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Abstract

Recent studies indicate that LLM-based Multi-Agent Systems (MAS) encounter
scalability challenges in complex mathematical problem-solving or coding tasks,
exhibiting issues such as inconsistent role adherence and ineffective inter-agent
communication. Moreover, the performance advantages of LLM-based MAS
over a single agent employing test-time scaling methods (e.g., majority voting)
remain marginal. This raises a critical question: Can LLM-based MAS scale
effectively to achieve performance comparable to standalone LLMs or even Large
Reasoning Models (LRMs) under optimal test-time compute? In this paper, we
conduct a preliminary investigation into the scalability of LLM-based MAS for
scientific code generation. We propose a simple yet scalable two-player framework
based on iterative critic-in-the-loop refinement. Our experiments demonstrate
that a minimalist actor-critic framework based on DeepSeek-V3 can outperform
DeepSeek-R1 under equivalent computational budgets. Surprisingly, more complex
frameworks fail to yield significant gains. These findings corroborate recent
insights into multi-agent system limitations and highlight the importance of scalable
workflows for advancing scientific code generation.

1 Introduction

In recent years, LLM-based Multi-Agent Systems (MAS) [1] have demonstrated significant potential
in complex problem-solving and system coding tasks [2, 3, 4, 5, 6]. In such systems, each agent
is assigned a specific role, working collaboratively to achieve predefined objectives, which mirrors
human teamwork in real-world scenarios.

However, recent studies [7] reveal that LLM-based MAS often struggle with complex tasks due to
issues such as specification ambiguities, inter-agent misalignment, and inadequate task verification.
Furthermore, with the growing interest in Test-Time Scaling (TTS) [8], where performance improves
via inference-time compute (e.g., majority voting or best-of-N sampling with reward models) [9,
10, 11], the advantages of LLM-based MAS over single-agent systems with TTS diminish under
equivalent computational budgets [12].

Meanwhile, Large Reasoning Models (LRMs) (e.g., DeepSeek-R1 [13], OpenAI-o1 [14]) exhibit
superior TTS capabilities through extended chain-of-thought reasoning. Yet, these models suffer from
high latency and excessive token costs. This raises a critical question: Can we develop a scalable
LLM-based MAS that outperforms standalone LLMs or LRMs with TTS while maintaining efficiency?
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Figure 1: Overview of Generator-Critic Framework.

In this paper, we investigate this challenge in scientific code generation (SciCode [15]). Unlike
mathematical problems, applying TTS (e.g., majority voting) to code generation is inherently difficult.
Instead, critique and self-reflection which are strengths of LRMs, play a pivotal role. To address this,
we propose a critic-in-the-loop framework to enhance the evaluative capabilities of LLM-based MAS.

Our experiments on the SciCode benchmark demonstrate that a generator-critic framework (using
DeepSeek-V3 [16]) outperforms standalone DeepSeek-R1 while consuming fewer tokens. Notably,
performance improves further with additional critic iterations, suggesting our framework itself serves
as an effective TTS strategy. We also explore a three-agent MAS but find no significant gains over
the simpler generator-critic approach. Finally, we analyze failure cases to provide insights for future
research.

• We propose a lightweight generator-critic framework that achieves superior performance in
scientific code generation compared to LRMs, while reducing token costs by 75%.

• We demonstrate that iterative critic refinement inherently functions as a compute-efficient
TTS strategy, unlike traditional voting-based approaches ill-suited for code generation.

• Through ablation studies and failure analysis, we identify key limitations of multi-agent
systems (e.g., role confusion in three-agent setups) and provide guidelines for scalable MAS
design in the future works.

2 Methodology

2.1 Iterative Generator-Critic Framework

Table 1: Main Results on Test Set.

Model Subproblem Main Problem
Pass@1 ∆ Pass@1 ∆

Baselines (Single-Agent) [15]
GPT-4o 25.0 - 1.5 -
DeepSeek-V3 23.7 - 3.1 -
Claude3.5-Sonnet 26.0 - 4.6 -
DeepSeek-R1 28.5 - 4.6 -
OpenAI-o1-preview 28.5 - 7.7 -
OpenAI-o3-mini 33.3 - 9.2 -
GPT-4o (Our) 22.2 - 1.5 -
DeepSeek-V3 (Our) 25.3 - 3.1 -
DeepSeek-R1 (Our) 31.6 - 4.6 -

Generator-Critic (Two-Agent) (§ 2.1)
1 iteration
GPT-4o 25.0 ↑ 2.8 1.5 ↑ 0.0
DeepSeek-V3 28.5 ↑ 3.2 3.1 ↑ 0.0
4 iterations
GPT-4o 27.4 ↑ 5.2 4.6 ↑ 3.1
DeepSeek-V3 32.6 ↑ 7.3 6.2 ↑ 3.1

As illustrated in Figure 1, the framework com-
prises two specialized agents: Generator and a
Critic.

Generator. The Generator initially produces
code based on the task description. If the code
fails verification, it utilizes feedback contain-
ing both the Critic’s natural-language critique
and the erroneous code to generate an improved
version.

Critic. The Critic plays a crucial role in the
framework by identifying errors in faulty code
and providing natural-language feedback. Given
a faulty code and a simple failure description (e.g., an error or timeout), it generates nuanced and
specific critiques. Unlike scalar rewards, these critiques are more informative, thereby guiding the
Generator’s revisions more effectively [17].
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Iterative Refinement. The framework employs a cyclic criticize → correct → criticize loop [18] to
iteratively refine code until a stopping condition (e.g., successful validation or maximum iterations)
is met. Formally, given a model M and an input problem description x, the Generator Mg first
produces an initial solution o0,which is then verified by a code interpreter. If verification fails,
the Critic and Generator engage in iterative refinement: (1)the Critic Mc analyzes the previous
output ok−1 to generate critique ck. (2)The Generator Mg synthesizes ok−1 and ck to produce an
optimized solution ok that may address previous errors. (3)The new code ok undergoes revalidation -
if successful, the loop terminates; otherwise, the process continues.

2.2 Generator-Critic-Examiner Framework

Figure 2: The employment of Examiner.

Building upon the iterative multi-agent frame-
work described above, we introduce an Exam-
iner Agent to enhance the system’s error de-
tection and correction capabilities, as shown in
Figure 2.

Examiner. Leveraging the chain-of-thought
[19] reasoning capabilities of large language
models, the examiner’s primary function is to
generate task-specific test cases based on the
problem description. Each generated test case
contains three essential components: (1) input
parameters compliant with the problem requirements, (2) expected outputs representing correct
implementation behavior, and (3) assertion statements for automated verification. To improve the
output prediction accuracy, we implement a self-consistency mechanism [20, 21], where multiple
predictions are generated for each test input and the final output is determined via majority voting
(detailed in Appendix A).

Table 2: Results on Validation Set.

Model Subproblem Main Problem
Pass@1 ∆ Pass@1 ∆

Baselines (Single-Agent)
GPT-4o 44.0 - 33.3 -
DeepSeek-V3 48.0 - 46.7 -
DeepSeek-R1 50.0 - 46.7 -

Generator-Critic (Two-Agent) (§ 2.1)
1 iteration
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 60.0 ↑ 12.0 40.0 ↑ 0.0
DeepSeek-R1 50.0 ↑ 0.0 46.7 ↑ 0.0
4 iterations
GPT-4o 50.0 ↑ 6.0 40.0 ↑ 6.7
DeepSeek-V3 62.0 ↑ 14.0 46.7 ↑ 6.7
DeepSeek-R1 56.0 ↑ 6.0 53.3 ↑ 6.7

Generator-Critic-Examiner (Three-Agent) (§ 2.2)
1 iteration
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 50.0 ↑ 2.0 40.0 ↑ 0.0
4 iterations
GPT-4o 48.0 ↑ 4.0 33.3 ↑ 0.0
DeepSeek-V3 54.0 ↑ 6.0 40.0 ↑ 6.7

Test Case Verification Process. The gener-
ated test cases are used to internally verify the
code produced by the Generator during the itera-
tive refinement process. The verification results,
comprising both successful and failed test cases
with corresponding error reports, serve as cru-
cial feedback for the Critic’s reflective analysis.
If all test cases pass, the iteration terminates and
the code is subsequently verified using the gold
tests provided by the dataset, with this result
determining the final accuracy assessment.

3 Experiments

3.1 Experimental Setup

We evaluate our framework primarily on Sci-
Code [15], a scientist-curated coding benchmark
comprising 338 subproblems derived from 80
challenging main problems across 16 diverse
natural science disciplines. Our implementation
builds upon the official codebase 3, with evaluations conducted using GPT-4o and DeepSeek-V1/R1
on both test and validation sets. For baseline comparisons, we incorporate official leaderboard
results 4 for GPT-4o, Claude, and OpenAI-o1, while reproducing GPT-4o and DeepSeek-R1/V1
results to ensure consistent evaluation metrics.

3https://github.com/scicode-bench/SciCode
4https://scicode-bench.github.io/leaderboard/
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3.2 Main Results

Table 1 and table 2 present the performance comparison of different methods, which reveal:

Effectiveness of the Critic Agent. When employing DeepSeek-v3 as the base model, the Generator-
Critic framework achieves a performance improvement (∆) of 3.2% after one iteration on the test
set, which further increases to 7.3% after four iterations. Notably, the Generator-Critic framework
consistently outperforms single-agent approach across all evaluated base models, demonstrating
the generalizability of the framework. Moreover, the DeepSeek-V3-based framework surpasses
the performance of DeepSeek-R1 after four iterations, proving that our multi-agent approach using
general-purpose LLMs is highly competitive.

Figure 3: Performance vs. Token Cost between
DeepSeek-R1 and iterative Generator-Critic (GC)
using DeepSeek-V3. The numbers in parentheses
indicate the iteration counts.

Enhanced Main Problem Resolution. The
framework particularly excels in solving main
problems in SciCode, which require correct solu-
tions for all subproblems. The iterative critique
process not only rectifies errors in the current
code but also facilitates the resolution of subse-
quent subproblems - and consequently the main
problem - since each subproblem’s correctness
impacts those that follow. This capability sig-
nificantly aids in solving the benchmark’s most
challenging aspects.

Token Cost Comparison. Figure 3 compares
the token consumption between two approaches:
1) DeepSeek-R1 for code and reasoning out-
puts, and 2) the iterative Generator-Critic using
DeepSeek-V3 for both Generator’s code outputs
and Critic’s critique outputs. The results show
that the token consumption of DeepSeek-R1 sub-
stantially exceeds that of the Generator-Critic approach, with a substantial difference of 279,605
tokens on the validation set even after four iterations. Despite this, both approaches achieve compara-
ble performance, with our framework even demonstrating superior results (Figure 6). These findings
collectively indicate the advantages of the Generator-Critic framework in terms of both efficiency
and task performance.

(a) Iterations on Test Set. (b) Iterations on Validation
Set.

Figure 4: Iterations in Generator-Critic and
Generator-Critic-Examiner.

Number of Iterations.

We examine the efficacy of iterative refine-
ment in both the Generator-Critic and Generator-
Critic-Examiner. As shown in Figure 4(a),
which presents the pass@1 performance pro-
gression on the test set using GPT-4o, iterative
refinement consistently improves the framework
performance. However, marginal gains diminish
as the number of iterations increases, with 5–6
iterations yielding the majority of achievable
improvements.

3.3 Failure Analysis

Although the Generator-Critic-Examiner outperformed the baselines, it performed worse than the
Generator-Critic. This indicates that the Examiner failed to enhance the critic’s reflective capabilities.
Upon analyzing the test cases generated by the Examiner, we observed substantial inaccuracies in its
output predictions. Even with majority voting implemented, the Examiner’s predictions remained
predominantly incorrect. These errors adversely affected the framework by introducing misleading
guidance during refinement, ultimately impairing the efficacy of the criticism mechanism.
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4 Conclusion

We propose a lightweight generator-critic framework that enhances LLM-based multi-agent systems
for scientific code generation. Our approach outperforms standalone Large Reasoning Models while
reducing computational costs, demonstrating that iterative critique inherently serves as an efficient
test-time scaling strategy. Experiments reveal diminishing returns with complex multi-agent setups,
suggesting simplicity is key for scalability. These findings offer practical guidelines for deploying
efficient LLM-based systems in resource-constrained scenarios.
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A Details of Methodology

Figure 5: Majority Voting for Test Cases Gen-
eration.

Here, we elaborate on the majority voting mecha-
nism implemented for test cases generation within
the Generator-Critic-Examiner framework. First, the
Examiner generates input parameters for the function
based on the problem description. Next, the agent is
invoked multiple times (in our implementation, five
repetitions are used) to generate test case outputs
through diverse Chain-of-Thought (CoT) reasoning
processes. Finally, we tally the frequency of identical
output values and select the most common one as the
final test case output.This process is shown in Figure
5.

B System Prompts

The prompts for both the Generator-Critic and the Generator-Critic-Examiner are presented in Tables
3, 4, 5 and 6.

C Case Study

Here,we provide representative success and failure cases analysis for both the Generator-Critic and
the Generator-Critic-examiner.

C.1 Success Cases
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Figure 6: Token cost comparison between
DeepSeek-R1 and iterative Generator-Critic (GC)
using DeepSeek-V3. The numbers in parentheses
indicate the iteration counts.

Table 7 presents a successful application of the
Generator-Critic framework. In this case,the
subproblem pi was corrected through critique-
based optimization, and this correction subse-
quently revealed the correctness of the follow-
ing two subproblem pi+1 and pi+2. This in-
dicates that the initial generated codes for the
subsequent subproblems pi+1 and pi+2 was, in
fact, correct; however, due to the error in the
preceding subproblem pi, their evaluation re-
sulted in a false failure. By correcting pi within
the Generator-Critic, we were able to verify the
true correctness of the pi+1 and pi+2. This case
underscores a key advantage of the Generator-
Critic in handling complex, stepwise scientific
code generation: accurate evaluation and correc-
tion of later steps which require resolving errors in earlier ones.

Table 8 presents the test cases generated by the Examiner for a faulty code which has been successfully
corrected. These test cases are particularly valid because the final outputs exhibit a high frequency,
indicating their reliability.

C.2 Failure Cases

Table 9 presents an example in which the errors persist even after reaching the maximum number of
iterations in the Generator-Critic framework. Over four iterations, the Critic consistently identified
similar error causes, with no significant variation observed.

Table 10 presents test cases demonstrating the Examiner’s failure. In these cases, the majority voting
mechanism fails to identify a consensus among the predicted outputs, rendering it ineffective.
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Table 3: Prompt for Examiner in Generator-Critic-Examiner.

EXAMINER IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are an AI coding assistant that can write unique, diverse, and intuitive unit tests for a Python function.
Your job is to generate unit tests that
1.Is valid input based on the function description, i.e., an acceptable input consistent with function description
that a correct program should be able to execute.
2. The output enclosed in . and is faithful to the function description, i.e., the output of the unit test is
consistent with what a correct program would return.
3. Breaks the code if there is a wrong implementation code based on the function description, i.e., does not
execute to the correct output and brings out its mistakes and vulnerabilities.
Provide a reasoning for your answer and identify a general hypothesis or rationale identifying the potential
cause of error. Then provide input and output of the unit test consistent with the pattern (hypothesis) you
have identified. Note: - that you MUST directly write ALL input arguments of the function in the correct
order. Skip writing any names of arguments. -Make sure that hidden associations are satisfied between input
arguments. -Make sure that input arguments will not cause a correct program to perform illegal evaluation,
such as division by zero encountered in divide or invalid value encountered in scalar add. -You must give
the specific value of the outputs. Do not include ellipses or variables without defined specific values in the
output. - you MUST enclose the unit test inputs and outputs in. -The inputs and outputs can only be built
using the numpy library. -Do not use undefined variables and functions. -Unit tests can only use libraries in
dependencies and cannot use other libraries. -Unit tests are independent and cannot use data from each other.
-Make sure the logic of the unit test is correct. -You must generate more than four tests.
## Function Definition:
{func_sig}
## Dependencies:
{dependencies}
Respond strictly in the format below:
## Hypothesis
<step-by-step reasoning >
Error Pattern: <an identified pattern of inputs that yields erroneous or incorrect outputs
## Unit Test X:
<where X is the unit test number.>
### Input Arguments
<step-by-step reasoning for constructing a unit test that fits the error pattern identified above and is valid as
per the function description >
Arguments:
{function_header}(< all arguments >)
### Output
<step-by-step reasoning for what a correct function_header would execute to based on the function description
and your input above. Make sure your data type of the final answer matches the expected output type of the
function. Give the specific output directly. Do not use assignment statements and do not provide the code for
the calculation process. >
Output:
<your final answer.>
### Comparison
<Must use the np.allclose function to compare whether the result of the function matches the output above
through the ‘assert’ statement. The parameter atol of the np.allclose function is set according to the number
of digits of the expected output. Write ALL input arguments of the function in the correct order, do not omit
input arguments or output. If the function has multiple outputs, compare each output one by one. >
Comparison:
<your code for assert>
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Table 4: Prompt for Critic in Generator-Critic-Examiner.

CRITIC IN GENERATOR-CRITIC-EXAMINER FRAMEWORK

You are a Python programming assistant.
You will be given a function implementation and a series of unit tests.The implementation was written under
specific requirements and guidance, which are also provided for you. This function implementation is a part
of the solution to the complete problem. Implementing it may require calling the code of the preceding steps,
which is also provided to you in the requirements and guidance section. Your goal is to write a few sentences
to explain why your implementation is wrong as indicated by the tests. You will need this as a hint when
you try again later. Only provide the few sentence description in your answer, not the implementation. Only
focus on the current implementation, not the preceding steps.
# Requirements and guidance for writing the current function implementation:
{prompt}
# current function implementation:
{code}
# preceding steps:
{previous_code}
# unit test results:
{feedback}
# reflection:

Table 5: Prompt for Critic in Generator-Critic.

CRITIC IN GENERATOR-CRITIC FRAMEWORK

You are a Python programming assistant.
You will be given a function implementation and the problem with code(the function implementation with
test cases) execution .The implementation was written under specific requirements and guidance, which
are also provided for you. This function implementation is a part of the solution to the complete problem.
Implementing it may require calling the code of the preceding steps, which is also provided to you. Your
goal is to write a few sentences to explain why your implementation is wrong as indicated by the tests. You
will need this as a hint when you try again later. Only provide the few sentence description in your answer,
not the implementation. Only focus on the current implementation, not the preceding steps.
# Requirements and guidance for writing the current function implementation:
{prompt}
# current function implementation:
{code}
# preceding steps:
{previous_code}
# problem with code execution:
{type}
# reflection:

Table 6: Prompt for Generator to correct in Generator-Critic.

GENERATOR IN GENERATOR-CRITIC FRAMEWORK

You are a Python writing assistant.
You will be given your past function implementation, the problem with code(the function implementation
with test cases) execution, and a hint to change the implementation appropriately. The past function
implementation was written under the requirements and guidance, your improved implementation should
be also under the requirements and guidance. DO NOT write the same implementation as the past function
implementation. Write your full implementation.
# Requirements and guidance for writing the function implementation:
{prompt}
# past function implementation:
{cur_code}
#problem with code execution:
{type}
# hint:
{reflection}
# improved implementation:
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Table 7: Success Example of Generator-Critic.

CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:
Write down the matrix, B, that transforms (h, k, l) coordinates from the reciprocal lattice system to
(qx, qy, qz) coordinates in the right-handed Cartesian system. Let’s assume they share an identical ori-
gin, with x̂∗//â∗ and ẑ∗//(â∗ × b̂∗). The direct lattice parameters (a, b, c, α, β, γ) are given in units
of Å and degree. Additionally, we will follow the convention ai · bj = δij , with ai and bi representing
the primitive vectors of crystal lattice and reciprocal lattice respectively Background The reciprocal lattice
vectors bi are given by:

bi =
aj × ak

ai · (aj × ak)

Critique:
The implementation is incorrect because it doesn’t properly account for the geometric transformation from
detector coordinates to lab coordinates. The calculation of kslab is wrong in how it handles the direction
components - it should use trigonometric relationships based on the angles formed by the pixel positions
relative to the beam center, not just simple divisions. Additionally, the normalization of the scattered beam
vector is incorrect as it doesn’t properly maintain the magnitude of 1/wavelength for ks. The current approach
mixes coordinate systems incorrectly and doesn’t properly represent the scattering geometry.

Improved Implementation:
def q_cal(p, b_c, det_d, p_s, wl):

# Convert all distances to consistent units (angstroms)
det_d_ang = det_d * 1e7 # mm to angstrom
p_s_ang = p_s * 1e7 # mm to angstrom
# Unpack pixel coordinates and beam center
x, y = p
xc, yc = b_c
# Calculate displacement from beam center in detector coordinates (in angstroms)
dx = (x - xc) * p_s_ang # along -y direction in lab frame
dy = (y - yc) * p_s_ang # along -z direction in lab frame
# Calculate the scattering angle components
r = np.sqrt(det_d_ang**2 + dx**2 + dy**2) # total distance from sample to pixel
sin_theta_x = dx r # angle component in x-y plane
sin_theta_y = dy r # angle component in x-z plane
cos_theta = det_d_ang r # main scattering angle component
# Incident wavevector (along +x in lab frame)
k_i = np.array([1/wl, 0, 0])
# Scattered wavevector (must have magnitude 1wl)
k_s = (1wl) * np.array([
cos_theta,
-sin_theta_x, # negative because dx is along -y
-sin_theta_y # negative because dy is along -z
])
# Momentum transfer Q = k_s - k_i
Q = k_s - k_i
# Return as column vector
return Q.reshape((3, 1))

Evaluation Result:
Correct this subproblem successfully, with the next two subsequent subproblems also becoming wright!
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Table 8: Success Example of Examiner.

CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:
# Input Arguments
orthogonalize(np.array([[1, 0, 1], [1, 1, 0], [0, 1, 1]], dtype=float))

# Predicted Outputs by different CoT
Output 1: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027], [0.,
0.81649658, 0.57735027]])
Output 2: np.array([[ 0.70710678, -0.40824829, 0.57735027], [ 0.70710678, 0.40824829, -0.57735027],[ 0.
, 0.81649658, 0.57735027]])
Output 3: np.array([[ 0.70710678, -0.40824829, 0.57735027],[ 0.70710678, 0.40824829, -0.57735027],[ 0.
, 0.81649658, 0.57735027]])
Output 4: np.array([[ 0.70710678, -0.40824829, 0.57735027],[ 0.70710678, 0.40824829, 0.57735027],[ 0. ,
0.81649658, 0.57735027]])
Output 5: np.array([[ 0.70710678, -0.40824829, 0.57735027],[ 0.70710678, 0.40824829, -0.57735027],[ 0.
, 0.81649658, 0.57735027]])

# Majority Output and the Frequency
Final Output: np.array([[0.70710678, -0.40824829, 0.57735027], [0.70710678, 0.40824829, -0.57735027],
[0., 0.81649658, 0.57735027]])
Frequency: 80%

Unit Test 2:
# Input Arguments
orthogonalize(np.array([[1, 1], [0, 1]], dtype=float))

# Predicted Outputs by different CoT
Output 1: np.array([[1., 0.], [0., 1.]])
Output 2: np.array([[1., 0.], [-0., 1.]], dtype=float)
Output 3: np.array([[1., 0.], [0., 1.]])
Output 4: np.array([[1., 0.], [0., 1.]])
Output 5: np.array([[1., 0.], [0., 1.]])

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

Unit Test 3:
# Input Arguments
orthogonalize(np.array([[2, 0], [0, 3]], dtype=float))

# Predicted Outputs by different CoT
Output 1: np.array([[1., 0.], [0., 1.]])
Output 2: np.array([[1., 0.], [-0., 1.]])
Output 3: np.array([[1., 0.], [0., 1.]])
Output 4: np.array([[1., 0.], [0., 1.]])
Output 5: np.array([[1., 0.], [0., 1.]], dtype=float)

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 100%

11



Table 9: Failure Example of Generator-Critic.

CASE STUDY: GENERATOR-CRITIC FRAMEWORK

Problem:
Now write a function to analyze any damped, driven pendulum system to understand its dynamic behavior
under various conditions. Your function should:
Sweep different timesteps to find the optimized timestep that balances accuracy and time efficiency.
2. Output the trajectory
The combined metric for finding the optimized time should penalize higher computational times while
rewarding lower errors.
To better reflect this, we can use a combined metric such as:

Metric = GTE ×
√

Time
Global Truncation Error (GTE) is estimated using the step-doubling method. This way, longer computation
times will have a more significant penalty, while still prioritizing low errors.

Critique: 1 iteration
The implementation is incorrect because it does not properly handle the step-doubling method for estimating
the Global Truncation Error (GTE). Specifically, the error estimation is only comparing the final state of the
trajectory with the half-timestep trajectory, which does not accurately represent the cumulative error over the
entire time span. Additionally, the combined metric calculation does not account for potential numerical
instabilities or edge cases, such as when the timestep is too large or too small. The current approach may
lead to suboptimal timestep selection due to these inaccuracies in error estimation and metric computation.

Critique: 2 iterations
The implementation fails because the error calculation in the step-doubling method is incorrect. The current
approach compares trajectories of different lengths by taking every other point from the finer trajectory,
but this doesn’t properly account for the time alignment between the two solutions. Additionally, the error
normalization (dividing by sqrt(min_length)) may not appropriately scale the error for comparison across
different timesteps. The metric calculation also doesn’t properly handle cases where the trajectories have
different time points due to different step sizes.

Critique: 3 iterations
The current implementation fails because it doesn’t properly handle the time adjustment when calculating
trajectories with different timesteps. The main issues are: 1) The error calculation compares trajectories
of potentially different lengths due to integer rounding of steps, 2) The actual_dt adjustment isn’t properly
synchronized between the full and half-step trajectories, and 3) The metric calculation doesn’t account for
cases where trajectories become significantly misaligned in time due to step size adjustments. These issues
lead to incorrect error estimates and suboptimal timestep selection.

Critique: 4 iterations
The implementation is incorrect because it does not properly handle the time points when comparing
trajectories with different step sizes. The error calculation assumes the trajectories can be directly compared
by interpolation, but the interpolation may not accurately capture the error due to the non-linear nature of the
pendulum’s motion. Additionally, the combined metric (GTE × √ Time) may not be correctly weighted,
leading to suboptimal timestep selection. The function also does not account for edge cases where the
timestep does not evenly divide the total time interval, potentially causing inaccuracies in the final trajectory.

Final Implementation:
def pendulum_analysis(g, L, beta, A, alpha, initial_state, t0, tf, min_dt, max_dt, num_timesteps):

timesteps = np.logspace(np.log10(min_dt), np.log10(max_dt), num_timesteps)
best_metric = float(’inf’)
optimized_trajectory = None
for dt in timesteps:

n_steps = int(np.ceil((tf - t0) / dt))
actual_dt = (tf - t0) / n_steps # Adjusted dt to exactly reach tf
start_time = time.time()

[...]
min_length = min(len(trajectory), len(trajectory_half_downsampled))
trajectory = trajectory[:min_length]
trajectory_half_downsampled = trajectory_half_downsampled[:min_length]
error = np.sqrt(np.mean(np.sum((trajectory - trajectory_half_downsampled)**2, axis=1)))

return optimized_trajectory

Evaluation Result:
Still wrong.
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Table 10: Failure Example of Examiner.

CASE STUDY: GENERATOR-CRITIC-EXAMINER FRAMEWORK

Unit Test 1:
# Input Arguments
sum_real_cross( np.array([1.0, -1.0, 2.0]), np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]),
np.array([[0.0, 0.0, 0.5], [0.0, 0.5, 0.0]]), np.array([[1, 1, 1], [-1, -1, -1]]), 0.5)

# Predicted Outputs by different CoT
Output 1: -0.577102
Output 2: 3.142
Output 3: 0.1
Output 4: 2.0
Output 5: 0.0

# Majority Output and the Frequency
Final Output: -0.577102
Frequency: 20%

Unit Test 2:
# Input Arguments

sum_real_cross( np.array([1.0, 1.0]), np.array([[1.0, 0.0, 0.0], [2.0, 0.0, 0.0]]), np.array([[0.5, 0.5, 0.5]]),
np.array([[0, 0, 0]]), 0.2 )

# Predicted Outputs by different CoT
Output 1: 0.493671
Output 2: 0.0
Output 3: 0.5
Output 4: 0.9
Output 5: 1.0

# Majority Output and the Frequency
Final Output: 0.493671
Frequency: 20%

Unit Test 3:
# Input Arguments
sum_real_cross( np.array([1.0, -1.0]), np.array([[1.0, 1.0, 1.0], [0.0, 0.0, 0.0]]), np.array([[1.0, 1.0, 1.0], [0.0,
0.0, 0.0]]), np.array([[0, 0, 0]]), 0.1)

# Predicted Outputs by different CoT
Output 1: -0.999999
Output 2: 4.107857649106695
Output 3: -0.6065306597
Output 4: -0.1
Output 5: -0.427547

# Majority Output and the Frequency
Final Output:np.array([[1., 0.], [0., 1.]])
Frequency: 20%

13


	Introduction
	Methodology
	Iterative Generator-Critic Framework
	Generator-Critic-Examiner Framework

	Experiments
	Experimental Setup
	Main Results
	Failure Analysis

	Conclusion
	Details of Methodology
	System Prompts
	Case Study
	Success Cases
	Failure Cases


