
Efficient Dataset Distillation
using Random Feature Approximation

Noel Loo, Ramin Hasani, Alexander Amini, Daniela Rus
Computer Science and Artificial Intelligence Lab (CSAIL)

Massachusetts Institute of Technology (MIT)
{loo, rhasani, amini, rus} @mit.edu

Abstract

Dataset distillation compresses large datasets into smaller synthetic coresets which
retain performance with the aim of reducing the storage and computational burden
of processing the entire dataset. Today’s best-performing algorithm, Kernel Induc-
ing Points (KIP), which makes use of the correspondence between infinite-width
neural networks and kernel-ridge regression, is prohibitively slow due to the exact
computation of the neural tangent kernel matrix, scaling O(|S|2), with |S| being
the coreset size. To improve this, we propose a novel algorithm that uses a random
feature approximation (RFA) of the Neural Network Gaussian Process (NNGP)
kernel, which reduces the kernel matrix computation to O(|S|). Our algorithm
provides at least a 100-fold speedup over KIP and can run on a single GPU. Our
new method, termed an RFA Distillation (RFAD), performs competitively with KIP
and other dataset condensation algorithms in accuracy over a range of large-scale
datasets, both in kernel regression and finite-width network training. We demon-
strate the effectiveness of our approach on tasks involving model interpretability
and privacy preservation.1

1 Introduction

KIP RFAD
(ours)

Time per iteration Accuracy

KIP RFAD
(ours)

460s

2.4s

67%
73.1%

191.6 tim
es faster

+6.1% gain

Example Distilled
Dataset from CelebA

Class Male

Class Female
Train on this 2 images,
get 92% classification acc

Figure 1: RFAD provides over 100-fold speedup
over the state-of-the-art algorithm Kernel-Inducing
Points (KIP) [Nguyen et al., 2021a], while exceed-
ing its performance on CIFAR-10. (right) Example
distilled synthetic sets one image per class

Coreset algorithms aim to summarize large
datasets into significantly smaller datasets that
still accurately represent the full dataset on
downstream tasks [Jubran et al., 2019]. There
are myriad applications of these smaller datasets
including speeding up model training [Mirza-
soleiman et al., 2020], reducing catastrophic for-
getting [Aljundi et al., 2019, Rebuffi et al., 2017,
Borsos et al., 2020], and enhancing interpretabil-
ity [Kim et al., 2016, Bien and Tibshirani, 2011].
While most coreset selection techniques aim to
select representative data points from the dataset,
recent work has looked at generating synthetic
data points instead, a process known as dataset
distillation [Wang et al., 2018, Bohdal et al.,
2020, Sucholutsky and Schonlau, 2019, Zhao et al., 2021, Zhao and Bilen, 2021b, Nguyen et al.,
2021b]. These synthetic datasets have the benefit of using continuous gradient-based optimization
techniques rather than combinatorial methods and are not limited to the set of images and labels given
by the dataset, providing added flexibility and performance.

1Code is available at https://github.com/yolky/RFAD

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A large variety of applications benefit from obtaining an efficient dataset distillation algorithm. For
instance, Kernel methods [Vinyals et al., 2016, Kaya and Bilge, 2019, Snell et al., 2017, Ghorbani
et al., 2020, Refinetti et al., 2021] usually demand a large support set in order to generate good
prediction performance at inference. This can be facilitated by an efficient dataset distillation pipeline.
Moreover, distilling a synthetic version of sensitive data helps preserve privacy; a support set can
be provided to an end-user for the downstream applications without disclosure of data. Lastly, for
resource-hungry applications such as continual learning [Borsos et al., 2020], neural architecture
search [Shleifer and Prokop, 2019] and automated machine learning [Hutter et al., 2019], generation
of a support-set on which we can fit models efficiently is very helpful.

Recently, a dataset distillation method called Kernel-Inducing Points (KIP) [Nguyen et al., 2021a,b]
showed great performance in neural network classification tasks. KIP uses Neural Tangent Kernel
(NTK) ridge-regression to exactly compute the output states of an infinite-width neural network
trained on the support set. Although the method established the state-of-the-art for dataset distillation
in terms of accuracy, the computational complexity of KIP is very high due to the exact calculation of
the NTK. The algorithm, therefore, has limited applicability.

In this paper, we build on the prior work on KIP and develop a new algorithm for dataset distillation
called RFAD, which has similar accuracy and significantly better performance than KIP. The key
insight is to introduce a new kernel inducing point method that improves complexity from O(|S|2)
(where |S| is the support-set size) to O(|S|). To this end, we make three major contributions:

I. We develop RFAD, a fast, accurate, and scalable algorithm for dataset distillation in neural network
classification tasks.

II. We improve the time performance of KIP [Nguyen et al., 2021a,b] by over two orders of magnitude
while retaining or improving its accuracy. This speedup comes from leveraging a random-feature
approximation of the Neural Network Gaussian Process (NNGP) kernel by instantiating random
neural networks.

III. We show the effectiveness of RFAD in efficient dataset distillation tasks, enhancing model
interpretability and privacy preservation.

2 Background and Related Work

Coresets and Dataset Distillation. Coresets are a subset of data that ensure models trained on
them show competitive performance compared to models trained directly on data. Standard coreset
selection algorithms use importance sampling to find coresets [Har-Peled and Mazumdar, 2004,
Lucic et al., 2017, Cohen et al., 2017]. Besides random selection methods, inspired by catastrophic
forgetting [Toneva et al., 2019] and mean-matching (adding samples to the coreset to match the mean
of the original dataset) [Chen et al., 2010, Rebuffi et al., 2017, Castro et al., 2018, Belouadah and
Popescu, 2020, Scholkopf et al., 1999], new algorithms have been introduced. An overview of how
coresets work on point approximation is provided in Phillips [2016]

More recently, aligned with coreset selection methods, new algorithms have been developed to distill
a synthetic dataset from a given dataset, such that fitting to this synthetic set provides performance on
par with training on the original dataset [Wang et al., 2018]. To this end, these dataset condensation
(or distillation) algorithms use gradient matching [Zhao et al., 2021, Maclaurin et al., 2015, Lorraine
et al., 2020], utilize differentiable siamese augmentation [Zhao and Bilen, 2021b], and matching
distributions [Zhao and Bilen, 2021a]. Dataset distillation has also been applied to the labels rather
than images [Bohdal et al., 2020]. Recently, a novel algorithm called Kernel Inducing Points
(KIP) [Nguyen et al., 2021a,b] has been introduced that performs very well on distilling synthetic
sets by using neural tangent kernel ridge-regression (KRR). KIP, similar to other algorithms, is
computationally expensive. Here, we propose a new method to significantly improve its complexity.

Infinite Width Neural Networks. Single-layer infinite-width randomly initialized neural networks
correspond to Gaussian Processes [Neal, 1996], allowing for closed-form exact training of Bayesian
neural networks for regression. Recently, this has been extended to deep fully-connected networks
[Lee et al., 2018, de G. Matthews et al., 2018], convolutional networks [Novak et al., 2019, Garriga-
Alonso et al., 2019], attention-based networks [Hron et al., 2020], and even to arbitrary neural
architectures [Yang, 2019], with the corresponding GP kernel being the NNGP Kernel. Likewise, for
infinite-width neural networks trained with gradient descent, the training process simplifies dramati-

2

cally, corresponding to kernel ridge regression when trained with MSE loss with the corresponding
kernel being the Neural Tangent Kernel (NTK) [Jacot et al., 2018, Arora et al., 2019, Loo et al.,
2022]. These two kernels are closely related, as the NNGP kernel forms the leading term of the NTK
kernel, representing the effect of the final layer weights. Calculation of kernel entries typically scales
with O(HWD) for conv nets, with H,W being the image height and width, D the network depth,
and O(H2W 2D) for architectures with global average pooling [Arora et al., 2019]. This, combined
with the necessity of computing and inverting the N ×N kernel matrix for kernel ridge regression,
typically make these methods intractable for large datasets [Snelson and Ghahramani, 2006, Titsias,
2009].

Random Feature methods. Every kernel corresponds to a dot product for some feature map:
k(x, x′) = ϕ(x)Tϕ(x′). Random feature methods aim to approximate the feature vector with a
finite-dimensional random feature vector, the most notable example being Random Fourier Features
[Rahimi and Recht, 2007]. Typically, this limits the rank of the kernel matrix, enabling faster matrix
inversion and allowing for scaling kernel methods to large datasets. Recently, these random feature
methods have been used to speed up NTKs and NNGPs [Zandieh et al., 2021, Novak et al., 2022,
2019] at inference or for neural architecture search [Peng et al., 2020]. In this work, we focus on the
NNGP approximation described in Novak et al. [2019], as it only requires network forward passes
and is model agnostic, allowing for flexible usage across different architectures without more complex
machinery needed to calculate the approximation, unlike those found in Zandieh et al. [2021], Novak
et al. [2022].

3 Algorithm Setup and Design

In this section, we first provide a high-level background on the KIP algorithm. We then sequentially
outline our modifications leading to the RFAD algorithm.

3.1 KIP Revisit

The Kernel-Inducing Point algorithm [Nguyen et al., 2021a,b], or KIP, is a dataset distillation
technique that uses the NTK kernel ridge-regression correspondence to compute exactly the outputs
of an infinite-width neural network trained on the support set, bypassing the need to ever compute
gradients or back-propagate on any finite network. Let XT , yT correspond to the images and one-hot
vector labels on the training dataset and let XS , yS be the corresponding images and labels for
the support set, which we aim to optimize. We have the outputs of a trained neural network as
f(XT) = KTS(KSS +λI)−1yS , with K being the kernel matrices calculated using the NTK kernel,
with T × S or S × S entries, for KTS and KSS , respectively. λ is a small regularization parameter.
KIP then optimizes LMSE = ||yT − f(XT)||22 directly. The key bottleneck is the computation of
these kernel matrices, requiring O(TS ·HWD) time and memory, necessitating the use of hundreds
of GPUs working in parallel. Additionally, the use of the MSE loss is suboptimal.

3.2 Replacing the NTK Kernel with an NNGP Kernel

We first replace the NTK used in the kernel regression of KIP with an NNGP kernel. While this
change alone would yield a speed up, as the NNGP kernel is less computationally intensive to compute
[Novak et al., 2020], we primarily do this because the NNGP kernel admits a simple random feature
approximation, with advantages described later in this section. We first justify the appropriateness of
this modification.

Firstly, we denote that in the computation of NTK (Θ) and NNGP (K) forms the leading term, as
shown in Table 1 in Appendix D of [Novak et al., 2020] which outlines the NTK and NNGP kernel
computation rules for various layers of a neural network. For fully connected (FC) layers, which is
the typical final layer in neural network architectures, the remaining terms are suppressed by a matrix
of expected derivatives with respect to activations, K̇, as observed by the recursion yielded from the
computation of the NTK for an FC network [Novak et al., 2020]: Θl = Kl + K̇l ⊙Θl−1. For ReLU
activations, the entries in this derivative matrix are upper bounded by 1, so the remaining terms must
have a decaying contribution. We verify that our algorithms still provide good performance under the
NTK and for finite networks trained with gradient descent, justifying this approximation.

3

Algorithm 1 Dataset distillation with NNGP random features
Require: Training set and labels XT , yT , Randomly initialized coreset and labels XS , yS , Random

network count N , Random network output dimension M , Batch size |B|, Random network
initialization distribution, p(θ), Regularization coefficient, λ, Learning rate η,
while loss not converged do

Sample batch from the training set XB , yB ∼ p(XT , yT)
Sample N random networks each with output dimension M from p(θ): θ1, ...θN ∼ p(θ)
Compute random features for batch with random nets:

Φ̂(XB)← 1√
NM

[fθ1 (XB),...,fθN (XB)]T∈R|NM|×|B|

Compute random features for support set with random nets:
Φ̂(XS)← 1√

NM
[fθ1 (XS),...,fθN (XS)]T∈R|NM|×|S|

Compute kernel matrices: K̂BS ← Φ̂(XB)
T Φ̂(XS)

K̂SS ← Φ̂(XS)
T Φ̂(XS)

Calculate trained network output on batch: ŷB ← K̂BS(K̂SS + λI|S|)
−1yS

Calculate loss: L = L(yB , ŷB)
Update coreset: XS ← XS − η ∂L

∂XS
, yS ← yS − η ∂L

∂yS

end while

3.3 Replacing NNGP with an Empirical NNGP

When we sample from a Gaussian process f ∼ GP(0,K), it suggests a natural finite feature map
corresponding to scaled draws from the GP: ϕ̂(x) = 1√

N
[f1(x), ..., fN (x)]T . For most GPs, this

insight is not relevant, as sampling from a GP typically requires a Cholesky decomposition of the
kernel matrix, requiring its computation in the first place [Rasmussen and Williams, 2006]. However,
for NNGP we can generate approximate samples of f by instantiating random neural networks,
fi(x) = fθi(x), θi ∼ p(θ), for some initialization distribution p(θ). Moreover, with a given neural
network, we can define fi to be a vector of dimension M by having a network with multiple output
heads, meaning that with N networks, we have N M features. For our purposes, we typically have
N = 8, M = 4096, giving 32768 total features. For the convolutional architectures we consider, this
corresponds to C = 256 convolutional channels per layer. Even with this relatively large number of
features, we still see a significant computation speedup over exact calculation.

To sample f ∼ GP(0,K), we would have to instantiate random infinite width neural nets, whereas,
in practice, we can only sample finite ones. This discrepancy incurs an O(1/C) bias to our kernel
matrix entries, with C being the width-relevant parameter (i.e., convolutional channels) [Yaida, 2020].
However, we have a O(1/(NC)) variance of the mean of the random features [Daniely et al., 2016],
meaning that in practice, the variance dominates the computation over bias. This has been noted
empirically in Novak et al. [2019], and we verify that the finite-width bias does not significantly
affect performance in appendix I, showing that we can achieve reasonable performance with as little
as one convolution channel.

The time cost of computing these random features is linear in the training set and coreset size,
|T |, |S|. With the relatively low cost of matrix multiplication, this results in the construction of the
kernel matrices KTS and KSS having O(|T | + |S|) and O(|S|), time complexity, respectively, as
opposed to O(|T ||S|) and O(|S|2) with KIP. Noting that the cost of matrix inversion is relatively
small compared to random feature construction, our total runtime is reduced to linear in the coreset
size. We empirically verify this linear time complexity in section 4.1 and additionally provide a more
detailed discussion in appendix C.

3.4 Loss Function in dataset distillation

We denoted earlier that LMSE is not well suited for dataset distillation settings. In particular, there
are two key problems:

Over-influence of already correctly classified data points. Consider two-way classification, with
the label 1 corresponding to the positive class and −1 corresponding to the negative class. Let x1

and x2 be items in the training set whose labels are both 1. Let fKRR(x) = Kx,S(KSS + λI)−1yS
be the KRR output on x given our support set XS . If fKRR(x1) = 5 and fKRR(x2) = −1, then the

4

Table 1: Kernel distillation results on five datasets with varying support set sizes. Bolded numbers
indicate the best performance with fixed labels, and underlined numbers indicate the best performance
with learned labels. Note that DC and DSA use fixed labels. (n = 4)

Fixed Labels Learned Labels

Img/Cls DC DSA KIP RFAD (ours) KIP RFAD (ours)

MNIST
1 91.7± 0.5 88.7± 0.6 95.2± 0.2 96.7± 0.2 97.3± 0.1 97.2± 0.2

10 97.4± 0.2 97.8± 0.1 98.4± 0.0 99.0± 0.1 99.1± 0.1 99.1± 0.0
50 98.8± 0.1 99.2± 0.1 99.1± 0.0 99.1± 0.0 99.4± 0.1 99.1± 0.0

Fashion-MNIST
1 70.5± 0.6 70.6± 0.6 78.9± 0.2 81.6± 0.6 82.9± 0.2 84.6± 0.2

10 82.3± 0.4 84.6± 0.3 87.6± 0.1 90.0± 0.1 91.0± 0.1 90.3± 0.2
50 83.6± 0.4 88.7± 0.2 90.0± 0.1 91.3± 0.1 92.4± 0.1 91.4± 0.1

SVHN
1 31.2± 1.4 27.5± 1.4 48.1± 0.7 51.4± 1.3 64.3± 0.4 57.4± .8

10 76.1± 0.6 79.2± 0.5 75.8± 0.1 77.2± 0.3 81.1± 0.5 78.2± 0.5
50 82.3± 0.3 84.4± 0.4 81.3± 0.2 81.8± 0.2 84.3± 0.1 82.4± 0.1

CIFAR-10
1 28.3± 0.5 28.8± 0.7 59.1± 0.4 61.1± 0.7 64.7± 0.2 61.4± 0.8

10 44.9± 0.5 52.1± 0.5 67.0± 0.4 73.1± 0.1 75.6± 0.2 73.7± 0.2
50 53.9± 0.5 60.6± 0.5 71.7± 0.2 76.1± 0.3 80.6± 0.1 76.6± 0.3

CIFAR-100 1 12.8± 0.3 13.9± 0.3 31.8± 0.3 36.0± 0.4 34.9± 0.1 44.1± 0.1
10 25.2± 0.3 32.3± 0.3 46.0± 0.2 44.9± 0.2 49.5± 0.3 46.8± 0.2

resulting MSE error on x1 and x2 would be 16 and 4, respectively. Notably, x1 incurs a larger
loss and results in a larger gradient on XS than x2, despite being correctly classified and x2 being
incorrectly classified. In the heavily constrained dataset distillation setting, fitting both data points
simultaneously is not possible, leading to underfitting of the data in terms of classification in order to
better fit already-correctly labeled data points in terms of regression.

Unclear probabilistic interpretation of MSE for classification. This prevents regression from
being used directly in calibration-sensitive environment, necessitating the use of transformation
functions in tasks such as GP classification [Williams and Barber, 1998, Milios et al., 2018].

Based on these two issues, we adopt : Platt scaling [Platt, 2000], by applying a cross entropy loss to
the labels instead of an MSE one: Lplatt = x-entropy(yT , f(XT)/τ), where τ is a positive learned
temperature scaling parameter. Unlike typical Platt scaling, we learn τ jointly with our support set
instead of post-hoc tuning on a separate validation set. f(XT) is still calculated using the same
KRR formula. Accordingly, this corresponds to training a network using MSE loss, but at inference,
scaling the outputs by τ−1 and applying a softmax to get a categorical distribution. Unlike typical
GP classification, we ignore the variance of our predictions, taking only the mean instead.

The combination of these three changes, namely, using the NNGP kernel instead of NTK, applying a
random-feature approximation of NNGP, and Platt-scaling result in our RFAD algorithm, which is
given in algorithm 1.

4 Experiments with RFAD

Here, we perform experiments to evaluate the performance of RFAD in dataset distillation tasks.

Benchmarks. We applied our algorithm to five datasets: MNIST, FashionMNIST, SVHN, CIFAR-10
and CIFAR-100 [LeCun et al., 2010, Xiao et al., 2017, Netzer et al., 2011, Krizhevsky et al., 2009],
distilling the datasets to coresets with 1, 10 or 50 images per class.

Network Structure and Training Setup. Similar to previous work on dataset distillation, we used
standard ConvNet architectures with three convolutional layers with average pooling and ReLU
activations [Zhao et al., 2021, 2020, Nguyen et al., 2021b]. Similar to KIP [Nguyen et al., 2021b], we
do not use instancenorm layers because of the lack of an infinite-width analog. During training, we
used N = 8 random models, each with C = 256 convolutional channels per layer, and during test-
time, we evaluated the datasets using the exact NNGP kernel using the neural-tangents library [Novak
et al., 2020]. We consider both the fixed and learned label configurations, with Platt scaling applied
and no data augmentation. We used the regularized Zero Component Analysis (ZCA) preprocessing

5

Table 2: Performance of finite networks trained with gradient descent on DC/DSA, KIP, and RFAD
distilled images. * denotes the result was obtained using learned labels. (n = 12)

Img/Cls DC/DSA KIP to NN RFAD to NN

MNIST
1 91.7± 0.5 90.1± 0.1 94.4± 1.5∗

10 97.8± 0.1 97.5± 0.0 98.5± 0.1∗

50 99.2± 0.1 98.3± 0.1 98.8± 0.1

Fashion-
MNIST

1 70.6± 0.6 73.5± 0.5∗ 78.6± 1.3∗

10 84.6± 0.3 86.8± 0.1 87.0± 0.5
50 88.7± 0.2 88.0± 0.1∗ 88.8± 0.4

SVHN
1 31.2± 1.4 57.3± 0.1∗ 52.2± 2.2∗

10 79.2± 0.5 75.0± 0.1 74.9± 0.4
50 84.4± 0.4 80.5± 0.1 80.9± 0.3∗

CIFAR-10
1 28.8± 0.7 49.9± 0.2 53.6± 1.2∗

10 52.1± 0.5 62.7± 0.3 66.3± 0.5∗

50 60.6± 0.5 68.6± 0.2 71.1± 0.4

CIFAR-100 1 13.9± 0.3 15.7± 0.2 26.3± 1.1∗

10 32.3± 0.3 28.3± 0.1 33.0± 0.3∗

for SVHN, CIFAR-10, and CIFAR-100, to improve KRR performance for color image datasets
[Shankar et al., 2020, Nguyen et al., 2021b]. More details are available in appendix D.

Baselines. We compare RFAD to recently developed advanced dataset distillation algorithms such as:
KIP [Nguyen et al., 2021a,b], Dataset Condensation with gradient matching (DC) [Zhao et al., 2021],
and differentiable Siamese augmentation (DSA) [Zhao and Bilen, 2021b].

Table 1 summarizes the results. We observe that in the fixed label configuration, our method
outperforms other models in almost every dataset. In particular, it outperforms KIP by up to 6.1% in
the CIFAR-10 10 img/cls setting. We attribute this gain primarily to the use of Platt scaling. RFAD
falls slightly behind KIP with learned labels. While this could partially be explained because we
did not apply data augmentation, which marginally elevated performance for KIP on some datasets
[Nguyen et al., 2021b], we hypothesize that the performance difference is caused by the increased
gradient variance associated with the random feature method. Nevertheless, in all experiments, RFAD
is at least two orders of magnitude faster than KIP (Figure 2).

4.1 Time Savings during training

Next, we evaluated the time efficiency of RFAD. fig. 2 shows the time taken per training iteration on
CIFAR-10 over coreset sizes and the number of models, N used to evaluate the empirical NNGP
kernel during training. Each training iteration contains 5120 examples from the training set. fig. 2
depicts that the time taken by RFAD is linear in both the number of models used during training and
in the coreset size, validating the time complexity described above. We expect that for larger coreset
sizes, the matrix inversion will begin to dominate due to its cubic complexity, but for small coreset
sizes, the computation of the kernel matrix dominates the computation time.

Figure 2: Time per training iteration for RFAD
and KIP with varying number of models, N . Left:
Linear plot of time. Right: Logarithmic time for
training iteration. RFAD achieves over two-orders-
of-magnitude speedup compared KIP per training
iteration while converging with a similar number
of iterations.

In the right-hand side plot in fig. 2 we show the
same plot in log-scale, compared to KIP. For
KIP, we used a batch size of 5000, and rather
than measuring the time taken, we use the calcu-
lation provided in appendix B of [Nguyen et al.,
2021b], which describes the running time of
the algorithm. We observe evidently that even
for the modest coreset sizes, the quadratic time
complexity of computing the exact kernel ma-
trix in KIP results in it being multiple orders of
magnitude slower than our RFAD. Both KIP and
RFAD converge in between 3000-15000 training
iterations, resulting in times between 1-14hrs for
RFAD and several hundred GPU hours for KIP,
depending on the coreset size dataset, and when
the early stopping condition is triggered.

6

Figure 3: NNGP to NTK transfer performance on RFAD distilled images. The blue line indicates the
performance of RFAD distilled images evaluated on NNGP. The orange line shows the same images
evaluated using NTK. Despite being trained using the empirical NNGP kernel, these images still
perform well on the NTK kernel, losing at most a few percentage points. (n = 4)

Figure 4: Empirical NNGP kernel performance at test-time with a varying number of models used to
compute the empirical NNGP kernel and number of convolutional channels per model. (n = 5)

4.2 NTK Kernel and Finite Network Transfer

One of the key elements of the RFAD algorithm is the replacement of NTK with the empirical NNGP
kernel. While we argued earlier that the two should exhibit a similar performance given their similar
formalism, in this section, we verify this claim experimentally. We evaluated our distilled coresets
obtained from our RFAD algorithm in two different transfer scenarios. In the first setting, at test time,
we used an NTK kernel instead of the NNGP kernel. In the second setting, we trained a finite-width
network with gradient descent on the distilled datasets obtained via RFAD. Similar to [Nguyen et al.,
2021b], we used a 1024-width finite network for our finite-transfer results since it better mimics the
infinite width setting that corresponds to the NTK.

Remarkably, as shown in fig. 3, in most datasets, these coresets suffer little to no performance drop
when evaluated using NTK compared to the exact NNGP kernel, despite being trained using the
empirical NNGP kernel. The largest performance gap is 8% on SVHN with 10 images per class,
and in some datasets, notably CIFAR-100, 10 img/cls evaluating using the NTK kernel outperforms
NNGP. This suggests that either the exact NNGP kernel or the random feature NNGP kernel could
potentially be used as a cheaper approximation for the exact NTK kernel.

table 2 shows the resulting finite network transfer when training with gradient descent on our coresets.
Our images appear to have the best performance in finite-network transfer, outperforming KIP in
almost all benchmarks and the DC/DSA algorithms in many, despite DC/DCA being designed
specifically for finite-width networks. We attribute this performance gain over KIP primarily to two
tricks we used during training. Firstly, we applied centering, which, rather than training a typical
network fθ(x), we instead train a network with its output at initialization subtracted: fθ(x)− fθ0(x).

This has been shown empirically to speed up the convergence of finite-width networks by reducing
the bias caused by the finite-width initialization while still preserving the NTK [Lee et al., 2020,
Hu et al., 2020]. We find that for these small datasets, this modification significantly improves
performance. The second trick is label scaling; we scale the target labels by a factor α > 1:
Lα = ||fθ(x)− αy||22/α2, and at inference divide the model’s outputs by α. Note that this does not

7

Figure 5: Objective function sensitivity. (n = 4) to use Platt scaling and the number of models during
training (N) for Fashion-MNIST and CIFAR-10

affect the infinite-width setting, as in KRR, the output is linear w.r.t. the support set labels. Ablations
of these changes are in appendix F.

4.3 Empirical NNGP Performance at Inference

To validate the efficacy of our method, we evaluated our distilled coresets using features from random
networks as opposed to the exact kernel. We varied the width of individual networks between 128 and
1024 channels and the number of models between 1 and 32. fig. 4 shows the resulting classification
accuracy on the CIFAR-10 dataset with 10 images/class. The black dot represents the configuration
we used during training: 8 models, each with width 256 (More ablations are provided in appendix I).
We conclude that the random feature method, for all network widths, is able to reach close to the exact
NNGP kernel performance (dotted line) if a sufficient number of models are used. Interestingly, the
performance is almost entirely dependent on the total number of features (proportional to C×N , with
C being the number of convolutional channels) and not the width of individual networks, suggesting
that the finite-width bias associated with random finite networks is minimal.

In appendix I, we show that this can be taken to the extreme, with 70% accuracy achieved with a
network with a single convolutional channel. These results corroborate the findings of [Novak et al.,
2019], which first proposed this random feature method, where they found, like us, that performance
was almost entirely determined by the total feature count.

Platt scaling. We performed ablations on the use of the cross-entropy loss and the number of models
used during training. We reran our algorithm on CIFAR-10 and Fashion-MNIST, using either 1,
2, 4, or 8 models during training, using MSE loss or cross-entropy loss. fig. 5 shows the resulting
performance of these configurations. Evidently, using a cross-entropy loss results in substantial
performance gains, even as much as 8% as with Fashion-MNIST with one img/cls.

5 RFAD Application I: Interpretability

Large datasets contribute to the difficulty of understanding deep learning models. In this paper, we
consider interpretability in the sense of the influence of individual training examples on network
predictions [Hasani et al., 2019, Lechner et al., 2020, Wang et al., 2022]. One method of understanding
this effect is the use of influence functions, which seek to answer the following counterfactual question:
which item in the training set, if left out, would change the model’s prediction the most [Hampel,
1974, Koh and Liang, 2017, Kabra et al., 2015]? For deep networks, this can only be answered
approximately. This is because retraining a network on copies of the training set with individual
items left out is computationally intractable. One solution is to use kernel ridge regression on a
small support set. We can recompute the KRR on the kernel matrices with the ith individual coreset
element removed, with Kx,S\i KS\i,S\i being the resulting kernel matrices with the ith row/column
corresponding to the ith coreset entry removed.

In particular, let p(ytest = c|S) be the probability prediction (computed by applying Platt scaling)
of an example belonging to class c computed on the entire coreset, S. Let p(ytest = c|S \ i) be the
same prediction calculated with the ith coreset element removed. We define the influence score, Ii of
coreset element i on xtest as

∑
c≤C |p(ytest = c|S) − p(ytest = c|S \ i)|. Taking the top values of Ii

yields the most relevant examples.

8

Figure 6: The most relevant images for an incorrect (top row) and correct (bottom row) prediction on
CIFAR-10. The most relevant coreset images are picked based on the coreset influence score I , and
for their training set, the training influence score J . These metrics are fast to compute and result in
semantically meaningful explanations for these two predictions.

While this method provides a simple way of gaining insights into how a prediction depends on the
coreset, it does not provide insight into how this prediction comes from the original training set which
produced the coreset. The method can be extended to accommodate this. Heuristically, we conjecture
that two elements are similar if their predictions depend on the same elements in the coreset. We
compute p(yj = c|S) and p(yj = c|S \ i) for every element j in the training set and i in the coreset.
Then, we define its influence embedding as zji,c = p(yj = c|S) − p(yj = c|S \ i), zj ∈ R|S|×|C|.
This way, zj defines the sensitivity of a training datapoint prediction on the coreset. We compute
the same embedding for a test datapoint ztest, and to compare data points we use cosine similarity,
Jtest,j = cos(ztest, zj). Values of zj can be precomputed for the training set, typically in a few minutes
for CIFAR-10, allowing for relatively fast queries, in contrast to the more expensive Hessian-inverse
vector product required in Koh and Liang [2017], which is costly to compute and difficult to store.

Figure 7: CelebA distilled datasets for male/female
classification with 1 image per class at varying
corruption ratios. At ρ = 0, the distilled images are
very interpretable, but at ρ = 0.95, the images look
like white noise, despite achieving 86.9% accuracy
on the classification task.

fig. 6 shows the results of this algorithm applied
to CIFAR-10 with 50 img/cls for an incorrectly
and correctly predicted image. In both cases,
the resulting queries are visually similar to the
test data point. One could use this information
to not only explain a single incorrect prediction
but to understand harmful items in their test set,
or where more data needs to be collected.

As a second application of RFAD, we create
coresets that contain no human-understandable
information from the source dataset yet still
retain high test performance. [Nguyen et al.,
2021a] proposed the concept of a ρ-corrupted
coreset: A fraction ρ of the coresets elements
are completely independent of the source dataset.
Practically, for our algorithm, this means initial-
izing the coreset with random noise and keeping
a random ρ fraction of the pixels kept at their
initialization. We term this algorithm RFADρ.
Adding noise to gradient updates of the inputs of a network can be shown to give differentially
private guarantees [Abadi et al., 2016]. While our scheme does not provide the same guarantees,
we note the following two privacy-preserving properties of RFADρ: firstly, the distillation process
is irreversible: there are many datasets for which a distilled dataset provides zero loss. Secondly, if
the true data distribution assigns a low probability to images of white noise, then for high values of
ρ, this guarantees that the distilled dataset stays far away in L2 norm from real data points, since ρ
fraction of the pixels are stuck at their initialization. This means that a distilled RFADρ dataset will
not recreate any real points in the training set.

9

6 RFAD Application II: Privacy

Figure 8: Performance of RFAD on CIFAR-10
and CelebA classification with varying support set
sizes and corruption ratios. Performance degrades
very gradually as noise is increased, still achieving
high performance with 90% corruption. (n = 3)

We applied RFADρ on CIFAR-10, and
CelebA faces datasets. For CIFAR-10 we
distilled the standard 10-class classification
task, with corruption ratios taking values of
[0, 0.2, 0.4, 0.8, 0.9], with 1, 10 or 50 images per
class. For CelebA, we performed male/female
binary classification with corruption ratios be-
tween 0 and 0.95 with 1, 10, or 50 samples per
class. fig. 8 show the resulting performance.

For CIFAR-10, even at corruption ratios of 0.9,
we are able to achieve 40.6% accuracy with one
sample per class, far above the natural baseline
of 16.1% ([Nguyen et al., 2021b] table A1). For
CelebA, we achieve 81% accuracy with only
two images, one male and one female, with 95%
of the pixels in the image being random noise.
We additionally visualize the distilled images for the male and female classes in the CelebA distillation
task with one image per class in fig. 7 at varying corruption ratios. While the image initially contains
visually interpretable features with ρ = 0, they quickly devolve into pure noise at ρ = 0.95.

7 Conclusions

We proposed RFAD, a dataset distillation algorithm that provides a 100-fold speedup over the
current state-of-the-art KIP while retaining accuracy. The speedup is primarily due to the use of the
approximate NNGP kernel as opposed to the exact NTK one, reducing the time complexity from
O(|S|2) to O(|S|). The success of the approximation here, combined with the similarity between the
NTK and NNGP kernels, suggests the random network NNGP approximation as an efficient method
for algorithms where the exact computation of the NNGP or NTK kernel is infeasible. We analyzed
our method comprehensively and showed its effectiveness, and proposed two applications in model
interpretability and privacy preservation. With this new tool, we hope that future work could begin to
use Neural Tangent Kernel as an algorithmic design tool in addition to its current theoretical use for
neural network analysis. Lastly, RFAD has the following limitations:

Use of instancenorm. In practice, we found that our datasets distilled without instancenorm do not
transfer well to finite networks with it. Conversely, if we use random networks with instancenorm
in RFAD, these transfer to finite networks with instancenorm but not to ones without or the NNGP
kernel. This suggests that the features used by networks with/without instancenorm differ, making it
difficult to distill datasets that perform well on both. We discuss this further in appendix G.

Overfitting in dataset distillation. On Platt scaling, we argued that the heavily constrained nature of
dataset distillation leads to underfitting of the training set when using an MSE-style loss in KIP, and
we verified the efficacy of using a Platt loss instead. However, we observed that in simple datasets,
such as MNIST, or with large coresets relative to the data, such as CIFAR-100 with 10 images per
class, we could overfit to the dataset. We found that these distilled datasets were able to achieve
near 100% classification accuracy on the training set, meaning that it was distilled perfectly in terms
of the Platt-loss. This implies that adding more images would not improve performance. Thus we
hypothesize that using a Platt loss would be detrimental if the compression ratio is low.

Acknowledgements

This research has been funded in part by the Office of Naval Research Grant Number Grant N00014-
18-1-2830, DSTA Singapore, and the J. P. Morgan AI Research program. We are very grateful.

10

References
M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 308–318, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450341394. doi: 10.1145/2976749.2978318.
URL https://doi.org/10.1145/2976749.2978318.

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online continual
learning. In NeurIPS, 2019.

S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an
infinitely wide neural net. In NeurIPS, 2019.

E. Belouadah and A. Popescu. Scail: Classifier weights scaling for class incremental learning. In The
IEEE Winter Conference on Applications of Computer Vision, 2020.

J. Bien and R. Tibshirani. Prototype selection for interpretable classification. The Annals of Applied
Statistics, 5(4):2403–2424, 2011.

O. Bohdal, Y. Yang, and T. Hospedales. Flexible dataset distillation: Learn labels instead of images.
Neural Information Processing Systems Workshop, 2020.

Z. Borsos, M. Mutnỳ, and A. Krause. Coresets via bilevel optimization for continual learning and
streaming. NeurIPS, 2020.

F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari. End-to-end incremental
learning. In Proceedings of the European Conference on Computer Vision (ECCV), pages 233–248,
2018.

Y. Chen, M. Welling, and A. Smola. Super-samples from kernel herding. The Twenty-Sixth Conference
Annual Conference on Uncertainty in Artificial Intelligence, 2010.

L. Chizat, E. Oyallon, and F. R. Bach. On lazy training in differentiable programming. In NeurIPS,
2019.

M. B. Cohen, C. Musco, and C. Musco. Input sparsity time low-rank approximation via ridge leverage
score sampling. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1758–1777. SIAM, 2017.

A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf.

A. G. de G. Matthews, J. Hron, M. Rowland, R. E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=H1-nGgWC-.

A. Garriga-Alonso, C. E. Rasmussen, and L. Aitchison. Deep convolutional networks as shallow
gaussian processes. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Bklfsi0cKm.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. When do neural networks outperform
kernel methods? arXiv preprint arXiv:2006.13409, 2020.

F. R. Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974. ISSN 01621459. URL http://www.jstor.
org/stable/2285666.

S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In Proceedings of
the thirty-sixth annual ACM symposium on Theory of computing, pages 291–300, 2004.

11

https://doi.org/10.1145/2976749.2978318
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=Bklfsi0cKm
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/2285666

R. Hasani, A. Amini, M. Lechner, F. Naser, R. Grosu, and D. Rus. Response characterization
for auditing cell dynamics in long short-term memory networks. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

J. Hron, Y. Bahri, J. Sohl-Dickstein, and R. Novak. Infinite attention: Nngp and ntk for deep attention
networks. In ICML, 2020.

W. Hu, Z. Li, and D. Yu. Simple and effective regularization methods for training on noisily labeled
data with generalization guarantee. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Hke3gyHYwH.

F. Hutter, L. Kotthoff, and J. Vanschoren. Automated machine learning: methods, systems, challenges.
Springer Nature, 2019.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems, 2018.

I. Jubran, A. Maalouf, and D. Feldman. Introduction to coresets: Accurate coresets. CoRR,
abs/1910.08707, 2019. URL http://arxiv.org/abs/1910.08707.

M. Kabra, A. Robie, and K. Branson. Understanding classifier errors by examining influential
neighbors. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
3917–3925, 2015.

M. Kaya and H. Bilge. Deep metric learning: A survey. Symmetry, 11:1066, 08 2019. doi:
10.3390/sym11091066.

B. Kim, R. Khanna, and O. Koyejo. Examples are not enough, learn to criticize! criticism for
interpretability. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 2288–2296, Red Hook, NY, USA, 2016. Curran Associates
Inc. ISBN 9781510838819.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page 1885–1894.
JMLR.org, 2017.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

M. Lechner, R. Hasani, A. Amini, T. A. Henzinger, D. Rus, and R. Grosu. Neural circuit policies
enabling auditable autonomy. Nature Machine Intelligence, 2(10):642–652, 2020.

Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

J. Lee, J. Sohl-dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri. Deep neural networks
as gaussian processes. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1EA-M-0Z.

J. Lee, S. Schoenholz, J. Pennington, B. Adlam, L. Xiao, R. Novak, and J. Sohl-Dickstein. Finite
versus infinite neural networks: an empirical study. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 15156–15172. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/ad086f59924fffe0773f8d0ca22ea712-Paper.pdf.

N. Loo, R. Hasani, A. Amini, and D. Rus. Evolution of neural tangent kernels under benign and
adversarial training. In Advances in Neural Information Processing Systems, 2022.

J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by implicit differ-
entiation. In International Conference on Artificial Intelligence and Statistics, pages 1540–1552.
PMLR, 2020.

M. Lucic, M. Faulkner, A. Krause, and D. Feldman. Training gaussian mixture models at scale via
coresets. The Journal of Machine Learning Research, 18(1):5885–5909, 2017.

12

https://openreview.net/forum?id=Hke3gyHYwH
http://arxiv.org/abs/1910.08707
https://openreview.net/forum?id=B1EA-M-0Z
https://proceedings.neurips.cc/paper/2020/file/ad086f59924fffe0773f8d0ca22ea712-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ad086f59924fffe0773f8d0ca22ea712-Paper.pdf

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization through
reversible learning. In International Conference on Machine Learning, pages 2113–2122, 2015.

D. Milios, R. Camoriano, P. Michiardi, L. Rosasco, and M. Filippone. Dirichlet-based gaussian
processes for large-scale calibrated classification. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 6008–6018, 2018.

B. Mirzasoleiman, J. A. Bilmes, and J. Leskovec. Coresets for data-efficient training of machine
learning models. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 6950–6960. PMLR, 2020.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg, 1996.
ISBN 0387947248.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images
with unsupervised feature learning. Google Research, 2011.

T. Nguyen, Z. Chen, and J. Lee. Dataset meta-learning from kernel ridge-regression. In International
Conference on Learning Representations, 2021a. URL https://openreview.net/forum?id=
l-PrrQrK0QR.

T. Nguyen, R. Novak, L. Xiao, and J. Lee. Dataset distillation with infinitely wide convolutional
networks. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021b. URL
https://openreview.net/forum?id=hXWPpJedrVP.

R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, D. A. Abolafia, J. Pennington, and J. Sohl-dickstein.
Bayesian deep convolutional networks with many channels are gaussian processes. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
B1g30j0qF7.

R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz. Neural
tangents: Fast and easy infinite neural networks in python. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=SklD9yrFPS.

R. Novak, J. Sohl-Dickstein, and S. S. Schoenholz. Fast finite width neural tangent kernel. In
K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors, International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pages 17018–17044. PMLR, 2022.
URL https://proceedings.mlr.press/v162/novak22a.html.

D. Peng, D. S. Park, J. Lee, J. Sohl-dickstein, and Y. Cao. Towards nngp-guided neural architecture
search. In ArXiv, 2020.

J. M. Phillips. Coresets and sketches. arXiv preprint arXiv:1601.00617, 2016.

J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Adv. Large Margin Classif., 10, 06 2000.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Proceedings of the
20th International Conference on Neural Information Processing Systems, pages 1177–1184, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Adaptive
computation and machine learning. MIT Press, 2006. ISBN 026218253X.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5533–5542, 2017.

M. Refinetti, S. Goldt, F. Krzakala, and L. Zdeborová. Classifying high-dimensional gaussian mix-
tures: Where kernel methods fail and neural networks succeed. arXiv preprint arXiv:2102.11742,
2021.

13

https://openreview.net/forum?id=l-PrrQrK0QR
https://openreview.net/forum?id=l-PrrQrK0QR
https://openreview.net/forum?id=hXWPpJedrVP
https://openreview.net/forum?id=B1g30j0qF7
https://openreview.net/forum?id=B1g30j0qF7
https://openreview.net/forum?id=SklD9yrFPS
https://proceedings.mlr.press/v162/novak22a.html

B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch, and A. Smola. Input space
versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, 10(5):
1000–1017, 1999. doi: 10.1109/72.788641.

V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, J. Ragan-Kelley, L. Schmidt, and B. Recht. Neural
kernels without tangents. In ICML, pages 8614–8623, 2020. URL http://proceedings.mlr.
press/v119/shankar20a.html.

S. Shleifer and E. Prokop. Using small proxy datasets to accelerate hyperparameter search. arXiv
preprint arXiv:1906.04887, 2019.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in
neural information processing systems, pages 4077–4087, 2017.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In Advances in
neural information processing systems, pages 1257–1264, 2006.

I. Sucholutsky and M. Schonlau. Soft-label dataset distillation and text dataset distillation. arXiv
preprint arXiv:1910.02551, 2019.

M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In Artificial
Intelligence and Statistics, pages 567–574, 2009.

M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J. Gordon. An empirical
study of example forgetting during deep neural network learning. ICLR, 2019.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In
Advances in neural information processing systems, 2016.

T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

T.-H. Wang, W. Xiao, T. Seyde, R. Hasani, and D. Rus. Interpreting neural policies with disentangled
tree representations. arXiv preprint arXiv:2210.06650, 2022.

C. K. I. Williams and D. Barber. Bayesian classification with gaussian processes. IEEE Trans. Pattern
Anal. Mach. Intell., 20(12):1342–1351, dec 1998. ISSN 0162-8828. doi: 10.1109/34.735807.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

S. Yaida. Non-Gaussian processes and neural networks at finite widths. In J. Lu and R. Ward, editors,
Proceedings of The First Mathematical and Scientific Machine Learning Conference, volume 107
of Proceedings of Machine Learning Research, pages 165–192. PMLR, 20–24 Jul 2020. URL
https://proceedings.mlr.press/v107/yaida20a.html.

G. Yang. Tensor programs i: Wide feedforward or recurrent neural networks of any architecture are
gaussian processes. In NeurIPS 2019, December 2019.

A. Zandieh, I. Han, H. Avron, N. Shoham, C. Kim, and J. Shin. Scaling neural tangent kernels via
sketching and random features. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, 2021. URL https://openreview.
net/forum?id=vIRFiA658rh.

B. Zhao and H. Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021a.

B. Zhao and H. Bilen. Dataset condensation with differentiable siamese augmentation. arXiv preprint
arXiv:2102.08259, 2021b.

B. Zhao, K. R. Mopuri, and H. Bilen. Dataset condensation with gradient matching. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
mSAKhLYLSsl.

14

http://proceedings.mlr.press/v119/shankar20a.html
http://proceedings.mlr.press/v119/shankar20a.html
https://proceedings.mlr.press/v107/yaida20a.html
https://openreview.net/forum?id=vIRFiA658rh
https://openreview.net/forum?id=vIRFiA658rh
https://openreview.net/forum?id=mSAKhLYLSsl
https://openreview.net/forum?id=mSAKhLYLSsl

S. Zhao, Z. Liu, J. Lin, J.-Y. Zhu, and S. Han. Differentiable augmentation for data-efficient gan
training. Neural Information Processing Systems, 2020.

J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. S. Duncan. Adabelief
optimizer: Adapting stepsizes by the belief in observed gradients. arXiv preprint arXiv:2010.07468,
2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Background and Related Work
	Algorithm Setup and Design
	KIP Revisit
	Replacing the NTK Kernel with an NNGP Kernel
	Replacing NNGP with an Empirical NNGP
	Loss Function in dataset distillation

	Experiments with RFAD
	Time Savings during training
	NTK Kernel and Finite Network Transfer
	Empirical NNGP Performance at Inference

	RFAD Application I: Interpretability
	RFAD Application II: Privacy
	Conclusions

