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ABSTRACT

Diffusion models have emerged as a powerful tool rivaling GANs in generating
high-quality samples with improved fidelity, flexibility, and robustness. A key
component of these models is to learn the score function through score matching.
Despite empirical success on various tasks, it remains unclear whether gradient-
based algorithms can learn the score function with a provable accuracy. As a
first step toward answering this question, this paper establishes a mathematical
framework for analyzing score estimation using neural networks trained by gra-
dient descent. Our analysis covers both the optimization and the generalization
aspects of the learning procedure. In particular, we propose a parametric form to
formulate the denoising score-matching problem as a regression with noisy labels.
Compared to the standard supervised learning setup, the score-matching problem
introduces distinct challenges, including unbounded input, vector-valued output,
and an additional time variable, preventing existing techniques from being applied
directly. In this paper, we show that with proper designs, the evolution of neural
networks during training can be accurately modeled by a series of kernel regres-
sion tasks. Furthermore, by applying an early-stopping rule for gradient descent
and leveraging recent developments in neural tangent kernels, we establish the
first generalization error (sample complexity) bounds for learning the score func-
tion with neural networks, despite the presence of noise in the observations. Our
analysis is grounded in a novel parametric form of the neural network and an in-
novative connection between score matching and regression analysis, facilitating
the application of advanced statistical and optimization techniques.

1 INTRODUCTION

Diffusion models excel in diverse generative tasks, spanning image, video, and audio generation
(Dathathri et al., 2020; Ho et al., 2020; Song & Ermon, 2019; Song et al., 2021), often outper-
forming their contemporaries, including GANs, VAEs, normalizing flows, and energy-based models
(Goodfellow et al., 2014; Kingma & Welling, 2013; Rezende & Mohamed, 2015; Zhao et al., 2017).

A typical diffusion model consists of two diffusion processes (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song et al., 2021): one moving forward in time and the other moving backward. The forward
process transforms a given data sample into white noise in the limit by gradually injecting noise
through the diffusion term, while the backward process transforms noise to a sample from the data
distribution by sequentially removing the added noise. The implementation of the backward process
depends on the score function, defined as the gradient of the logarithmic density, at each timestamp
of the forward process. In practice, however, the score function is unknown and one can only access
the true data distribution via finitely many samples. To ensure the fidelity of the backward process in
generating realistic samples, it is essential to develop efficient methods to estimate the score function
using samples. This estimation is typically achieved through a process known as score matching,
employing powerful nonlinear functional approximations such as neural networks.

Despite the empirical success, it is theoretically less clear whether a gradient-based algorithm can
train a neural network to learn the score function. Existing theoretical work (Chen et al., 2023a;b;c;
2024; De Bortoli et al., 2021; Gao et al., 2023; Lee et al., 2023; Li et al., 2023; 2024; Mei & Wu,
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2023; Oko et al., 2023; Shah et al., 2023; Tang & Zhao, 2024) predominantly focuses on algorithm-
agnostic properties of diffusion models such as score approximation, score estimation, and distri-
bution recovery, leaving the theoretical performance of widely-used gradient-based algorithms an
open problem. This paper bridges this gap between theory and practice. Our contributions are
summarized as follows.
Our Work and Contributions. This work investigates the training of a two-layer fully connected
neural network via gradient descent (GD) to learn the score function. First, we propose a neu-
ral network-based parametric form for the score estimator based on the score decomposition (see
Lemma 3.1). This novel design transforms the score-matching objective into a regression with noisy
labels. To show the trained neural network minimizes the excess risk of this regression problem, we
overcome three main challenges that do not exist in the traditional supervised learning set-ups: 1)
unbounded input, 2) vector-valued output, and 3) an additional time variable. To handle unbounded
input, we employ a truncation argument and control the tail behavior using the properties of diffusion
processes (see Lemma 3.3). While neural networks are easy to implement and train in practice, an-
alyzing them directly for such tasks is technically challenging. The idea is to couple neural network
training with a series of regression models using neural tangent kernels (NTKs) and then leverage
recent developments in NTK-based analysis. To do so, we establish a universal approximation theo-
rem with respect to the score function using the reproducing kernel Hilbert space (RKHS), induced
by the NTK; see Theorem 3.6. Next, we leverage the recent NTK-based analysis of neural networks
to show the equivalence between neural network training and kernel regression (see Theorem 3.9).
Consequently, we transform the score matching into a kernel regression problem. Furthermore, we
propose a virtual dataset to address the issue of target shifting caused by the approximation step. In
the presence of multi-output labels, a vector-valued localized Rademacher complexity bound is uti-
lized to control the prediction error of two kernel regressions, the original one and the one with the
shifted target (see Theorem 3.10). Finally, we employ an early-stopping rule for the kernel regres-
sion to minimize the score-matching objective and provide the generalization result (see Theorem
3.12).

To the best of our knowledge, this is the first work to establish sample complexity bounds of GD-
trained neural networks for score matching. Specifically, our paper is the first to employ NTK in
establishing theoretical results for diffusion models. Although the idea of NTK has been used in
many other fields, adapting existing techniques to the framework of diffusion models brings about
its own significant challenges. Our analysis is grounded in a novel parametric form of the neural
network and an innovative connection between score matching and regression analysis, facilitat-
ing the application of advanced statistical and optimization techniques. In addition, the building
blocks of our results can be applied to other supervised learning problems in non-standard forms
such as conditional generative adversarial networks (Liao et al., 2020), conditional flow matching
(Lipman et al., 2022) and sequence-to-sequence modeling (Gu et al., 2022; Smith et al., 2023) (with
unbounded input and vector-valued output), which goes beyond score-matching problems.

Related Literature. Our work is related to three categories of prior work:
First, our framework is closely related to the recent study of diffusion models. A line of work on this
topic provides theoretical guarantees of diffusion models for recovering data distribution, assuming
access to an accurate score estimator under L2 or L∞ norm (Chen et al., 2023a;c; 2024; De Bortoli
et al., 2021; Gao et al., 2023; Lee et al., 2023; Li et al., 2023; Shah et al., 2023; Tang & Zhao, 2024).
These results offer only a partial understanding of diffusion models as the score estimation part is
omitted. To our best knowledge, Chen et al. (2023b) and Oko et al. (2023) are the only results that
provide score estimation guarantees under L2 norm, assuming linear data structure or compactly
supported data density. However, their emphasis is on algorithm-agnostic analysis without evalu-
ation of any specific algorithms, creating a gap between theory and practical implementation. In
contrast, our work offers the first generalization error (sample complexity) bounds for GD-trained
neural networks.

Second, our techniques relate to the rich literature of deep learning theory. Inspired by the frame-
work of NTK introduced by Jacot et al. (2018), recently Allen-Zhu et al. (2019b); Du et al. (2019;
2018); Zou et al. (2020) establish linear convergence rate of neural networks for fitting random la-
bels. One key property of GD-trained neural networks is the so-called implicit regularization of
parameters. Namely, the minimizer of overparameterized neural networks is close to the random
initialization. Combined with uniform convergence results in statistical learning, this implicit regu-
larization leads to the generalization property of neural networks in the absence of label noise (Arora
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et al., 2019a). However, none of these works delves into the generalization ability of neural networks
when confronted with noisy labels. Kuzborskij & Szepesvári (2022) is the only work that attempts
to study the GD-trained neural networks with additive noise. To tackle the challenge posed by the
score matching, our approach and, consequently, our theoretical results differ from the existing lit-
erature on deep learning theory for supervised learning in three key aspects: 1) handling unbounded
input, 2) dealing with vector-valued output, and 3) incorporating an additional time variable.

Lastly, our work is connected to a body of research focused on early-stopping rules in kernel regres-
sion. See Celisse & Wahl (2021) for a comprehensive overview of this topic. Our work considers a
multi-output extension of the early-stopping rule developed in Raskutti et al. (2014), which controls
the complexity of the predictor class based on empirical distribution.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we introduce the mathematical framework of diffusion models (Song et al., 2021).

Forward Process. The forward process progressively injects noise into the original data distribu-
tion. In the context of data generation, we have the flexibility to work with any forward diffusion
process of our choice. Common instances include variance-exploding and variance-preserving SDEs
(Song et al., 2021). For the sake of theoretical convenience, we adhere to the standard convention
in the literature (Ho et al., 2020; Song & Ermon, 2020) and focus on the Ornstein-Ulhenbeck (OU)
process. In particular, we study a simple OU process with a deterministic weight function g(t) > 0:

dXt = −1

2
g(t)Xtdt+

√
g(t)dBt, X0 ∼ p0, (1)

where (Bt)t≥0 is a standard d-dimensional Brownian motion and p0 represents the unknown data
distribution from which we have access to only a limited number of samples. Our objective is to
generate additional realistic samples from this distribution. The explicit solution to (1) is given by

Xt = e−
∫ t
0

1
2 g(s)dsX0 + e−

∫ t
0

1
2 g(s)ds

∫ t

0

e
∫ s
0

1
2 g(u)du

√
g(s)dBs.

Consequently, the conditional distribution Xt|X0 follows a multi-variate Gaussian distribution
N (α(t)X0, h(t)Id) with α(t) := exp

(
−
∫ t
0

1
2g(s)ds

)
and h(t) := 1 − α2(t). Furthermore, under

mild assumptions, the OU process converges exponentially to the standard Gaussian distribution
(Bakry et al., 2014). In practice, the forward process (1) will terminate at a sufficiently large times-
tamp T > 0 such that the distribution of XT is close to the standard Gaussian distribution.

Backward Process. By reversing the forward process in time, we obtain a process X̄t := XT−t
(well-defined under mild assumptions (Haussmann & Pardoux, 1986)) that transforms white noise
into samples from the target data distribution, fulfilling the purpose of generative modeling. To start,
let us first define a backward process (time-reversed SDE) associated with (1):

dYt =

(
1

2
g(T − t)Yt + g(T − t)∇ log pT−t(Yt)

)
dt+

√
g(T − t)dB̄t, Y0 ∼ q0 (2)

where (B̄t)t≥0 is another d-dimensional Brownian motion, pt is the density of the forward process
Xt, the score function ∇ log pt(·) is defined as the gradient of log density of Xt, and q0 is the initial
distribution of the backward process. If the score function is known at each time t and if we set
q0 := pT , under mild assumptions, the backward process (Yt)0≤t≤T has the same distribution as
the time-reversed process (XT−t)0≤t≤T ; see Cattiaux et al. (2023); Föllmer (2005); Haussmann &
Pardoux (1986) for details.

In practice, however, (2) cannot be directly used to generate samples from the target data distribution
as both the score function and the distribution pT are unknown. To address this issue, it is common
practice to replace pT by the standard Gaussian distribution as the initial distribution of the backward
process. Then, we replace the ground-truth score ∇ log pt(x) by an estimator sθ(x, t). The estimator
sθ is parameterized (and learned) by a neural network. With these modifications, we obtain an
approximation of the backward process, which is practically implementable:

dYt =

(
1

2
g(T − t)Yt + g(T − t)sθ(Yt, t)

)
dt+

√
g(T − t)dB̄t, Y0 ∼ N (0, Id). (3)

To generate data using (3), SDE solvers or discrete-time approximation schemes can be used (Chen
et al., 2023b;c; 2024; Ho et al., 2020; Song et al., 2021).
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Score Matching. To implement the backward process, we need to use samples to estimate the
score function. A natural choice is to minimize the L2 loss between the estimated and actual scores:

min
θ

1

T − T0

∫ T

T0

λ(t)E
[
∥sθ(Xt, t)−∇ log pt(Xt)∥22

]
dt, (4)

where λ(t) is the weight function that captures time inhomogeneity and sθ is the estimator of the
score function. Here, T0 > 0 is some small value to prevent the score function from blowing up
and to stabilize the training procedure (Chen et al., 2023b; Song & Ermon, 2019; Vahdat et al.,
2021). A major drawback of the score-matching loss (4) is its intractability as ∇ log pt cannot be
computed based on the available data samples. Thus, instead of minimizing the loss in (4), one can
equivalently minimize the following denoising score matching as shown by Vincent (2011):

min
θ

1

T − T0

∫ T

T0

λ(t)E
[∥∥sθ(Xt, t)−∇ log pt|0(Xt|X0)

∥∥2
2

]
dt. (5)

Here, pt|0(Xt|X0) denotes the conditional probability of Xt given X0. It is easy to show that the
choice of our forward process in (1) implies

∇ log pt|0(Xt|X0) =
α(t)

h(t)
X0 −

Xt

h(t)
. (6)

Now, we can plug (6) into (5) and learn the score function estimator. In practice, however, the score
function estimator is parameterized by a neural network. Next, we discuss such a parameterization.

Algorithm 1 Sample Collection Procedure
1: Input: number of samples N and a small value T0 > 0
2: for j = 1, 2, . . . , N do
3: Sample X0,j ∼ p0
4: Sample tj ∼ Unif[T0, T ]
5: Sample Xtj ∼ ptj |0( · |X0,j)
6: end for
7: return

{(
tj , X0,j , Xtj

)}N
j=1

Neural Network-Based Parameterization. To parametrize the function sθ, we consider a two-
layer ReLU neural network fW,a =

(
f iW,a

)d
i=1

of the following form:

f iW,a(x, t) =
1√
m

m∑
r=1

airσ(w
⊤
r (x, t− T0)). (7)

Here, (x, t) = (x1, . . . , xd, t)⊤ ∈ Rd+1 is the input vector, wr ∈ Rd+1 is a weight vector in the first
layer, air ∈ R is a weight vector in the second layer, and σ(·) is the ReLU activation. The design term
T0 introduced in the architecture plays an important role in the theoretical analysis and also offers
valuable insights in practice. For ease of exposition, we denote W = (w1, . . . , wm) ∈ R(d+1)×m

and a = [air] ∈ Rm×d. We adopt the usual trick in the overparameterization literature (Allen-Zhu
et al., 2019b; Cai et al., 2019; Wang et al., 2020) with the parameter a fixed throughout training and
only updating W. This seemingly shallow architecture poses significant challenges when analyzing
the convergence of gradient-based algorithms due to its non-convex and non-smooth objective. On
the other hand, its ability to effectively approximate a diverse set of functions makes it a promising
starting point for advancing theoretical developments.

To train the neural network, we need to have samples measuring the “goodness-of-fit” of the neural
network. We use Algorithm 1 to generateN i.i.d. data samples. In particular, for each j = 1, . . . , N ,
we first sample X0,j from p0 and a timestamp tj uniformly over the interval [T0, T ]. Given X0,j

and tj , we then sample Xtj from the Gaussian distribution ptj |0( · |X0,j). Given the output dataset

S :=
{
(tj , X0,j , Xtj )

}N
j=1

, we train the neural network by minimizing a quadratic loss:

min
W

L̂(W) :=
1

2

N∑
j=1

∥∥fW,a(Xtj , tj)−X0,j

∥∥2
2
. (8)
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Particularly, we perform the gradient descent (GD) update rule:

wr(τ + 1)− wr(τ) = −η ∂L̂(wr(τ))
∂wr(τ)

= − η√
m

N∑
j=1

d∑
i=1

(f iW,a(Xtj , tj)−Xi
0,j)a

i
r(Xtj , tj − T0)I

{
w⊤
r (Xtj , tj − T0) ≥ 0

}
, (9)

for r = 1, . . . ,m. Here, η > 0 is the learning rate and I denotes the indicator function. We initialize
the parameter W and a according to the following neural tangent kernel (NTK) regime (Jacot et al.,
2018):

wr(0) ∼ N (0, Id+1), a
i
r ∼ Unif {−1,+1} , ∀r ∈ [m] and i ∈ [d].

One can show that the training loss (8) is an empirical version of the denoising score-matching loss
defined in (5) under a carefully chosen sθ. Correspondingly, the finite sample performance of sθ
w.r.t. (4) is referred to as generalization ability. We would like to remark that the two-layer neural
network parameterization has not been explored in the literature for approximating score functions.
While the work Chen et al. (2023b) considered multi-layer neural networks for score approximation,
generalization, and distribution recovery; our work is complementary to them as they did not analyze
the optimization procedure and no specific learning algorithm is considered in their work.

Neural Tangent Kernels. For a two-layer ReLU neural network of the form (7), we follow (Jacot
et al., 2018) to introduce an associated NTK K : Rd+1 × Rd+1 → Rd×d whose (i, k)-th entry is
defined as

Kik
(
(x, t),

(
x̃, t̃
))

:= lim
m→∞

1

m
z⊤z̃

m∑
r=1

aira
k
r I
{
wr(0)

⊤z ≥ 0
}
I
{
wr(0)

⊤z̃ ≥ 0
}

= z⊤z̃ E
[
ai1a

k
1I
{
w1(0)

⊤z ≥ 0
}
I
{
w1(0)

⊤z̃ ≥ 0
}]
,

where z = (x, t − T0) and z̃ = (x̃, t̃ − T0). Here, the expectation is taken over all the randomness
of ai1, ak1 and w1(0). Similarly, we define a scalar-valued NTK κ : Rd+1 × Rd+1 → R associated
with each coordinate of the neural network:

κ
(
(x, t), (x̃, t̃)

)
:= z⊤z̃ E

[
I
{
w1(0)

⊤z ≥ 0
}
I
{
w1(0)

⊤z̃ ≥ 0
}]
.

From the definition of the matrix-valued NTK, it is easy to see that K is a diagonal matrix and
in particular, K

(
(x, t),

(
x̃, t̃
))

= κ((x, t), (x̃, t̃))Id, where Id is the d-dimensional identity matrix.
Moreover, we let H be the reproducing Hilbert space (RKHS) induced by the matrix-valued NTKK
and H1 be the RKHS induced by the scalar-valued NTK κ (Carmeli et al., 2010; Jacot et al., 2018).
Finally, given a dataset S and defining zj = (Xtj , tj − T0), the Gram matrix H of the kernel K is
defined as a dN × dN block matrix with

H :=

H11 · · · H1N

...
. . .

...
HN1 · · · HNN

 , Hik
jℓ := z⊤j zℓE

[
ai1a

k
1I
{
z⊤j w1(0) ≥ 0, z⊤ℓ w1(0) ≥ 0

}]
. (10)

3 MAIN RESULTS
This section introduces our main theoretical results. We first propose a parametric form of sθ to
simplify the score-matching loss in (4). Next, we show that the empirical version of DSM (5) is
indeed equivalent to the quadratic loss defined in (8). Finally, we provide a decomposition of an
upper bound on the loss function into four terms: a coupling term, a label mismatch term, a term
related to early stopping, and an approximation error term. These terms are carefully analyzed later.

To motivate our parametric form of sθ, we start by the following decomposition of the score function:
Lemma 3.1. The score function ∇ log pt(x) admits the following decomposition:

∇ log pt(x) =
α(t)

h(t)
E [X0|Xt = x]− x

h(t)
. (11)

The proof, which follows the Gaussianity of the transition kernel pt|0, is deferred to the appendix. A
similar decomposition has been proved in (Chen et al., 2023b, Lemma 1) for data with linear struc-
ture, and in Li et al. (2023) for discrete time analysis and the concurrent work (Mei & Wu, 2023).
Compared to the expression of ∇ log pt|0(xt|x0) computed in (6), we replace X0 by E [X0|Xt]
to obtain the ground-truth score function in (11). Consequently, we call X0 the noisy label and
E [X0|Xt] the true label. We also make the following assumption on the diffusion models (1).
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Assumption 3.2. The target density function p0 has a compact support with ∥X0∥2 ≤ D almost
surely, for some constant D > 0.

Assumption 3.2 is satisfied in most practical settings, including the generation of images, videos, and
audio. This assumption simplifies the subsequent analysis and can be relaxed to the sub-Gaussian
tail assumption. Next, we propose the parametric form of sθ and λ(t) in the score-matching loss (4):

sW,a(x, t) =
α(t)

h(t)
ΠD(fW,a(x, t))−

x

h(t)
, with λ(t) =

h(t)2

α(t)2
,

where ΠD is the projection operator onto the L2 ball with radiusD centered at zero. With the choice
of sW,a and λ(t) specified above, the score-matching loss (4) becomes

min
W

1

T − T0

∫ T

T0

E
[
∥ΠD(fW,a(Xt, t))− f∗(Xt, t)∥22

]
dt, (12)

in which we define the target function as f∗(x, t) := E [X0|Xt = x] and the expectation is taken
over Xt. Given that only W is updated during optimization, in what follows, we omit a in the
subscript of the neural network. Our loss function (12) is also supported by empirical studies (Ho
et al., 2020). In addition, (12) can be viewed as a regression task with noisy labels. In what follows,
we will show that neural networks trained on noisy labels generalize well w.r.t. (12).

One major challenge in the theoretical analysis, which distinguishes us from the standard supervised
learning problems, is the unboundedness of the input Xt in the objective function. To overcome this
challenge, we employ a truncation argument with a threshold R:

1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22

]
dt

=
1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I

{
∥Xt∥2 ≤ R

}]
dt (13)

+
1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I

{
∥Xt∥2 > R

}]
dt. (14)

The next lemma controls the tail behavior in (14).
Lemma 3.3. Suppose Assumption 3.2 holds. Then, uniformly over all W , it holds that

1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I {∥Xt∥2 > R}

]
dt = O(Rd−2e−R

2/4).

Lemma 3.3 states the term (14) is exponentially small in the threshold R. Thus, it suffices to focus
on the loss (13) over the ball with radiusR. Inspired by Kuzborskij & Szepesvári (2022) for learning
Lipschitz functions, we upper bound (13) by the following decomposition at each iteration τ :

1

4(T − T0)

∫ T

T0

E
[∥∥ΠD

(
fW(τ)(Xt, t)

)
− f∗(Xt, t)

∥∥2

2
I
{
∥Xt∥2 ≤ R

}]
dt

≤ 1

T − T0

∫ T

T0

E
[∥∥∥ΠD

(
fW(τ)(Xt, t)

)
− fK

τ (Xt, t)
∥∥∥2

2
I
{
∥Xt∥2 ≤ R

}]
dt (coupling)

+
1

T − T0

∫ T

T0

E
[∥∥∥fK

τ (Xt, t)− f̃K
τ (Xt, t)

∥∥∥2

2
I
{
∥Xt∥2 ≤ R

}]
dt (label mismatch)

+
1

T − T0

∫ T

T0

E
[∥∥∥f̃K

τ (Xt, t)− fH(Xt, t)
∥∥∥2

2
I
{
∥Xt∥2 ≤ R

}]
dt (early stopping)

+
1

T − T0

∫ T

T0

E
[
∥fH(Xt, t)− f∗(Xt, t)∥22 I

{
∥Xt∥2 ≤ R

}]
dt. (approximation)

The first term is the coupling error between neural networks fW(τ) and a function fKτ defined as:

fKτ (x, t) =

N∑
j=1

K((Xtj , tj), (x, t))γj(τ), γ(τ + 1) = γ(τ)− η(Hγ(τ)− y),

6



Published as a conference paper at ICLR 2024

where γ(0) is initialized in (69) and y = (X⊤
0,1, . . . , X

⊤
0,N )⊤. The fourth term is the approximation

error of the target function f∗ by a function fH in the RKHS H. These two terms transform the
training of neural networks into a problem of kernel regression. To learn the function fH, we define
an auxiliary function f̃Kτ of the same functional form as fKτ , but trained on a different dataset
S̃ = {(tj , X̃0,j , Xtj )}Nj=1 with

X̃0,j := fH(Xtj , tj) + εj , εj := X0,j − f∗(Xtj , tj).

Finally, we control the third term in the above decomposition by the early-stopping rule, which is
introduced in the statistical learning literature (Raskutti et al., 2014; Wei et al., 2017).

3.1 APPROXIMATION

We start by analyzing the approximation term in our decomposition. This subsection focuses on the
approximation error of the target function f∗ by a function in the RKHS H induced by the NTK K.
We start with a regularity assumption on the coefficient g(t) in the OU process.

Assumption 3.4. The function g is almost everywhere continuous and bounded on [0,∞).

Assumption 3.4 imposes a minimal requirement to guarantee that bothα(t) and h(t) are well-defined
at each timestamp t ≥ 0. In addition, the boundedness assumption of g is used to establish the
Lipschitz property of the score function with respect to t in the literature (Chen et al., 2023a;b;c).
We also make the following smoothness assumption on the target function f∗.

Assumption 3.5. For all (x, t) ∈ Rd × [T0,∞), the function f∗(x, t) is β1-Lipschitz in x, i.e.,
|f∗(x, t)− f∗(x

′, t)|2 ≤ β1 ∥x− x′∥2.

Assumption 3.5 implies the score function is Lipschitz w.r.t. the input x. This assumption is standard
in the literature (Chen et al., 2023a;b;c). Yet the Lipschitz continuity in Assumption 3.5 is only
imposed on the regression function f∗, which is a consequence of the score decomposition. To
justify Assumption 3.5, we provide an upper bound for the Lipschitz constant β1 in Lemma G.1.
The following theorem states a universal approximation theorem of using RKHS for score functions.

Theorem 3.6 (Universal Approximation of Score Function). Suppose Assumptions 3.2, 3.4 and 3.5
hold. Let R ≥ T − T0 and RH be larger than a constant c1 1 that depends only on d. There exists a
function fH ∈ H such that ∥fH∥2H ≤ dRH and

1

T − T0

∫ T

T0

E
[
∥fH(Xt, t)− f∗(Xt, t)∥22 I {∥Xt∥2 ≤ R}

]
dt ≤ dA2(RH, R),

where A(RH, R) := c1Λ(R)
(√

RH
Λ(R)

)− 2
d

log
(√

RH
Λ(R)

)
and Λ(R) = O(

√
dR2).

Theorem 3.6 provides an approximation of the target function by the RHKS under the L2 norm. For
each given R, RH is chosen large enough such that A(RH, R) is arbitrarily small. We provide here
a proof sketch of Theorem 3.6. We first construct an auxiliary function f̃∗(x, t) := f∗(x, |t| + T0).
One can show f̃∗ is Lipschitz continuous in (x, t) ∈ Rd+1. Then for each coordinate i, we apply
an approximation result on RKHS for Lipschitz functions over a L∞-ball (cf. Lemma C.2) to find a
function that approximates f̃ i∗ well. Since the NTK is not a translation invariant kernel, we need to
construct a shifted NTK such that f iH ∈ H1 is close to f i∗ after translation. The rest is to show that
fH = (f iH)di=1 lies in the vector-valued RKHS H. The complete proof is deferred to the appendix.

3.2 COUPLING

This subsection provides a coupling argument to control the error between the neural network train-
ing and the kernel regression. We make the following assumption on the dataset S:

Assumption 3.7. There exists a function δ1(∆, R) ∈ [0, 1) such that δ1 → 0 when R → ∞ and
∆ → 0, and we have the following result holds with probability at least 1− δ1(∆, R),

tj ∈ [T0 +∆, T ] and
∥∥Xtj

∥∥
2
≤ R for all sample j.

1The constant c1 is equal to C(d+ 1, 0) in (Bach, 2017, Proposition 6).
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Assumption 3.7, which imposes regularity conditions on the input data (tj , Xtj ), can be verified by
utilizing the tail property of Xtj and the uniform sampling scheme for tj ; see Lemma G.2 in the
appendix. The next assumption is on the minimum eigenvalue of the Gram matrix H of the kernel
K and is standard in literature (Bartlett et al., 2021; Du et al., 2018; Nguyen et al., 2021; Suh &
Cheng, 2024).
Assumption 3.8. There exists a constant λ0 ≥ 1, dependent on d, such that the smallest eigenvalue
satisfies λmin(H) ≥ λ0, with probability at least 1− δ2(d), and δ2 → 0 as d increases.
As shown in the literature of deep learning theory (Allen-Zhu et al., 2019a; Arora et al., 2019a;
Liu et al., 2022), the Gram matrix H is a fundamental quantity that determines the convergence
rate of neural network optimization. We also remark that Assumption 3.8 is usually satisfied with a
sample-dependent lower bound λ0; see Lemma G.3 in the appendix for a justification and see also
Nguyen et al. (2021)) for analysis of scalar NTK. Now we are ready to state our main theorem for
the coupling error. Let us denote Cmax =

√
R2 + (T − T0)2.

Theorem 3.9 (Coupling Error). Suppose Assumptions 3.2, 3.7 and 3.8 hold. If we set m =

Ω
(

(dN)6C6
max

λ10
0 δ3∆2

)
, initialize wr(0) ∼ N (0, Id+1) and air ∼ Unif {−1, 1} i.i.d., initialize γ(0) prop-

erly, and set η = O
(

λ0

(dN)2C4
max

)
, then with probability at least 1−δ, for all τ ≥ 0 and r = 1, . . . ,m

simultaneously, we have
1

T − T0

∫ T

T0

E
[∥∥ΠD (fW(τ)(Xt, t)

)
− fKτ (Xt, t)

∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt

≤ 4∆D2

T − T0
+ Õ

(
d10N9C12

max√
mλ20δ

4∆2

)
.

The proof is deferred to the appendix. Theorem 3.9 controls the error between the neural network
training and the kernel regression. One can choose m = Poly(d,N,R,∆, λ0, δ) and optimize over
R and ∆ to make the error term small. For each fixed input data sample, (Arora et al., 2019b,
Theorem 3.2) shows that the coupling error is small with high probability. Our analysis improves
this result by showing that the L2 coupling error also remains small with high probability. To prove
Theorem 3.9, we first show that the training loss (8) converges with a linear rate (cf. Theorem D.1).
Next, we show that fW(τ) performs similarly as a linearized function f lin

W̄(τ)
at each iteration τ .

Finally, we argue that the L2 loss between the f lin
W̄(τ)

and fKτ is small because of the concentration
of kernels and a carefully chosen initialization γ(0) depending on the neural network initialization.

3.3 LABEL MISMATCH

In this subsection, we provide an upper bound for the error term induced by the label mismatch.
Recall that fKτ is trained by the kernel regression on the dataset S while f̃Kτ is trained on the dataset
S̃. We control the error induced by the label mismatch in the following theorem.

Theorem 3.10 (Label Mismatch). Suppose Assumptions 3.7 and 3.8 hold. If we initialize both fK0
and f̃K0 properly, then with probability at least 1− δ it holds simultaneously for all τ that

1

T − T0

∫ T

T0

E
[∥∥∥fK

τ (x, t)− f̃K
τ (x, t)

∥∥∥2

2
I
{
∥Xt∥2 ≤ R

}]
dt ≤ dA(RH, R) + C0

(√
dA(RH, R)Γδ + Γδ

)
,

where

Γδ :=

(
2d

(
d log3/2

(
eCmax(dN)3/2A(RH, R)

λ0

)
A(RH, R)Cmax

λ0

)
+

1√
N

)2

+
d2A2(RH, R)C

2
max

λ20
(log(1/δ) + log (logN)) ,

C0 is a constant defined in Lemma E.2 and Cmax is defined in Theorem 3.9.

Theorem 3.10 links the error between fKτ and f̃Kτ to the approximation error A(RH, R). The
proof of Theorem 3.10 (deferred to the appendix) consists of two parts. We first utilize the kernel
regression structure to show that the predictions of fKτ and f̃Kτ are similar over all the samples
(tj , Xtj ). Next, we apply the vector-valued localized Rademacher complexity (cf. Lemma E.2) to
show that the performance of these two functions is also close w.r.t. the population loss.
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3.4 EARLY STOPPING AND THE FINAL RESULT

Given the function f̃Kτ trained on the data set S̃ =
{(
tj , X̃0,j , Xtj

)}N
j=1

and the target function

fH ∈ H that generates the virtual label X̃0,j , we transform the score matching problem to a classical
kernel regression problem. The next technical assumption allows us to reduce the excess risk bound
for the early-stopped GD learning in RKHS to the excess risk bound for learning Lipschitz functions.

Assumption 3.11. Fix any fH ∈ H with ∥fH∥2H ≤ RH and assume labels are generated as
X̃0,j = fH(Xtj , tj)+εj . Suppose f̃K

T̂
is obtained by GD-trained kernel regression with the number

of iterations T̂ . We assume that there exists ϵ such that

1

T − T0

∫ T

T0

E
[∥∥∥f̃K

T̂
(Xt, t)− fH(Xt, t)

∥∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt ≤ ϵ(N, T̂ ),

and ϵ(N, T̂ ) → 0 as N → ∞.

Here, T̂ is a data-dependent early-stopping rule to control the excess risk of kernel regression. For
supervised learning with noisy labels, an early-stopping rule for GD is necessary to minimize the
excess risk (Bartlett & Mendelson, 2002; Hu et al., 2021; Li et al., 2020). We remark that, although
T̂ is defined through the kernel regression for analytical purposes, it can be directly implemented
in the neural network training. Assumption 3.11 can be satisfied by an extension of classical early-
stopping rules. For the case of scalar-valued kernel regression, see (Raskutti et al., 2014). Next, we
provide a generalization result for the score estimator:
Theorem 3.12 (Score Estimation and Generalization). Suppose Assumptions 3.2, 3.4, 3.5, 3.7, 3.8
hold and we set m and η as prescribed in Theorem 3.9. Moreover, suppose T̂ satisfies Assumption
3.11 with corresponding ϵ(N, T̂ ). Then for any large enough R and RH and small enough ∆, with
probability at least 1− δ, it holds that

1

T − T0

∫ T

T0

λ(t)E
[∥∥∥sW(T̂ )(Xt, t)−∇ log pt(Xt)

∥∥∥2
2

]
dt

≤ O(Rd−2e−R
2/4) + 4dA2(RH, R) +

16∆D2

T − T0
+ Õ

(
d10N9C12

max√
mλ20δ

4∆2

)
+ 4dA(RH, R) + 4C0

(√
dA(RH, R)Γδ + Γδ

)
+ 4ϵ(N, T̂ ),

where A(RH, R) is defined in Theorem 3.6 and Γδ is given in Theorem 3.10.

Theorem 3.12 shows that the early-stopped neural network sW(T̂ ) learns the score function ∇ log pt

well in theL2 sense over the interval [T0, T ]. To the best of our knowledge, this is the first algorithm-
based analysis for score estimation with neural network parameterization. Combined with recent
findings in the distribution recovery property of diffusion models, we are the first to obtain an end-
to-end guarantee with a provably efficient algorithm for diffusion models. The proof of Theorem
3.12, which relies on Lemma 3.3 and Theorems 3.6, 3.9 and 3.10, can be found in the appendix.

4 CONCLUSION AND DISCUSSIONS

This paper establishes the first algorithm-dependent analysis of neural network-based score esti-
mation in diffusion models. We demonstrate that training overparametrized neural networks with
GD can learn the ground-truth score function with a sufficient number of samples under an early-
stopping rule. Our work investigates all three aspects of the score estimation task: approximation,
optimization, and generalization. The analytical framework laid out in this paper sheds light on the
understanding of diffusion models and inspires innovative architectural design.

In addition, our work leaves several open questions for future investigation. For instance, the depen-
dence of our convergence results on the dimension of the problem seems sub-optimal. To address
this issue, one approach is to consider the manifold structure of the data distribution, such as the
linear subspace assumption as suggested by Chen et al. (2023b) and Oko et al. (2023). Another di-
rection is to understand the role of neural network architectures like U-nets and transformers in the
implementation of diffusion models for image tasks. Finally, the analysis of stochastic and adaptive
algorithms such as SGD and Adam is crucial, closing the gap between theory and practice further.
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Alain Celisse and Martin Wahl. Analyzing the discrepancy principle for kernelized spectral filter
learning algorithms. The Journal of Machine Learning Research, 22(1):3498–3556, 2021.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In International Conference on
Machine Learning, pp. 4735–4763. PMLR, 2023a.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference
on Machine Learning, pp. 4672–4712. PMLR, 2023b.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy
as learning the score: theory for diffusion models with minimal data assumptions. International
Conference on Learning Representations, 2023c.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ODE is provably fast. Advances in Neural Information Processing Systems, 36, 2024.

10



Published as a conference paper at ICLR 2024

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. International Conference on Learning Representations, 2020.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Gerald B Folland. Real analysis: modern techniques and their applications, volume 40. John Wiley
& Sons, 1999.
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A PROOF OF LEMMA 3.1

Proof. Recall that the density function pt can be written as

pt(x) =

∫
pt|0(x|x0)p0(x0)dx0,

where the transition kernel pt|0(x|x0) = (2πh(t))−d/2 exp
(
− 1

2h(t) ∥x− α(t)x0∥22
)

. The domi-
nated convergence theorem implies,

∇ log pt(x) =
∇
∫
pt|0(x|x0)p0(x0)dx0

pt(x)

=
(2πh(t))

−d/2 ∫ −x−α(t)x0

h(t) exp
(
−∥x−α(t)x0∥2

2h(t)

)
p0(x0)dx0

pt(x)

=

∫
−x− α(t)x0

h(t)
·
pt|0(x|x0)p0(x0)

pt(x)
dx0

=

∫
−x− α(t)x0

h(t)
· p0|t(x0|x)dx0

= E
[
α(t)X0 −Xt

h(t)

∣∣∣∣Xt = x

]
=
α(t)

h(t)
E [X0|Xt = x]− x

h(t)
,

which completes the proof.

B PROOF OF LEMMA 3.3

Proof. The ideas in the proof are motivated by Chen et al. (2023b). First, note that

pt|0(xt|x0) = (2πh(t))−d/2 exp

(
− 1

2h(t)
∥xt − α(t)x0∥22

)
≤ (2πh(t))−d/2 exp

(
− 1

2h(t)

(
1

2
∥xt∥22 − α2(t) ∥x0∥22

))
≤ (2πh(t))−d/2 exp

(
− 1

2h(t)

(
1

2
∥xt∥22 − ∥x0∥22

))
. (15)

Denote the expectation with respect to the marginal distribution of X0 as EX0
. With inequality (15),

we have

1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I {∥Xt∥2 > R}

]
dt

≤ 4D2

T − T0

∫ T

T0

EX0

[∫
∥xt∥2≥R

pt|0(xt|X0)dxt

]
dt

≤ 4D2

T − T0

∫ T

T0

(2πh(t))−d/2EX0

[
exp

(
∥X0∥22
2h(t)

)](∫
∥xt∥≥R

exp

(
−∥xt∥2

4h(t)

)
dxt

)
dt

= O

(
1

T − T0

∫ T

T0

∫
∥xt∥≥R

exp

(
−∥xt∥2

4h(t)

)
dxtdt

)
, (16)

where the last step holds due to the facts that h(t) ∈ [h(T0), h(T )] and ∥X0∥ ≤ D. We bound the
inner integral in (16) by using the polar coordinate (Folland, 1999, Corollary 2.51):∫

∥xt∥≥R
exp

(
−∥xt∥2

4h(t)

)
dxt =

2πd/2

Γ(d/2)

∫ ∞

R

exp

(
− r2

4h(t)

)
rd−1dr

14
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=
(4h(t))d/2πd/2

Γ(d/2)

∫ ∞

R2/(4h(t))

exp (−u)ud/2−1du

=
2(4h(t))d/2πd/2

dΓ(d/2)

∫ ∞

(R2/(4h(t)))d/2
exp

(
−v2/d

)
dv

≤ 8h(t)πd/2

Γ(d/2)
Rd−2e−R

2/(4h(t)),

where the last inequality follow from (Qi & Mei, 1999, Equation 10). Therefore, we conclude that

1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I {∥Xt∥2 > R}

]
dt

= O

(
1

T − T0

∫ T

T0

8h(t)πd/2

Γ(d/2)
Rd−2e−R

2/(4h(t))dt

)
= O(Rd−2e−R

2/4).

C PROOF OF THEOREM 3.6

We first show that f∗(x, t) is Lipschitz in t for each fixed x in the following lemma:
Lemma C.1. Suppose Assumptions 3.2 and 3.4 hold. For each R > 0, the regression function
f∗(x, t) is β2(R)-Lipschitz in t for all ∥x∥∞ ≤ R and t ∈ [T0,∞), i.e., |f∗(x, t)− f∗(x, t

′)|2 ≤
β2(R) |t− t′|, where β2(R) = O(

√
dR).

Proof. We start with computing the derivative of f∗ with respect to t. The dominated convergence
theorem implies

∂

∂t
f∗(x, t) =

∂

∂t

∫
x0p0|t(x0|x)dx0

=
∂

∂t

∫
x0pt|0(x|x0)p0(x0)∫
pt|0(x|x′0)p0(x′0)dx′0

dx0

=

∫
x0

∂
∂tpt|0(x|x0)p0(x0)∫
pt|0(x|x′0)p0(x′0)dx′0

dx0

−
∫
x0pt|0(x|x0)p0(x0)

∫
∂
∂tpt|0(x|x

′′
0)p0(x

′′
0)dx

′′
0(∫

pt|0(x|x′0)p0(x′0)dx′0
)2 dx0. (17)

To proceed, recall that Xt|X0 ∼ N (α(t)X0, h(t)Id) with α(t) = exp
(
−
∫ t
0
g(s)
2 ds

)
and h(t) =

1− α2(t). By straightforward calculations,
∂

∂t
pt|0(x|x0)

=
∂

∂t

(
(2πh(t))−d/2 exp

(
−
∥x− α(t)x0∥22

2h(t)

))

= −d
2
(2πh(t))−

d
2−1(2π)h′(t) exp

(
−
∥x− α(t)x0∥22

2h(t)

)

+ (2πh(t))−d/2 exp

(
−
∥x− α(t)x0∥22

2h(t)

)(
2(x− α(t)x0)

⊤x0α
′(t)

2h(t)
+

∥x− α(t)x0∥22 h′(t)
2h2(t)

)

=
pt|0(x|x0)
2h2(t)

(
−dh(t)h′(t) + 2(x− α(t)x0)

⊤x0α
′(t)h(t) + ∥x− α(t)x0∥22 h

′(t)
)
. (18)

Since α′(t) = −α(t)g(t)/2 and h′(t) = −2α(t)α′(t) = α2(t)g(t), we can rewrite (18) as
∂

∂t
pt|0(x|x0)

15
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=
pt|0(x|x0)
2h2(t)

(
−dh(t)α2(t)g(t)− (x− α(t)x0)

⊤x0α(t)g(t)h(t) + ∥x− α(t)x0∥22 α
2(t)g(t)

)
= pt|0(x|x0)

α(t)g(t)

2h2(t)

(
−dh(t)α(t)− (x− α(t)x0)

⊤x0h(t) + ∥x− α(t)x0∥22 α(t)
)

= pt|0(x|x0)
α(t)g(t)

2h2(t)

(
−dh(t)α(t) + α(t) ∥x∥22 − (1 + α2(t))x⊤0 x+ α(t) ∥x0∥22

)
. (19)

Plugging (19) back into (17), we have∫
x0

∂
∂tpt|0(x|x0)p0(x0)∫
pt|0(x|x′0)p0(x′0)dx′0

dx0

=
α(t)g(t)

2h2(t)
E
[
X0

(
−dh(t)α(t) + α(t) ∥Xt∥22 − (1 + α2(t))X⊤

0 Xt + α(t) ∥X0∥22
) ∣∣∣∣Xt = x

]
=
α(t)g(t)

2h2(t)

(
− dh(t)α(t)E [X0|Xt = x] + α(t) ∥x∥22 E [X0|Xt = x]

− (1 + α2(t))xE
[
∥X0∥22

∣∣Xt = x
]
+ α(t)E

[
X0 ∥X0∥22 |Xt = x

])
,

and also∫
x0pt|0(x|x0)p0(x0)

∫
∂
∂tpt|0(x|x

′′
0)p0(x

′′
0)dx

′′
0(∫

pt|0(x|x′0)p0(x′0)dx′0
)2 dx0

=
α(t)g(t)

2h2(t)
E
[
X0E

[
−dh(t)α(t) + α(t) ∥Xt∥22 − (1 + α2(t))X⊤

0 Xt + α(t) ∥X0∥22

∣∣∣∣Xt

] ∣∣∣∣Xt = x

]
=
α(t)g(t)

2h2(t)
E
[
−dh(t)α(t) + α(t) ∥Xt∥22 − (1 + α2(t))X⊤

0 Xt + α(t) ∥X0∥22

∣∣∣∣Xt = x

]
E [X0|Xt = x]

=
α(t)g(t)

2h2(t)

(
−dh(t)α(t) + α(t) ∥x∥22 − (1 + α2(t))x⊤E [X0|Xt = x] + α(t)E

[
∥X0∥22 |Xt = x

])
E [X0|Xt = x] .

Therefore, we conclude that

∂

∂t
f∗(x, t) =

α(t)g(t)

2h2(t)

(
α(t)E

[
∥X0∥22 (X0 − E [X0|Xt])

∣∣Xt = x
]

− (1 + α2(t))x
(
E
[
∥X0∥22 |Xt = x

]
− ∥E [X0|Xt = x]∥22

))
=
α(t)g(t)

2h2(t)

(
α(t)E

[
∥X0∥22 (X0 − E [X0|Xt])

∣∣Xt = x
]
− (1 + α2(t))xCov(X0|Xt = x)

)
.

The Pythagorean theorem implies that ∥X0 − E [X0|Xt]∥2 ≤ ∥X0∥2. Since ∥X0∥2 ≤ D by As-
sumption 3.2, we can apply the triangle inequality to obtain

sup
t∈[T0,∞)

sup
∥x∥∞≤R

∥∥∥∥ ∂∂tf∗(x, t)
∥∥∥∥
2

≤ α(t)g(t)

2h2(t)

[
α(t)E

[
∥X0∥22 ∥X0 − E [X0|Xt]∥2

∣∣∣∣Xt = x

]
+ (1 + α2(t)) ∥x∥2 ∥Cov(X0|Xt = x)∥2

]
= O(

√
dR) =: β2(R),

where we have used the facts that α(t) ≤ 1, h(t) ≥ h(T0) and g(t) is uniformly bounded on
[T0,∞).

Next, we define two kernels without the bias term. Let H̃1 be the real-valued RKHS induced by the
scalar-valued NTK κ̃ : Rd+1 × Rd+1 → R defined as

κ̃(z, z̃) := z⊤z̃E
[
I
{
w1(0)

⊤z ≥ 0
}
I
{
w1(0)

⊤z̃ ≥ 0
}]
.
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Similarly, let H̃ be the vector-valued RKHS induced by the matrix-valued NTK K̃ : Rd+1×Rd+1 →
Rd×d defined as

K̃(z, z̃) = κ̃(z, z̃)Id.

The following lemma shows the approximation of a Lipschitz target function by the RKHS H̃1 over
a ball with radius R.

Lemma C.2. (Bach, 2017, Proposition 6) Let RH̃1
be larger than a constant c1 that depends only

on d. For any function f : Rd+1 → R such that for any ∥z∥∞ , ∥z′∥∞ ≤ R, sup∥z∥∞≤R |f(z)| ≤ Λ

and |f(z)− f(z′)| ≤ Λ
R ∥z − z′∥2, there exists fH̃1

∈ H̃1 with
∥∥fH̃1

∥∥2
H̃1

≤ RH̃1
and

sup
∥z∥∞≤R

∣∣f(z)− fH̃1
(z)
∣∣ ≤ A(RH̃1

), A(RH̃1
) := c1Λ

(√
RH̃1

Λ

)− 2
d

log

(√
RH̃1

Λ

)
.

Lemma C.2 is from (Bach, 2017, Proposition 6) by specifying the dimension as d + 1, α = 0 and
q = ∞. Now we are ready to prove that the regression function f∗ can be approximated by a
function in the RKHS H induced by K((x, t), (x′, t′)) = K̃((x, t− T0), (x

′, t′ − T0)).

Theorem C.3 (Approximation of the Score Function on a Ball). Suppose Assumptions 3.2, 3.4 and
3.5 hold. Let R ≥ T − T0 and RH be larger than a constant c1 that depends only on d. There exists
a function fH ∈ H with ∥fH∥2H ≤ dRH and

sup
∥x∥∞≤R

sup
t∈[T0,T ]

∥f∗(x, t)− fH(x, t)∥∞ ≤ A(RH, R) := c1Λ(R)

(√
RH

Λ(R)

)− 2
d

log

(√
RH

Λ(R)

)
,

where Λ(R) = O(
√
dR2).

Proof. We define an auxiliary target function f̃∗ : Rd × R → Rd as f̃∗(x, t) := f∗(x, |t|+ T0). By
Assumption 3.5 and Lemma C.1, the function f∗(x, t) is β1-Lipschitz in x and β2(R)-Lipschitz in t
for all ∥x∥∞ ≤ R and t ∈ [T0,∞); so is each coordinate map. Since sup∥(x,t)∥∞≤R

∥∥∥f̃∗(x, t)∥∥∥
2
≤

D and for all ∥(x, t)∥∞ , ∥(x′, t′)∥∞ ≤ R,∥∥∥f̃∗(x, t)− f̃∗(x
′, t′)

∥∥∥
2

≤
∥∥∥f̃∗(x, t)− f̃∗(x

′, t)
∥∥∥
2
+
∥∥∥f̃∗(x′, t)− f̃∗(x

′, t′)
∥∥∥
2

= ∥f∗(x, |t|+ T0)− f∗(x
′, |t|+ T0)∥2 + ∥f∗(x′, |t|+ T0)− f∗(x

′, |t′|+ T0)∥2
≤ β1 ∥x− x′∥2 + β2(R) ||t| − |t′||
≤ (β1 + β2(R)) ∥(x, t)− (x′, t′)∥2 , (20)

one can apply Lemma C.2 by choosing Λ(R) = max {D,R {β1 + β2(R)}}. It follows that for each

coordinate i = 1, . . . , d, there exists f̃ iH̃1
∈ H̃1 with

∥∥∥f̃ iH̃1

∥∥∥2
H̃1

≤ RH such that

sup
∥(x,t)∥∞≤R

∣∣∣f̃ i∗(x, t)− f̃ iH̃1
(x, t)

∣∣∣ ≤ A(RH, R) = c1Λ(R)

(√
RH

Λ(R)

)− 2
d

log

(√
RH

Λ(R)

)
.

Defining f iH(x, t) := f̃ iH̃1
(x, t− T0), we have

sup
∥x∥∞≤R

sup
t∈[T0,R+T0]

∣∣f i∗(x, t)− f iH(x, t)
∣∣ ≤ A(RH, R).

Note that f iH : Rd+1 → R lies in the RKHS induced by the kernel κ((x, t), (x′, t′)) = κ̃((x, t −
T0), (x

′, t′ − T0)) and
∥∥f iH∥∥H1

=
∥∥∥f̃ iH̃1

∥∥∥
H̃1

. We next show that fH = (f1H, . . . , f
d
H) is in the

17
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RKHS induced by K. Since each coordinate of f iH lies in the RKHS induced by κ, by relabeling
data points, without loss of generality, it suffices to consider

f iH(·) =
P∑
p=1

αipκ((x, t)p, ·), (x, t)p ∈ Rd+1, αip ∈ R.

It follows

fH(·) =
d∑
i=1

f iH(·)ei =
d∑
i=1

(
p∑
p=1

αipκ((x, t)p, ·)

)
ei =

P∑
p=1

K((x, t)p, ·)

(
d∑
i=1

αipei

)
∈ H.

Moreover,

∥fH∥2H =

〈
P∑
p=1

K((x, t)p, ·)

(
d∑
i=1

αipei

)
,

P∑
q=1

K((x, t)q, ·)

(
d∑
k=1

αkqek

)〉
K

=
∑
p,q

∑
i,k

αipα
k
qe

⊤
i K((x, t)p, (x, t)q)ek

=

d∑
i=1

∑
p,q

αipα
i
qκ((x, t)p, (x, t)q)

=

d∑
i=1

〈
P∑
p=1

αipκ((x, t)p, ·),
P∑
q=1

αiqκ((x, t)q, ·)

〉

=

d∑
i=1

∥∥f iH∥∥2H1
=

d∑
i=1

∥∥∥f̃ iH̃1

∥∥∥2
H̃1

≤ dRH. (21)

Therefore, we have found a function fH : Rd+1 → Rd in the RKHS induced by K such that
∥fH∥2H ≤ dRH and

sup
∥x∥∞≤R

sup
t∈[T0,T ]

∥f∗(x, t)− fH(x, t)∥∞ ≤ A(RH, R).

As a by-product of Theorem C.3, we can prove Theorem 3.6.

Proof of Theorem 3.6. For any R ≥ T − T0 and t ∈ [T0, T ], we have

∥fH(Xt, t)− f∗(Xt, t)∥22 I {∥Xt∥2 ≤ R}
≤ d sup

∥x∥∞≤R
sup

t∈[T0,T ]

∥fH(x, t)− f∗(x, t)∥2∞ ≤ dA2(RH, R),

which implies that∫ T

T0

E
[
∥fH(Xt, t)− f∗(Xt, t)∥22 I {∥Xt∥2 ≤ R}

]
dt ≤ d(T − T0)A

2(RH, R).

Dividing both sides by T − T0 will complete the proof.

D PROOF OF THEOREM 3.9

To prove Theorem 3.9, we first show a linear convergence rate of the GD over the training dataset
S =

{
(tj , X0,j , Xtj )

}N
j=1

. Recall the definition zj = (Xtj , tj − T0). Consider a Gram matrix
H(τ) ∈ RdN×dN at each iteration τ defined as the following block matrix:

H(τ) :=

H11(τ) . . . H1N (τ)
...

. . .
...

HN1(τ) . . . HNN (τ)

 , Hik
jℓ (τ) =

1

m
z⊤j zℓ

m∑
r=1

aira
k
r I
{
z⊤j wr(τ) ≥ 0, z⊤ℓ wr(τ) ≥ 0

}
.
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One can check that H = E [H(0)] with the expectation taken over the random initialization. For
ease of presentation, recall that we have setCmax =

√
R2 + (T − T0)2 so that

∥∥(Xtj , tj − T0)
∥∥
2
∈

[∆, Cmax] by Assumption 3.7. Moreover, we denote the activation pattern of neural wr for sample
j at iteration τ as Ij,r(τ) := I

{
wr(τ)

⊤zj ≥ 0
}

. The convergence of the GD algorithm is given in
the next theorem.
Theorem D.1 (Convergence Rate of GD). Suppose Assumptions 3.2, 3.7 and 3.8 hold. If we set
m = Ω

(
(dN)6C6

max

λ10
0 δ3∆2

)
with i.i.d. initialization for wr ∼ N (0, Id+1) and air ∼ Unif {−1, 1}, and

we set η = O
(

λ0

(dN)2C4
max

)
, then with probability at least 1 − δ, for all τ ≥ 0 and r = 1, . . . ,m

simultaneously, we have

L̂(W(τ)) ≤ (1− ηλ0)
τ L̂(W(0)), (22)

and

∥wr(τ)− wr(0)∥2 ≤ Rw := O
(
dNC2

max√
mλ0

√
δ

)
. (23)

Proof. Following the ideas in Arora et al. (2019a); Du et al. (2018), we prove the convergence of GD
by double induction. The induction is to show that (22) holds for all τ . It is straightforward to see
the inequality holds for τ = 0. Assuming (22) holds for 0 ≤ τ ′ ≤ τ , we will show it is also true for
τ ′ = τ+1. Let u(τ) = vec(u1, . . . , uN )(τ) and y = vec(y1, . . . , yN ) with uj(τ) = fW(τ)(Xtj , tj)
and yj = X0,j . We first need the following result hold uniformly for all τ ′ = 0, . . . , τ + 1:

∥wr(τ ′)− wr(0)∥2 =

∥∥∥∥∥∥η
τ ′−1∑
τ ′′=0

∂L̂(W(τ ′′))

∂wr(τ ′′)

∥∥∥∥∥∥
2

≤ η

τ ′−1∑
τ ′′=0

∥∥∥∥∥∂L̂(W(τ ′′))

∂wr(τ ′′)

∥∥∥∥∥
2

≤ ηCmax

τ ′−1∑
τ ′′=0

√
dN ∥u(τ ′′)− y∥2√

m
(24)

≤ ηCmax

√
dN√

m

τ ′−1∑
τ ′′=0

(1− ηλ0)
τ ′′/2 ∥u(0)− y∥2 (25)

≤ ηCmax

√
dN√

m

∞∑
τ ′′=0

(1− ηλ0/2)
τ ′′

∥u(0)− y∥2 (26)

=
2Cmax

√
dN ∥u(0)− y∥2√
mλ0

. (27)

Here, we have an upper bound on gradient (9) to derive (24). Also, (25) and (26) follow from the
induction hypothesis (22) and the fact that

√
1− x ≤ 1− x/2. We further bound

E
[
∥u(0)− y∥22

]
=
∑
i,j

E
[∣∣uij(0)− yij

∣∣2]
=
∑
i,j

[
(yij)

2 − 2yijE
[
f i(W, a, (Xtj , tj))

]
+ E

[
(f i)2(W, a, (Xtj , tj))

]]
≤
∑
i,j

[
(yij)

2 + C2
max

]
= O(dNC2

max),

where we have used the facts that E
[
f i(W, a, (Xtj , tj))

]
= 0, E

[
(f i)2(W, a, (Xtj , tj))

]
≤ C2

max

and ∥yj∥2 ≤ D. Thus, the Markov’s inequality yields ∥u(0)− y∥22 = O(dNC2
max/δ) with proba-

bility at least 1− δ. Therefore, with probability at least 1− δ, we have

∥wr(τ ′)− wr(0)∥2 ≤ Rw := O
(
dNC2

max√
mλ0

√
δ

)
, ∀τ ′ = 0, . . . , τ + 1, r = 1, . . . ,m. (28)
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Define the following index sets

Sj := {r ∈ [m] : I {Aj,r} = 0} , S̄j := {r ∈ [m] : I {Aj,r} ≠ 0} ,

where Aj,r :=
{∣∣wr(0)⊤zj∣∣ ≤ RwCmax

}
. Note that

I {Ij,r(τ ′) ̸= Ij,r(0)} ≤ I {Aj,r}+ I {∥wr(τ ′)− wr(0)∥2 > Rw} . (29)

To see this, note that if ∥wr(τ ′)− wr(0)∥2 ≤ Rw it follows
∣∣wr(τ ′)⊤zj − wr(0)

⊤zj
∣∣ ≤ RwCmax.

If wr(0)⊤zj > RwCmax, then wr(τ
′)⊤zj > 0. Similarly, if wr(0)⊤zj < −RwCmax, then

wr(τ
′)⊤zj < 0. Hence, we must have Ij,r(τ ′) = Ij,r(0). From (28) and (29), we deduce that

with probability at least 1− δ, all neurons with indices in Sj will not change their activation pattern
on zj during optimization, i.e.,

r ∈ Sj =⇒ Ij,r(τ ′) = Ij,r(0), ∀τ ′ = 0, . . . , τ + 1. (30)

With such a partition, we can write the dynamics of uij(τ) as

uij(τ + 1)− uij(τ) =
1√
m

m∑
r=1

air
[
σ(wr(τ + 1)⊤zj)− σ(wr(τ)

⊤zj)
]

=
1√
m

∑
r∈Sj

air
[
σ(wr(τ + 1)⊤zj)− σ(wr(τ)

⊤zj)
]

+
1√
m

∑
r∈S̄j

air
[
σ(wr(τ + 1)⊤zj)− σ(wr(τ)

⊤zj)
]
. (31)

By utilizing the condition (30), we bound the first term in (31) as

1√
m

∑
r∈Sj

air
[
σ(wr(τ + 1)⊤zj)− σ(wr(τ)

⊤zj)
]

=
1√
m

∑
r∈Sj

airIj,r(τ)
(
wr(τ + 1)⊤zj − wr(τ)

⊤zj
)

=
1√
m

∑
r∈Sj

airIj,r(τ)

(
− η√

m

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )a
k
rzℓIℓ,r(τ)

)⊤

zj (32)

= − η

m

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )z
⊤
j zℓ

∑
r∈Sj

aira
k
r Ij,r(τ)Iℓ,r(τ)

= −η
N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )H
ik
jℓ (τ) + ϵij(τ), (33)

where we set ϵij(τ) := η
m

∑N
ℓ=1

∑d
k=1(u

k
ℓ (τ) − ykℓ )z

⊤
j zℓ

∑
r∈S̄j

aira
k
r (τ)Ij,r(τ)Iℓ,r(τ). Here, we

use the GD update rule and the definition of Hik
jℓ (τ) to derive (32) and (33). We further bound the

error term as∣∣ϵij(τ)∣∣ ≤ η

m

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ ) ∥zj∥2 ∥zℓ∥2
∣∣S̄j∣∣ ≤ ηC2

max

∣∣S̄j∣∣√dN
m

∥u(τ)− y∥2 . (34)

Next, we denote the second term in (31) by ϵ̄ij(τ), which can be bounded as

∣∣ϵ̄ij(τ)∣∣ =
∣∣∣∣∣∣ 1√
m

∑
r∈S̄j

air
[
σ(wr(τ + 1)⊤zj)− σ(wr(τ)

⊤zj)
]∣∣∣∣∣∣

≤ 1√
m

∑
r∈S̄j

∣∣air∣∣ ∣∣(wr(τ + 1)− wr(τ))
⊤zj
∣∣ (35)
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≤ Cmax√
m

∑
r∈S̄j

∥wr(τ + 1)− wr(τ)∥2 (36)

=
Cmax√
m

∑
r∈S̄j

∥∥∥∥∥− η√
m

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )a
k
rzℓIℓ,r(τ)

∥∥∥∥∥
2

(37)

≤ ηCmax

m

∑
r∈S̄j

N∑
ℓ=1

d∑
k=1

∣∣ukℓ (τ)− ykℓ
∣∣ ∥zℓ∥2

≤
ηC2

max

∣∣S̄j∣∣√dN
m

∥u(τ)− y∥2 , (38)

where we apply the 1-Lipschitz property of the ReLU activation function to obtain (35). Also, we
employ the facts that

∣∣air∣∣ ≤ 1 and ∥zj∥2 ≤ Cmax in (36). The GD update rule is utilized to achieve
(37). Combining (31), (33) and (38), we have

uij(τ + 1)− uij(τ) = −η
N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )H
ik
jℓ (τ) + ϵij(τ) + ϵ̄ij(τ),

which can be further written in a compact form via vectorization:

u(τ + 1)− u(τ) = −ηH(τ)(u(τ)− y) + ϵ(τ) + ϵ̄(τ)

= −ηH(u(τ)− y) + η(H −H(τ))(u(τ)− y) + ϵ(τ) + ϵ̄(τ), (39)

where ϵ(τ) and ϵ̄(τ) are defined in a similar way as u(τ) by vectorization.

We move on to show that H(τ) is close to H when the neural network is sufficiently wide. First, the
Hoeffding’s inequality implies that, with probability at least 1− δ′,∣∣Hik

jℓ (0)−Hik
jℓ

∣∣ ≤ C2
max

√
2 log(2/δ′)

m
.

Setting δ′ = δ/(dN)2 and applying the union bound, we obtain

∥H −H(0)∥2F =
∑
i,k,j,ℓ

∣∣Hik
jℓ (0)−Hik

jℓ

∣∣2 ≤ (dN)2C4
max ·

2 log(2(dN)2/δ)

m
, (40)

with probability at least 1− δ. Next, note that (29) also implies
m∑
r=1

I {Ij,r(τ ′) ̸= Ij,r(0)} ≤
m∑
r=1

I {Aj,r}+ I {∥wr(τ ′)− wr(0)∥2 > Rw for some r} .

It follows∣∣Hik
jℓ (τ)−Hik

jℓ (0)
∣∣ = ∣∣∣∣∣ 1mz⊤j zℓ

m∑
r=1

aira
k
r [Ij,r(τ)Iℓ,r(τ)− Ij,r(0)Iℓ,r(0)]

∣∣∣∣∣
≤ C2

max

m

m∑
r=1

[I {Ij,r(τ) ̸= Ij,r(0)}+ I {Iℓ,r(τ) ̸= Iℓ,r(0)}]

≤ C2
max

m

(
m∑
r=1

[I {Aj,r}+ I {Aℓ,r}] + 2I {∥wr(τ)− wr(0)∥2 > Rw for some r}

)
.

Taking expectation on both sides and applying (28), we have

E
[∣∣Hik

jℓ (τ)−Hik
jℓ (0)

∣∣]
≤ C2

max

m

m∑
r=1

E [I {Aj,r}+ I {Aℓ,r}] +
2C2

max

m
E [I {∥wr(τ)− wr(0)∥2 > Rw for some r}]

≤ 4RwC
3
max√

2π∆
+

2C2
max

m
δ, (41)
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where we use the following anti-concentration inequality for Gaussian random variables:

E [I {Aj,r}] = Pz∼N (0,∥zj∥2
2)
(|z| ≤ RwCmax) =

∫ RwCmax

−RwCmax

1√
2π ∥zj∥22

e−z
2/2∥zj∥2

2 ≤ 2RwCmax√
2π∆

.

(42)

Hence, we have

E [∥H(τ)−H(0)∥F ] ≤
∑
i,k,j,ℓ

E
[∣∣Hik

jℓ (τ)−Hik
jℓ (0)

∣∣] ≤ 4(dN)2RwC
3
max√

2π∆
+

2(dN)2C2
max

m
δ.

Finally, by Markov’s inequality, with probability at least 1− δ it holds that

∥H(τ)−H(0)∥F = O
(

(dN)3C4
max√

mλ0δ3/2∆

)
. (43)

Therefore, combining (40) and (43), we have that

∥H −H(τ)∥2 ≤ ∥H −H(0)∥2 + ∥H(0)−H(τ)∥2

= O

(
(dN)

√
log((dN)2/δ)√
m

)
+O

(
(dN)3C4

max√
mλ0δ3/2∆

)
=

(dN)3C4
max√

mλ0δ3/2∆
. (44)

It remains to bound two error terms in (39). From (34) and (38), we know that

∥ϵ(τ) + ϵ̄(τ)∥2 ≤ ∥ϵ(τ) + ϵ̄(τ)∥1

=

N∑
j=1

d∑
i=1

∣∣ϵij(τ) + ϵ̄ij
∣∣ (τ)

≤
N∑
j=1

d∑
i=1

η
(
Cmax + C2

max

) ∣∣S̄j∣∣√dN
m

∥u(τ)− y∥2

=
2ηC2

maxd
√
dN

m
∥u(τ)− y∥2

N∑
j=1

∣∣S̄j∣∣ . (45)

Furthermore, it follows from (28) and (42) that

E
[∣∣S̄j∣∣] = E

[
m∑
r=1

I {Aj,r}

]
=

2mRwCmax√
2π∆

= O
(√

m(dN)C3
max

λ0
√
δ∆

)
.

Thus, the Markov’s inequality implies that
∑N
j=1

∣∣S̄j∣∣ = O
(√

mdN2C3
max

λ0δ3/2∆

)
with probability at least

1− δ.

Before proceeding to the induction hypothesis, we need the following result, which holds under
same argument as in (38),

∥u(τ + 1)− u(τ)∥22 ≤
∑
i,j

∣∣uij(τ + 1)− uij(τ)
∣∣2
2

≤ (dN)
(
ηC2

max

√
dN ∥u(τ)− y∥2

)2
= η2(dN)2C4

max ∥u(τ)− y∥22 . (46)

With the prediction dynamics (39) and all the estimates (44), (45) and (46), we can prove the induc-
tion hypothesis:

∥u(τ + 1)− y∥22
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= ∥u(τ + 1)− u(τ) + u(τ)− y∥22
= ∥u(τ)− y∥22 + ∥u(τ + 1)− u(τ)∥22 + 2(u(τ + 1)− u(τ))⊤(u(τ)− y)

= ∥u(τ)− y∥22 + ∥u (τ + 1)− u(τ)∥22 − 2η(u(τ)− y)⊤H(u(τ)− y)

+ 2η(u(τ)− y)⊤(H −H(τ))(u(τ)− y) + 2(ϵ(τ) + ϵ̄(τ))⊤(u(τ)− y)

≤
(
1− 2ηλ0 −O

(
η2(dN)2C4

max

)
+O

(
η(dN)3C4

max√
mλ0δ3/2∆

)
+O

(
η(dN)5/2C5

max√
mλ0δ3/2∆

))
∥u(τ)− y∥22

≤ (1− ηλ0) ∥u(τ)− y∥22 ,

where we use the assumption λ0 = λmin(H) > 0 and the bounds m = Ω
(

(dN)6C10
max

λ4
0δ

3∆2

)
and

η = O
(

λ0

(dN)2C4
max

)
. Therefore, we finish the induction and conclude the proof by scaling δ.

To upper bound the coupling term in the decomposition, the non-expansive property of the projection
operator and Assumption 3.2 imply that

1

T − T0

∫ T

T0

E
[∥∥ΠD (fW(τ)(Xt, t)

)
− fKτ (Xt, t)

∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt

≤ 1

T − T0

∫ T0+∆

T0

E
[∥∥ΠD (fW(τ)(Xt, t)

)
− fKτ (Xt, t)

∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt

+
1

T − T0

∫ T

T0+∆

E
[∥∥ΠD (fW(τ)(Xt, t)

)
− fKτ (Xt, t)

∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt

≤ 4∆D2

T − T0
+

1

T − T0

∫ T

T0+∆

E
[∥∥fW(τ)(Xt, t)− fKτ (Xt, t)

∥∥2
2
I {∥Xt∥2 ≤ R}

]
dt. (47)

To upper bound the second term in (47), we introduce a linearized neural network f lin
W̄(τ)

updated by

w̄r (τ + 1) = w̄r(τ)− η∇L̂lin(w̄r(τ)), L̂lin(W̄) =
1

2

N∑
j=1

∥∥∥f linW̄(τ)(Xtj , tj)−X0,j

∥∥∥2
2
,

where w̄r(0) = wr(0) and

f lin,i
W̄(τ)

(x, t) :=
1√
m

m∑
r=1

airw̄r(τ)
⊤(x, t− T0)I

{
wr(0)

⊤(x, t− T0) ≥ 0
}
.

Our next lemma provides the coupling error between fW(τ) and f lin
W̄(τ)

. Let PXt be the probability
distribution induced by Xt.
Lemma D.2. Assume the same conditions as in Theorem 3.9. With probability at least 1−δ, it holds
simultaneously for each τ that

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥fW(τ)(x, t)− f linW̄(τ)(x, t)
∥∥∥2
2
dPXt(x)dt = O

(
d(dN)9C12

max√
mδ4λ20∆

2

)
.

Proof. Denote by Ir(τ) := I
{
wr(τ)

⊤(x, t− T0) ≥ 0
}

. Note that for each i = 1, . . . , d we have∣∣∣f iW(τ)(x, t)− f lin,i
W̄(τ)

(x, t)
∣∣∣

=

∣∣∣∣∣ 1√
m

m∑
r=1

airσ
(
wr(τ)

⊤(x, t− T0)
)
− 1√

m

m∑
r=1

airw̄r(τ)
⊤(x, t− T0)Ir(0)

∣∣∣∣∣
≤

∣∣∣∣∣ 1√
m

m∑
r=1

airσ
(
wr(τ)

⊤(x, t− T0)
)
− 1√

m

m∑
r=1

airwr(τ)
⊤(x, t− T0)Ir(0)

∣∣∣∣∣
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+

∣∣∣∣ 1√
m

m∑
r=1

airwr(τ)
⊤(x, t− T0)Ir(0)−

1√
m

m∑
r=1

airw̄r(τ)
⊤(x, t− T0)Ir(0)

∣∣∣∣
=

∣∣∣∣∣ 1√
m

m∑
r=1

airwr(τ)
⊤(x, t− T0) (Ir(τ)− Ir(0))

∣∣∣∣∣+
∣∣∣∣∣ 1√
m

m∑
r=1

air(wr(τ)− w̄r(τ))
⊤(x, t− T0)Ir(0)

∣∣∣∣∣
≤ 1√

m

m∑
r=1

∣∣∣(wr(τ)− wr(0))
⊤
(x, t− T0)

∣∣∣ I {Ir(τ) ̸= Ir(0)}

+
1√
m

m∑
r=1

∣∣∣(wr(τ)− w̄r(τ))
⊤
(x, t− T0)

∣∣∣ Ir(0), (48)

where we use the fact that

|a| I {sgn(a) ̸= sgn(b)} ≤ |a− b| I {sgn(a) ̸= sgn(b)} , ∀a, b ∈ R.

Taking square on both sides of (48) and applying the Jensen’s inequality, we have that∣∣∣f iW(τ)(x, t)− f lin,i
W̄(τ)

(x, t)
∣∣∣2 ≤ 2

m∑
r=1

∣∣∣(wr(τ)− wr(0))
⊤
(x, t− T0)

∣∣∣2 I {Ir(τ) ̸= Ir(0)}

+ 2

(
1√
m

m∑
r=1

∣∣∣(wr(τ)− w̄r(τ))
⊤
(x, t− T0)

∣∣∣ Ir(0))2

. (49)

We start with the bound for the first term in (49). Recall that Theorem D.1 implies that with proba-
bility at least 1− δ, it holds simultaneously for all τ ≥ 0 and r = 1, . . .m that

∥wr(τ)− wr(0)∥2 ≤ Rw = O
(
dNC2

max√
mλ0

√
δ

)
.

Combining the above result with the Cauchy-Schwarz inequality, we conclude that with probability
at least 1− δ, it holds uniformly for all ∥x∥2 ≤ R and t ∈ [T0 +∆, T ] that

m∑
r=1

∣∣(wr(τ)− wr(0))
⊤(x, t− T0)

∣∣2 I {Ir(τ) ̸= Ir(0)}

≤ ∥wr(τ)− wr(0)∥22 ∥(x, t− T0)∥22
m∑
r=1

I {Ir(τ) ̸= Ir(0)}

≤ R2
wC

2
max

m∑
r=1

I {Ir(τ) ̸= Ir(0)} . (50)

Taking expectation overXt and integration over t ∈ [T0+∆, T ], the following holds with probability
at least 1− δ:∫ T

T0+∆

∫
∥x∥2≤R

m∑
r=1

∣∣(wr(τ)− wr(0))
⊤(x, t− T0)

∣∣2 I {Ir(τ) ̸= Ir(0)} dPXt(x)dt

≤ R2
wC

2
max

∫ T

T0+∆

∫
∥x∥2≤R

m∑
r=1

I {Ir(τ) ̸= Ir(0)} dPXt
(x)dt. (51)

Next, similar to (29), we have for all ∥x∥2 ≤ R and t ∈ [T0 +∆, T ] that

I {Ir(τ) ̸= Ir(0)} ≤ I
{∣∣wr(0)⊤(x, t− T0)

∣∣ ≤ RwCmax

}
+ I {∥wr(τ)− wr(0)∥ > Rw} . (52)

Also, similar to (41), by taking expectation w.r.t. {wr(0)}mr=1 in (52), we have for all ∥x∥2 ≤ R and
t ∈ [T0 +∆, T ] that

E

[
m∑
r=1

I {Ir(τ) ̸= Ir(0)}

]
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≤
m∑
r=1

E
[
I
{∣∣wr(0)⊤(x, t− T0)

∣∣ ≤ RwCmax

}]
+ E [I {∥wr(τ)− wr(0)∥ > Rw for some r}]

≤ 2mRwCmax√
2π∆

+ δ. (53)

Now integrating over (x, t), we get∫ T

T0+∆

∫
∥x∥2≤R

E

[
m∑
r=1

I {Ir(τ) ̸= Ir(0)}

]
dPXt

(x)dt

≤ (T − T0 −∆)

(
2mRwCmax√

2π∆
+ δ

)
.

Since the neural network is initialized independent of Xt, the Fubini’s theorem and the Markov
inequality imply that with probability at least 1− δ, the following inequality holds:∫ T

T0+∆

∫
∥x∥2≤R

m∑
r=1

I {Ir(τ) ̸= Ir(0)} dPXt(x)dt ≤ (T − T0 −∆)

(
2mRwCmax√

2π∆δ
+ 1

)
.

Therefore, applying the union bound, with probability at least 1− 2δ it holds that

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

m∑
r=1

∣∣(wr(τ)− wr(0))
⊤(x, t− T0)

∣∣2 I {Ir(τ) ̸= Ir(0)} dPXt
(x)dt

≤ R2
wC

2
max

(
2mRwCmax√

2π∆δ
+ 1

)
T − T0 −∆

T − T0

≤ 2(dN)3C9
max√

2π
√
mδ5/2λ30

+
(dN)2C6

max

mλ20δ
= O

(
(dN)3C9

max√
mδ5/2λ20

)
. (54)

We move on to bound the second term in (48). Note that for all ∥x∥2 ≤ R and t ∈ [T0 +∆, T ], the
Cauchy-Schwarz inequality implies

1√
m

m∑
r=1

∣∣(wr(τ)− w̄r(τ))
⊤(x, t− T0)

∣∣ Ir(0)
≤ 1√

m

m∑
r=1

∥wr(τ)− w̄r(τ)∥2 ∥(x, t− T0)∥2 Ir(0)

≤ Cmax√
m

m∑
r=1

∥wr(τ)− w̄r(τ)∥2 . (55)

Recall the GD update rule for wr(τ) and w̄r(τ) as follow:

wr(τ + 1) = wr(τ)−
η√
m

N∑
j=1

d∑
i=1

(uij(τ)− yij)a
i
rzjI

{
wr(τ)

⊤zj ≥ 0
}
,

w̄r(τ + 1) = w̄r(τ)−
η√
m

N∑
j=1

d∑
i=1

(ulin,ij (τ)− yij)a
i
rzjI

{
wr(0)

⊤zj ≥ 0
}
,

in which we let uij(τ) = f iW(τ) and ulin,ij (τ) = f lin,i
W̄(τ)

be evaluated at the sample (Xtj , tj). Thus,
we can write

wr(τ + 1)− w̄r(τ + 1) = wr(τ)− w̄r(τ)−
η√
m

N∑
j=1

d∑
i=1

(uij(τ)− yij)a
i
rzj (Ij,r(τ)− Ij,r(0))

− η√
m

N∑
j=1

d∑
i=1

(
uij(τ)− ulin,ij (τ)

)
airzjIj,r(0).
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Taking the 2-norm on both sides and applying the Cauchy-Schwarz inequality, we have

∥wr(τ + 1)− w̄r(τ + 1)∥2

≤ ∥wr(τ)− w̄r(τ)∥2 +
η√
m

N∑
j=1

d∑
i=1

∣∣uij(τ)− yij
∣∣ ∣∣air∣∣ ∥zj∥2 |Ij,r(τ)− Ij,r(0)|

+
η√
m

N∑
j=1

d∑
i=1

∣∣∣uij(τ)− ulin,ij (τ)
∣∣∣ ∣∣aij∣∣ ∥zj∥2 |Ij,r(0)|

≤ ∥wr(τ)− w̄r(τ)∥2 +
η
√
dCmax√
m

√√√√ N∑
j=1

d∑
i=1

(
uij(τ)− yij

)2√√√√ N∑
j=1

I {Ij,r(τ) ̸= Ij,r(0)}

+
η
√
dCmax√
m

√√√√ N∑
j=1

d∑
i=1

(
uij(τ)− ulin,ij (τ)

)2√√√√ N∑
j=1

Ij,r(0).

Summing over all neurons and applying the Cauchy-Schwarz inequality again, we get
m∑
r=1

∥wr(τ + 1)− w̄r(τ + 1)∥2

≤
m∑
r=1

∥wr(τ)− w̄r(τ)∥2 + η
√
dCmax

√√√√ N∑
j=1

d∑
i=1

(
uij(τ)− yij

)2√√√√ m∑
r=1

N∑
j=1

I {Ij,r(τ) ̸= Ij,r(0)}

+ η
√
dCmax

√√√√ N∑
j=1

d∑
i=1

(
uij(τ)− ulin,ij (τ)

)2√√√√ m∑
r=1

N∑
j=1

Ij,r(0). (56)

Since wr(0) = w̄r(0), telescoping sum over (56) leads to

m∑
r=1

∥wr(τ)− w̄r(τ)∥2 = η
√
dCmax

τ−1∑
s=0

∥u(s)− y∥2

√√√√ m∑
r=1

N∑
j=1

I {Ij,r(τ) ̸= Ij,r(0)}

+ η
√
dCmax

τ−1∑
s=0

∥∥u(τ)− ulin(s)
∥∥
2

√√√√ m∑
r=1

N∑
j=1

Ij,r(0). (57)

Theorem D.1 implies that with probability at least 1− δ,

∥u(τ)− y∥22 ≤ (1− ηλ0)
τ ∥u(0)− y∥22 = (1− ηλ0)

τO
(
dNC2

max

δ

)
. (58)

Moreover, (53) leads to

E

 m∑
r=1

N∑
j=1

I {Ij,r(τ) ̸= Ij,r(0)}

 ≤ N

(
2mRwCmax√

2π∆
+ δ

)
.

The Markov inequality implies with probability at least 1− δ, we have
m∑
r=1

N∑
j=1

I {Ij,r(τ) ̸= Ij,r(0)} ≤ N

(
2mRwCmax√

2π∆δ
+ 1

)
= O

(
dN2

√
mC3

max

λ0∆δ3/2

)
. (59)

It remains to provide a high probability bound for
∥∥u(τ)− ulin(τ)

∥∥
2
. From the definitions of u(τ)

and ulin(τ), we have

uij(τ + 1)− ulin,ij (τ + 1)

=
1√
m

m∑
r=1

airσ
(
wr(τ + 1)⊤zj

)
− 1√

m

m∑
r=1

airw̄r(τ + 1)⊤zjIj,r(0)
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=
1√
m

m∑
r=1

airwr(τ + 1)⊤zjIj,r(τ) +
1√
m

m∑
r=1

airwr(τ + 1)⊤zj (Ij,r(τ + 1)− Ij,r(τ))

− 1√
m

m∑
r=1

airw̄r(τ + 1)⊤zjIj,r(0)

=
1√
m

m∑
r=1

air

(
wr(τ)− η

∂L̂(W(τ))

∂wr(τ)

)⊤

zjIj,r(τ) +
1√
m

m∑
r=1

airwr(τ + 1)⊤zj (Ij,r(τ + 1)− Ij,r(τ))

− 1√
m

m∑
r=1

air

(
w̄r(τ)− η

∂L̂lin(W̄(τ))

∂w̄r(τ)

)⊤

zjIj,r(0)

= uij(τ)− ulin,ij (τ) +
η√
m

m∑
r=1

air

(
∂L̂lin(W̄(τ))

∂w̄r(τ)
Ij,r(0)−

∂L̂(W(τ))

∂wr(τ)
Ij,r(τ)

)⊤

zj

+
1√
m

m∑
r=1

airwr(τ + 1)⊤zj (Ij,r(τ + 1)− Ij,r(τ))

= uij(τ)− ulin,ij (τ) + η

N∑
ℓ=1

d∑
k=1

(ulin,kℓ (τ)− ykℓ )H
ik
jℓ (0)− η

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )H
ik
jℓ (τ)

+
1√
m

m∑
r=1

airwr(τ + 1)⊤zj (Ij,r(τ + 1)− Ij,r(τ))

= uij(τ)− ulin,ij (τ) + η

N∑
ℓ=1

d∑
k=1

(ulin,kℓ (τ)− ukℓ )H
ik
jℓ (0)− η

N∑
ℓ=1

d∑
k=1

(ukℓ (τ)− ykℓ )(H
ik
jℓ (0)−Hik

jℓ (τ))

+
1√
m

m∑
r=1

airwr(τ + 1)⊤zj (Ij,r(τ + 1)− Ij,r(τ)) .

Here, we use the facts that σ(x) = x · I {x ≥ 0} and the GD update rules for wr(τ) and w̄r(τ).
Define a block matrix Z(τ) such that its (i, j)-th row is(

Zij
)⊤

(τ) :=
1√
m

[
ai1z

⊤
j Ij,1(τ), . . . , aimz⊤j Ij,m(τ)

]
.

By vectorization, we rewrite the above equation in a compact form:

u(τ + 1)− ulin(τ + 1) = u(τ)− ulin(τ) + ηH(0)(ulin(τ)− u(τ))− η(H(0)−H(τ))(u(τ)− y)

+ (Z(τ + 1)− Z(τ))vec(W)(τ + 1)

= (IdN − ηH(0)) (u(τ)− ulin(τ))− η (H(0)−H(τ))(u(τ)− y)︸ ︷︷ ︸
=:ξ(τ)

+ (Z(τ + 1)− Z(τ))vec(W)(τ + 1)︸ ︷︷ ︸
=:ξ̄(τ)

. (60)

Unrolling the recursion (60) and noting that u(0) = ulin(0), we obtain

u(τ)− ulin(τ) =

τ−1∑
s=0

(IdN − ηH(0))τ−1−s (−ηξ(s) + ξ̄(s)
)
.

The summation should be understood as 0 when τ = 0. Taking 2-norm on both sides and applying
the Cauchy-Schwarz inequality and the triangle inequality, we get∥∥u(τ)− ulin(τ)

∥∥
2
≤
τ−1∑
s=0

∥∥(IdN − ηH(0))τ−1−s∥∥
2

(
η ∥ξ(s)∥2 +

∥∥ξ̄(s)∥∥
2

)
≤
τ−1∑
s=0

(1− ηλ0)
τ−1−s (η ∥ξ(s)∥2 + ∥∥ξ̄(s)∥∥2) . (61)
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Here, we apply Assumption 3.8 and the Weyl’s inequality to show that λmin(H(0)) ≥ λ0/2 with
probability at least 1− δ (Du et al., 2018, Lemma 3.2).

We now turn to bound ∥ξ(s)∥2 and
∥∥ξ̄(s)∥∥

2
. Note that (43) and (58) imply that with probability at

least 1− 2δ,

∥ξ(s)∥2 ≤ ∥H(0)−H(s)∥2 ∥u(s)− y∥2

= O

(
(dN)3C4

max√
mλ0δ3/2∆

(1− ηλ0)
s/2

√
dN

δ

)

≤ O
(
(dN)7/2C4

max√
mλ0δ2∆

(1− ηλ0)
s/2

)
. (62)

Next, to bound
∥∥ξ̄(s)∥∥

2
, note that for each (i, j)-entry we have

∣∣ξ̄ij(s)∣∣ ≤ 1√
m

m∑
r=1

∣∣air∣∣ ∣∣wr(s+ 1)⊤zj
∣∣ |Ij,r(s+ 1)− Ij,r(s)|

≤ 1√
m

m∑
r=1

∣∣wr(s+ 1)⊤zj − wr(s)
⊤zj
∣∣ |Ij,r(s+ 1)− Ij,r(s)|

≤ Cmax√
m

m∑
r=1

∥wr(s+ 1)− wr(s)∥2 |Ij,r(s+ 1)− Ij,r(s)| . (63)

To proceed, we apply the GD update rule to get

∥wr(s+ 1)− wr(s)∥2 ≤

∥∥∥∥∥∥ η√
m

N∑
j=1

d∑
i=1

(uij(s)− yij)a
i
rzjIj,r(s)

∥∥∥∥∥∥
2

≤ ηCmax√
m

∥u(s)− y∥1 ≤ η
√
dNCmax√
m

∥u(s)− y∥2 . (64)

Plugging (64) into (63), we have with probability at least 1− 3δ that∣∣ξ̄ij(s)∣∣ ≤ η
√
dNC2

max

m
∥u(s)− y∥2

m∑
r=1

|Ij,r(s+ 1)− Ij,r(s)|

≤ η
√
dNC2

max

m
∥u(s)− y∥2

(
m∑
r=1

|Ij,r(s+ 1)− Ij,r(0)|+
m∑
r=1

|Ij,r(s)− Ij,r(0)|

)

= O

(
η
√
dNC3

max

m
(1− ηλ0)

s/2

√
dN

δ

(
2mRwCmax√

2π∆δ2
+ 1

))

= O
(
η(dN)2C5

max√
mλ0δ2∆

(1− ηλ0)
s/2

)
.

Thus, with probability at least 1− 3δ we deduce that

∥∥ξ̄(s)∥∥
2
≤
∥∥ξ̄(s)∥∥

1
=

N∑
j=1

d∑
i=1

∣∣ξ̄ij(s)∣∣ = O
(
η(dN)3C5

max√
mλ0δ2∆

(1− ηλ0)
s/2

)
. (65)

Note that
τ−1∑
s=0

(1− ηλ0)
τ−1− s

2 = (1− ηλ0)
τ−1
2

τ−1∑
s=0

(1− ηλ0)
τ−1
2 − s

2

≤ (1− ηλ0)
τ−1
2

1

1−
√
1− ηλ0

≤ 2(1− ηλ0)
τ−1
2

ηλ0
.
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Therefore, with probability at least 1− 5δ, it holds that∥∥u(τ)− ulin(τ)
∥∥
2
= O

(
(dN)7/2C5

max√
mλ20δ

2∆
(1− ηλ0)

τ−1
2

)
. (66)

Now, substituting (58), (59) and (66) back into (57), we have with probability at least 1− 7δ that

m∑
r=1

∥wr(τ)− w̄r(τ)∥2 ≲ η
√
dCmax

τ−1∑
s=0

(1− ηλ0)
s
2

√
dN

δ

√
dNm1/4C2

max√
λ0

√
∆δ3/4

+ η
√
dCmax

τ−1∑
s=1

(dN)7/2C5
max√

mλ20δ
2∆

(1− ηλ0)
s−1
2

√
mN

≲
(dN)3/2m1/4C3

max

λ
3/2
0 δ5/4

√
∆

+
(dN)9/2C6

max

λ30δ
2∆

≲
(dN)9/2m1/4C6

max

λ
3/2
0 δ2∆

. (67)

Since (67) holds with high probability uniformly over any given (x, t), we know that with probability
at least 1− 7δ, (55) can be bounded uniformly over all ∥x∥2 ≤ R and t ∈ [T0 +∆, T ]:

1√
m

m∑
r=1

∣∣(wr(τ)− w̄r(τ))
⊤(x, t− T0)

∣∣ Ir(0) ≲ (dN)9/2C6
max

m1/4λ
3/2
0 δ2∆

. (68)

Integrating over (48) and combining (54) and (68), with probability at least 1− 9δ it holds that

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∣∣∣f iW(τ)(x, t)− f lin,i
W̄(τ)

(x, t)
∣∣∣2 dPXt(x)dt

≲
(dN)3C6

max√
mδ5/2λ20

+

(
(dN)9/2C6

max

m1/4λ
3/2
0 δ2∆

)2

≲
(dN)9C12

max√
mδ4λ20∆

2
.

As a consequence, with probability at least 1− 9δ, we have

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥fW(τ)(x, t)− f linW̄(τ)(x, t)
∥∥∥2
2
dPXt

(x)dt = O
(
d(dN)9C12

max√
mδ4λ20∆

2

)
.

The proof completes by scaling δ.

Next, we control the coupling error between the linearized neural network f lin
W̄(τ)

and the function
fKτ in the following lemma. Recall the update rule for γ(τ) is given by

γ(τ + 1) = γ(τ)− η(Hγ(τ)− y), γ(0) = H−1u(0). (69)

Consequently, multiplying both sides of the update rule by H leads to

uK(τ + 1) = uK(τ)− ηH(uK(τ)− y), uK(0) = u(0).

The update rule for γ can be viewed as a GD update rule under an alternative coordinate system. Let
ω =

√
Hγ and define the training objective

L̂K(ω) =
1

2

∥∥uK − y
∥∥2
2
=

1

2

∥∥∥√Hω − y
∥∥∥2
2
.

Here, we use the fact that uK = Hγ =
√
Hω. Thus, the GD update rule for ω is

ω(τ + 1) = ω(τ)− η
√
H
(
uK(τ)− y

)
. (70)

Multiplying both sides of (70) by
√
H−1, we recover the update rule for γ(τ).
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Lemma D.3. Assume the same conditions as in Theorem 3.9. If we initialize γ(0) = γ̄(0) =
H(0)−1u(0), it then holds with probability at least 1− δ that

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
dPXt

(x)dt = Õ
(
d5N4C8

max

mδ2λ20

)
.

Proof. Note that the gradient of the training loss is

∂L̂lin(W̄)

∂vec(W̄)
=

∂

∂vec(W̄)

1

2

∥∥ulin − y
∥∥2
2
= Z(0)⊤(ulin − y).

We first show that at τ = 0, there is a vector γ̄(0) ∈ RdN such that vec(W̄)(0) = Z(0). Note that
our choice implies γ̄(0) = γ(0) =

(
Z(0)Z(0)⊤

)−1
ulin(0). Let Z(0) = UΣV ⊤ be the correspond-

ing singular value decomposition. Since Z(0) has full row rank, we write the diagonal entries of Σ
as σ1 ≥ · · · ≥ σdN > 0. Noting that ulin(0) = Z(0)vec(W̄(0)),

Z(0)⊤γ̄(0) = Z(0)⊤
(
Z(0)Z(0)⊤

)−1
ulin(0)

= V Σ⊤U⊤(UΣV ⊤V Σ⊤U⊤)−1UΣV ⊤vec(W̄(0))

= V Σ⊤U⊤(Udiag(σ−2
1 , . . . , σ−2

dN )U⊤)UΣV ⊤vec(W̄(0))

= V

(
IdN 0
0 0

)
V ⊤vec(W̄(0))

= V

(
IdN 0
0 0

)(
IdN 0
0 0

)
V ⊤vec(W̄(0)) = vec(W̄(0)).

It follows for each τ , there is a vector γ̄(τ) ∈ RdN such that

vec(W̄(τ)) = vec(W̄(τ − 1))− ηZ(0)⊤(ulin(τ − 1)− y) = Z(0)⊤γ̄(τ).

Define a matrix Z(x, t) ∈ Rd×m(d+1) such that its i-th row is(
Zi(x, t)

)⊤
:=

1√
m

[
ai1(x, t− T0)

⊤I1(0), . . . , aim(x, t− T0)
⊤Im(0)

]
.

Next, we rewrite

f linW̄(τ)(x, t)− fKτ (x, t) = Z(x, t)vec(W̄(τ))−
N∑
j=1

K((Xtj , tj), (x, t))γj(τ)

= Z(x, t)Z(0)⊤γ̄(τ)−
N∑
j=1

K((Xtj , tj), (x, t))γj(τ)

= Z(x, t)Z(0)⊤γ̄(τ)− K̂(x, t)γ(τ)

= Z(x, t)Z(0)⊤ (γ̄(τ)− γ(τ))−
(
Z(x, t)Z(0)⊤ − K̂(x, t)

)
γ(τ), (71)

in which we define

K̂(x, t) := [K((Xt1 , t1), (x, t)), . . . ,K((XtN , tN ), (x, t))], γ(τ) := [γ⊤1 (τ), . . . , γ⊤N (τ)]⊤.

Taking square on both sides of (71), we get∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2

≤ 2
∥∥Z(x, t)Z(0)⊤ (γ̄(τ)− γ(τ))

∥∥2
2
+ 2

∥∥∥(Z(x, t)Z(0)⊤ − K̂(x, t)
)
γ(τ)

∥∥∥2
2

≤ 2
∥∥Z(x, t)Z(0)⊤∥∥2

2
∥γ̄(τ)− γ(τ)∥22 + 2

∥∥∥Z(x, t)Z(0)⊤ − K̂(x, t)
∥∥∥2
2
∥γ(τ)∥22 .

Since H(0) = Z(0)Z(0)⊤ and the Gram matrix of K is H , we have

ulin(τ)− uK(τ) = H(0)γ̄(τ)−Hγ(τ)
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= H(0)(γ̄(τ)− γ(τ)) + (H(0)−H)γ(τ).

We first upper bound
∥∥ulin(τ)− uK(τ)

∥∥
2
. The GD update rules imply

ulin(τ + 1) = ulin(τ)− ηH(0)(ulin(τ)− y),

uK(τ + 1) = uK(τ)− ηH(uK(τ)− y),

with ulin(0) = uK(0) = u(0). It follows

ulin(τ + 1)− uK(τ + 1) = ulin(τ)− uK(τ)− η(H −H(0))(uK(τ)− y)

− ηH(0)(ulin(τ)− uK(τ))

= (IdN − ηH(0))(ulin(τ)− uK(τ))− η(H −H(0))(uK(τ)− y).
(72)

Unrolling (72), we have

ulin(τ)− uK(τ) = (IdN − ηH(0))τ (ulin(0)− uK(0))

− η

τ−1∑
s=0

(IdN − ηH(0))τ−1−s(H −H(0))(uK(s)− y)

= −η
τ−1∑
s=0

(IdN − ηH(0))τ−1−s(H −H(0))(uK(s)− y).

Taking 2-norm on both sides, we have∥∥ulin(τ)− uK(τ)
∥∥
2
≤ η ∥H −H(0)∥2

τ−1∑
s=0

∥IdN − ηH(0)∥τ−1−s
2

∥∥uK(s)− y
∥∥
2

≤ η ∥H −H(0)∥2
τ−1∑
s=0

(
1− ηλ0

2

)τ−1−s ∥∥uK(s)− y
∥∥
2

≤ η ∥H −H(0)∥2 max
0≤s≤τ−1

∥∥uK(s)− y
∥∥
2

τ−1∑
s=0

(
1− ηλ0

2

)τ−1−s

.

Note that with probability at least 1− δ,

max
0≤s≤τ−1

∥∥uK(s)− y
∥∥
2
=
∥∥uK(0)− y

∥∥
2
= ∥u(0)− y∥2 = O

(√
dNCmax√

δ

)
. (73)

With (73), we deduce that the following holds with probability at least 1− 2δ:∥∥ulin(τ)− uK(τ)
∥∥
2
≤ ηO

(
dNCmax

√
log((dN)2/δ)√
m

)
O

(√
dNCmax√

δ

)
2

ηλ0

= Õ
(
(dN)3/2(Cmax)

2

√
mλ0δ

)
.

It remains to bound ∥γ(τ)∥2. The GD update rule leads to

γ(τ + 1) = γ(τ)− η(Hγ(τ)− y) = (IdN − ηH)γ(τ) + ηy.

Unrolling the recursive formula, we have

γ(τ) = (IdN − ηH)τγ(0) + η

τ−1∑
s=0

(IdN − ηH)sy.

Taking 2-norm both sides, we have

∥γ(τ)∥2 ≤ ∥IdN − ηH∥τ2 ∥γ(0)∥2 + η

∥∥∥∥∥
τ−1∑
s=0

(IdN − ηH)s

∥∥∥∥∥
2

∥y∥2 .
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Note that
τ−1∑
s=0

(IdN − ηH)s = (IdN − (IdN − ηH)τ )(ηH)−1 ⪯ η−1H−1,

where we choose η small enough so that IdN − ηH is positive definite. Therefore, with probability
at least 1−O(δ), we have

∥γ(τ)∥2 ≤
∥∥H−1

∥∥
2
∥u(0)∥2 +

∥∥H−1
∥∥
2
∥y∥2 = O

(√
dNCmax

λ0
√
δ

)
.

Finally, we have

λ0
2

∥γ̄(τ)− γ(τ)∥2 ≤ Õ
(
(dN)3/2C2

max√
mλ0δ

)
+ Õ

(
dNCmax√

m

)
O

(√
dNCmax

λ0
√
δ

)
= Õ

(
(dN)3/2C2

max√
mλ0δ

)
.

With all the above results, we now bound for all ∥x∥2 ≤ R and t ∈ [T0 +∆, T ] that∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
≤ 2

∥∥Z(x, t)Z(0)⊤∥∥2
2
Õ
(
(dN)3C4

max

mλ40δ
2

)
+ 2

∥∥∥Z(x, t)Z(0)⊤ − K̂(x, t)
∥∥∥2
2
O
(
dNC2

max

λ20δ

)
. (74)

Since ∥(x, t− T0)∥2 ≤ Cmax, we have

∥Z(x, t)∥22 ≤
d∑
i=1

∥∥Zi(x, t)∥∥2
2
=

d∑
i=1

m∑
r=1

∥∥∥∥ 1√
m
air(x

⊤, t− T0)Ir(0)
∥∥∥∥2
2

≤ dC2
max.

In addition,

∥Z(0)∥22 ≤
d∑
i=1

N∑
j=1

∥∥Zij(0)∥∥22 =

d∑
i=1

N∑
j=1

m∑
r=1

∥∥∥∥ 1√
m
airz

⊤
j Ij,r(0)

∥∥∥∥2
2

≤ dNC2
max.

Now integrating (74) over ∥x∥2 ≤ R and t ∈ [T0 +∆, T ] yields∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
dPXt

(x)dt

≤
∫ T

T0+∆

∫
∥x∥2≤R

2d2NC4
maxÕ

(
(dN)3C4

max

mλ40δ
2

)
dPXt

(x)dt

+ 2

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥Z(x, t)Z(0)⊤ − K̂(x, t)
∥∥∥2
2
O
(
dNC2

max

λ20δ

)
dPXt(x)dt

≤ O
(
dNC2

max

λ20δ

)∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥Z(x, t)Z(0)⊤ − K̂(x, t)
∥∥∥2
2
dPXt

(x)dt

+ Õ
(
d5N4C8

max

mλ40δ
2

)
(T − T0 −∆).

Note that for each i, k, j, we can write(
Z(x, t)Z(0)⊤

)ik
j

=
1

m

m∑
r=1

aira
k
r (Xtj , tj − T0)

⊤(x, t− T0)Ij,r(0)Ir(0),

which is a summation of independent random variables bounded by C2
max/m when ∥x∥2 ≤ R and

t ∈ [T0 +∆, T ]. Taking expectation over the initialization, we have

E
[∣∣∣(Z(x, t)Z(0)⊤)jk

j
− K̂ik

j (x, t)
∣∣∣2
2

]
= Var

((
Z(x, t)Z(0)⊤

)jk
j

)
= O

(
C4

max

m

)
.
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Integrating over x and t gives us∫ T

T0+∆

∫
∥x∥2≤R

E
[∣∣∣(Z(x, t)Z(0)⊤)jk

j
− K̂ik

j (x, t)
∣∣∣2
2

]
dPXt

(x)dt

= O
(
C4

max

m

)
(T − T0 −∆).

The Fubini’s theorem and the Markov inequality imply that, with probability at least 1− δ/(d2N),∫ T

T0+∆

∫
∥x∥2≤R

∣∣∣(Z(x, t)Z(0)⊤)jk
j

− K̂ik
j (x, t)

∣∣∣2
2
dPXt

(x)dt ≤ O
(
C4

maxd
2N

mδ
(T − T0 −∆)

)
.

Therefore, with probability at least 1−O(δ), we have

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
dPXt

(x)dt

≤ O
(
dNC2

max

λ20δ

)
O
(
C4

maxd
4N2

mδ

)
+ Õ

(
d5N4C8

max

mλ40δ
2

)
= Õ

(
d5N4C8

max

mδ2λ20

)
,

which finishes the proof.

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. Note that∥∥fW(τ)(x, t)− fKτ (x, t)
∥∥2
2
≤ 2

∥∥∥fW(τ)(x, t)− f linW̄(τ)(x, t)
∥∥∥2
2
+ 2

∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
.

Lemmas D.2 and D.3 imply that with probability at least 1 − δ, it holds simultaneously over all
τ ≥ 0 that

1

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥fW(τ)(x, t)− fKτ (x, t)
∥∥2
2
dPXt(x)dt

≤ 2

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥fW(τ)(x, t)− f linW̄(τ)(x, t)
∥∥∥2
2
dPXt

(x)dt

+
2

T − T0

∫ T

T0+∆

∫
∥x∥2≤R

∥∥∥f linW̄(τ)(x, t)− fKτ (x, t)
∥∥∥2
2
dPXt

(x)dt

≤ O
(
d(dN)9C12

max√
mδ4λ20∆

2

)
+ Õ

(
d5N4C8

max

mδ2λ20

)
= Õ

(
d10N9C12

max√
mλ20δ

4∆2

)
.

This finishes the proof.

E PROOF OF THEOREM 3.10

In this section, we prove Theorem 3.10. Our target is to bound

1

T − T0

∫ T

T0

∫
∥x∥2≤R

∥∥∥fKτ (x, t)− f̃Kτ (x, t)
∥∥∥2
2
dPXt

(x)dt.

Here, fKτ and f̃Kτ are trained with labelsX0,j and X̃0,j , respectively. We first bound the performance
of these two kernel regressions on training samples. With the same spirit as in the proof of Theorem
D.1, let uK(τ) and ũK(τ) be the prediction of fKτ and f̃Kτ on the samples, respectively. The
following lemma provides the label mismatch error on the training samples.
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Lemma E.1. Assume the same conditions as in Theorem C.3 and suppose Assumption 3.7 holds. If
we set η small enough and initialize fK0 and f̃K0 with the same parameters H(0)−1u(0), then we
have the following upper bound:∥∥uK(τ)− ũK(τ)

∥∥2
2
≤ dNA(RH, R)

2.

Proof. Note that the GD update rule leads to

uK(τ + 1) = uK(τ)− ηH(uK(τ)− y)

= (IdN − ηH)uK(τ) + ηHy

= (IdN − ηH)τ+1uK(0) + η

τ∑
s=0

(IdN − ηH)sHy

= (IdN − ηH)τ+1uK(0) + (IdN − (IdN − ηH)τ+1)y.

Similary, for ũK(τ), we have

ũK(τ + 1) = (IdN − ηH)τ+1ũK(0) + (IdN − (IdN − ηH)τ+1)ỹ.

By the design of the initialization, we have uK(0) = ũK(0), yielding

uK(τ)− ũK(τ) = (IdN − (IdN − ηH)τ )(y − ỹ).

Taking 2-norm on both sides and applying Theorem C.3, we get∥∥uK(τ)− ũK(τ)
∥∥2
2
= ∥(IdN − (IdN − ηH)τ )(y − ỹ)∥22
≤ ∥IdN − (IdN − ηH)τ∥22 ∥y − ỹ∥22

≤
N∑
j=1

∥f∗,j − fH,j∥22

≤ d

N∑
j=1

∥f∗,j − fH,j∥2∞

≤ dN sup
∥x∥∞≤R

sup
t∈[T0,T ]

∥f∗(x, t)− fH(x, t)∥2∞ ≤ dNA(RH, R)
2.

Here, we utilize the assumptions that
∥∥Xtj

∥∥
2
≤ R and tj ∈ [T0 +∆, T ].

To go from the training loss to the population loss, we need the following localized Rademacher
complexity bound:
Lemma E.2 ((Reeve & Kaban, 2020, Theorem 1)). Let F =

{
f : Rd × [T0, T ] → [−β, β]d

}
for

some β ≥ 1. Take δ ∈ (0, 1) and define

Γδ(F) :=

(
2d

(√
d log3/2 (eβdN) R̂dN (Π ◦ F) +

1√
N

))2

+
dβ2

N
(log(1/δ) + log(logN)) ,

where the worst-case empirical Rademacher complexity is defined as

R̂n(Π ◦ F) := sup
{(zℓ,iℓ)}n

ℓ=1

Eϵ

[
sup
f∈F

1

n

n∑
ℓ=1

ϵℓf
iℓ(zℓ)

]
,

where the expectation is conditioned on the given samples {(zℓ, iℓ)}nℓ=1 ⊂
(
Rd × [T0, T ]× [d]

)n
.

There exists a numerical constant C0 such that with probability at least 1− δ, it holds for all f ∈ F
simultaneously that

1

T − T0

∫ T

T0

∫
∥f(x, t)∥22 dPXt

(x)dt

≤ 1

N

N∑
j=1

∥∥f(Xtj , tj)
∥∥2
2
+ C0

√√√√ 1

N

N∑
j=1

∥∥f(Xtj , tj)
∥∥2
2
· Γδ(F) + Γδ(F)

 .
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Lemma E.2 is a result of (Reeve & Kaban, 2020, Theorem 1) by setting X = Rd × [T0, T ], V =

[−β, β]d and Y = {0} ⊂ Rd and letting L(v, y) = ∥v∥22 ≤ dβ2. Note that the loss function L is
(2d, 1/2)-self-bounding Lipschitz as defined in Reeve & Kaban (2020) since for any u, v ∈ V ,∣∣∣∥u∥22 − ∥v∥22

∣∣∣ = |∥u∥2 − ∥v∥2| (∥u∥2 + ∥v∥2) ≤ 2dmax
{
∥u∥22 , ∥v∥

2
2

}1/2

∥u− v∥∞ .

Now we are ready to prove Theorem 3.10. Recall that fKτ and f̃Kτ are paremeterized by γ(τ) and
γ̃(τ), respectively.

Proof of Theorem 3.10. To apply Lemma E.2, we consider the following function class:

FR
ρ :=

{
(x, t) 7→ f(x, t)I {∥x∥2 ≤ R} |(x, t) ∈ Rd × [T0, T ], f ∈ H, ∥f∥H ≤ ρ

}
.

Given {(zℓ, iℓ)}nℓ=1 with zℓ = (Xtℓ , tℓ), we define an index set L =
{
ℓ : ∥Xtℓ∥2 ≤ R

}
. The

empirical Rademacher complexity of FR
ρ can be bounded as

R̂n(Π ◦ FR
ρ ) = sup

{(zℓ,iℓ)}n
ℓ=1

Eϵ

[
sup

∥f∥H≤ρ

1

n

n∑
ℓ=1

ϵℓf
iℓ(zℓ)I

{
∥Xtℓ∥2 ≤ R

}]

= sup
{(zℓ,iℓ)}n

ℓ=1

Eϵ

[
sup

∥f∥H≤ρ

1

n

∑
ℓ∈L

ϵℓf
iℓ(zℓ)

]

= sup
{(zℓ,iℓ)}n

ℓ=1

Eϵ

[
sup

∥f∥H≤ρ

1

n

∑
ℓ∈L

ϵℓf(zℓ)
⊤eiℓ

]

= sup
{(zℓ,iℓ)}n

ℓ=1

Eϵ

[
sup

∥f∥H≤ρ

1

n

∑
ℓ∈L

ϵℓ ⟨f,K(·, zℓ)eiℓ⟩H

]
(75)

= sup
{(zℓ,iℓ)}n

ℓ=1

1

n
Eϵ

[
sup

∥f∥H≤ρ

〈
f,
∑
ℓ∈L

ϵℓK(·, zℓ)eiℓ

〉
H

]

= sup
{(zℓ,iℓ)}n

ℓ=1

1

n
Eϵ

[〈
ρ

∑
ℓ∈L ϵℓK(·, zℓ)eiℓ∥∥∑
ℓ∈L ϵℓK(·, zℓ)eiℓ

∥∥
H
,
∑
ℓ∈L

ϵℓK(·, zℓ)eiℓ

〉
H

]
(76)

= sup
{(zℓ,iℓ)}n

ℓ=1

ρ

n
Eϵ

[∥∥∥∥∥∑
ℓ∈L

ϵℓK(·, zℓ)eiℓ

∥∥∥∥∥
H

]

= sup
{(zℓ,iℓ)}n

ℓ=1

ρ

n
Eϵ


√√√√∥∥∥∥∥∑

ℓ∈L

ϵℓK(·, zℓ)eiℓ

∥∥∥∥∥
2

H


≤ sup

{(zℓ,iℓ)}n
ℓ=1

ρ

n

√√√√√Eϵ

∥∥∥∥∥∑
ℓ∈L

ϵℓK(·, zℓ)eiℓ

∥∥∥∥∥
2

H

 (77)

= sup
{(zℓ,iℓ)}n

ℓ=1

ρ

n

√∑
ℓ∈L

∥K(·, zℓ)eiℓ∥
2
H (78)

= sup
{(zℓ,iℓ)}n

ℓ=1

ρ

n

√∑
ℓ∈L

e⊤iℓK(zℓ, zℓ)eiℓ (79)

≤ sup
|L|

ρ

n

√
|L|C2

max ≤ ρCmax√
n

.

Here, (75) holds due to the reproducing property:

⟨f,K(·, z)c⟩ = f(z)⊤c, ∀f ∈ H, c ∈ Rd.
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In addition, we utilize the equality condition of Cauchy-Schwarz inequality to obtain (76) and (77)
is a consequence of the Jensen’s inequality. Moreover, we apply the facts that E [ϵℓϵℓ′ ] = 0 for
ℓ ̸= ℓ′ and E

[
ϵ2ℓ
]
= 1 to derive (78). Finally, we use the reproducing property again to get (79).

To apply Lemma E.2, we next calculate β associated with the function class FR
ρ . Note that the

reproducing property and the Cauchy-Schwarz inequality imply that

β = sup
(x,t)∈Rd×[T0,T ]

max
1≤i≤d

∣∣f i(x, t)∣∣ I {∥x∥2 ≤ R}

= sup
∥x∥2≤R

sup
t∈[T0,T ]

max
1≤i≤d

|⟨f,K(·, (x, t))ei⟩H|

≤ sup
∥x∥2≤R

sup
t∈[T0,T ]

∥f∥H max
1≤i≤d

∥K(·, (x, t))ei∥H

≤ ρCmax.

It remains to find a ρ such that
∥∥∥fKτ − f̃Kτ

∥∥∥
H

≤ ρ. Note that

∥∥∥fKτ − f̃Kτ

∥∥∥2
H

=

∥∥∥∥∥∥
N∑
j=1

K((Xtj , tj), ·)(γj(τ)− γ̃j(τ))

∥∥∥∥∥∥
2

H

=

N∑
j=1

N∑
ℓ=1

(γj(τ)− γ̃j(τ))
⊤K((Xtj , tj), (Xtℓ , tℓ))(γj(τ)− γ̃j(τ))

= (γ(τ)− γ̃(τ))⊤H(γ(τ)− γ̃(τ)).

Note that the GD update rule implies

γ(τ)− γ̃(τ) = H−1(IdN − (IdN − ηH2)τ )(y − ỹ).

Therefore, Assumption 3.8 and Theorem C.3 lead to∥∥∥fKτ − f̃Kτ

∥∥∥
H

=
∥∥(IdN − (IdN − ηH2)τ )(y − ỹ)

∥∥
H−1

≤
∥∥H−1

∥∥
2

∥∥IdN − (IdN − ηH2)τ
∥∥
2
∥y − ỹ∥2

≤
∥y − ỹ∥2

λ0
≤

√
dNA(RH, R)

λ0
:= ρ.

Here, we choose η small enough and use the fact that ∥H∥F is finite. Now we put all the results
together and apply Lemma E.1 to conclude that with probability 1− δ that

1

T − T0

∫ T

T0

∫
∥x∥2≤R

∥∥∥fKτ (x, t)− f̃Kτ (x, t)
∥∥∥2
2
dPXt

(x)dt

≤ 1

N

N∑
j=1

∥∥uK(τ)− ũK(τ)
∥∥2
2
+ C0

√√√√ 1

N

N∑
j=1

∥uK(τ)− ũK(τ)∥22 · Γδ + Γδ


≤ dA(RH, R) + C0

(√
dA(RH, R)Γδ + Γδ

)
,

in which we define

Γδ := Γδ(FR
ρ )

=

(
2d

(√
d log3/2 (eβdN) R̂dN (Π ◦ F) +

1√
N

))2

+
dβ2

N
(log(1/δ) + log(logN))

≤
(
2d

(√
d log3/2 (eρCmaxdN)

ρCmax√
dN

+
1√
N

))2

+
dρ2C2

max

N
(log(1/δ) + log(logN))

=

(
2d

(
d log3/2

(
eCmax(dN)3/2A(RH, R)

λ0

)
A(RH, R)Cmax

λ0

)
+

1√
N

)2
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+
d2A2(RH, R)C

2
max

λ20
(log(1/δ) + log (logN)) .

F PROOF OF THEOREM 3.12

In this section, we prove Theorem 3.12.

Proof of Theorem 3.12. Let Assumption 3.11 hold. The proof is immediately implied by combining
Lemma 3.3, Theorems 3.6, 3.9, and 3.10:

1

T − T0

∫ T

T0

λ(t)E
[∥∥∥sW(T̂ )(Xt, t)−∇ log pt(Xt)

∥∥∥2
2

]
dt

=
1

T − T0

∫ T

T0

E
[∥∥∥ΠD(fW(T̂ )(Xt, t))− f∗(Xt, t)

∥∥∥2
2

]
dt

=
1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I {∥Xt∥2 ≤ R}

]
dt

+
1

T − T0

∫ T

T0

E
[
∥ΠD(fW(Xt, t))− f∗(Xt, t)∥22 I {∥Xt∥2 > R}

]
dt

≤ O(Rd−2e−R
2/4) + 4dA2(RH, R) +

16∆D2

T − T0
+ Õ

(
d10N9C12

max√
mλ20δ

4∆2

)
+ 4dA(RH, R) + 4C0

(√
dA(RH, R)Γδ + Γδ

)
+ 4ϵ(N, T̂ ),

where the last inequality follows from the decomposition in Section 3. This finishes the proof.

G VERIFICATION OF ASSUMPTIONS

In this section, we verify Assumptions 3.5, 3.7 and 3.8. The following lemma provides an upper
bound for β1 (defined in Assumption 3.5).
Lemma G.1. Suppose that Assumption 3.2 holds. The Lipschitz constant β1 in Assumption 3.5 can
be bounded as

β1 = O
(

D

h(T0)

)
.

Proof. The proof essentially follows from the Tweedie’s formula. We first observe that

pt|0(x|x0) ∝ exp

(
− 1

2h(t)
∥x− α(t)x0∥22

)
= exp

(
−
∥x∥22
2h(t)

)
exp

(
α(t)x⊤x0
h(t)

)
exp

(
−
α2(t) ∥x0∥22

2h(t)

)
.

Let ϕ(x) = exp
(
− ∥x∥2

2

2h(t)

)
and T (x0) = α(t)x0/h(t). We can write

pt|0(x|x0) = ϕ(x) exp
(
x⊤T (x0)

)
exp (ψ(x0)) .

Here, ψ(·) is a normalization function such that the integration of pt|0(·|x0) equals one. The Bayes’
rule implies

p0|t(x0|x) =
pt|0(x|x0)p0(x0)

pt(x)
= exp

(
−ν(x) + x⊤T (x0)

) [
p0(x0)e

ψ(x0)
]
,
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in which we define ν(x) = log(pt(x)/ϕ(x)). Since p0|t is a probability density, we must have

0 = ∇x

∫
p0|t(x0|x)dx0

= ∇x

{
e−ν(x)

∫
ex

⊤T (x0)p0(x0e
ψ(x0))dx0

}
= −∇ν(x)e−ν(x)

∫
ex

⊤T (x0)p0(x0e
ψ(x0))dx0

+ e−ν(x)
∫
T (x0)e

x⊤T (x0)p0(x0e
ψ(x0))dx0

= −∇ν(x)
∫
p0|t(x0|x)dx0 +

∫
T (x0)p0|t(x0|x)dx0

= −∇ν(x) + E [T (X0)|Xt = x] .

It follows that ∇ν(x) = E [T (X0)|Xt = x]. Similarly, taking the second-order derivative yields

0 = ∇2
x

∫
p0|t(x0|x)dx0

= ∇x

{
−∇ν(x)e−ν(x)

∫
ex

⊤T (x0)p0(x0e
ψ(x0))dx0

+ e−ν(x)
∫
T (x0)e

x⊤T (x0)p0(x0e
ψ(x0))dx0

}
= −

(
∇2ν(x)e−ν(x) +∇ν(x)(∇ν(x))⊤e−ν(x)

)∫
ex

⊤T (x0)p0(x0e
ψ(x0))dx0

−∇ν(x)
(
e−ν(x)

∫
T (x0)e

x⊤T (x0)p0(x0e
ψ(x0))dx0

)⊤

−∇ν(x)
(
e−ν(x)

∫
T (x0)e

x⊤T (x0)p0(x0e
ψ(x0))dx0

)⊤

+ e−ν(x)
∫
T (x0)T (x0)

⊤ex
⊤T (x0)p0(x0e

ψ(x0))dx0

= −∇2ν(x)−∇ν(x)(∇ν(x))⊤ − 2∇ν(x) (E [T (X0)|Xt = x])
⊤

+ E
[
T (X0)T (X0)

⊤|Xt = x
]

= −∇2ν(x) + E
[
T (X0)T (X0)

⊤|Xt = x
]
− E [T (X0)|Xt = x] (E [T (X0)|Xt = x])

⊤
.

We deduce that ∇2ν(x) = Cov(T (X0)|Xt = x). Combined with the definition of T (X0), we have

∇xE [X0|Xt = x] =
α(t)

h(t)
Cov(X0|Xt = x).

Since α(t) ≤ 1 and h(t) ≥ h(T0), Assumption 3.2 implies that

β1 ≤ ∥∇xE [X0|Xt = x]∥2 = O
(

D

h(T0)

)
,

which finishes the proof.

We next justify Assumption 3.7. The following lemma shows that the input training dataset has a
concentration property.

Lemma G.2. Let
{
(tj , X0,j , Xtj )

}N
j=1

be samples collected from Algorithm 1. With probability at
least 1− δ, we have

tj ∈ [T0 +∆, T ],
∥∥Xtj

∥∥
2
≤ R,

where δ = N∆
T−T0

+O
(
NRd−2e−R

2/4
)

.

38



Published as a conference paper at ICLR 2024

Proof. Note that in the proof of Lemma 3.3, we have shown that for any t ∈ [T0 +∆, T ]

E [I {∥Xt∥2 > R}] = O
(
Rd−2e−R

2/4
)
.

It then follows

1

T − T0

∫ T

T0+∆

E [I {∥Xt∥2 ≤ R}] dt = 1

T − T0

∫ T

T0+∆

(1− E [I {∥Xt∥2 ≤ R}]) dt

≥ 1− ∆

T − T0
−O

(
Rd−2e−R

2/4
)
.

Set δ′ = ∆
T−T0

+O
(
Rd−2e−R

2/4
)

and we have

1

T − T0

∫ T

T0+∆

P (∥Xt∥2 ≤ R) dt ≥ 1− δ′.

We set δ = Nδ′ and apply the union bound. Therefore, with probability at least 1− δ, it holds that

tj ∈ [T0 +∆, T ],
∥∥Xtj

∥∥
2
≤ R.

Finally, we provide a justification of Assumption 3.8. Recall that H denotes the Gram matrix of K
and Hii = [Hii]jk the Gram matrix of κ (independent of i). For the scalar-valued NTK κ, we refer
the readers to Nguyen et al. (2021) for a comprehensive analysis on the properties of Hii. Our next
lemma showsthat H and Hii share the same smallest eigenvalue for all i ∈ [d].
Lemma G.3. Let H and Hii be the Gram matrices of matrix-valued NTK K and real-valued NTK
κ respectively. Then, λmin(H) = λmin(H

ii).

Proof. Denote v = (v⊤1 , . . . , v
⊤
N )⊤ ∈ RdN with vj = (v1j , . . . , v

d
j )

⊤ ∈ Rd. Then,

v⊤Hv =

N∑
j=1

N∑
ℓ=1

v⊤j Hjℓvℓ =

N∑
j=1

N∑
ℓ

d∑
i=1

d∑
k=1

vijH
ik
jℓ v

k
ℓ =

d∑
i=1

d∑
k=1

(vi)⊤Hikvk =

d∑
i=1

(vi)⊤Hiivi.

We first assume λmin(H) ≥ λ0. Let i ∈ [d] be fixed and consider v with vk = 0 for k ̸= i. Then we
have

v⊤Hv = (vi)⊤Hiivi ≥ λ0(v
i)⊤vi,

which follows λmin(H
ii) ≥ λ0 since vi is arbitrary. Conversely, suppose that λmin(H

ii) ≥ λ0. For
any v, we must have

v⊤Hv ≥ λ0

d∑
i=1

(vi)⊤vi = λ0v
⊤v

Since v is arbitrary, we can conclude that λmin(H) ≥ λ0. Therefore, we finish the proof.
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