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Abstract— While humans naturally identify novel objects
and understand their relationships, deep learning-based object
detectors struggle to detect and relate objects that are not
observed during training. To overcome this issue, Open World
Object Detection (OWOD) has been introduced to enable
models to detect unknown objects in open-world scenarios.
However, OWOD methods fail to capture the finer relationships
between detected objects, which are crucial for comprehensive
scene understanding and applications. In this paper, we propose
a method to train an object detector that can both detect novel
objects and extract semantically rich features in open-world
conditions by leveraging the knowledge of Vision Foundation
Models (VFM). We first utilize the semantic masks from the
Segment Anything Model to supervise the box regression of
unknown objects, ensuring accurate localization. By transfer-
ring the instance-wise similarities obtained from the VFM
features to the detector’s instance embeddings, our method then
learns a semantically rich feature space of these embeddings.
Extensive experiments show that our method learns a robust
and generalizable feature space, additionally increasing the
detector’s applicability to tasks such as open-world tracking.

I. INTRODUCTION

Humans can identify novel objects and associate them
with similar objects based on their attributes, achieving a
comprehensive scene understanding. While deep learning-
based methods have improved perception, object detectors
still struggle to detect out-of-distribution objects. To per-
form robustly in real-world scenarios, detectors should be
able to detect unexpected objects and grasp the semantic
relationships between them. Recently, Open World Object
Detection (OWOD) [1] has been introduced to enhance
the detectors’ generalizability by enabling the detection of
unknown objects not labeled in the training set.

While OWOD aims to learn a generalized understanding of
object across diverse categories, they often overlook the finer
relationships between detected objects. Such relationships
are critical for a comprehensive understanding of a scene,
particularly in open-world applications. For example, tasks
such as object tracking [2]–[4] and class discovery [5], [6]
rely on feature similarity among proposals for association
and obstacle identification. However, existing approaches
that leverage object features from detectors fail to capture
detailed, meaningful information [6]–[8].
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Fig. 1: We propose a method for training an object detec-
tor that can accurately detect unknown objects and extract
semantically rich features in an open-world setting, thereby
effectively capturing the relationships between proposals.

Since existing OWOD methods lack supervision to learn
rich features of unknown objects, a few studies have tried to
enhance the feature quality by self-supervised learning using
unknown proposals [5], [6], [9]. However, the inaccurate
proposals from detectors hinder the methods of learning
robust features. Moreover, these methods focus on learning
representations of unknown objects present in the training
set, which we termed known-unknowns. In real-world de-
ployment, systems may also encounter unknown-unknown
objects that were never observed during training [10]. The
feature space should be able to embed both of them properly
based on their semantics.

We propose a method for training an object detector that
can detect unknown objects and extract semantically rich fea-
tures in an open-world setting by leveraging the knowledge
of the Vision Foundation Model (VFM). Specifically, seg-
mentation masks from Segment Anything Model (SAM) [11]
are utilized to supervise the regression of bounding boxes for
unknown objects. Moreover, the detector’s instance features
are enhanced by distilling the similarity between instances
obtained from VFM’s pixel-level features [12] to the detector.
This distillation is performed using a relaxed contrastive
loss [13], which provides a rich supervisory signal that
enables the learning of a generalizable feature space.

Through extensive experiments, we demonstrate that our
method significantly improves the unknown detection perfor-
mance and the feature embedding quality. Evaluation on a
novel benchmark shows the generalizability of our method
to embed both known-unknown and unknown-unknowns. Fur-
thermore, we show that learning semantically rich features
benefits downstream tasks, including open-world tracking.

II. RELATED WORKS
A. Open World Object Detection and Discovery

Open World Object Detection (OWOD) addresses the
problem of detecting objects in open-world scenarios [1].



Fig. 2: Overview of our method. PROB [14] is adopted for an open-word object detector. The Unknown Box Refine Module
enhances the regression of unknown proposals using the segmentation masks from SAM. The Embedding Transfer Module
distills instance-wise relationships obtained from DINOv2’s rich feature space to detector’s instance embeddings.

These methods use knowledge from labeled objects to ac-
quire an overall understanding of object [1], [14]–[19], by
directly classifying unknown proposals [1], [15], or learning
a continuous objectness score [14]. However, as they focus
on learning a generalized concept of objects, distinguishing
between different unknown objects remains challenging.

For a comprehensive scene understanding and OWOD
applications, detailed relationships between detected objects
are essential. Some methods attempt this through clustering
the detector’s features [7], [8], but the features often lack
meaningful information. To enrich the instance-wise features,
other methods employed self-supervised learning [13], [20]–
[23]. They applied contrastive learning between detected
unknown proposals [5], [6], [9], [22], [24], [25]. However,
the inaccurate proposals of detectors hinder the learning of
robust features [14], [15].

B. Foundation Model for Open World Object Detection

Efforts have been made to employ the foundation models
in OWOD due to their strong generalizability to previ-
ously unseen scenarios [16], [26]–[28]. As these models
are computationally demanding, several approaches focus on
distilling knowledge from foundation models to detectors
rather than using them directly [29], [30]. For instance,
semantic masks obtained from SAM can enhance the box
regression of unknown objects [31], or features from large
language models are utilized to learn attributes of unknown
objects [16]. Despite the advances, current approaches have
not yet attempted to distill the instance-level features from
foundation models into the detector’s embeddings.

III. METHODS

Given a dataset D = {Ii, yi}Mi=1 consisting of images Ii
and their corresponding labels yi, only objects from K of
the total P classes are labeled during the training phase.
This known dataset Dknown = {Ii, yknown

i }Mi=1, where yknown
i

denotes the labels excluding any unknown classes, is used

to train the baseline open-world detector PROB [14]. PROB
generates query embeddings for each predicted object, which
are processed to compute box regression outputs, objectness
scores, and classification into one of the K known or back-
ground classes. Proposals classified as known are matched
with the ground truth via Hungarian matching to compute the
supervised loss Lsup [14]. For background proposals, those
with high objectness scores are considered as unknowns. The
top-k proposalsare selected as pseudo-unknown objects, with
their bounding boxes Bu = {bu,i}ki=1.

A. Unknown Box Refine Module
PROB localizes objects using bounding box labels of

known objects, making it difficult to accurately localize
unknown objects. Inaccurate bounding boxes also nega-
tively impact instance-wise feature learning, as they rely
on predicted proposals during the learning process [5], [9].
Additionally, numerous false-positive proposals hinder mean-
ingful feature extraction. To enhance detection accuracy and
feature learning, more precise bounding boxes for unknown
objects are essential.

We employ SAM’s high-quality semantic masks to super-
vise the regression of unknown objects and obtain accurate
boxes [11]. Given an input image I , each pseudo-unknown
box bu,i is used as a prompt for SAM to generate a refined
unknown box bSAM

u,i . Only the refined boxes that have an
Intersection over Union (IoU) above a certain threshold κ
with pseudo-unknown boxes are used for training, to remove
false positive proposals and retain only accurate unknown
boxes. The regression head is then trained using these refined
boxes as the ground truth, with unknown regression loss
calculated as follows:

Lunk,reg =
1

|U |
∑
i∈U

∥bu,i−bSAM
u,i ∥1−GIoU(bu,i,b

SAM
u,i ), (1)

where U is the set of indices corresponding to pseudo-
unknowns with highly overlapping refined boxes, and GIoU
denotes the Generalized Intersection over Union [32].



TABLE I: Quantitative results on M-OWODB and U-OWODB.

Method
M-OWODB U-OWODB

K-mAP U-Recall Recall@1 DetRecall@1 DetRecall@2 U-Recall Recall@1 DetRecall@1 DetRecall@2

PROB [14] 58.88 18.84 26.6 5.01 6.89 37.86 35.33 13.38 19.06
OSODD [9] 58.88 18.84 28.61 5.39 7.14 37.89 34.65 13.12 17.82
RNCDL [6] 57.53 18.94 11.15 2.11 3.08 37.59 16.97 6.38 10.82

Ours 59.32 30.43 40.54 12.34 15.18 44.09 44.46 19.60 25.70

B. Embedding Transfer Module

Previous self-supervised methods for learning semantically
rich features often suffer from imprecise supervision, under-
scoring the need for a robust supervisory signal. Further-
more, the feature space should effectively embed unknown-
unknowns by accurately capturing instance-wise relation-
ships. To achieve this, we transfer the rich and generalizable
features of the VFM to the detector using contrastive loss,
weighted by pairwise similarities from the VFM. This en-
sures that similar proposals in the VFM feature space remain
close in the detector’s embeddings.

We utilize the pixel-level feature from DINOv2 [12] as our
source embedding space. First, the DINOv2 embedding F for
image I is acquired and then resized to the original image
dimensions. To obtain proposal-wise features, the bounding
boxes B = {bi}Ni=1 which include both the known and
refined unknown boxes are utilized, where N represents
the total number of such boxes. Mean pooling on F over
each bounding box region yields the proposal-wise source
embedding T = {ti}Ni=1.

To distill the inter-sample relations of source embeddings
to the detector’s embedding, the semantic similarity of pair-
wise source embeddings is computed from their Euclidean
distance, using a Gaussian kernel [13] as follows:

wij = exp

(
−∥ti − tj∥22

σ

)
, (2)

where σ is the kernel bandwidth. Then, the detector’s in-
stance embeddings Z = {zi}Ni=1 with dimension d are
obtained by forwarding the query embeddings corresponding
to B through an MLP head. The instance embeddings are
trained using the following relaxed contrastive loss [13]
formulated as follows:

Let =
1

N

N∑
i=1

N∑
j=1

[
wijx

2
ij + (1−wij) [δ − xij ]

2
+

]
, (3)

where xij = ∥zi − zj∥2 denote the Euclidean distance
between instance embeddings and δ is margin.

By minimizing this loss, the network adjusts the instance
embeddings based on their semantic similarity as captured
by DINOv2. In contrast to binary contrastive loss which
neglects the degree of similarity between samples, relaxed
contrastive loss leverages detailed inter-sample relations,
thereby enhancing its generalizability. Our final loss function
is as follows, where α and β are the weight coefficients:

L = Lsup + αLunk,reg + βLet. (4)

Fig. 3: Qualitative results of inter-proposal relationships.
Proposals with high feature similarity to the query proposal
are colored red, while highly dissimilar are colored blue.

IV. EXPERIMENTS
A. Experimental Setup

Datasets. We used the Superclass-Mixed OWOD Bench-
mark (M-OWODB) introduced in previous OWOD methods
for evaluation [1], [14], [15]. This benchmark combines im-
ages from multiple datasets, including MS-COCO [33], PAS-
CAL VOC2007 [34], and PASCAL VOC2012, and divides
it into four non-overlapping tasks {T1, . . . , T4}. We train the
detector on images from task T1 where only 20 classes are
labeled. The remaining 60 classes in {T2, T3, T4} are left
unlabeled and considered as unknowns. To better simulate
real-world scenarios with unseen objects, we introduce the
Unknown-Unknown OWOD Benchmark (U-OWODB), where
all images containing unknown classes are excluded from
the training set. This prevents the detector from learning any
specific features of unknowns, thus evaluating its ability to
learn a generalizable feature space for truly unseen objects.
Implementation Details. We utilized PROB [14] for the
open-world object detector, with query embedding dimension
of d = 256. The training is conducted for 41 epochs with
batch size 32, starting with only the Lsup using labels from
known classes. The losses Lunk,reg and Let are applied after
36 and 15 epochs, respectively. For embedding transfer,
ViT-L DINOv2 [12] is utilized with k = 10. The ViT-H
SAM [11] is utilized, and four regular grid points from
each proposal are sampled to use as prompts to SAM.
The remaining hyperparameters are set as follows: κ = 0.5,
σ = 1.0, δ = 1.0, α = 0.1, β = 1.0.
Evaluation Metrics. Detection quality for known objects
is evaluated using mean Average Precision (mAP). For
unknown objects, false positives become unreliable as not



TABLE II: Ablation studies for each module. Note that R@1
indicates Recall@1 and DetR@1 indicates DetRecall@1.

Module M-OWODB U-OWODB

ET BR U-Recall R@1 DetR@1 U-Recall R@1 DetR@1

✗ ✗ 18.84 26.60 5.01 37.86 35.33 13.38
✓ ✗ 18.60 41.73 7.76 36.99 43.92 16.25
✗ ✓ 31.33 23.69 7.42 46.12 34.79 16.05
✓ ✓ 31.61 40.54 12.34 44.09 44.46 19.60

every object in the dataset is labeled, so we use Unknown-
Recall (U-Recall) as a metric [2], [14], [15].

To assess the quality of instance embeddings, we compute
Recall@K for the prediction with the highest overlap for
each ground truth (GT) object. However, Recall@K alone is
unreliable due to the absence of consideration for undetected
object’s embeddings. To resolve this issue, we introduce
a new metric dubbed Detection Recall (DetRecall), which
assumes that undetected GT objects have no corresponding
samples among their K-nearest neighbors. By adjusting the
denominator of Recall@K from the number of predictions to
the number of GT objects, DetRecall is computed as follows:

DetRecall@K = Recall@K × U-Recall. (5)

Comparison Methods. The baseline method PROB [8], [14]
uses the query embeddings from the detector. We also eval-
uated several methods that apply self-supervision to enhance
feature quality. OSODD [9] employs augmentation-based
self-supervision by generating multiple views of cropped
proposal images to train a separate embedding network [22].
On the other hand, RNCDL directly optimizes the detector’s
features by clustering all the features based on their similarity
and treating all embeddings within a cluster as positive pairs.
All methods are implemented based on the PROB framework.

B. Experimental Results

Comparison under M-OWODB. The quantitative results
are summarized in Table. I. By transferring rich and robust
supervisory signals from VFM, our method outperforms
other approaches in both feature embedding quality and
unknown object detection. The substantial drop in RNCDL’s
performance indicates that numerous false positives lead to
misassigned clusters during self-supervised learning, result-
ing in ineffective features. Despite the presence of numerous
false positives, our method successfully learns meaningful
feature space and inter-proposal relations, as shown in Fig. 3.
Comparison under U-OWODB. Table I shows that our
method successfully embeds the objects of unknown-
unknown classes. Methods relying on self-supervision show a
larger performance drop compared to M-OWODB, suggest-
ing that rigid pair assignments limit feature space generaliz-
ability by focusing on known-unknown classes. In contrast,
by distilling detailed instance-wise relationships from VFM,
our method learns a more generalizable feature space.
Ablation Studies. We conduct ablation studies to validate
the effectiveness of each component, as summarized in
Table II. The Embedding Transfer Module (ET) improves

TABLE III: Quantitative results for the open-world tracking.
A-Accuracy represent Association Accuracy [2].

Method U-Recall A-Accuracy OWTA

PROB [14] 48.67 8.49 19.72
Ours 54.38 9.41 22.18

the feature embedding quality, demonstrating that distilling
VFM’s instance-wise relationships enhances the detector’s
feature space. Additionally, the adoption of an Unknown
Box Refine Module (BR) improves the accurate localization
of boxes. Overall, combining both components achieves the
highest performance in terms of DetRecall by learning the
feature embedding from the accurate unknown boxes.

Fig. 4: Qualitative results in an open-world tracking scenario.
Bounding box colors represent track IDs.

Application to Open-World Tracking. To validate the
applicability of our method, we conduct open-world track-
ing [2] using the proposals and features from the detector.
DeepSORT [4] is used as the tracker, which matches pro-
posals across adjacent frames by combining the IoU with
the similarity of the instance embeddings. The experiment
is conducted on a subset of the TAO-OW dataset [2], which
contains objects exhibiting dynamic movement, and evalu-
ated on unknown objects using OWTA metric [2]. Table III
shows our method improves both unknown object detection
and frame-to-frame association accuracy. Fig. 4 illustrates
an example tracking scenario. Using feature embeddings
from PROB fails to properly associate the rapidly moving
squirrel, even when it is successfully detected and meets the
IoU threshold. In contrast, our method learns semantically
rich instance embeddings and successfully matches squirrel
detections.

V. CONCLUSION

This paper presents a method to learn object detectors
to successfully detect unknown objects and extract seman-
tically rich features in open-world scenarios. By leveraging
the knowledge of Vision Foundation Models, the proposed
method accurately localizes unknown objects and learns the
nuanced relationships between instance features. We believe
that learning such semantically rich and generalizable feature
space can expand the applicability of open-world object
detectors, as demonstrated by extensive experiments.
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