associating latent dimensions with specific
data attributes. Recent developments, such as Attri-VAE (Carter & Nielsen, 2017; Pati & Lerch,
2020), employ attribute-based regularization in the latent space of VAE to enhance interpretability,
demonstrating encouraging results for controlled data generation and clinical attribute encoding. A
major challenge still remains: VAEs map attributes to single latent dimensions, which often fails to
capture the more complex and distributed nature of real-world attributes. In medical data, attributes
such as left ventricle (LV) volume, myocardial volume, wall thickness, and so on, are continuous,
physiologically correlated, and inherently multi-dimensional, meaning they cannot be fully captured
by a single latent dimension, but rather a subspace.

To address these gaps, we propose Attri-SSC-VAE, a Structured Sparse Coding VAE with attribute
regularization and multi-attribute mapping. The key idea is to associate each attribute not with a
single latent dimension or isolated atom, but with groups of atoms in a sparse coding codebook.
This design better reflects the distributed nature of real attributes, which often correspond to over-
lapping and correlated patterns rather than independent factors. By combining the discrete represen-
tational power of sparse coding VQ-VAEs with structured attribute regularization, Attri-SSC-VAE
yields explainable medical image representations where clinical attributes are explicitly linked to
interpretable latent structures. Furthermore, the framework supports attribute-driven image genera-
tion: editing the coding coefficients tied to specific attributes produces controlled and semantically
aligned changes in generated images. Experiments on medical imaging datasets demonstrate that
Attri-SSC-VAE not only achieves competitive reconstruction and generation performance with pre-
served fine-grained structures but also provides interpretable, attribute-aware representations, en-
abling trustworthy and clinically meaningful outcome.

Our contributions of the paper can be summarized:

• Attibute-aware Fine-grained Representations: Attri-SSC-VAE introduces attribute-
regularized multi-atom coding, where each attribute is represented by a group of sparse
codes. This design preserves fine structural details in reconstructed and generated images
while yielding clinically meaningful and interpretable latent representations.

• Controllable Generation and Editing: The framework enables attribute-guided manip-
ulation, where modifying coefficients associated with target attributes produces consistent
and explainable changes in the generated images, supporting controllable image generation
and editing.

• Modeling Attribute Correlations: Unlike one-to-one atom–attribute mappings, our ap-
proach allows dictionary atoms to overlap across attributes, enabling the model to naturally
capture correlations between clinically related attributes, where shared atoms contribute
jointly to multiple image attributes.

2 RELATED WORK

2.1 IMAGE REPRESENTATIONS

Image representation is critical in medical imaging, where fine structural details often carry diag-
nostic value. Variational Autoencoders (VAEs) (Kingma & Welling, 2014) compress images into
smooth latent spaces but typically generate blurry reconstructions and struggle to disentangle fac-
tors of variation. Discrete latent models address these issues: Vector Quantized VAE (VQ-VAE)
(van den Oord et al., 2017) encodes images into discrete codes via vector quantization, improv-
ing generation fidelity and controllability. Its extensions, such as VQ-VAE2 (Razavi et al., 2019)
with hierarchical quantization and VQ-GAN (Esser et al., 2021) with adversarial training, further
enhance detail preservation and realism, making them strong candidates for high-quality medical
image reconstruction and synthesis.

Building on these advances, Sparse Coding VAE (SC-VAE) (Xiao et al., 2023) replaces single code
assignments with sparse combinations of multiple dictionary atoms, boosting expressiveness and
preserving local features. However, SC-VAE still treats atoms independently, limiting its ability to
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capture relationships among them. Structured Sparse Coding VAE (SSC-VAE) (Wang et al., 2025)
addresses this by explicitly modeling correlations between atoms through adaptive thresholds and
attention, significantly improving fine-grained reconstruction and robust generation. These develop-
ments highlight the potential of discrete latent models for medical imaging, where both fidelity and
interpretability are essential.

2.2 ATTRIBUTE EXPLAINABILITY

Attribute-based Explanation in Neural Networks. Post-hoc explanation methods such as
saliency maps (Simonyan et al., 2013; Kapishnikov et al., 2019), Grad-CAM (Selvaraju et al., 2016),
and concept activation tests (Goh et al., 2021) are widely used to audit neural networks, but they re-
main heuristic, brittle to perturbations, and do not enforce that human concepts are encoded in latent
space. Quantitative Concept Activation Vectors (TCAV) (Kim et al., 2017) and Automatic Concept
Discovery (ACE) (Ghorbani et al., 2019) provide concept-level analyses but operate after training
and require concept exemplars or clustering heuristics, limiting principled interventions. Concept
Bottleneck Models (CBMs) (Koh et al., 2020) and concept-whitening approaches (Chen et al., 2020)
instead elevate concepts to first-class variables, enabling direct interventions and causal analyses;
however, they typically demand strong supervision and assume near one-to-one alignment between
concepts and latent units, which rarely holds in complex images.

Attribute-Centric Generative Models. Attribute-centric generative models explicitly inject at-
tribute supervision into latent representations to enable controllable image generation. Early exam-
ples include Fader Networks (Lample et al., 2017) and AttGAN (He et al., 2017), which condition
image generation on binary attributes, allowing targeted manipulation but often relying on sim-
ple one-attribute-per-dimension encoding. Attribute-regularized VAEs, such as Attri-VAE (Pati &
Lerch, 2020; Cetin et al., 2022), enforce latent alignment with human-interpretable attributes, sup-
porting concept-conditioned generation and attribute-guided editing. However, these models typi-
cally assume strong labels and one-to-one correspondence between latent dimensions and attributes,
limiting their ability to represent multi-faceted, overlapping, or correlated attributes that may require
multiple latent units to fully encode.

3 METHODOLOGY

Our framework provides an interpretable, attribute-aware representation of medical images by link-
ing structured sparse codes with clinical attributes as shown in Figure 1. A 3D medical image is first
encoded into feature maps and decomposed into sparse codes through a learned dictionary of latent
atoms by SSC-VAE backbone. Atom activations are aggregated into usage vectors and mapped to
clinical attributes via a sparsity-regularized mapper W , ensuring compact one-to-few attribute–atom
associations. Attribute alignment further enforces consistency with ground-truth labels. The decoder
then reconstructs the input for high-fidelity image recovery, while controlled modulation of attribute-
specific atoms enables clinically meaningful, attribute-driven image generation and editing.

3.1 SSC-VAE

Given a 3D input X ∈ RC×D×H×W , the encoder produces feature maps E ∈ RC′×d×h×w. We
learn a dictionary D ∈ RC′×K and sparse codes Z ∈ RK×d×h×w, where each spatial location is
represented as a sparse combination of dictionary atoms. The overall training objective combines
reconstruction and latent regularization losses:

LSSC = Lrecon + Llatent (1)

with
Lrecon = ∥G(E(X))−X∥22 (2)

Llatent = ∥E(X)−DZ∥22 +
∑
i

αk,i ∥Zk,i∥1 , (3)

where α ∈ RK×d×h×w is a learnable threshold map that enforces location-aware sparsity, ensur-
ing compact codes while preserving high-fidelity reconstructions. To capture correlations across
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Figure 1: Architecture of Attri-SSC-VAE. The model links clinical attributes to the image la-
tent representation via a sparse mapping W between structured sparse codes Z and the samples’
attribute values in the “Attribute Regularization” module. Attribute usage is first summarized by
applying global average pooling (GAP) over spatial dimensions on Z to obtain atom activation in-
tensities ũ and then mapped to clinical attributes via a sparsity-regularized mapper W . AR loss is
computed to align further the consistency of the reconstructed attribute values â with ground-truth
labels a. The whole framework enables both high-fidelity reconstruction and controllable synthesis
by manipulating the activations of semantically meaningful latent atoms.

dictionary atoms and spatial regions, α is refined via channel- and spatial-attention mechanisms:

Wc = σ(MLP(AvgPool(α))) + MLP(MaxPool(α)), (4)

Ws = σ(f([AvgPool(α);MaxPool(α)])) , (5)

α+ = Ws ⊙ (Wc ⊙ α). (6)

Detailed explanations of the above transformation functions of Wc and Ws to impose the correlations
both in channels and image space can be found in Wang et al. (2025). The refined thresholds α+ are
fed into an unfolded Learned Iterative Soft Thresholding Algorithm (LISTA) module Wang et al.
(2025) to compute sparse codes Z during the forward pass. Training updates the dictionary D along
with the encoder E and decoder G weights in the back propagation processing, enabling end-to-end
learning of structured sparse representations.

3.2 MULTI-ATTRIBUTE MAPPING AND REGULARIZATION

To explicitly relate latent dictionary atoms to dataset attributes, we introduce a linear mapper W ∈
R|A|×K ,where A denotes the set of supervised attributes and |A| is its cardinality. The mapper
projects atom usage patterns into the attribute space. For each sample, we first summarize its atom
activations into a non-negative usage vector u ∈ RK by averaging the absolute sparse codes across
all spatial dimensions:

u = GAP (Z) =
1

dhw

d∑
d′=1

h∑
h′=1

w∑
w′=1

∣∣Z:,d′,h′,w′
∣∣. (7)
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This vector is then ℓ1-normalized for scale invariance, yielding ũ. The attribute proxies â ∈ R|A|

are subsequently obtained by applying the linear transformation from ũ to establish the relationship
between the attribute and the dictionary atoms:

â = Wũ. (8)

Each row of W selects a small set of atoms that collectively predict one attribute, while â serves as
both a training signal for attribute regularization (in Section 3.2.1) and a control handle for attribute-
conditioned generation (in Appendix A.5).

3.2.1 ATTRIBUTE REGULARIZATION

The objective of Attribute Regularization (AR) is to ensure monotonic consistency between the
latent proxy value â and the ground-truth attribute value a of the samples. Following Cetin et al.
(2022), for each attribute m, the distance is computed over all sample pairs (p, q) within a batch as:

Distam
[p, q] = ap,m − aq,m, Distâm

[p, q] = âp,m − âq,m. (9)

The core loss compares the sign structure of these distance matrices:

Lm
AR(W ) = MAE

(
tanh

(
δDistâm

)
− sgn

(
Distam

))
, (10)

where MAE denotes Mean Absolute Error; the sgn function abstracts the ground-truth differences
into a scale-invariant “hard” ordinal target {−1, 0, 1}; the tanh function provides a smooth and
differentiable “soft” approximation for the predicted differences; δ is a scaling factor that adjusts
the sharpness of this approximation, balancing smooth optimization with faithful ordinal alignment.
This deliberate asymmetry allows the model to learn the correct ordering robustly via smooth gradi-
ents, without sensitivity to the absolute scale of attributes.

To compute the total attribute regularization loss, we sum the individual losses for all attributes:

LAR(W ) =
∑
m∈A

Lm
AR(W ) (11)

3.2.2 GROUP SPARSITY ON W

To encourage a compact and interpretable mapping between attributes and atoms, we apply a group
sparsity loss to the mapper matrix W ∈ R|A|×K , where rows correspond to attributes and columns
correspond to atoms. The sparsity regularization term is defined as:

LGS(W ) = λrow

|A|∑
m=1

|Wm,:|1 + λcol

K∑
n=1

|W:,n|1, (12)

which drives W toward a two-dimensional block sparse structure, where attributes are explained
by distinct, minimally overlapping atom subsets under regularization parameters λrow and λcol for
column and row sparsity, respectively.

3.3 OPTIMIZATION STRATEGY

To obtain a stable and interpretable mapping between attributes and atoms, we adopt a three-stage
optimization strategy. The process first pretrains the model to ensure robust image representation,
then imposes attribute-aware sparsity to align atoms with attributes, and finally freezes the learned
support to refine the mapping and guarantee interpretability.

Stage I: Pretraining for Dictionary Stabilization. In the first stage, we treat the model as a pre-
trained image representation learner by optimizing only the reconstruction and latent coding losses.
This stabilizes the encoder–decoder and dictionary atoms before attribute supervision is introduced:

minLSSC (13)

Stage II: Attribute-Regularized Sparse Mapping. In this stage, we introduce the attribute mapper
W , designed with row- and column-wise sparsity constraints to enforce one-to-few and consistent
associations between attributes and dictionary atoms. To initialize the mapping, W is first estimated
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Table 1: Ablation study on the reconstruction accuracy of Attri-SSC-VAE on the EMIDEC dataset,
quantified with the maximum mean discrepancy (MMD). The MMD results are given as ± standard
deviation. AR: attribute-regularization.

Model VAE β-VAE AR-VAE Attri-VAE Attri-SSC-VAE

MMD ×102 ↓ 1.86± 0.06 1.38± 0.04 1.74± 0.06 1.18± 0.03 0.64± 0.02

using linear regression between atom usage vectors and observed attribute values, yielding a least-
squares (LS) solution:

W0 = LS(a,Wũ)

Starting from this initialization, we optimize W jointly with the SSC-VAE by augmenting the ob-
jective with structured sparsity regularization:

minLSSC + LGS(W ), (14)

where LGS(W ) imposes row- and column-wise sparsity on W , encouraging each attribute to be ex-
plained by a small subset of atoms while ensuring that each atom specializes in only a few attributes.

Stage III: Freezing Row-Support and Refinement. Once W converges to a sparse structure,
denoted by Wstage2 at the end of Stage II, we freeze the Top-K atoms selected for each attribute,
remove the ℓ1 penalties, and fine-tune the mapping with a penalty to limit the drift ∆W to stabilize
atom magnitudes. This stage enforces a transparent one-to-few mapping and prevents oscillatory
reassignments:

minLSSC + γLAR(W ) + µ∥∆W∥22, (15)
where the drift penalty is applied to ∆W = W −Wstage2, and ∥.∥22 denotes the squared Frobenius
norm and µ is the regularization parameter. This staged curriculum produces a model that is both
stable and interpretable, with attribute-aligned atoms that support transparent analysis and controlled
generative manipulation.

4 EXPERIMENTS

The performance of the proposed Attri-SSC-VAE, both qualitatively and quantitatively, was com-
pared with Attri-VAE (Cetin et al., 2022) and its three variants of VAE, β-VAE, and AR-VAE from
the perspective of fine-grained image reconstruction and interpretable medical image generation.
This allows us to benchmark our structured sparse coding approach against established continuous
latent variable models. For a fair comparison, we use same medical dataset EMIDEC, a collection of
medical images well-suited for this task due to its associated clinical attributes, used by Attri-VAE
(Cetin et al., 2022). Further details on the dataset specifics and pre-processing steps are provided in
Appendix A.2. All fixed hyperparameters used throughout our experiments, including data loading
parameters and loss weights, are meticulously detailed in Appendix A.6 in Table 7.

4.1 IMAGE RECONSTRUCTION

We evaluate reconstruction performance along three complementary axes: (i) Reconstruction qual-
ity. We PSNR and SSIM to measure voxel-level fidelity. (ii)Perceptual quality. We use FID and
LPIPS to evaluate perceptual similarity and realism. (iii) Preservation of information and distribu-
tion. We quantify preserved information in the latent representation using Mutual Information (MI)
and MMD. Full metric descriptions are provided in Appendix A.3.

Table 1 presents a comparative analysis of reconstruction accuracy on the EMIDEC dataset, mea-
sured by MMD, where lower values indicate that the distribution of reconstructed images is closer
to that of the ground-truth data. Our proposed Attri-SSC-VAE achieves the lowest MMD score of
0.64±0.02, substantially outperforming all other models. The closest competitor, Attri-VAE, scores
1.18±0.03. This demonstrates that the structured sparse coding backbone effectively preserves fine-
grained details essential for high-fidelity reconstruction.

To further evaluate Attri-SSC-VAE, we compare it against the strongest baseline, Attri-VAE, across
multiple metrics as shown in Table 2. Our model consistently outperforms the baseline, achieving
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Table 2: Performance comparison between Attri-SSC-VAE and Attri-VAE in terms of MI, PSNR,
SSIM, FID and LPIPS.

Model MI ×102 ↑ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Attri-VAE 1.1310 15.1908 0.4254 145.1451 0.2021
Attri-SSC-VAE 1.3753 28.6414 0.9371 42.1573 0.0491

(a) Interpolation results of our method (b) Results of the Attri-VAE (Cetin et al., 2022)

Figure 2: Comparison of latent space interpolation results: Left shows results from our method on
the EMIDEC dataset, right shows results from the original paper. Each row demonstrates smooth
transitions for myocardial thickness (top), scar presence (middle), and cardiac condition (bottom).

a substantial reduction in FID from 145 to 42, reflecting markedly improved perceptual realism. It
also attains higher PSNR and SSIM scores, indicating superior pixel-level fidelity, while increased
MI confirms better preservation of information in the latent space. The lower LPIPS further demon-
strates enhanced perceptual similarity. Together, these results highlight that Attri-SSC-VAE delivers
more accurate, informative, and high-quality reconstructions, validating the benefits of combining
structured sparse coding with attribute-aware regularization.

4.2 IMAGE GENERATION

For image generation, three sets of experiments are done to assess controllability and semantic align-
ment of the learned representations: (i) latent-space interpolation, where smooth transitions between
two medical images are generated to evaluate continuity and realism; (ii) attribute-guided manipu-
lation, where continuous attributes are gradually varied to examine whether edits are consistent,
monotonic, and localized to the relevant anatomical regions; and (iii) attribute correlation analysis,
where the learned sets of sparse codes quantitatively capture the attribute corelation of samples.

4.2.1 LATENT-SPACE INTERPOLATION

To assess the structural coherence of the learned latent space, we perform linear interpolation be-
tween latent representations of distinct test samples. Detailed descriptions of the latent-space inter-
polation process are provided in Appendix A.4. As illustrated in Figure 2a, Attri-SSC-VAE produces
smooth and anatomically plausible transitions, with intermediate images reflecting realistic cardiac
states. In contrast, the baseline interpolations in Figure 2b display less coherent semantic changes
and blurring images. These results indicate that Attri-SSC-VAE captures a continuous and mean-
ingfully structured latent manifold, which is essential for realistic image synthesis and modeling of
disease progression.

4.2.2 ATTRIBUTE MANIPULATION IN LATENT SPACE

To evaluate fine-grained control over attribute, we systematically vary latent coefficients correspond-
ing to a single clinical attribute while keeping other factors fixed to manipulate the attribute. Details
are provided in Appendix A.5. As shown in Figure 3, this targeted manipulation produces precise
and clinically plausible edits. For example, increasing the ‘LV Volume’ coefficient visibly enlarges
the left ventricle chamber without affecting unrelated anatomical structures. Corresponding atten-
tion maps confirm that changes are correctly localized, demonstrating strong disentanglement. This
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Figure 3: Controllable generation via bidirectional attribute editing. Starting from a real image
(column in the center, indicated by yellow box), we decrease (left) and increase (right) the latent
coefficient for a single attribute (e.g., LV Volume). The resulting edits are precise and localized,
demonstrating the model’s capacity for highly disentangled and fine-grained control.

Table 3: Interpretable Correlation Analysis of Attribute Pairs.

Attribute Pair Ground Truth Attri-SSC-VAE Attri-VAE
rsample p-value rrecon p-value rrecon p-value

LV Volume vs. MYO Volume 0.675 0.001 0.657 0.001 0.617 0.001
MYO Volume vs. FEVG -0.271 0.147 -0.146 0.442 -0.515 0.004

explicit control provides a transparent and interpretable mechanism for simulating hypothetical sce-
narios and exploring the visual effects of specific pathological features, which is highly valuable in
clinical applications.

4.2.3 CORRELATION BETWEEN ATTRIBUTES

Our framework captures attribute dependencies by allocating correlated attributes to shared atoms.
One positively correlated and one weakly negatively correlated (not significant) attribute pair are
presented as examples in Table 3. “Left Ventricle Volume” and “Myocardial Volume” are jointly
assigned to atom 313, with a strong ground-truth sample correlation (Pearson rsample = 0.675, p =
0.001). Using Equation (8) to estimate attributes from the sparse codes, Attri-SSC-VAE preserves
this relationship (rrecon = 0.657, p = 0.001), closely matching the ground truth, whereas Attri-
VAE slightly underestimates the correlation (rrecon = 0.617). Conversely, for a weakly negatively
correlated pair such as “Myocardial Volume” and “FEVG” (rsample = −0.271, p = 0.147), Attri-
SSC-VAE produces a similarly weak reconstructed correlation (rrecon = −0.146, p = 0.442), while
Attri-VAE exaggerates the relationship (rrecon = −0.515, p = 0.004). These results indicate that
the one-to-few atom mapping in Attri-SSC-VAE effectively captures clinically relevant attribute
correlations, yielding a more faithful and interpretable representation compared to Attri-VAE.

4.3 ABLATION STUDIES

4.3.1 ONE-TO-FEW VS. ONE-TO-ONE MAPPING

To examine the effect of one-to-few mapping in Attri-SSC-VAE, we compare it against the one-to-
one mapping strategy used in Attri-VAE (Cetin et al., 2022). The results, summarized in Table 4,
are evaluated in terms of AR loss and reconstruction quality.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Attri-SSC-VAE (Full): The full model achieves strong overall performance, combining low AR
loss with high-fidelity reconstructions, as reflected by PSNR of 28.64 and SSIM of 0.94.

–Shared Mapping (–W): Replacing the shared one-to-few mapping with a one-to-one binding de-
grades both AR loss and reconstruction performance, showing that shared atoms are better for cap-
turing attribute correlations and enabling attribute alignment.

Table 4: Ablation study results on the contribution of key model components.

Model Variant AR-Loss ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
Attri-SSC-VAE 1073.18 28.64 0.94 42.16 0.049

w/o shared Mapping (-W) 1091.40 28.04 0.92 47.73 0.080

4.3.2 HYPERPARAMETER γ SENSITIVITY EVALUATION

Table 5 reports the effect of varying on the trade-off between reconstruction quality and attribute
regularization. When γ is small (e.g., 0.1 or 1), the model generally maintains good reconstruction
performance (PSNR and SSIM remain close to the baseline without AR loss, γ = 0), but the AR loss
remains high, indicating weak alignment between attributes and the latent representation. Introduc-
ing AR loss with γ = 5 achieves the lowest AR loss while preserving reconstruction quality (PSNR
and SSIM) and perceptual metrics (FID and LPIPS) compared to the baseline. This demonstrates
that adding explicit attribute regularization does not degrade performance while enables attribute-
related image editing, generation, and interpretation. However, setting γ too high (e.g., 10 or 100)
does not further reduce AR loss and instead harms image fidelity, as evidenced by decreased SSIM
and degraded perceptual quality. This suggests that overly strong regularization compromises the
representational capacity of the latent space.

Table 5: Ablation study results for different values of gamma.

gamma AR-Loss ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓
0 - 29.8703 0.9419 41.2179 0.043

0.1 1371.60 28.5174 0.9303 43.9887 0.056
1 1305.92 28.0889 0.9313 45.0348 0.061
5 1073.18 28.6414 0.9371 42.1573 0.049
10 1285.74 27.7333 0.9149 44.4684 0.064

100 1178.67 23.8924 0.8450 55.4306 0.154

5 CONCLUSIONS

In this paper, we introduced Attri-SSC-VAE, a novel framework that combines structured sparse
coding with variational autoencoders, guided by explicit clinical attributes. Our method enables
interpretable and controllable latent representations, where groups of dictionary atoms capture se-
mantic factors and attribute correlations, allowing precise manipulation of clinically meaningful
features. Extensive experiments on the EMIDEC dataset demonstrate that Attri-SSC-VAE achieves
superior reconstruction fidelity and generative quality compared to existing baselines, while pro-
ducing a semantically coherent latent space that supports smooth interpolations and attribute-guided
editing. These results highlight the potential of structured, attribute-regularized sparse represen-
tations for trustworthy and clinically relevant image generation. While our framework currently
relies on labeled attributes and 2D slices, it opens promising directions for semi-supervised attribute
discovery, extension to 3D volumetric data, and integration into downstream clinical tasks such as
diagnosis or treatment planning.
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A APPENDIX

A.1 NETWORK STRUCTURE

The detailed network structure, including specific layers, resolutions, and channels based on the
SSC-VAE backbone, is summarized in Table 6, where it follows a basic structure of encoder-decoder
with additional attentive LISTA for structural sparse coding.

A.2 EMIDEC DATASET

All experiments were conducted on the publicly available EMIDEC dataset(Lalande et al., 2020).
EMIDEC dataset is a medical imaging dataset designed for the automatic evaluation of myocar-
dial infarction (MI), with a particular focus on Delayed-Enhancement Cardiac MRI (DE-MRI) se-
quences. The dataset was collected by the University Hospital of Dijon, France, and aims to advance
the research in automated analysis and deep learning methods within the field of cardiac imaging.
The dataset includes imaging data from 150 different patients, with 100 cases in the training set,
consisting of 33 healthy and 67 pathological cases. The test set includes 50 cases, with 33 patholog-
ical and 17 healthy cases. For each case, there is a text file containing clinical information, a NIfTI
file with the images, and a NIfTI file with the labeled mask of each area (background, myocardium,
cavity, myocardial infarction, and no-reflow).

A.3 EVALUATION METRICS

We evaluate reconstruction quality along three complementary dimensions: voxel-level fidelity, per-
ceptual realism, and information preservation.

• Voxel-level fidelity:

– PSNR (Peak Signal-to-Noise Ratio): Measures pixel-wise reconstruction accuracy.
Higher values indicate lower reconstruction error and better fidelity.

– SSIM (Structural Similarity Index): Quantifies structural similarity between recon-
structed and ground-truth images, capturing luminance, contrast, and texture consis-
tency.

• Perceptual quality:
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Table 6: SSC-VAE backbone.

Block Layers Resolution Channels

Input - D ×H ×W 1

Encoder

Conv D ×H ×W 128
ResidualBlock(2×Conv + ReLU) D ×H ×W 128

DownSampleBlock(Conv + BatchNorm + MaxPool) D/2×H/2×W/2 512
ResidualBlock(2×Conv + ReLU) D/2×H/2×W/2 512

DownSampleBlock(Conv + BatchNorm + MaxPool) D/4×H/4×W/4 512
ResidualBlock(2×Conv + ReLU) D/4×H/4×W/4 512

DownSampleBlock(Conv3 + BatchNorm + MaxPool) D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512

NonLocalBlock(4×Conv + Softmax) D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512

GroupNorm + Swish + Conv D/8×H/8×W/8 256

AttentiveLISTA
Conv D/8×H/8×W/8 512

ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512

CBAM(ChannelAttention + SpatialAttention) D/8×H/8×W/8 512

Decoder

Conv D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512

NonLocalBlock(4×Conv + Softmax) D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512
ResidualBlock(2×Conv + ReLU) D/8×H/8×W/8 512

UpSampleBlock(ConvTranspose + Conv) D/4×H/4×W/4 512
ResidualBlock(2×Conv + ReLU) D/4×H/4×W/4 128

UpSampleBlock(onvTranspose + Conv) D/2×H/2×W/2 128
ResidualBlock(2×Conv + ReLU) D/2×H/2×W/2 128

UpSampleBlock(ConvTranspose + Conv) D ×H ×W 128
GroupNorm + Swish + Conv D ×H ×W 128

– FID (Fréchet Inception Distance): Evaluates the distance between feature distribu-
tions of reconstructed and real images, with lower scores reflecting more realistic and
natural-looking outputs.

– LPIPS (Learned Perceptual Image Patch Similarity): Assesses perceptual similarity by
comparing deep features of paired images. Lower LPIPS indicates higher perceptual
resemblance.

• Distributional alignment and information retention:
– MMD (Maximum Mean Discrepancy): Measures the statistical distance between the

distributions of reconstructed and ground-truth data, where smaller values indicate
better global distribution alignment.

– MI (Mutual Information): Quantifies how much information about the input image is
preserved in its latent representation. Higher MI reflects better encoding of clinically
relevant details.

A.4 LATENT-SPACE INTERPOLATION

To qualitatively assess the smoothness of the learned latent manifold, we performed linear interpo-
lation between latent representations of unseen test samples. A smooth and continuous latent space
is a key indicator that the model has learned a meaningful representation of the data distribution,
rather than simply memorizing the training set.

We begin by sampling two distinct images, denoted as Xi and Xj , from the test set. Their respective
latent-space representations, Zi and Zj , are obtained by passing them through the trained encoder
network. We then generate a sequence of intermediate latent vectors, Zα, by linearly interpolating
between Zi and Zj :

Zα = (1− α)Zi + αZj (16)
where the interpolation coefficient α is uniformly varied within the range [0,1]. Each interpolated
vector Zα is then fed into the decoder to synthesize a corresponding image X̂α.
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This procedure yields a sequence of images that visualizes a traversal path between the two initial
points in the latent space. The desired outcome is a sequence where the generated images exhibit
a semantically coherent and gradual transition from X̂i to X̂j . Smooth, anatomically plausible
transitions serve as strong evidence that our model has successfully captured the underlying structure
of the data, which is critical for robust image synthesis and downstream tasks such as modeling
disease progression (Cetin et al., 2022).

A.5 ATTRIBUTE-AWARE IMAGE GENERATION

A critical evaluation of the Attri-SSC-VAE framework involves assessing its capacity for fine-
grained, controllable synthesis of medical images via attribute manipulation. Unlike models with
a monolithic latent vector, our framework is explicitly designed to learn a discrete sparse atomic
representation of images. The core hypothesis is that through attribute regularization, the model
learns to associate specific clinical attributes with distinct, interpretable groups of dictionary atoms.
This experiment tests the hypothesis by showing that directly modulating the activation coefficients
of attribute-specific atoms, guided by the learned mapper W , produces precise and semantically
coherent edits to the corresponding visual features in the generated outputs.

The manipulation procedure consists of three main stages:

• Identifying attribute–atom associations. We begin with the learned linear mapper W ∈
R|A|×K , which links semantic attributes to the sparse coding dictionary for reconstruction
of a targeted attribute â, we select its most influential atoms by choosing the top-k entries
with the largest absolute weights |Wa,j |. Each weight’s sign is also recorded, since it
determines whether the atom contributes positively or negatively to the attribute, a key
factor for directional control.

• Characterizing valid activation ranges. To ensure manipulations remain within the nat-
ural distribution of the latent space, we estimate the empirical support of each atom using
the full training set. For atom j, we record its global activation bounds [Zmin

j , Zmax
j ] by

scanning all spatial locations and training instances. These data-driven bounds prevent
manipulations from drifting into out-of-distribution regions, thereby preserving anatomical
plausibility.

• Modulating activations to edit attributes.Given an input image X , we encode it into
sparse codes Z = Encoder(X). To manipulate attribute a, we adjust only the activations
of its top-k associated atoms while holding all others fixed. The adjustment is controlled
by a parameter α ∈ [−1, 1], sampled at equal intervals, producing the modified activation:

Z ′
j(α) = (1− |α|)Zj + |α|Bj,a(α),

for j ∈ top− k, where the target boundary Bj,a(α) is defined as

Bj,a(α) =

{
Zmax
j if sign(α) = sign(Wa,j),

Zmin
j otherwise.

This ensures that increasing α pushes activations toward the boundary that reinforces the
attribute, while decreasing α moves them in the opposite direction.

• Decoding to Image. The modified sparse codes Z ′ are decoded to generate the manip-
ulated image X̂α, yielding controlled, semantically consistent edits aligned with clinical
attributes.

To visually validate the spatial locus of our manipulation, we generate an attribute-wise attention
map for each synthesized image X̂α. Employing a gradient-based saliency method, we compute
the influence of the manipulated atoms on the final output. This effectively visualizes the spatial
footprint of our intervention, confirming which anatomical regions are being altered.
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A.6 EXPERIMENTAL HYPERPARAMETER SETTINGS

Table 7: Fixed Hyperparameter in our Experiment Settings.

Hyperparameter Value Category
batch size 4 Training setup
learning rate (Stage 1 and 3) 1× 10−4 Optimizer (Adam)
learning rate (Stage 2) 4× 10−4 Optimizer (Adam)

γ 5.0 Loss weights (attribute regularization, Eq. (15))
δ 10.0 Loss weights (scaling, Eq. (10))
µ 0.01 Loss weights (Eq. (15))
λrow 10.0 Loss weights (Stage 2, Eq. (12))
λcol 10.0 Loss weights (Stage 2, Eq. (12))

K 512 Number of Dictionary atoms
top-k 5 Attribute mapping

A.7 LLM USAGE

Writing is polished with the assistance of an LLM.
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