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ABSTRACT

Learning representations with information bottlenecks is a powerful information-
theoretic approach for learning effective representations where unnecessary infor-
mation is minimized while task-relevant information is maximized. Many ma-
chine learning algorithms have been derived based on information bottlenecks
of representations. This study mathematically relates information bottlenecks of
intermediate representations to the corresponding expected loss in general set-
tings. We investigate the merit of our new mathematical findings with experiments
across a range of architectures and learning settings. Through the theory and
experiments, we provide a new foundation for understanding current and future
methods for learning intermediate representations with information bottlenecks.

1 INTRODUCTION

The information bottleneck principle (Tishby et al., 1999; Slonim & Tishby, 2000) is an extension of
the concept of minimal sufficient statistics for extracting information about target Y into represen-
tation Z from input X . It imposes an information bottleneck at representation Z by minimizing the
mutual information between Z and X , I(X;Z), while maximizing the mutual information between
Z and Y , I(Y ;Z). Thus it defines a tradeoff between the complexity of representation Z and the
sufficiency for predicting target Y . Imposing an information bottleneck by minimizing I(X;Z) has
been adopted in the machine learning literature as a common regularization technique (Alemi et al.,
2016; 2018). When latent representations are stochastic, mutual information can be estimated by
averaging log probabilities of latent representations over empirical samples; alternatively, tractable
upper bounds can be computed (Kirsch et al., 2020; Kolchinsky & Tracey, 2017; Alemi et al., 2016).
More generally, the notion of bottlenecks on representation expressivity has been used in work on
structural inductive biases (Goyal & Bengio, 2022).

Consequently, understanding the connection between the information bottleneck regularizer
I(X;Z) and the generalization ability of machine learning models has become an active area of
research. The previous work of Shwartz-Ziv et al. (2019) aimed to show that the gap between the
expected loss and the training loss with n training data points can be bounded roughly (with high
probability) by,

Õ

(√
2I(X;Z) + 1

n

)
as n→∞, (1)

if the random variable Z is fixed and not learned from the training data that the training loss in the
gap depends on. This result has been used to justify the information bottleneck principle in previous
studies (Galloway et al., 2022).

While this bound is an important first step, it cannot be applied to end-to-end training of deep neural
networks for two reasons. First, as pointed out by Hafez-Kolahi et al. (2020), the proof of this bound
is incomplete, because it uses upper bounds as lower bounds and it ignores the effect of the input X
outside of the information-theoretic typical set. Such effect is negligible sometimes in coding theory
— one of the most classic and direct applications of information theory — but it is significant and
not negligible in machine learning (Hafez-Kolahi et al., 2020). Second, and most importantly from
the perspective of representation learning, the bound assumes that the latent random variable Z is
fixed, and therefore does not take into account learning of the representation function. Indeed, if the
representation function for Z is also learned from the same training data, the constraint on I(X;Z)
is fundamentally insufficient to guarantee generalization, as the representation function can overfit
to training data even if I(X;Z) is arbitrarily small (Hafez-Kolahi et al., 2020). Thus, the existing
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theory fails to explain the success of the information bottleneck principle, which is typically used
for learning intermediate representation functions in deep neural networks.

In this paper, we resolve this open question by providing novel and complete proofs for end-to-end
learning of intermediate representations (Theorem 2) where the previous bound does not work. As
a byproduct of our novel proofs, we also improve the previous bound significantly in the setting of
the previous works with a fixed random variable Z (Theorem 1); i.e., we show that the gap between
the expected loss and the training loss scales roughly (with high probability) as

Õ

(√
I(X;Z|Y ) + 1

n

)
as n→∞. (2)

There are two significant improvements in our bound (2) when compared to the previous bound (1).
First, we replace the exponential growth rate 2I(X;Z) with the linear growth rate I(X;Z). Second,
we replace I(X;Z) with I(X;Z|Y ), which is the expected mutual information between X and Z
conditioned on Y . This is an improvement since I(X;Z|Y ) ≤ I(X;Z) and we can decompose
I(X;Z) into two components by using the chain rule as (Federici et al., 2020):

I(X;Z) = I(X;Z|Y ) + I(Y ;Z). (3)
Here, I(X;Z|Y ) ≥ 0 is the superfluous information that we want to minimize while maximizing the
predictive information I(Y ;Z) ≥ 0. Therefore, regularizing I(X;Z) while maximizing I(Y ;Z) is
an indirect way to regularize I(X;Z|Y ). Accordingly, instead of regularizing I(X;Z), recent works
have considered regularizing I(X;Z|Y ) (Fischer, 2020; Federici et al., 2020; Lee et al., 2021). In
terms of theory, replacing I(X;Z) with I(X;Z|Y ) is qualitatively significant because I(X;Z)
cannot be zero while maintaining the label-relevant information I(Y ;Z), unlike I(X;Z|Y ).

Our main result (Theorem 2) shows that for end-to-end learning of intermediate representations, the
gap between the expected loss and the training loss scales roughly (with high probability) as

Õ

(
min

l∈{1,2,...,D+1}

√
1{l ̸= (D + 1)}I(X;Zs

l |Y ) + I(ϕS
l ;S) + 1

n

)
as n→∞, (4)

which reconciles representational complexity I(X;Zs
l |Y ) with model complexity I(ϕS

l ;S). Here,
Zs
l is the random variable of the l-th layer’s representation with dependence on the given training

dataset s, and D is the number of all layers, including the input layer and excluding the output layer;
i.e., Zs

1 is the input layer, Zs
D is the last hidden layer, and Zs

D+1 is the output layer. The value of
the indicator function 1{l ̸= (D + 1)} is one if l ̸= D + 1, and is zero if l = D + 1. The term
I(ϕS

l ;S) measures the complexity of the representation model. These variables are defined in detail
in Section 2.1. Our main contributions can be summarized as follows:

• In Section 3.1, we present the exponentially tighter sample complexity bound in the case
of fixed representations.

• In Section 3.2, we present, to our knowledge, the first rigorous generalization bound for
information bottleneck in the case of learning representations, showing that simplicity in
both the representation and representation function are factors that support generalization.

• In Section 4, we conduct experiments to investigate our bounds and related generalization
prediction metrics, finding that empirical estimates of the main factors in our bounds are
strong predictors of the generalization gap.

For the setting of learning representations, our main contribution is not a tighter or computable gen-
eralization bound when compared to non-information-theoretic bounds (Vapnik, 1999; Bartlett &
Mendelson, 2002). Instead, it is the new insight that the generalization gap is bounded with the
information bottleneck regularizer I(X;Zs

l |Y ) if we consider its tradeoff against the mutual infor-
mation I(ϕS

l ;S). This resolves the open question posed by a counter-example against generalization
via information bottleneck in the previous work of Hafez-Kolahi et al. (2020), as explained below.

2 PRELIMINARIES

We define the notation in Section 2.1 and discuss the direct previous results in Section 2.2.

2.1 NOTATION

We are given a training dataset s = ((xi, yi))
n
i=1 of n samples where xi ∈ X and yi ∈ Y are i.i.d.

drawn from a joint distribution P . We want to analyze the generalization gap, i.e., the gap between
the expected loss and the training loss,
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EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi), (5)

where ℓ : Rmy × Y → R≥0 is a bounded per-sample loss, and fs represents a deep neural net-
work learned with a given training dataset s. Here, X and Y are random variables for x and y with
(X,Y ) ∼ P . Similarly, we define S to be the random variable for the training dataset s. The sepa-
rate notation of random variables and their instantiations is often used in the previous information-
theoretic analyses (Xu & Raginsky, 2017; Shwartz-Ziv et al., 2019) and is important in our analyses
to avoid ambiguities rigorously as we deal with separate sources of randomness. We use symbol ◦ to
represent the composition of functions and the notation of [D + 1] = {1, 2, . . . , D + 1}. We define
the random variable of the output of the l-th layer by

Zs
l = ϕs

l ◦X, (6)

where ϕs
l is the map for the first l layer with with ϕs

l (x) ∈ Zs
l . That is, for any layer index l ∈ [D+1],

we can decompose the neural network fs by

fs = gsl ◦ ϕs
l , (7)

where gsl is the map for the rest of the layers after l layers. For convenience, we refer to ϕs
l as

the encoder and to gsl as the decoder, although it is unnecessary to have an explicit structure of an
encoder and a decoder. Here, the case of l = 1 corresponds to the input layer where ϕs

1(x) = x and
gs1(x) = fs(x). The case of l = D + 1 corresponds to the output layer where ϕs

D+1(x) = fs(x)
and gsD+1(q) = q. We also decompose fs by fs = hs

D+1 ◦hs
D ◦hs

D−1 ◦ · · · ◦hs
1 where hs

l represents
the computation of the l-th layer; i.e., ϕs

l = hs
l ◦ hs

l−1 ◦ · · · ◦ hs
1 and gsl = hs

D+1 ◦ hs
D ◦ · · · ◦ hs

l+1.

We denote by A the learning algorithm that returns the functions of each layer; i.e., (hs
l )

D+1
l=1 =

A(s). Then, by taking a subset of the output coordinates, we define Ãl(s) = (hs
k)

l
k=1. Finally, by

composing the outputs of Ãl, we define Al(s) = hs
l ◦ hs

l−1 ◦ · · · ◦ hs
1 = ϕs

l ∈ Ml. We then define
the random variable of the encoder of the l-th layer by

ϕS
l = Al ◦ S. (8)

Define the maximum lossR(fs) = sup(x,y)∈X×Y ℓ(fs(x), y). The direct previous work (Shwartz-
Ziv et al., 2019) considers the realistic implementation on a computer (e.g., using floating point),
which results in finite spaces for representations and models, i.e., |Zs

l | < ∞ and |Ml| < ∞. We
follow this setting while this can be easily discarded (see section 3.3 and appendix A.2).

2.2 BACKGROUND

Hafez-Kolahi et al. (2020) noted that the previous work (Shwartz-Ziv et al., 2019) provided the
following conjecture without complete mathematical proofs:
Conjecture 1. (Shwartz-Ziv et al. (2019)) Let X be a d-dimensional random variable that obeys an
ergodic Markov random field probability distribution asymptotically in d. Assume that P(X,Y ) is
bounded away from 0 and 1 (strictly inside the simplex interior). Then, for sufficiently large d, with
probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤

√
2I(X;Zs

l ) + log 2
δ

2n
(9)

In this conjecture, the encoder ϕs
l is fixed independently of training data s since the arguments of

this conjecture implicitly assumes the independence of Zs
l = ϕs

l ◦X and s. Indeed, the conjecture is
proven to be false when the encoder ϕs

l is also learned with the training data s by a counter-example
provided by Hafez-Kolahi et al. (2020). That is, as a straightforward example, one can consider
the binary classification problem and an encoder ϕs

l (xi) = yi that is perfectly fitted to the training
data s and compresses the information of X only to the information of 0 or 1. Then minimizing
I(X;Zs

l ) does not sufficiently constrain the complexity of ϕs
l , allowing it to arbitrarily overfit to the

training data with a large generalization gap, in contradiction to the inequality (9). In other words,
when selecting the encoder’s parameters is part of the learning problem, measuring compression via
I(X;Zs

l ) does not capture the degree of overfitting of the encoder’s parameters.

Accordingly, as a first step towards proving a sample complexity bound via information bottleneck,
Hafez-Kolahi et al. (2020) focused on the input layer and proved the following input compression
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bound for binary classification: if Y = {0, 1} and ℓ is the 0–1 loss, then for any δ > 0, with
probability at least 1− δ, we have EX,Y [ℓ(f

s(X), Y )]− 1
n

∑n
i=1 ℓ(f

s(xi), yi) ≤ ϵ, where ϵ is any

fixed real number such that ϵ ≥

√
18× 2

6H(X)
ϵ +log 1

δ+2

n , where where H(X) is the entropy of X .

If we ignore the factor 2
1
ϵ , this roughly concludes that

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) = Õ

(√
2H(X)

n

)
. (10)

Considering the factor 2
1
ϵ only makes the bound worse (than eq. (10)) when the bound is non-

vacuous; i.e., ϵ < 1. It was discussed by the authors that generally the bound is loose due to
domination of 2

1
ϵ for small ϵ. The 1

ϵ term appears despite the intuitive idea that H(X) is the number
of bits required to compress the signal X because H(X) is the expected number of bits needed for
transmitting a single sample without error. Establishing a high probability bound on the inference
error requires controlling mass in the tail of the data distribution, introducing the term 1

ϵ .

Despite its popularity and its active usage in practice, there is no rigorous sample complexity bound
for the information bottleneck principle, as noted by Hafez-Kolahi et al. (2020). Much of the work
on information bottleneck assumes its benefits, as opposed to using sample complexity bounds to
justify why it is desirable to control information bottlenecks. The present paper aims to fill this gap.

3 ANALYSIS

In this section, we establish sample complexities for information bottlenecks. We begin in Section
3.1 with the setting of previous papers (Shwartz-Ziv et al., 2019; Hafez-Kolahi et al., 2020), where
the encoder ϕs

l is fixed independently of training data s. Then we extend this result to the setting of
learning the encoder ϕs

l with s in Section 3.2, which is the main theoretical result of this paper.

3.1 FIXED ENCODER

The following theorem shows that we can indeed minimize the expected loss by minimizing the
conditional mutual information I(X;Zs

l |Y ) and the training loss if the encoder ϕs
l is fixed:

Theorem 1. Let l ∈ {1, . . . , D}. Suppose that ϕs
l is fixed independently of the training dataset s.

Then, for any γl > 0 and δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ Gl
3

√
I(X;Zs

l |Y ) ln(2) + Gl2
n

+
Gl

1(0)√
n

, (11)

where Gl
1(0) = Õ(1), Gl2 = Õ(1), and Gl

3 = Õ(1), as n → ∞. Moreover, the formula of Gl
1(0),

Gl2 and Gl
3 are given in appendix A.1.

Theorem 1 rigorously completes the proof of Conjecture 1, with the significant improvements by
reducing the exponential dependence to the linear dependence, and by replacing the mutual in-
formation with the conditional mutual information. Theorem 1 is applicable when the encoder is
learned with data independent of s: e.g., some cases in transfer learning and unsupervised learning.

3.2 ENCODER LEARNED WITH THE SAME TRAINING DATA

In the previous section, we have proven an improved version of Conjecture 1 for the setting with
a fixed encoder ϕs

l where the conjecture is possibly valid. However, the typical usage of the in-
formation bottleneck principle is approximately minimizing I(X;Zs

l ) = I(X;ϕs
l ◦ X) over the

parameters of the encoder ϕs
l , in conjunction with a discriminative objective. Thus, to support the

typical usage of the principle, we need to extend the results to the setting of learning encoder ϕs
l

with s. In this setting, the bound in Conjecture 1 is false as discussed in Section 2.2. Thus, natural
open questions are the following: can we prove a sample complexity bound with the information
bottleneck in this setting? If we can, what are the appropriate bounds?

We now present our main theorem that answers these questions by providing the sample complexity
bound, which reconciles the information bottleneck regularizer I(X;Zs

l |Y ) with the mutual infor-
mation of the encoder and the training dataset I(ϕS

l ;S):
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Theorem 2. Let D ⊆ {1, 2, . . . , D + 1}, γl > 0 and λl > 0 for all l ∈ D. Then, for any δ > 0,
with probability at least 1− δ, the following holds:

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ min
l∈D

Ql, (12)

where Ql =

Gl
3

√
(I(X;Zs

l |Y )+I(ϕS
l ;S)) ln(2)+Ĝl

2

n +
Gl

1(ζ)√
n

if l ≤ D

R(fs)

√
I(ϕS

l ;S) ln(2)+Ǧl
2

2n if l = D + 1,

with Gl
1(ζ) = Õ(

√
I(ϕS

l ;S) + 1), Ĝl2 = Õ(1), Ǧl2 = Õ(1), and Gl
3 = Õ(1) as n→∞. Moreover,

the formulas of Gl
1(ζ), Ĝl2, Ǧl2, and Gl

3 are given in appendix A.1.

The main factor I(X;Zs
l |Y ) + I(ϕS

l ;S) in Theorem 2 makes sense and captures the novel tradeoff
that has not been studied in any previous sample complexity bounds. That is, this captures the
tradeoff between “how much information from the input X the trained encoder ϕs

l retains (i.e.,
I(X;Zs

l |Y ))” v.s. “how much information from the training dataset S is used to train the encoder
ϕS
l (i.e., I(ϕS

l ;S))”. Theorem 2 is applicable when the encoder is trained with s and potentially
additional data independent of s: e.g., supervised learning, semi-supervised learning, unsupervised
learning, and transfer learning. For example, Theorem 2 captures the benefit of transfer learning in
both terms of I(X;Zs

l |Y ) and I(ϕS
l ;S) since the encoder ϕS

l is expected to have less dependence
on the target data S (for some l ≤ D) in transfer learning, which tends to decrease I(ϕS

l ;S). Here,
I(ϕS

l ;S) is measuring the effect of overfitting the encoder, which is necessary to avoid the counter-
example (Hafez-Kolahi et al., 2020, Example 3.1).

Therefore, Theorem 2 provides the first rigorous sample complexity bound for the information bot-
tleneck in the setting of training the encoder ϕS

l with the same training data s. A related yet different
topic of information theory uses I(fS;S) to compute sample complexity bounds (Xu & Ragin-
sky, 2017; Bassily et al., 2018). These previous bounds are not about information bottleneck as
these do not utilize I(X;Zs

l |Y ) (or I(X;Zs
l )) and only uses I(fS;S), the mutual information be-

tween the training dataset S and the entire model fS = ϕS
D+1. Thus, the previous bounds cannot

provide insights or justifications on the information bottleneck principle unlike our bounds. More-
over, in Section 4, we demonstrate the advantage of I(X;Zs

l |Y ) + I(ϕS
l ;S) in our bound over

I(fS;S) in the previous bounds. Here, notice that I(ϕS
l ;S) ̸= I(fS;S) for any l ̸= D + 1, and

I(ϕS
1 ;S) ≤ · · · ≤ I(ϕS

D;S) ≤ I(ϕS
D+1;S) = I(fS;S) always (e.g., see Figure 2). See ap-

pendix A.3 for more discussions about the previous bounds, which is not of information bottleneck.

Let us consider the parameterization of the encoder as ϕS
l = ϕl,θS

l
where θSl is the parameter vector

that is learned with S and contains all parameters of the layers up to l-th layer:
Remark 1. Theorem 2 holds when replacing ϕS

l with θSl .
Finally, the following proposition shows that deterministic neural networks with continuous distri-
butions can have finite mutual information with ReLU activations:
Proposition 1. If we use ReLU activations, then there are infinitely many continuous distributions
over X such that there are deterministic neural networks with finite I(X,Z|Y ).

3.3 APPLICATION TO THE CASE OF INFINITE MUTUAL INFORMATION

The mutual information for the information bottleneck is finite for many practical cases including
the cases of discrete domains X with any models and of continuous domains X with stochastic
models as well as the case in Proposition 1 with ReLU. Therefore, there is no problem with discrete
domain input, stochastic networks and ReLU networks. However, it is infinite for some special
case, for example, of continuous domains X with deterministic neural networks with certain types
of injective activations such as sigmoid (instead of ReLU) (Amjad & Geiger, 2019). This subsection
demonstrates that our bounds produces finite bounds even for any special cases of the mutual infor-
mation being infinite. Our results (Theorems 1–2 with Corollary 1) also resolve the known issue of
arbitrariness of the mutual information with different binning methods (Saxe et al., 2019).

Consider an arbitrary (continuous or discrete) domain X and an arbitrary encoder ϕ̃s
l such that

ϕ̃s
l (x) ∈ Z̃s

l and the set Z̃s
l is potentially (uncountably or countably) infinite. Define the corre-

5



Under review as a conference paper at ICLR 2023

sponding model f̃s by f̃s = gsl ◦ ϕ̃s
l and Z̃s

l = ϕ̃s
l ◦X . We formalize an arbitrary binning method

El[ϕ̃s
l ] of computing the mutual information (Chelombiev et al., 2019) as follows: for any (l, ϕ̃s

l ), let
El[ϕ̃s

l ] : Z̃s
l → Zs

l ⊆ Z̃s
l be a function such that |Zs

l | <∞. Set ϕs
l = El[ϕ̃s

l ]◦ ϕ̃s
l ; i.e., it follows that

Zs
l = El[ϕ̃s

l ]◦ Z̃s
l and fs = gsl ◦El[ϕ̃s

l ]◦ ϕ̃s
l . Let Q̂l and minl∈D Ql be the right-hand side of eq. (11)

and eq. (12) in Theorems 1–2 with this choice of encoder ϕs
l ; i.e., Q̂l and Ql contain I(X;Zs

l |Y ) in-
stead of I(X; Z̃s

l |Y ). Here, I(X;Zs
l |Y ) is the mutual information computed by the binning method

El[ϕ̃s
l ] while I(X; Z̃s

l |Y ) is the true mutual information of f̃s. Let Cl be a nonnegative real number
such that P(|ℓ((gsl ◦ ϕ̃s

l )(X), Y )− ℓ((gsl ◦ El[ϕ̃s
l ] ◦ ϕ̃s

l )(X), Y )| ≤ Cl) = 1.

Corollary 1 shows that even when the mutual information I(X; Z̃s
l |Y ) of the original model f̃s is

infinite, Theorems 1–2 provide the finite bounds on the original model f̃s using the finite mutual
information I(X;Zs

l |Y ) returned by a binning method El[ϕ̃s
l ]:

Corollary 1. Suppose that Cl <∞. Then, Theorems 1–2 hold true also when we replace
(Theorem 1) eq. (11) with EX,Y [ℓ(f̃

s(X), Y )]− 1
n

∑n
i=1 ℓ(f̃

s(xi), yi) ≤ Q̂l + 2Cl <∞, and,
(Theorem 2) eq. (12) with EX,Y [ℓ(f̃

s(X), Y )]− 1
n

∑n
i=1 ℓ(f̃

s(xi), yi) ≤ minl∈D Ql + 2Cl <∞.

The assumption on the finiteness of Cl is satisfied for common scenarios. For example, let L be the
Lipschitz constant of the function q 7→ ℓ(gsl (q), Y ) w.r.t. some metric dE almost surely (Fazlyab
et al., 2019; Latorre et al., 2019; Aziznejad et al., 2020; Pauli et al., 2021). Set El[ϕ̃s

l ] such that the
radius of each bin w.r.t. the metric dE is at most ϵ/

√
nL2 for some ϵ > 0. We can then set

Cl =
ϵ√
n
. (13)

In Corollary 1, the arbitrariness with binning methods is resolved: e.g., increasing the bin size ϵ can
decrease the mutual information, but it also increases the value of Cl =

ϵ√
n

. Thus, there is always
a tradeoff and we cannot arbitrarily change values of our bounds by choosing different binning
methods. Similarly, for the case of infinite mutual information, we prove the validity of general
methods of computing mutual information, including those of injecting noises and kernel density
estimations, in appendix A.2.

3.4 PROOF SKETCH

This subsection provides proof sketches for Theorems 1-2. The full proofs of Theorems 1-2, Corol-
lary 1, and Remark 1 are completed in appendix B.

Proof Sketch of Theorem 1. Fix l ∈ [D] and ϕs
l independently of the training dataset s. Let T be

the standard typical set of Zs
l of information theory. We first decompose the generalization gap into

two terms as EX,Y [ℓ(f
s(X), Y )] − 1

n

∑n
i=1 ℓ(f

s(xi), yi) = A + B, where A corresponds to the
case of Zs

l ∈ T , while B is for the case of Zs
l /∈ T . Using the standard argument from information

theory, we have P(Zs
l /∈ T | Y = y) ≤ O(1/

√
n) (where the probability is with respect to X), with

which we can almost argue that B ≤ O(1/
√
n) although this requires a refinement of the standard

argument. In appendix B, we refine the argument using the McDiarmid’s inequality and a further
decomposition of B. To bound A, we argue that A is bounded by a concentration gap of a special
multinomial distribution over the elements of T , which is bounded roughly as A = O(

√
(ln |T |)/n)

(with high probability with respect to S), by using a recent statistical result on multinomial distri-
butions (Kawaguchi et al., 2022, Lemma 3 & Proposition 3). Then, the standard argument from
information theory approximately bounds the size of the typical set as |T | ≤ 2I(X;Zs

l |Y )+CT for
some CT > 0, roughly resulting in A = O(

√
(ln |T |)/n) = Õ(

√
(I(X;Zs

l |Y ) + 1)/n) (with
high probability). By combining these bounds on A and B, we approximately conclude that
EX,Y [ℓ(f

s(X), Y )] − 1
n

∑n
i=1 ℓ(f

s(xi), yi) = A + B = Õ(
√
(I(X;Zs

l |Y ) + 1)/n) (with high
probability). As can be seen in this sketch, we combine deterministic decompositions and proba-
bilistic bounds with respect to the randomness of new fresh samples X and datasets S. The usages
of probabilistic bounds for different sample spaces enable the exponential improvement over the
previous bounds. The full proof of Theorem 1 is presented in appendix B.

Proof Sketch of Theorem 2. We reuse the result of Theorem 1 for fixed l ∈ [D] and ϕs
l , and we

generalize it for flexible l and learnable ϕs
l . The careful usage of probabilistic bounds for different
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sample spaces in the proof of Theorem 1 enables the proof for the setting of learning encoder. Let
l ∈ [D]. We first find a hypothesis space Φl

δ such that P(ϕS
l /∈ Φl

δ) ≤ δ and |Φl
δ| ≤ 2I(ϕ

S
l ;S)+Cδ for

some Cδ ≥ 0. We then construct the corresponding hypothesis spaceH byH = ∪ϕl∈Φl
δ
Hϕl

where
Hϕl

= {gl ◦ ϕl | gl : Zl → Rmy}. We now obtain the sample complexity bound for each Hϕl
(for

each ϕl ∈ Φl
δ) by using the result of Theorem 1 for each ϕl ∈ Φl

δ that is fixed independently of s;
i.e., P(∀f ∈ Hϕl

,B(f) ≤ Jl(δ)) ≥ 1− δ where B(f) = EX,Y [ℓ(f(X), Y )]− 1
n

∑n
i=1 ℓ(f(xi), yi)

and Jl(δ) is the right-hand side of eq. (11). Then, by taking union bound with the equal weighting
over all ϕl ∈ Φl

δ , we have P(∀f ∈ H,B(f) ≤ Jδ,l) ≥ 1 − δ where Jδ,l = Jl(δ/(2
I(ϕS

l ;S)+Cδ)).
We now want to show that this bound holds for B(fs) instead of B(f) for f ∈ H. This is achieved
if fs ∈ H. Since P(fS ∈ H) ≥ 1 − δ from the construction of H and P(A ∩ B) ≤ P(B) for any
events A and B, the following holds:

P(B(fS) ≤ Jδ,l) ≥ P(fS ∈ H
⋂
B(fS) ≤ Jδ,l) = P(fS ∈ H)P(B(fS) ≤ Jδ,l | fS ∈ H)

≥ P(fS ∈ H)(1− δ) ≥ 1− 2δ.

Therefore, by replacing δ with δ/2, we have P(B(fS) ≤ Jδ/2,l) ≥ 1 − δ. For the case
of l = D + 1, the proof is significantly simplified because an entire model is an encoder as
f = ϕD+1; i.e., we replace the result of Theorem 1 with Hoeffding’s inequality to conclude that
P(∀f ∈ HϕD+1

,B(f) ≤ JD+1(δ)) ≥ 1 − δ where JD+1(δ) = R(f)
√

(ln(1/δ))/(2n). Using
the same steps as the case of l ∈ [D], we prove that P(B(fS) ≤ Jδ/2,D+1) ≥ 1 − δ, where
Jδ,D+1 = JD+1(δ/(2

I(ϕS
l ;S)+Cδ)). By taking union bounds over l ∈ D ⊆ {1, 2, . . . , D + 1}, we

conclude P(∀l ∈ D,B(fS) ≤ Jδ/(2|D|),l) = P(B(fS) ≤ minl∈D Jδ/(2|D|),l) ≥ 1 − δ. Finally,
organizing the expression of Jδ/(2|D|),l yields the right-hand side of eq. (12), which proves Theorem
2. The full proof of Theorem 2 is presented in appendix B.

4 EXPERIMENTS

We conduct empirical experiments to investigate the following questions:
• Does the information bottleneck regularizer I(X;Zs

l ) alone reliably predict generalization
when the encoder ϕs

l is learned with s?
• Does the main factor minl∈[D] I(S; θ

S
l )+I(X;Zs

l |Y ) in Theorem 2 with Remark 1 predict
generalization more accurately than I(X;Zs

l ) alone (or I(X;Zs
l |Y ) alone)?

• How does varying layer l within the network affect the values of I(S; θSl ) and I(X;Zs
l )

and their predictive ability?

4.1 ON THE REPRESENTATION COMPRESSION BOUND

As discussed in Sections 3 and 2, I(X;Zs
l ) is generally not a reliable predictor of generalization

because feature compression does not prevent the overfitting of the representation function’s param-
eters. We investigate this further by designing a learning algorithm that trains models under various
hyperparameter settings with the constraint that estimated I(X;Zs

l ) is approximately constant.

The inference problem studied was 5 class classification on clustered 2D inputs (fig. 3). The model
architecture was a 5 layer MLP with deterministic weights and feature layer l was fixed to the
penultimate layer. Given training dataset s, each model qθ was optimized with the cross-entropy
loss minimizeθ −(1/|s|)

∑
(x,y)∈s(log(1/k)

∑k
j=1 qθ(y|zj)) s.t. Î(X;Zs

l ) = ρ, where features
zj ∼ qθ(Z

s
l |x), qθ(Zs

l |x) is a multivariate Normal distribution with mean and variance computed by
the MLP, Î(X;Zs

l ) = (1/|s|)
∑

(x,y)∈s(1/k)
∑k

j=1 log(qθ(z
j |x)/((1/|s|)

∑
(x′,y′)∈s qθ(z

j |x′))) is
a Monte-Carlo sampling based estimator of I(X;Zs

l ), and constraint ρ was set to 1.5, approximately
half the value of Î(X;Zs

l ) attained without constraining Î(X;Zs
l ). The neural network infers a dis-

tribution over a stochastic latent features so that Î(X;Zs
l ) can be regularized and evaluated directly

during training; in section 4.2 we consider the case of deterministic features without regularization
of Î(X;Zs

l ). The learning algorithm is defined by the posterior distribution over network parameters
P(θSl |S = s), which was modelled using SWAG (Maddox et al., 2019; Mandt et al., 2017), chosen
for its popularity and simplicity. We denote the estimator of I(S; θSl ) using SWAG by Ĭ(S; θSl )
(appendix C). To account for different scales of different estimation procedures, we tested rescaling
Ĭ(S; θSl ) by the average value of Î(X;Zs

l |Y ), denoting rescaled values by Ĩ(S; θSl ) (appendix C).
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Pearson c. Pearson c.

Num. params. - 0.0294 Ĭ(S; θSD+1) 0.0091∏
l∥θSl ∥F -0.0871 Ĭ(S; θSl ) 0.0211

Ĭ(X;Zs
l ) 0.3712 Ĩ(S; θSl ) + Ĭ(X;Zs

l ) 0.3928
Ĭ(X;Zs

l |Y ) 0.3842 Ĩ(S; θSl ) + Ĭ(X;Zs
l |Y ) 0.4130

Table 1: Pearson correlation coefficient between metrics and the gen-
eralization gap in loss for constrained models. Positive values denote
positive correlations. θSl denotes parameters of layer l and θSl denotes
parameters up to layer l.

216 models were trained
over varying architectures,
weight decay rates, dataset
draws, and random seeds.
Model parameters were
optimized end-to-end
using the reparameteriza-
tion trick (Kingma et al.,
2015) with dual gradient
descent (Bertsekas, 2014).
See appendix C for more
details on the experimental

setup. For each model, we measured the generalization gap between the test set and train set losses.
We found that combining model compression and representation compression yielded the best
predictor of generalization overall, and that this outperformed using representation compression
alone (tables 1 and 5). We additionally report results for MNIST and Fashion MNIST datasets and
small convolutional networks (appendix D), empirically finding that this conclusion also holds for
stochastic latent representation models when I(X;Zs

l ) is unconstrained.

4.2 IMAGE CLASSIFICATION
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Generalization gap in loss
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m
in

l
[D

] I(
S;

S l
)+

I(X
;Z

s l|Y
)

1e5 Pearson correlation: 0.851
PreResNet56
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Figure 1: Results for minl∈[D]

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) for uncon-

strained models trained on CI-
FAR10. Dashed line denotes best
polynomial fit with degree 2.
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Figure 2: Metrics averaged over
models for each layer index. Val-
ues are normalized by subtracting
the minimum and dividing by the
range. Star denotes minimum.

To investigate a common setting, we tested the metrics on im-
age classification models with larger architectures and stan-
dard cross-entropy training without explicitly constraining any
mutual information (MI). We trained 540 deep neural networks
on CIFAR10, over varying preactivation ResNet architectures
(He et al., 2016), weight decay rates, batch sizes, dataset draws
and random seeds.

To study representation compression by estimating MI with
deterministically computed features, noise is customarily in-
jected purely for analysis purposes (Saxe et al., 2019). We
tested adaptive kernel density estimation (KDE) (Chelombiev
et al., 2019), which models the latent represenation of an input
as a unimodal Gaussian centred at the deterministic feature,
with variance σ2

l determined by scaling a base value according
to maximum observed activation value in the layer. We also
tested selecting σ2

l by maximum likelihood estimation (MLE)
of observed features under the constraint that estimated MI de-
creases with layer, which follows from the information pro-
cessing inequality. We report the results in this section for
MLE and in appendix E.4 for adaptive KDE. Representations
were taken from D = 5 layers in the model, ranging from the
input to the output of the penultimate layer. Again, SWAG
was used to model the posterior P(θSl |S = s) for computing
Ĭ(S; θSl ). Since SWAG approximates the stationary distribu-
tion of SGD from a fixed initialization as a unimodal Gaussian
(Mandt et al., 2017), we also tested averaging over initializa-
tions to obtain a richer posterior model, and denote the estima-
tor of MI from this model as Ī(S; θSl ), defined in appendix E.2.
To construct multiple instances of the training dataset, we sam-
pled 5 training sets of size 15K from the CIFAR10 training set,
and each test set was the original 10K test set.

We found that the generalization gap was positively correlated
with metrics measuring representation compression, but even
more correlated with metrics that combined both representa-
tion and model compression (table 2). By increasing the value
of layer index l of the encoder, MI between the encoder and

8
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Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error
1
D

∑D
l=1 Ĭ(X;Zs

l ) 0.8481 0.7410 0.2116 0.1831 0.6425 0.5436
minl∈[D] Ĭ(X;Zs

l ) 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404
1
D

∑D
l=1 Ĭ(X;Zs

l |Y ) 0.8481 0.7406 0.2140 0.1853 0.6427 0.5435
minl∈[D] Ĭ(X;Zs

l |Y ) 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Ĭ(S; θSD+1) 0.4688 0.3112 0.2512 0.0775 0.2121 0.1208
minl∈[D] Ĭ(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) 0.8434 0.7313 0.8437 0.7195 0.6270 0.5332
Ī(S; θSD+1) 0.5370 0.3800 0.2924 0.1218 0.2442 0.1526
minl∈[D] Ī(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664

Table 2: Correlation results across metrics for CIFAR10 models. Each value is in [-1, 1] and > 0
indicates positive correlation. Best metric highlighted. More results can be found in appendix E.

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error
1
D

∑D
l=1 Ī(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) 0.4429 0.2908 0.2783 0.1059 0.2349 0.1426
maxl∈[D] Ī(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945
minl∈[D] Ī(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664
Ī(S; θS1 ) + Ĭ(X;Zs

1 |Y ) 0.6476 0.5292 0.1557 0.1331 0.4307 0.3504
Ī(S; θSD) + Ĭ(X;Zs

D|Y ) 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945

Table 3: Correlation results for Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) for CIFAR10 models across different layer

summarization methods.

training dataset increased, while MI between the representation and input decreased (fig. 2), captur-
ing a trade-off between these two measures of compression.

Empirically, metrics of representation compression based on Monte-Carlo sampling (Î(X;Zs
l )) and

the upper bound (Ĭ(X;Zs
l )) were both strongly correlated with the generalization gap, with the latter

outperforming the former (table 17), while for model compression, Ī(S; θSl ) demonstrated higher
correlation than Ĭ(S; θSl ) (table 2). For selection of hyperparameters σ2

l , MLE (figs. 1 and 2 and ta-
bles 2, 3, 15 and 17) outperformed adaptive KDE (tables 16 and 18). However, regardless of which
scheme was used, the best metric that combined representation compression and model compression
outperformed the best metric for representation compression or model compression individually.
minl∈[D] Ī(S; θ

S
l ) + Ĭ(X;Zs

l |Y ) was the strongest metric overall and is illustrated in fig. 1. Taking
the minimum over layers (theorem 2) outperformed other layer summarization methods (table 3).
The experiments indicate that metrics which combine model compression with representation com-
pression are better predictors of generalization than measures of either representation compression
or model compression alone.

5 CONCLUSION

This study first completed the proof of the previous conjecture with near-exponential improvements
for the setting of fixed representations, then proved the first rigorous generalization bound for the set-
ting of learning representations, and further strengthened the new findings with experiments. This
paper does not make any claim on whether information bottlenecks can explain well the perfor-
mance of current deep neural networks without information bottleneck methods, which is studied in
a related yet different subfield (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019). Instead, the focus
of this paper is on the technical contributions relevant for current and future methods of learning
representations with information bottlenecks. Another related yet different topic focuses on deriv-
ing bounds on the difference between the mutual information I(X;Zs

l ) and its empirical estimator
(Shamir et al., 2010; Vera et al., 2018), which can be combined with our results.
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REPRODUCIBILITY STATEMENT

For the theoretical results, complete proofs are provided. For the empirical experiments, source code
is provided with the supplementary material.
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A ADDITIONAL RESULTS AND EXPLANATIONS FOR THEORY

We present additional results and explanations for theoretical results in appendix A, full proofs in
appendix B, and additional results and details for experimental results in appendix C.

A.1 ON THEOREMS 1–2

The mutual information I(ϕS
l ;S) in Theorem 2 does not appear in Conjecture 1. However, the sam-

ple complexity bound in Conjecture 1 is invalid for the setting of learning ϕs
l , because the encoder ϕs

l
can overfit to the training data, which was demonstrated with the counter-example in Hafez-Kolahi
et al. (2020, Example 3.1). The mutual information I(ϕS

l ;S) is measuring the effect of overfitting
the encoder, which is necessary to avoid the counter-example.

Using additional notation defined in appendix A.1.1, we will discuss the details of the formulas of
Gl

1(0), Gl2 and Gl
3 of Theorems 1 and Gl

1(ζ), Ĝl2, Ǧl2, and Gl
3 of Theorem 2 in appendix A.1.2.

A.1.1 ADDITIONAL NOTATION

We define the variables for the (hidden) input generating process as follows. Each x ∈ X is gen-
erated with a hidden function χ by x = χ(y, ξ(y)), where ξ(y) = (ξ

(y)
1 , . . . , ξ

(y)
m ) ∈ ϖy ⊆ Rm

is the nuisance variable. We denote the random variable for ξ(y) by Ξy; i.e., Ξy(ωy) = ξ(y)

where ωy ∈ Ωy is the element of the sample space Ωy of the nuisance variable, conditioned on
Y = y. Then, we denote the random variables for X and Zs

l conditioned on Y = y by Xy and
Zs
l,y: Xy(ωy) = χ(y,Ξy(ωy)) ∈ X and Zs

l,y = ϕs
l ◦ Xy . For any l ∈ [D] and y ∈ Y , we

define the sensitivity cyl (ϕ
s
l ) of the trained encoder ϕs

l with respect to the nuisance variable ξ(y)

by the number such that for all i ∈ [m], cyl (ϕ
s
l ) ≥ sup

ξ
(y)
1 ,...,ξ

(y)
i−1,ξ

(y)
i ,ξ̃

(y)
i ,ξ

(y)
i+1,...,ξ

(y)
m
| log py((ϕs

l ◦

χy)(ξ
(y)
1 , . . . , ξ

(y)
i−1, ξ

(y)
i , ξ

(y)
i+1, . . . , ξ

(y)
m )) − log py((ϕ

s
l ◦ χy)(ξ

(y)
1 , . . . , ξ

(y)
i−1, ξ̃

(y)
i , ξ

(y)
i+1, . . . , ξ

(y)
m ))|,

where χy(ξ
(y)) = χ(y, ξ(y)) and py(q) = P(Zs

l,y = q).

For any l ∈ [D + 1] and λl > 0, define

Cλl,l =
1

eλlH(ϕS
l )

∑
q∈Ml

(P(ϕS
l = q))1−λl , (14)

where H(ϕS
l ) is the entropy of the random variable ϕS

l . We define the set of the latent variable per
class by Zs

l,y = {(ϕs
l ◦ χy)(ξ

(y)) : ξ(y) ∈ ϖy}. For any γ > 0, we then define a (typical) subset

Zs
γ,l,y (of the setZs

l,y) byZs,l
γ,y = {z ∈ Zs

l,y : − logP(Zs
l,y = z)−H(Zs

l,y) ≤ cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2 }.
Let us write the element of Zs,l

γ,y by Zs,l
γ,y = {al,y1 , . . . , al,y

T l
y
} where T l

y = |Zs,l
γ,y|. Finally, define

maximum training loss L(fs) = maxi∈{1,...,n} ℓ(f
s(xi), yi).

A.1.2 DETAILS OF OTHER TERMS

In Theorem 1, we have that Gl
1(q) =

L(fs)
√

2γl|Y|
n1/4

√
q + ln(2|Y|/δ) + γlR(fs), Gl2 =

Gl
2 ln(2) + ln(2|Y|/δ), Gl

3 = max
y∈Y

∑T l
y

k=1 ℓ(g
s
l (a

l,y
k ), y)

√
2|Y|P(Zs

l,y = al,yk ), and Gl
2 =

Ey[c
y
l (ϕ

s
l )]

√
m ln(

√
n

γl
)

2 +H(Zs
l |X,Y ).

In Theorem 2, the definitions of Gl
1(q), G

l
2, G

l
3 are the same as in Theorem 1, and we have that ζ =

(I(ϕS
l ;S)+Gl

4) ln(2)+ln(2|D|), Ĝl2 =
(
Gl

2 +Gl
4

)
ln(2)+ln(4|Y||D|/δ), Ǧl2 = Gl

4 ln(2)+ln(2/δ),

and Gl
4 = 1

λl
ln

Cλl,l
|D|

δ +H(ϕS
l |S).

Proposition 2 below shows that Gl
3 can be bounded by a constant value, which is much smaller than

and independent of the size of the set Zs
γ,l,y .

13
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Proposition 2. Let l ∈ {1, . . . , D}. Let vk(y) = ℓ(gsl (a
l,y
jk
), y)2P(Zs

l,y = al,yjk ) where k 7→ jk is
a permutation of the index such that v1(y) ≥ v2(y) ≥ · · · ≥ vT l

y
(y). If there exist some constants

αy ≥ 1 and βy, Cy > 0 such that vk(y) ≤ Cye
−(k/βy)

αy , then

Gl
3 ≤

√
2|Y|max

y∈Y

(√
v1(y)⌈β̃y⌉+ (Cyβ̃y)/(αye)

)
, (15)

without assuming that ϕs
l is fixed independently of the training dataset s, where β̃y = 21/αyβy .

Proof. The proof is provided in appendix B.8.

Proposition 3 shows that the value of lnCλl,l (recall from (14)) in the formula of Gl
4 can be bounded

by a constant value independently of ln |Ml| and is much smaller than ln |Ml| and H(ϕS
l ):

Proposition 3. Let l ∈ {1, . . . , D + 1}. We denote N = |Ml|, and enumerate Ml as
q1, q2, q3, · · · , qN with decreasing probability, i.e. pi = P(ϕS

l = qi) and p1 ≥ p2 ≥ · · · ≥ pN .

1. If pi decays sufficiently fast, i.e., pi ≤ C/iα with some α > 1 and C ≥ 1, then for
0 < λl < 1− 1/α, both the entropy H(ϕS

l ) and Cλl,l are bounded and independent of N :

H(ϕS
l ) ≤ 1 + Cα

(
ln(2)

2α
+

ln(3)

3α
+

31−α((a− 1) ln(3) + 1)

(α− 1)2

)
,

Cλl,l ≤ C1−λl
α(1− λl)

α(1− λl)− 1
.

2. If pi decays slowly, i.e., pi = ci/(Ziα) with 0 ≤ α < 1 and 0 < c ≤ ci ≤ C where Z is
the normalization constant, then the entropy H(ϕS

l ) grows as ln(N) + O(1) where O(1)
depends only on α, but Cλl,l is bounded and independent of N as:

Cλl,l ≤ (ln(1− (1− λl)α)− (1− 2λl) ln(1− α)) + (2− λl) ln(C/c) +
C

c(1− α)
.

Proof. The proof is provided in appendix B.9.

We now discuss the factors Gl
1(q) and Gl

2 in Theorem 1. The formula of Gl
1(q) is simplified as

Gl
1(q) = γl for any q ∈ R≥0 in a common scenario of deep learning where we use the 0-1 loss (to

measure generalization) and have zero training error. This is because L(fs) = 0 andR(fs) ≤ 1 for
the scenario. In the formula of G2, we have H(Zs

l |X,Y ) = 0 if the function ϕs
l is deterministic,

which is the typical case for deep neural networks, because ϕs
l is the function used at inference or test

time as opposed to training time (when dropout for example can be used). When the function ϕs
l is

stochastic, we have H(Zs
l |X,Y ) = O(1) as n→∞. The networks can be stochastic, for example,

with randomization defenses against adversarial attacks (Xie et al., 2018; Pinot et al., 2019; 2020;
Levine & Feizi, 2020) or noise injections (Goldfeld et al., 2019). The value of Ey[c

y
l (ϕ

s
l )] in the

formula of G2 measures the sensitivity with respect to the nuisance variable ξ(y); i.e., minimizing
this value should result in better generalization, which is consistent with Theorem 1. The sensitivity
cyl (ϕ

s
l ) is a measure on the single final encoder ϕs

l ; i.e., increasing the complexity of hypothesis
spaces does not imply an increase in this value.

All the discussions and results, including Proposition 2, on the factors Gl
1(q), G

l
2, and Gl

3 in The-
orem 1 hold true for these factors in Theorem 2 (because we do not assume the use of the fixed
encoder for these). Accordingly, we now discuss the new factor, G4, in Theorem 2. The value of
lnCλl,l in the formula of Gl

4 is analyzed in Proposition 3. In the formula of G4, H(ϕS
l |S) measures

the randomness of algorithm Al. To understand this, let us consider a real-world experiment with a
coin tossing. We can model the coin tossing by a stochastic model (by saying that coin tossing has
50-50 chance of getting heads and tails) or by a deterministic model to predict the exact outcome
with an exact initial condition of the physical system. Similarly, we can model a single real-world
algorithm with a stochastic model Al (by saying that something has some random chances) or a
deterministic model Al with the exact initial condition, which is the random seed in the numerical
experiments. That is, as in any mathematical theories and symbols, Al is a theoretical placeholder
with its mathematical definition; i.e., Al does not have one-to-one correspondence to a real-world

14
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algorithm implemented in experiments. In other words, given a single real-world algorithm, there
are many different ways to model the real-world algorithm and different ways result in different Al.
For example, let us fix the real-world algorithm implemented in experiments to be one with dropout
(Srivastava et al., 2014) and stochastic gradient descent (SGD). At this point, Al in Theorem 2 is
not fully determined yet and we can choose Al differently for the same real-world algorithm by
modeling the real-world differently. For instance, we can model the one with dropout and SGD as a
stochastic algorithm or as a deterministic algorithm given a fixed random seed in practice. Thus, we
can setAl in 2 to be either a stochastic algorithm or a deterministic algorithm for the exact same real-
world and the same fixed algorithm implemented in experiments. If we set Al to be a deterministic
algorithm with a fixed seed, then we have H(ϕS

l |S) = 0. If we set Al to be a stochastic algorithm,
then we increase H(ϕS

l |S) but we can potentially decrease I(ϕS
l ;S) since the extra randomness can

potentially reduce the mutual information of ϕS
l and S. Thus, there is a trade-off in how we model

the real-world via Al and we cannot reduce the bound arbitrarily. Our theorems allow to instan-
tiate our bounds with both deterministic and stochastic views of the learning algorithms, without
changing the real-world algorithms.

More generally, a randomized algorithm can be defined as a deterministic algorithm with an addi-
tional input that consists of a sequence of random bits (Hromkovič, 2004). Here, the sequence of
random bits corresponds to the sequence of random seeds in the numerical experiments with SGD.
In other words, on the one hand, we can model SGD as a stochastic process when we analyze a
set of experiments with SGD over a set of random seeds that are generated randomly. On the other
hand, we can model SGD as a deterministic process when we analyze one experiment with SGD
for one random seed. Moreover, as Hromkovič (2004) explains, we can bridge those two cases by
modeling SGD as a deterministic algorithm with its additional inputs being the seed; then (1) it is
deterministic for each seed, and (2) we can recover the stochastic model by considering a sequence
of the randomly generated seeds. If we analyze one experiment of SGD for one random seed, then
we have a deterministic algorithm, and a typical worst-case analysis provides a guarantee on the
SGD with the worst seed. But, if we analyze a set of experiments of SGD over a set of random seeds
that are generated randomly, then we have a stochastic algorithm, and we can analyze its expected
performance or high-probability guarantee w.r.t. the random seeds.

To formally treat the learning algorithmAl as a stochastic one, we replace S with S̃ in eq. (8) where
S̃(ω, ω′) = (S(ω), ω′) with ω and ω′ being elements of the sample spaces for S andAl respectively.
Similarly, when the encoder ϕs

l is stochastic, we replace X with X̃ in eq. (6) where X̃(ω, ω′) =
(X(ω), ω′) with ω and ω′ being elements of the sample spaces for X and ϕs

l respectively. All of the
proofs work in any of these cases.

A.2 ON THE APPLICATION TO THE CASE OF INFINITE MUTUAL INFORMATION

Section 3.3 discusses a way to apply a sample complexity bound with mutual information to the
cases of infinite mutual information by using binning methods. This section considers a more general
method of computing the mutual information to achieve the following goal: we demonstrate that
a theoretical work on a bound with mutual information is an important and sensible research area
more generally beyond our paper, even for the cases of infinite mutual information. This section also
provides theoretical justifications on previous methods of computing mutual information even for the
case of deterministic neural networks with continuous random variables with injective activations
(Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Chelombiev et al., 2019). We use the notation of
ϕs = ϕs

l and gs = gsl for a fixed l in this subsection.

This is based on the following simple observation: we can bound the generalization error of a given
encoder, G[ϕ̃s], by using the generalization bound of another encoder, Bδ[ϕ

s], if we add the term
measuring a distance between the two encoders, D(ϕs, ϕ̃s). This is formalized in Remark 2:

Remark 2. Define G[ϕs] = EX,Y [ℓg(ϕ
s(X), Y )] − 1

n

∑n
i=1 ℓg(ϕ

s(xi), yi) and L[ϕs] =
ℓg(ϕ

s(X), Y ) where ℓg(ϕ
s(X), Y ) = ℓ((gs ◦ ϕs)(X), Y ). Suppose that for any δ > 0, P(G[ϕs] ≤

Bδ[ϕ
s]) ≥ 1− δ for some functional Bδ and that PX,Y (|L[ϕs]−L[ϕ̃s]| ≤ D(ϕs, ϕ̃s)) = 1 for some

functional D. Then, for any δ > 0, with at least probability 1− δ,

G[ϕ̃s] ≤ Bδ[ϕ
s] + 2D(ϕs, ϕ̃s). (16)
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Proof. Since P(|L[ϕs]−L[ϕ̃s]| ≤ D(ϕs, ϕ̃s)) = 1, we have with probability one, G[ϕ̃s] ≤ G[ϕs] +

2D(ϕs, ϕ̃s). Since P(G[ϕs] ≤ B[ϕs]) ≥ 1 − δ, we have with at least probability 1 − δ, G[ϕ̃s] ≤
G[ϕs] + 2D(ϕs, ϕ̃s) ≤ Bδ[ϕ

s] + 2D(ϕs, ϕ̃s).

Here, let us set Bδ[ϕ
s] to be a generalization bound on ϕs with mutual information. Then, given an

original model ϕ̃s, its direct bound Bδ[ϕ̃
s] can be infinite since its mutual information can be infinite,

for example, for deterministic neural networks ϕ̃s with sigmoid activations for continuous random
variables. However, instead of using its direct bound Bδ[ϕ̃

s], we can bound the generalization error
of the original model ϕ̃s by invoking Remark 2 to use the bound Bδ[ϕ

s] of another model ϕs ̸= ϕ̃s

such that ϕs has finite mutual information and D(ϕs, ϕ̃s) is small.

Indeed, this is a theoretical formalization of what is implicitly done in practice when we compute
mutual information of deterministic models. That is, in practice, we often compute the mutual
information of the original model ϕ̃s by computing the mutual information of another model ϕs

where ϕs is a binning version of ϕ̃s or a noise injected version of ϕ̃s with kernel density estimation
(Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Chelombiev et al., 2019).

Indeed, all of such methods of computing mutual information in experiments are theoretically valid
and meaningful based on our results in Section 3.3 and Remark 2 along with Proposition 4 below,
even for the case of mutual information being infinite for the original model ϕ̃s.

As a concrete example, we now study the case when ϕs is obtained from ϕ̃s by injecting noise,
i.e. ϕs(x) = ϕ̃s(x) + λϑ, where ϑ ∼ N (0, Id/d) is the Gaussian noise (d is the dimension of the
intermediate output ϕ̃s(x)):

Proposition 4. Let ϕs(x) = ϕ̃s(x) + λϑ, where ϑ ∼ N (0, Id/d). Let L be the Lipschitz constant
of the function q 7→ ℓg(q, Y ) y w.r.t. the metric induced by ∥ · ∥2 almost surely. Then, we can take
D(ϕs, ϕ̃s) = λL∥ϑ∥2, and with probability at least 1− 2δ,

G[ϕ̃s] ≤ Bδ[ϕ
s] + 2λL

√
log(2/δ). (17)

Proof. Since the function q 7→ ℓ(gsl (q), Y ) is Lipschitz almost surely, we have that with probability
one,

|ℓg(ϕs(X), Y )− ℓg(ϕ̃
s(X), Y )| ≤ |ℓg(ϕ̃s(X) + λϑ, Y )− ℓg(ϕ̃

s(X), Y )| ≤ λL∥ϑ∥2.

Thus, we can take D(ϕs, ϕ̃s) = λL∥ϑ∥2. Since ϑ ∼ N (0, Id/d) is a Gaussian vector, by Bernstein
inequality, P(∥ϑ∥2 ≥ t) ≤ 2e−t2/2. If we take t = 2

√
log(2/δ), we get D(ϕs, ϕ̃s) ≤ λL∥ϑ∥2 ≤

2λL
√

log(2/δ) with probability 1− δ. Thus, Proposition 4 follows from Remark 2 by taking union
bounds.

In Proposition 4, let us set Bδ[ϕ
s] to be a generalization bound on ϕs with mutual information

I(Z;X) where Z = ϕs ◦ X . Then, by the construction of ϕs(x) = ϕ̃s(x) + λϑ, the output
is stochastic, and the mutual information I(Z;X) in Bδ[ϕ

s] is bounded, although I(Z̃;X) with
Z̃ = ϕ̃s ◦ X can be infinite. Moreover, there is a trade-off between the two terms on the right-
hand side of (17): injecting more noise by increasing λ reduces the mutual information I(Z;X) in
Bδ[ϕ

s], but increases error 2λL
√
log(2/δ). Thus, we cannot arbitrarily change values of the bounds

of the original model G[ϕ̃s] by choosing different methods of computing the mutual information
even for the case of deterministic neural networks with continuous random variables with injective
activations.

A.3 ON COMPARISONS WITH PREVIOUS INFORMATION-THEORETIC BOUNDS

We discuss the difference between our bounds and the previous information-theoretic bounds (Xu
& Raginsky, 2017; Bassily et al., 2018) in Section 3.2; e.g., the previous bounds do not utilize the
information bottleneck term. In this subsection, we provide additional discussion on the relation
between them.
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We first note that Theorem 2 recovers the previous bounds if we set D = {D + 1}. If D =
{D+1}, then our bound in Theorem 2 removes I(X;Zs

l |Y ) and only keeps I(ϕS
D+1;S) = I(fS;S),

resulting in the previous bounds. This is because the hypothesis space of the decoder after the
output layer is always a singleton (since there is no learnable parameter) and thus there is no need
of “(information) bottleneck” to avoid overfitting of such decoder. Indeed, the previous bounds only
consider the setting where the hypothesis space of the decoder is a singleton; e.g., g is the identity
function. In the previous bounds, since the hypothesis space of the decoder g is singleton, there is
no need for the encoder to provide a bottleneck to control the complexity of the hypothesis space
of the decoder. In contrast, we consider non-singleton hypothesis spaces of decoders and utilize the
information bottleneck of the encoder to control the complexity of the decoder. This also illustrates
the difficulty to prove our sample complexity bounds with the information bottleneck where we need
to consider the non-singleton hypothesis space for the decoder.

Another challenge of proving our bounds comes from the fact that we need to efficiently utilize
different sources of randomness while the previous bounds only consider the single source of ran-
domness; i.e., fS = AD+1 ◦ S is a random variable through the randomness of training data S (and
potentially of algorithmAD+1) whereas Zs

l = ϕs
l ◦X is a random variable through the randomness

of the new unseen input X (and potentially of encoder ϕs
l ). Thus, I(X;Zs

l |Y ) and I(fS;S) mea-
sures different types of mutual information with the different sources of randomness. Our bound
needs to utilize both types of randomness efficiently while the previous bound only uses the ran-
domness of S.

The main factor I(X;Zs
l |Y ) + I(ϕS

l ;S) in Theorem 2 captures the novel tradeoff between the two
types of mutual information. It tells us that as we minimize the information bottleneck I(X;Zs

l |Y )
by optimizing ϕs

l based on the training data s, we must pay the price of mutual information I(ϕS
l ;S).

If ϕS
l depends more on S, then we can more easily minimize the information bottleneck I(X;Zs

l |Y )
(while minimizing the training loss for s), which comes at the cost of increasing I(ϕS

l ;S). This
trade-off is not captured by any of previous bounds.

As a result of utilizing the both types of randomness, we show in Section 4 that the main factor
I(X;Zs

l |Y ) + I(ϕS
l ;S) in our bound is a better predictor than the main factor I(fS;S) in the

previous bounds.

A.4 ON THE STANDARD ARGUMENTS FOR PROVING THE CONJECTURE

The previous work (Shwartz-Ziv et al., 2019) provided the arguments of using the Probably Approx-
imately Correct (PAC) bound for a finite hypothesis space H to obtain Õ(

√
(log |H|)/n) (Shalev-

Shwartz & Ben-David, 2014) and bounding its cardinality |H| via H(Zs
l ). However, this argument

results in the exponential factor 2I(X;Zs
l ) as in Conjecture 1.

B PROOFS

B.1 OVERVIEW OF PROOFS OF THEOREMS

Before providing complete proofs, we first provide a overview of the proofs of Theorem 1–2. Let l ∈
[D]. We first prove two properties of the typical set of Zl, Lemma 1 and Lemma 2 (in appendix B.2),
by combining a standard proof used in information theory and the McDiarmid’s inequality. A typi-
cal set is a concept in information theory and we utilize the properties of a typical set to obtain the
information-theoretic bounds. To achieve this, Lemma 3 (in appendix B.2) decomposes the gener-
alization gap into four terms as EX,Y [ℓ(f

s(X), Y )] − 1
n

∑n
i=1 ℓ(f

s(xi), yi) = A + B + C + D,
where the one term A corresponds to the case of X being in the typical set, while other three terms
B,C, and D are for the case of X being outside of the typical set. The rest of the proof of Theorem
1 analyzes each of these terms (with Lemma 1 and Lemma 2), proving that A and B + C + D are
bounded by the first term and the second term on the right-hand side of eq. (11), respectively. That
is, we show C + D ≤ γlR(fs)√

n
in Lemma 4 (in appendix B.2) by invoking Lemma 1. Lemma 5

(in appendix B.2) then bounds the terms A and B by recasting the problem into that of multino-
mial distributions and by incorporating Lemma 2 into the concentration inequality of multinomial
distributions.
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Lemmas 1–4 (in appendix B.2) are carefully proven for the trained encoder ϕs
l instead of a hy-

pothesis space of encoders ϕl. This is achieved by combining deterministic decompositions and
probabilistic bounds with respect to the randomness of new fresh samples X instead of the training
data S. In contrast, Lemma 5 (in appendix B.2) is proven for a hypothesis space Φ of encoders using
the randomness of S, where Φ must be independent of s. These decompositions and probabilistic
bounds for different sample spaces enable the exponential improvement over the previous bounds.
Combining Lemmas 3-5 (in appendix B.2) produces Lemma 6, which proves Theorem 1 by setting
the hypothesis space as Φ = {ϕs

l } where ϕs
l is fixed independently of s.

The standard proof techniques result in the exponential factor 2I(X;Zs
l ) as in Conjecture 1 (see ap-

pendix A for more details). This paper provides a novel proof technique to avoid the exponential
factor. Compared to arguments for Conjecture 1, our proof discards the non-mathematical argu-
ments regarding the typical set, keeps track of all the effects of the approximation and non-typicality
rigorously, and discards the assumption of the input dimension approaching infinity with an ergodic
Markov random field.

Another main challenge in proving our main result, Theorem 2, is avoiding the dependence on the
hypothesis space for the value of I(X;Zs

l |Y ). That is, with a relatively simpler proof, we could
prove a similar bound with supϕl∈Φl

I(X;ϕl ◦ X|Y ) where Φl is a fixed hypothesis space of the
encoder ϕl. However, this dependence on the hypothesis space is not preferred since enlarging the
hypothesis space can increase the value, whereas the value of I(X;Zs

l ) in our bound is independent
of the hypothesis space given the final hypothesis ϕs

l .

We carefully construct and prove our key lemmas in the following subsection, which enables
us to avoid the dependence over the entire hypothesis space and the exponential factor.

B.2 PROOFS OF KEY LEMMAS

We use the notation of ln = loge and log = log2. Fix l ∈ {1, . . . , D} throughout this section. For
the simplicity of the notation, we write Z = Zs

l and Zy = Zs
l,y in the following; we must to be

always aware of the dependence on s for related variables. We recall that

Zy = ϕs
l ◦Xy.

We write ξ(y) ∈ ϖy ⊆ Rm, and define the set of the latent variable per class by

Zy =
{
(ϕs

l ◦ χy)(ξ
(y)) : ξ(y) ∈ ϖy

}
.

For any γ > 0, we then define the typical subset Zs
γ,y of the set Zy by

Zs
γ,y =

{
z ∈ Zy : − logP(Zy = z)−H(Zy) ≤ cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2

}
.

Then, for any set A and any function φ, we have that

P(Z ∈ A|Y = y) = P(Zy ∈ A) = P({ωy ∈ Ωy : Zy(ωy) ∈ A})
= P({ωy ∈ Ωy : (ϕs

l ◦ χy)(Ξy(ωy)) ∈ A})
= P((ϕs

l ◦ χy ◦ Ξy) ∈ A),

and

P((φ ◦ Z) > 0|Y = y) = P((φ ◦ Zy) > 0) = P({ωy ∈ Ωy : φ(Zy(ωy)) > 0})
= P({ωy ∈ Ωy : φ((ϕs

l ◦ χy)(Ξy(ωy))) > 0})
= P((φ ◦ ϕs

l ◦ χy ◦ Ξy) > 0).

Thus, for example, we can write

P(Z /∈ Zs
γ,y|Y = y) = P

(
(ϕs

l ◦ χy ◦ Ξy) /∈ Zs
γ,y

)
= P ({ωy ∈ Ωy : − logP(Zy = ϕs

l (Xy(ωy)))−H(Zy) > ϵ})
= P

({
ωy ∈ Ωy : − logP

(
{ω′

y ∈ Ωy : Zy(ω
′
y) = Zy(ωy)}

)
−H(Zy) > ϵ

})
,

where ϵ = cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2 .
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B.2.1 PROBABILITY OF GOING OUTSIDE OF THE TYPICAL SUBSET

The following lemma shows that the conditional probability of going outside of Zγ,y is bounded by
γ√
n

:

Lemma 1. For any γ > 0, it holds that

P(Z /∈ Zs
γ,y | Y = y) ≤ γ√

n
.

Proof. Fix y ∈ Y . We then write ξ = ξ(y) for the simplicity of the notation. We now consider the
statistical property of the function ξ 7→ − logP(Zy = ϕs

l (χ(y, ξ))). That is, in the following, we
will apply McDiarmid’s inequality w.r.t. the sample space ωy ∈ Ωy to the following function:

ξ 7→ − logP(Zy = ϕs
l (χ(y, ξ))) = − logP({ω′

y ∈ Ωy : Zy(ω
′
y) = ϕs

l (χ(y, ξ))}).

For the simpler notation, define the function py by

py(q) = P(Zy = q).

Then, we can rewrite the above function of ξ as

ξ = (ξ1, . . . , ξm) 7→ − log py(ϕ
s
l (χ(y, ξ))).

We also define
Z̃s

ϵ,y = {z ∈ Zy : − log py(z)−H(Z) ≤ ϵ} .
For any (h, φ) and t = h(q) with a probability mass function p, since p(t) =

∑
q∈h−1(t) p(q),

Et∼p [φ(t)] =
∑
t

φ(t)p(t) =
∑
t

φ(t)
∑

q∈h−1(t)

p(q)

=
∑
t

∑
q∈h−1(t)

φ(t)p(q)

=
∑
t

∑
q∈h−1(t)

φ(h(q))p(q)

=
∑
q

φ(h(q))p(q) = Eq∼p[φ(h(q))].

Thus, by choosing q = ξy , h(q) = ϕs
l (χ(y, q)), and φ(t) = − log py(t), we have that

EΞy [− log py(ϕ
s
l (χ(y,Ξy)))] = Eq[φ(h(q))] = Et [φ(t)] = EZy [− log py(Zy)] = H(Zy).

Thus, by using McDiarmid’s inequality,

PΞy
(− log py((ϕ

s
l ◦ χy)(Ξy))−H(Zy) ≥ ϵ) ≤ exp

(
− 2ϵ2

mcyl (ϕ
s
l )

2

)
.

By setting δ = exp
(
− 2ϵ2

cyl (ϕ
s
l )

2

)
and solving for ϵ, we set

ϵ = cyl (ϕ
S
l )

√
m ln(1/δ)

2
,

with which

P(Z /∈ Z̃s
ϵ,y | Y = y) = PΞy

(
(ϕs

l ◦ χy)(Ξy) /∈ Z̃s
ϵ,y

)
= PΞy

(− log py((ϕ
s
l ◦ χy)(Ξy))−H(Zy) > ϵ)

≤ PΞy
(− log py((ϕ

s
l ◦ χy)(Ξy))−H(Zy) ≥ ϵ) ≤ δ.

Therefore, by setting δ = γ√
n

and accordingly ϵ = cyl (ϕ
s
l )
√

m ln(1/δ)
2 = cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2 , we

have proven the desired statement, since Z̃s
ϵ,y = Zs

γ,y when ϵ = cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2 .
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B.2.2 SIZE OF THE TYPICAL SUBSET

The following lemmas bounds the size of the subset Zs
γ,y:

Lemma 2. For any γ > 0,

|Zs
γ,y| ≤ 2Hy(Zy)+cyl (ϕ

S
l )

√
m ln(

√
n/γ)

2 .

Proof. Set ϵ = cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2 . We define the function py by py(q) = P(Zy = q). Then, from
the definition of Zs

γ,y, we have that for any a ∈ Zs
γ,y,

− log py(a)−H(Zy) ≤ ϵ⇐⇒ − log py(a) ≤ H(Zy) + ϵ

⇐⇒ − (H(Zy) + ϵ) ≤ log py(a)

⇐⇒ 2−H(Zy)−ϵ ≤ py(a).

Using 2−H(Zy)−ϵ ≤ py(a) = P(Zy = a) for all a ∈ Zs
γ,y,

1 ≥ P(Zy ∈ Zs
γ,y) =

∑
a∈Zs

γ,y

P(Zy = a) ≥
∑

a∈Zs
γ,y

2−H(Zy)−ϵ = |Zs
γ,y|2−H(Zy)−ϵ.

This implies that using ϵ = cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2 ,

|Zs
γ,y| ≤ 2H(Zy)+ϵ = 2H(Zy)+cyl (ϕ

S
l )

√
m ln(

√
n/γ)

2 .

B.2.3 DECOMPOSITION OF EXPECTED LOSS USING THE TYPICAL SUBSET

Let us write
zi = ϕs

l (xi) ∈ Zl ⊆ Rml ,

and
ℓl(q, y) = ℓ(gsl (q), y).

Then, by the law of the unconscious statistician,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) = EZ,Y [ℓl(Z, Y )]− 1

n

n∑
i=1

ℓl(zi, yi).

For simplicity of the notation, define Ay = Zs
γ,y. We now consider a partition of the space Zl as

Zl = {z ∈ Ay}∪{z /∈ Ay}. Fix an order and write the element of Ay by Ay = {ay1, . . . , a
y
Ty
}where

Ty = |Ay| ≤ 2Hy(ϕl◦Xy)+cyl (ϕ
S
l )

√
m ln(

√
n/γ)

2 from the Lemma 2. We define Iy = {i ∈ [n] : yi = y},
Ĩy = {i ∈ [n] : zi /∈ Ay, yi = y}, Iyk = {i ∈ [n] : zi = ayk, yi = y}, Ỹ = {y ∈ Y : |Ĩy| ̸= 0},
1

|Ĩy|

∑
i∈Ĩy ℓl(zi, y)q ≜ 0 for any q if |Ĩy| = 0, and 1

|Iy
k |
∑

i∈Iy
k
ℓl(zi, y)q ≜ 0 for any q if |Iyk | =

0. Here, for example, Z, ayk, Ay , |Iyk |, and |Ĩy| depend on the training dataset s through the function
ϕs
l due to their definitions.

Using these, we can decompose the expected loss as in the following lemma:
Lemma 3. The following holds (deterministically):

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (18)

=
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)

+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)
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+
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y).

Proof. we can decompose the expected loss by using conditionals as

EZ,Y [ℓl(Z, Y )] =
∑
y∈Y

P(Y = y)EZ,Y [ℓl(Z, Y )|Y = y].

Furthermore, we can decompose the conditional expectation as

EZ,Y [ℓl(Z, Y )|Y = y] = P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

+ P(Z ∈ Ay|Y = y)EZ,Y [ℓl(Z, Y )|Z ∈ Ay, Y = y]

= P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

+

Ty∑
k=1

P(Z = ayk|Y = y)EZ,Y [ℓl(Z, Y )|Z = ayk, Y = y]

= P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

+

Ty∑
k=1

P(Z = ayk|Y = y)ℓl(a
y
k, y)

Summarising above,

EZ,Y [ℓl(Z, Y )] =
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

+
∑
y∈Y

Ty∑
k=1

P(Y = y, Z = ayk)ℓl(a
y
k, y).

Similarly, we can decompose the training loss as

1

n

n∑
i=1

ℓl(zi, yi) =
1

n

∑
y∈Y

∑
i∈Iy

ℓl(zi, y)

=
1

n

∑
y∈Y

∑
i∈Ĩy

ℓl(zi, y) +

Ty∑
k=1

∑
i∈Iy

k

ℓl(zi, y)


=
∑
y∈Ỹ

|Ĩy|
n

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

Using these, we now decompose the expected loss as follows:

EZ,Y [ℓl(Z, Y )]− 1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

+
∑
y∈Y

Ty∑
k=1

P(Y = y, Z = ayk)ℓl(a
y
k, y)−

1

n

n∑
i=1

ℓl(zi, yi)

±
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)±
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)
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By rearranging,

EZ,Y [ℓl(Z, Y )]− 1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)−
1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

−
∑
y∈Ỹ

|Ĩy|
n

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)−
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

By combining the relevant terms,

EZ,Y [ℓl(Z, Y )]− 1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
+
∑
y∈Y

Ty∑
k=1

|Iyk |
n

(ℓl(ak, y)− ℓl(ak, y))

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)
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+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
This implies the desired statement.

B.2.4 BOUNDING THE THIRD AND FORTH TERMS IN THE DECOMPOSITION

Define
Ry = EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y].

Then, the following lemma bounds the third and forth terms in the decomposition of (18) from the
previous subsection:
Lemma 4. For any γ > 0, the following holds:∑

y∈Y
P(Y = y)

γRy√
n
≥
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y). (19)

Proof. Recalling the definition of Ay = Zs
γ,y , the third term can be written as∑

y∈Y
P(Y = y, Z /∈ Ay)Ry =

∑
y∈Y

P(Y = y)P(Z /∈ Zs
γ,y|Y = y)Ry.

Then, using Lemma 1, for any γ > 0,

P(Z /∈ Zs
γ,y|Y = y) ≤ γ√

n
.

Since
∑

y∈Ỹ P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy ℓl(zi, y) ≥ 0, combining these implies the desired

statement.

B.2.5 BOUNDING THE FIRST AND SECOND TERM IN THE DECOMPOSITION

Let Φ be fixed such that Φ is independent of s, while Φ can depend on the underlying data distribu-
tion. The following lemma probabilistically bounds the first and second term in the decomposition
of (18):
Lemma 5. If ϕs

l ∈ Φ, for any γ > 0 and δ > 0, with probability at least 1− δ, the following holds:∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
(20)

≤

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

, and,

∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

≤
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√2 (I(Xy;Zy) +Gy
2) ln(2) + 2 ln(2|Φ||Y|/δ)

n
.

where

Gy
2 = cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2
+H(Zy|Xy).
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Proof. Let γ > 0 fixed. Define

Xy =
{
χy(ξ

(y)) : ξ(y) ∈ ϖy

}
,

and

Ây(ϕl) =

{
x ∈ Xy : − logP(Zy = ϕl(x))−H(Zy) ≤ cyl (ϕl)

√
m ln(

√
n/γ)

2

}
.

For each ϕl, write the element of Ây(ϕl) by Ây(ϕl) = {ây1(ϕl), . . . , â
y

T̂y(ϕl)
(ϕl)} (with a fixed

order) where T̂y(ϕl) = |Ây(ϕl)|. Moreover, we define

Îyk (ϕl) =

{
{i ∈ [n] : ϕl(xi) = âyk(ϕl), yi = y} if k ∈ [T̂y(ϕl)]

{i ∈ [n] : ϕl(xi) /∈ Ây(ϕl), yi = y} if k = T̂y(ϕl) + 1.

These are defined such that the previously defined notations are recovered when we set ϕl = ϕs
l as

Zs
γ,y = Ây(ϕ

s
l ), Ay = Ây(ϕ

s
l ), (21)

(ay1, . . . , a
y
T ) = (ây1(ϕ

s
l ), . . . , â

y

T̂y(ϕS
l )
(ϕs

l )), Iyk = Îyk (ϕ
s
l ),

Ĩy = Îy
T̂y(ϕS

l )+1
(ϕs

l ), Ty = T̂y(ϕ
s
l ).

We begin with bounding terms for a fixed encoder, before extending it to the case of encoders learned
from the training set. Let ϕl fixed and define

pyk =

{
P((ϕl ◦X) = âyk(ϕl), Y = y) if k ∈ [T̂y(ϕl)]

P((ϕl ◦X) /∈ Ây(ϕl), Y = y) if k = T̂y(ϕl) + 1.

Let y ∈ Y and k ∈ [T̂y(ϕl) + 1]. Then, we first prove the following statement: for any δ > 0, with
probability at least 1− δ,

pyk −
|Îyk (ϕl)|

n
≤
√

2pyk ln(1/δ)

n
. (22)

To prove this statement, fix y ∈ Y and k ∈ [T̂y(ϕl) + 1]. Let us write Îk = Îyk (ϕl) and pk = pyk. If

pk = 0, then the desired statement holds trivially because pk − |Îk|
n = − |Îk|

n ≤
√

2pk ln(1/δ)
n where

|Îk|
n = 0 and

√
2pi ln(1/δ)

n = 0. Thus, for the rest, we consider the case where pk ̸= 0. We notice

that (|Î1|, . . . , |ÎT+1|) follows the multinomial distribution with parameter n and (p1, . . . , pT+1).
Thus, we invoke Lemma 3 of (Kawaguchi et al., 2022) with āi = 1 and āj = 0 for all j ̸= i (which
satisfies

∑K
i=1 āipi ̸= 0 since pi ̸= 0), yielding that for any M > 0,

P

(
pk −

|Îk|
n

> M

)
≤ exp

(
−nM2

2pk

)
.

By setting M =
√

2pi ln(1/δ)
n ,

P

(
pk −

|Îk|
n

>

√
2pk ln(1/δ)

n

)
≤ δ.

This proves the statement of (22). Using (22), we can bound the first and second terms for a fixed
ϕl as follows. For the first term with a fixed ϕl, using (22), by taking union bounds over all y ∈ Y ,
we have that for any δ > 0, with probability at least 1− δ, the following holds for all y ∈ Y:

P(ϕl(X) /∈ Ây(ϕl), Y = y)−
|Îy

T̂y(ϕl)+1
(ϕl)|

n
(23)
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≤

√
2P(ϕl(X) /∈ Ây(ϕl), Y = y) ln(|Y|/δ)

n
.

For the second term with a fixed ϕl, using (22), by taking union bounds over all y ∈ Y and all
k ∈ [T̂y(ϕl)], we have that for any δ > 0, with probability at least 1− δ, the following holds for all
y ∈ Y and all k ∈ [T̂y(ϕl)],

P(ϕl(X) = âyk(ϕl), Y = y)−
|Îyk (ϕl)|

n

≤
√
P(ϕl(X) = âyk(ϕl), Y = y)

√
2 ln(|Y|T̂y(ϕl)/δ)

n
.

We now extend the results for the case of encoders learned from the training set; i.e., ϕl is no longer
fixed. By taking union bounds with the previous two bounds, we have that for any δ > 0, with
probability at least 1− δ, the following holds for all ϕl ∈ Φ:

P(ϕl(X) /∈ Ây(ϕl), Y = y)−
|Îy

T̂y(ϕl)+1
(ϕl)|

n

≤

√
2P(ϕl(X) /∈ Ây(ϕl), Y = y) ln(2|Φ||Y|/δ)

n
,

and for all k ∈ [T̂y(ϕl)],

P(ϕl(X) = âyk(ϕl), Y = y)−
|Îyk (ϕl)|

n

≤
√
P(ϕl(X) = âyk(ϕl), Y = y)

√
2 ln(2|Φ||Y|T̂y(ϕl)/δ)

n
.

Thus, if ϕs
l ∈ Φ, then we have that for any δ > 0, with probability at least 1−δ, the following holds:

P(ϕs
l (X) /∈ Ây(ϕ

s
l ), Y = y)−

|Îy
T̂y(ϕS

l )+1
(ϕs

l )|

n

≤

√
2P(ϕs

l (X) /∈ Ây(ϕs
l ), Y = y) ln(2|Φ||Y|/δ)
n

.

and for all k ∈ [T̂y(ϕ
s
l )],

P(ϕs
l (X) = âyk(ϕ

s
l ), Y = y)−

|Îyk (ϕs
l )|

n

≤
√
P(ϕs

l (X) = âyk(ϕ
s
l ), Y = y)

√
2 ln(2|Φ||Y|T̂y(ϕs

l )/δ)

n
.

By using (21), this means that if ϕs
l ∈ Φ, for any δ > 0, with probability at least 1− δ, the following

holds:

P(Z /∈ Zs
γ,y, Y = y)− |Ĩ

y|
n
≤
√

2P(Z /∈ Zs
γ,y, Y = y) ln(2|Φ||Y|/δ)

n
,

and for all k ∈ [Ty],

P(Z = ayk, Y = y)−
|Iyk |
n
≤
√

P(Z = ayk, Y = y)

√
2 ln(2|Φ||Y|Ty/δ)

n
.

Since ℓl(zi, y) ≥ 0 and ℓl(a
y
k, y) ≥ 0, this implies that if ϕs

l ∈ Φ, for any δ > 0, with probability at
least 1− δ, the following holds:∑

y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
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≤

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

,

and for all k ∈ [Ty],

∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

≤
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√2 ln(2|Φ||Y|Ty/δ)

n
.

Here, using Lemma 2, we have that Ty = |Zs
γ,y| ≤ 2H(Zy)+cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2 . Thus,√
2 ln(2|Φ||Y|Ty/δ)

n
=

√
2 ln(Ty) + 2 ln(2|Φ||Y|/δ)

n

≤

√√√√√2

(
H(Zy) + cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2

)
ln(2) + 2 ln(2|Φ||Y|/δ)

n

Finally, since H(Zy) = I(Xy;Zy) +H(Zy|Xy), we have that

H(Zy) + cyl (ϕ
s
l )

√
m ln(

√
n/γ)

2
= I(Xy;Zy) +Gy

2.

Combining these, we have proven the desired statement of this lemma.

B.2.6 COMBINE LEMMAS

By combining Lemmas 3, 4, and 5, we have proven the following statement:
Lemma 6. Let l ∈ {1, . . . , D}. If ϕs

l ∈ Φ, then for any γ > 0 and δ > 0, with probability at least
1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l )(X), Y )]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l )(xi), yi)

≤ G3

√
I(X;Z|Y ) ln(2) +G2 ln(2) + ln(2|Φ||Y|/δ)

n
+

G1(ln |Φ|)√
n

,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
ln(q) + ln(2|Y|/δ) + γR(fs),

G2 = Ey[c
y
l (ϕ

s
l )]

√
m ln(

√
n/γ)

2
+H(Z|X,Y ),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y).

Proof. Define the radius of the expected loss R by

R = Ey[Ry] = Ey [EZ,Y [ℓl(Z, Y )|Z /∈ Ay, Y = y]] , (24)

and the maximum over y of the average training loss per y by

L̂(fs) = max
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) = max
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓ(fs(xi), y). (25)
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Let l ∈ {1, . . . , D}. By combining Lemmas 3, 4, and 5, if ϕs
l ∈ Φ, then for any γ > 0 and δ > 0,

with probability at least 1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l )(X), Y )]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l )(xi), yi)

≤
√
2
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√ (I(Xy;Zy) +Gy
2) ln(2) + ln(2|Φ||Y|/δ)

n

+

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

+
∑
y∈Y

P(Y = y)
γRy√

n
.

Define

G̃3 = max
y∈Y

√
2

Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk|Y = y).

Then, we have

√
2

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)


=
√

P(Y = y)
√
2

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk|Y = y)


≤ G̃3

√
P(Y = y)

Using this and Jensen’s inequality, we have that

√
2
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√ (I(Xy;Zy) +Gy
2) ln(2) + ln(2|Φ||Y|/δ)

n

≤ G̃3

∑
y∈Y

|Y|
|Y|
√
P(Y = y)

√
(I(Xy;Zy) +Gy

2) ln(2) + ln(2|Φ||Y|/δ)
n

≤ G̃3|Y|

√√√√∑
y∈Y

1

|Y|
P(Y = y) (I(Xy;Zy) +Gy

2) ln(2) + P(Y = y) ln(2|Φ||Y|/δ)
n

= G̃3

√
|Y|

√∑
y∈Y P(Y = y) (I(Xy;Zy) +Gy

2) ln(2) +
∑

y∈Y P(Y = y) ln(2|Φ||Y|/δ)
n

= G̃3

√
|Y|
√

(I(X;Z|Y ) +G2) ln(2) + ln(2|Φ||Y|/δ)
n

where

G2 =
∑
y∈Y

P(Y = y)Gy
2 =

∑
y∈Y

P(Y = y)

(
cyl (ϕ

s
l )

√
m ln(

√
n/γ)

2
+H(Zy|Xy)

)
.

Moreover, ∑
y∈Y

P(Y = y)
γRy√

n
=

γ√
n

∑
y∈Y

P(Y = y)Ry =
γR√
n
.

Using Lemma 1 and Jensen’s inequality, since PZ(Z /∈ ZS
γ,y|Y = y) ≤ γ√

n
,∑

y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|
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=
∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y|Y = y)
√
P(Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

≤ L̂(fs)

√
γ

n1/4

∑
y∈Y

|Y|
|Y|
√
P(Y = y)

≤ L̂(fs)

√
γ

n1/4
|Y|
√∑

y∈Y

1

|Y|
P(Y = y)

= L̂(fs)

√
γ|Y|
n1/4

Thus, since R ≤ R(fs) and L̂(fs) ≤ L(fs),

G1(ln |Φ|)√
n

≥

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

+
∑
y∈Y

P(Y = y)
γRy√

n
,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
q + ln(2|Y|/δ) + γR(fs).

Combining these imply the desired statement.

B.3 COMPLETING THE PROOF OF THEOREM 1 WITH KEY LEMMAS

Recall that we have proven the following lemma in the previous subsection:

Lemma 6. Let l ∈ {1, . . . , D}. If ϕs
l ∈ Φ, then for any γ > 0 and δ > 0, with probability at least

1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l )(X), Y )]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l )(xi), yi)

≤ G3

√
I(X;Z|Y ) ln(2) +G2 ln(2) + ln(2|Φ||Y|/δ)

n
+

G1(ln |Φ|)√
n

,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
ln(q) + ln(2|Y|/δ) + γR(fs),

G2 = Ey[c
y
l (ϕ

s
l )]

√
m ln(

√
n/γ)

2
+H(Z|X,Y ),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y).

Theorem 2 directly follows from Lemma 6; i.e., we complete the proof of Theorem 2 using Lemma
6. Since ϕs

l is fixed independently of the training dataset s in Theorem 1, we can invoke Lemma
6 with Φ = {ϕs

l }, with which |Φ| = 1 and ϕs
l ∈ Φ. Thus, by noticing that fs = gsl ◦ ϕs

l for any
l ∈ {1, . . . , D}, Lemma 6 implies the desired statement.

B.4 COMPLETING THE PROOF OF THEOREM 2 WITH KEY LEMMAS

We complete the proof of Theorem 2 by extending Lemma 6 in the following.
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B.4.1 FINDING A LIKELY SPACE OF ENCODER

Fix l ∈ {1, . . . , D} throughout this section. Let λ = λl and Cλ = Cλ,l. Recall that Al(s) ∈ Ml

and |Ml| <∞. For simplicity of notation, we define the random variable AS by AS = ϕS
l . For any

q ∈Ml, we denote

p(q) = P(AS = q). (26)

The entropy of the random variable AS is given by

EAS
[− log p(AS)] = H(AS).

Define the typical subset

Φl
ϵ = {ϕl ∈Ml : − logP(AS = ϕl)−H(AS) ≤ ϵ} .

The following proposition shows that the probability of going outside of the typical subset Φl
ϵ is

bounded by δ when we take ϵ = (1/λ) log(Cλ/δ):

Lemma 7. For any λ > 0, if we take ϵ = (1/λ) ln(Cλ/δ), then we have

P(ϕS
l ̸∈ Φl

ϵ) ≤ δ, (27)

and

|Φl
ϵ| ≤ 2H(ϕS

l )+ϵ = 2H(ϕS
l )+

1
λ log

Cλ
δ . (28)

Proof. By the definition of the set Φl
ϵ, we have

P(AS ̸∈ Φl
ϵ) = P(q ∈Ml : − log p(q) ≥ H(AS) + ϵ) (29)

= P(q ∈Ml : −λ log p(q) ≥ λH(AS) + λϵ) (30)

= P(q ∈Ml : p
−λ(q) ≥ eλH(AS)+λϵ) (31)

≤ e−λH(AS)−λϵ
∑

q∈Ml

p−λ(q)p(q) (32)

=
Cλ

eλϵ
= δ. (33)

Now we compute the size of Φl
ϵ. From the definition of Φl

ϵ, we have

− log p(ϕl)−H(AS) ≤ ϵ⇐⇒ − log p(ϕl) ≤ H(AS) + ϵ

⇐⇒ −H(AS)− ϵ ≤ log p(ϕl)

⇐⇒ 2−H(AS)−ϵ ≤ p(ϕl).

Using 2−H(AS)−ϵ ≤ p(ϕl),

1 ≥ PS(AS ∈ Φl
ϵ) =

∑
ϕl∈Φl

ϵ

P(AS = ϕl) ≥
∑

ϕl∈Φl
ϵ

2−H(AS)−ϵ = |Φl
ϵ|2−H(AS)−ϵ.

This implies that using ϵ = (1/λ) ln(Cλ/δ),

|Φl
ϵ| ≤ 2H(AS)+ 1

λ ln
Cλ
δ .

B.4.2 RESULT WITH FIXED LAYER INDEX

Combining Lemmas 6 and 7 implies the following lemma, which is a main result for a fixed layer
index l:
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Lemma 8. Let l ∈ {1, . . . , D}. Then, for any γ > 0 and any δ > 0, with probability at least 1− δ,
the following holds:

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (34)

≤ G3

√(
I(X;Z|Y ) + I(ϕS

l ;S) +G2 +G4

)
ln(2) + ln(4|Y|/δ)

n
+

G1(q̃)√
n

.

where q̃ = (I(ϕS
l ;S) +G4) ln(2) + ln(2),

G1(q̃) =
L(fs)

√
2γ|Y|

n1/4

√
q̃ + ln(2|Y|/δ) + γR(fs),

G2 = Ey[c
y
l (ϕ

s
l )]

√
m ln(

√
n/γ)

2
+H(Z|X,Y ),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y),

G4 =
1

λ
ln

Cλ

δ
+H(ϕS

l |S).

Proof. Fix l ∈ {1, . . . , D}. Let λ > 0 and ϵ = (1/λ) ln(Cλ/δ). Using Lemma 6, if ϕs
l ∈ Φl

ϵ, then
for any γ > 0 and δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l )(X), Y )]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l )(xi), yi) (35)

≤ G3

√
(I(X;Z|Y ) +G2) ln(2) + ln(2|Φl

ϵ||Y|/δ)
n

+
G1(ln |Φl

ϵ|)√
n

.

From Lemma 7,
P(AS ̸∈ Φl

ϵ) ≤ δ

PS(ϕ
s
l /∈ Φl

ϵ) ≤ δ̄.

Thus, since P(A ∩B) ≤ P(B) and P(A ∩B) = P(A)P(A | B), we have that

PS(Inequality (35) holds)

≥ PS(ϕ
S
l ∈ Φl

ϵ

⋂
Inequality (35) holds)

= PS(ϕ
S
l ∈ Φl

ϵ)PS(Inequality (35) holds | ϕS
l ∈ Φl

ϵ)

≥ PS(ϕ
S
l ∈ Φl

ϵ)(1− δ)

≥ (1− δ)(1− δ) = 1− 2δ + δ2 ≥ 1− 2δ.

Therefore, by setting δ = δ′

2 , we have that for any δ′ > 0,

PS(Eq (35) holds) ≥ 1− δ′.

In other words, for any γ > 0 and δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l )(X), Y )]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l )(xi), yi) (36)

≤ G3

√
(I(X;Z|Y ) +G2) ln(2) + ln(4|Φl

ϵ||Y|/δ)
n

+
G1(ln 2|Φl

ϵ|)√
n

.

From Lemma 7, we have |Φl
ϵ| ≤ 2H(ϕS

l )+
1
λ ln

Cλ
δ and thus

ln(4|Φl
ϵ||Y|/δ) = ln(|Φl

ϵ|) + ln(4|Y|/δ) ≤
(
H(ϕS

l ) +
1

λ
ln

Cλ

δ

)
ln(2) + ln(4|Y|/δ).
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From the definition of the entropy, conditional entropy, and mutual information, we have that

H(ϕS
l ) = I(ϕS

l ;S) +H(ϕS
l |S).

Using this,

H(ϕS
l ) +

1

λ
ln

Cλ

δ
= I(ϕS

l ;S) +G4.

By combining these and noticing that fs = gsl ◦ ϕs
l for any l ∈ {1, . . . , D}, we have that for any

γ > 0 and δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (37)

≤ G3

√(
I(X;Z|Y ) + I(ϕS

l ;S) +G2 +G4

)
ln(2) + ln(4|Y|/δ)

n
+

G1(q̃)√
n

.

B.4.3 COMPLETING THE PROOF

We complete the proof of Theorem 2 using Lemma 8. Let γl > 0 and λl > 0 for all
l ∈ {1, 2, . . . , D+1}. Recall that fs = gsl ◦ϕs

l for any l ∈ {1, . . . , D}. Thus, by making the depen-
dence of the layer index l explicit, Lemma 8 states that for any δ > 0 and (fixed) l ∈ {1, . . . , D},
with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (38)

≤ Gl
3

√(
I(X;Zs

l |Y ) + I(ϕS
l ;S) +Gl

2 +Gl
4

)
ln(2) + ln(4|Y|/δ)

n
+

Gl
1(q̃)√
n

,

where q̃ = (I(ϕS
l ;S) +G4) ln(2) + ln(2),

Gl
1(q) =

L(fs)
√

2γl|Y|
n1/4

√
q + ln(2|Y|/δ) + γlR(fs),

Gl
2 = Ey[c

y
l (ϕ

s
l )]

√
m ln(

√
n/γl)

2
+H(Zs

l |X,Y ).

Gl
3 = max

y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y),

G̃l
4 =

1

λl
ln

Cλl,l

δ
+H(ϕS

l |S).

We now consider the case of l = D+1. Let l = D+1 and λD+1 > 0. Fix f = ϕD+1 ∈ ΦD+1
ϵ with

ϵ = (1/λ) ln(CλD+1,D+1/δ). Then, by using Hoeffding’s inequality, for any δ > 0, with probability
at least 1− δ,

EX,Y [ℓ(f(X), Y )]− 1

n

n∑
i=1

ℓ(f(xi), yi) ≤ R(f)
√

ln(1/δ)

2n
.

By taking union bounds over elements of ΦD+1
ϵ , this implies that for any δ > 0, with probability at

least 1− δ, the following holds for all f ∈ ΦD+1
ϵ ,

EX,Y [ℓ(f(X), Y )]− 1

n

n∑
i=1

ℓ(f(xi), yi) ≤ R(f)

√
ln(|ΦD+1

ϵ |/δ)
2n

.

This implies that for any δ > 0, if ϕs
D+1 ∈ ΦD+1

ϵ , then with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√
ln(|ΦD+1

ϵ |/δ)
2n

. (39)
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Here, from Lemma 7, we have that

P(ϕS
D+1 ̸∈ ΦD+1

ϵ ) ≤ δ.

Since P(A ∩B) ≤ P(B) and P(A ∩B) = P(A)P(A | B), we have that

PS(Inequality (39) holds)

≥ PS(ϕ
S
D+1 ∈ ΦD+1

ϵ

⋂
Inequality (39) holds)

= PS(ϕ
S
D+1 ∈ ΦD+1

ϵ )PS(Inequality (39) holds | ϕS
D+1 ∈ ΦD+1

ϵ )

≥ PS(ϕ
S
D+1 ∈ ΦD+1

ϵ )(1− δ)

≥ (1− δ)(1− δ)

≥ 1− 2δ.

Therefore, by setting δ = δ′

2 , we have that for any δ′ > 0,

PS(Eq (39) holds) ≥ 1− δ′.

In other words, for any δ′ > 0, with probability at least 1− δ′,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√
ln(2|ΦD+1

ϵ |/δ′)
2n

. (40)

Here, from Lemma 7, we have that

|ΦD+1
ϵ | ≤ 2

H(ϕS
D+1)+

1
λD+1

log
CλD+1,D+1

δ .

Substituting this,

ln(2|ΦD+1
ϵ |/δ′) = ln(|ΦD+1

ϵ |) + ln(2/δ′)

≤
(
H(ϕS

D+1) +
1

λD+1
log

CλD+1,D+1

δ

)
ln(2) + ln(2/δ′)

Using H(ϕS
D+1) = I(ϕS

D+1;S) +H(ϕS
D+1|S),

H(ϕS
D+1) +

1

λD+1
log

CλD+1,D+1

δ
= I(ϕS

D+1;S) + G̃D+1
4 .

Substituting these into (40), we have that for any δ > 0, with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√√√√(I(ϕS
D+1;S) + G̃D+1

4

)
ln(2) + ln(2/δ)

2n
.

(41)

By combining (38) and (41) with union bounds over D, we have that for any δ > 0 and D ⊆
{1, 2, . . . , D + 1}, with probability at least 1− δ, the following holds for all l ∈ D:

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (42)

≤ 1{l ̸= D+}

Gl
3

√(
I(X;Zs

l |Y ) + I(ϕS
l ;S) +Gl

2 +Gl
4

)
ln(2) + ln(4|Y||D|/δ)

n
+

Gl
1√
n


+ 1{l = D+}R(fs)

√(
I(ϕS

D+1;S) +GD+1
4

)
ln(2) + ln(2/δ)

2n
,

where D+ = D + 1,

Gl
4 =

1

λl
ln

Cλl,l|D|
δ

+H(ϕS
l |S).
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Since the right-hand side of this inequality holds for all l ∈ D and the left-hand side does not depend
on l, this implies that for any δ > 0 and D ⊆ {1, 2, . . . , D + 1}, with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ min
l∈D

Ql, (43)

where Ql =

Gl
3

√
(I(X;Zs

l |Y )+I(ϕS
l ;S)) ln(2)+Ĝl

2

n +
Gl

1(ζ)√
n

if l ≤ D

R(fs)

√
I(ϕS

l ;S) ln(2)+Ǧl
2

2n if l = D + 1,

where ζ = (I(ϕS
l ;S) + Gl

4) ln(2) + ln(2|D|), Ĝl2 =
(
Gl

2 +Gl
4

)
ln(2) + ln(4|Y||D|/δ), Ǧl2 =

Gl
4 ln(2) + ln(2/δ), and Gl

4 = 1
λl

ln
Cλl,l

|D|
δ +H(ϕS

l |S).

B.5 PROOF OF REMARK 1

The desired statement follows from
I(θSl ;S) +H(θSl |S) = H(θSl ) ≥ H(ϕl,θS

l
) = H(ϕS

l ) = I(ϕS
l ;S) +H(ϕS

l |S),
where the inequality holds because all the randomness of ϕl,θS

l
comes from the randomness of

θSl = Aθ
l ◦S (whereAθ

l is the version ofAl that outputs the parameter vector instead of the encoder
function), and because one ϕl,θS

l
corresponds to one or more θSl ; i.e., we have ϕl,θs

l
= ϕl,θ̄s

l
whenever

θsl = θ̄sl and it is possible that ϕl,θs
l
= ϕl,θ̄s

l
for θsl ̸= θ̄sl . In other words, the desired statement does

not hold only if ϕl,θs
l
̸= ϕl,θ̄s

l
for some θsl = θ̄sl , which is not the case.

B.6 PROOF OF COROLLARY 1

Proof. Set ϕs
l = El[ϕ̃s

l ] ◦ ϕ̃s
l . Then, Theorems 1–2 hold true for this choice of encoder ϕs

l since
this does not violate any assumption of Theorems 1–2. Thus, Theorems 1–2 hold with eq. (11) and
eq. (12) in their original forms: i.e.,

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ Q̂l, and, (44)

EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ min
l∈D

Ql,

Since P(|ℓ((gsl ◦ ϕ̃s
l )(X), Y ) − ℓ((gsl ◦ El[ϕ̃s

l ] ◦ ϕ̃s
l )(X), Y )| ≤ Cl) = P(|ℓ(f̃s(X), Y ) −

ℓ(fs(X), Y )| ≤ Cl) = 1, we have that with probability one,

ℓ(f̃s(xi), yi) = ℓ(fs(xi), yi) + (ℓ(f̃s(x), y)− ℓ(fs(xi), yi)) ≤ ℓ(fs(xi), yi) + Cl. (45)
Thus, with probability one,

EX,Y [ℓ(f̃
s(X), Y )]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ EX,Y [ℓ(f
s(X), Y )]− 1

n

n∑
i=1

ℓ(fs(xi), yi) + 2Cl.

(46)
Combining eq. (44) and eq. (46) with union bounds concludes that Theorems 1–2 hold when we
replace eq. (11) and eq. (12) by

EX,Y [ℓ(f̃
s(X), Y )]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ Q̂l + 2Cl, and, (47)

EX,Y [ℓ(f̃
s(X), Y )]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ min
l∈D

Ql + 2Cl,

Finally, the values of Q̂l and Ql are finite since |Zs
l | < ∞ and |Ml| < ∞; e.g., |Zs

l | < ∞ implies
that I(X;Zs

l |Y ) <∞. Thus, if CE <∞, we have Q̂l+2Cl <∞ and minl∈D Ql+2Cl <∞.
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B.7 PROOF OF PROPOSITION 1

Proof. Let l be fixed and ϕs = ϕs
l . For deterministic neural networks, the intermediate output Z

is a deterministic function of the input X , i.e. Z = ϕs(X). In this case the conditional mutual
information between X and Z simplifies to the conditional entropy of Z:

I(X,Z|Y ) = H(Z|Y ) = H(ϕs(X)|Y ). (48)

It has been proven in (Amjad & Geiger, 2019) that if X has absolutely continuous component, which
has continous density on a compact set, and the activation is bi-Lipschitz or continuous differentiable
with strictly positive derivative, then the entropy of ϕs(X) is infinite.

In the following, we first give some simple examples with ReLU activation where the entropy of
ϕs(X) is finite for an initial intuition, and then we generalize the examples for more practical set-
tings. Finally, we discuss generality and practicality of our construction.

Consider an arbitrary (continuous or discrete) distribution such that the distribution of X|Y consists
of several components (which may correspond to further subclasses). For simplicity, we assume that
there are two components C1 and C2. We start with the linearly separable case where C1 and C2 are
separated by a hyperplane ax+ b = 0 with margin at least r. In other words ax+ b ≥ r for x ∈ C1,
and ax+ b ≤ −r for x ∈ C2. Then the following simple one layer network

σ(ax+ b+ c)− σ(ax+ b− c), 0 < c ≤ r (49)

maps x ∈ C1 to 2c and C2 to 0. Thus, the output Z = ϕs(X) follows a Bernoulli distribution, which
has bounded entropy. Thus, we have I(X,Z|Y ) <∞.

More generally, if C1 and C2 are separable, with margin at least r using some metric d(C1, C2) ≥ r,
we can take a Lipschitz function g w.r.t. this metric d with lipschitz constant 1/r such that it equals
0 on C1 and equals 1 on C2. By the universal approximation theory, ReLU neural network can
approximate arbitrary continuous function to arbitrary precision as we increase the network size. In
particular, there exists a finite-size ReLU neural network N such that |N(x) − g(x)| ≤ 1/8. As
a consequence, we have N(x) ≤ 1/8 for x ∈ C1 and N(x) ≥ 7/8 for x ∈ C2. We consider the
following neural network:

σ(N − 1/2 + c)− σ(N − 1/2− c), 0 < c < 3/8, (50)

which maps x ∈ C1 to 2c and C2 to 0. Thus, the output Z = ϕs(X) follows a Bernoulli distribu-
tion, which has bounded entropy. Thus, we have I(X,Z|Y ) < ∞. Since the distribution in this
general example is arbitrary except for the separable components, there exists infinitely many such
distributions.

Finally, we observe that these examples are general and practical. First, the above proof works for
any finite number of separable components instead of two components. Second, it is also observed in
practice that trained neural networks behave like these examples discussed above, which maps dif-
ferent class to different points; this is sometimes referred as a neural collapse phenomenon (Papyan
et al., 2020).

B.8 PROOF OF PROPOSITION 2

We will use the following lemma to prove Proposition 2:

Lemma 9. Let v1, . . . , vT ∈ R such that 0 ≤ vk ≤ Ce−(k/β)α for some constants α ≥ 1 and
β,C > 0. Then,

T∑
k=1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

Cβ̃

αe

where β̃ = 21/αβ.

Proof. Using the condition on vk,
√
vk ≤

√
Ce−(k/β)α =

√
C
√

e−(k/β)α =
√
Ce−

kα

2βα =
√
Ce−(k/β̃)α
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Then,
T∑

k=1

√
vk =

⌈β̃⌉∑
k=1

√
vk +

T∑
k=⌈β̃⌉+1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

√
C

T∑
k=⌈β̃⌉+1

e−(k/β̃)α

We now bound the last term by using integral as

T∑
k=⌈β̃⌉+1

e−(k/β̃)α ≤
∫ ∞

β̃

e−(q/β̃)αdq =
β̃

α

∫ ∞

(β̃/β̃)α
t

1
α−1e−tdt =

β̃

α

∫ ∞

1

t
1
α−1e−tdt

Here, since α ≥ 1 and t ≥ 1 in the integral, we have t
1
α−1 ≤ 1 in the integral. Thus,∫ ∞

1

t
1
α−1e−tdt ≤

∫ ∞

1

e−tdt = e−1.

By combining these, we have
T∑

k=1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

Cβ̃

αe

Using Lemma 9, we complete the proof of Proposition 2 in the following:

Proof of Proposition 2. Let y ∈ Y and l ∈ {1, . . . , D}. To invoke Lemma 9, we rearrange the
expression of Gl

3 as

Gl
3 = max

y∈Y

T l
y∑

k=1

ℓ(gsl (a
l,y
k ), y)

√
2|Y|P(Zs

l,y = al,yk )

≤
√
2|Y|max

y∈Y

T l
y∑

k=1

√
ℓ(gsl (a

l,y
k ), y)2P(Zs

l,y = al,yk )

Then, we invoke Lemma 9 with vk = v
(y)
k = ℓ(gsl (a

l,y
k ), y)2P(Zs

l,y = al,yk ), where we define

v
(y)
k = vk(y). This implies that

T l
y∑

k=1

√
ℓ(gsl (a

l,y
k ), y)2P(Zs

l,y = al,yk ) ≤
⌈β̃y⌉∑
k=1

√
v
(y)
k +

Cyβ̃y

αye
,

where β̃y = 21/αyβy . Thus,

Gl
3 ≤

√
2|Y|max

y∈Y

⌈β̃y⌉∑
k=1

√
v
(y)
k +

Cyβ̃y

αye



B.9 PROOF OF PROPOSITION 3

Proof. Let l ∈ {1, 2, . . . , D + 1} and let us write λ = λl and Cλ = Cλl,l. We first note that the
value of Cλ is always bounded as

Cλ ≤
∑

q∈Ml

(P(ϕS
l = q))1−λ ≤ |Ml|

 1

|Ml|
∑

q∈Ml

P(ϕS
l = q)

1−λ

= |Ml|λ, (51)
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which is a very loose bound and we will provide tighter bounds in below. Before proceeding to the
proof, we recall the following bounds. For a > 1 we have

1

a− 1
≤
∫ ∞

1

dx

xa
≤

∞∑
i=1

1

ia
≤ 1 +

∫ ∞

1

dx

xa
=

a

a− 1
, (52)

∞∑
i=1

ln(i)

ia
≤ ln(2)

2a
+

ln(3)

3a
+

∫ ∞

3

ln(x)dx

xa
=

ln(2)

2a
+

ln(3)

3a
+

31−a((a− 1) ln(3) + 1)

(a− 1)2
, (53)

∞∑
i=1

ln(i)

ia
≥ ln(2)

2a
+

∫ ∞

3

ln(x)dx

xa
≥ ln(2)

2a
+

31−a((a− 1) ln(3) + 1)

(a− 1)2
. (54)

For a < 1, we have

N1−a − 1

1− a
=

∫ N

1

dx

xa
≤

N∑
i=1

1

ia
≤ 1 +

∫ N

1

dx

xa
=

N1−a − a

1− a
≤ N1−a

1− a
. (55)

In the first case, we have

Cλ ≤
N∑
i=1

p1−λ
i ≤

N∑
i=1

C1−λ

iα(1−λ)
≤ C1−λ α(1− λ)

α(1− λ)− 1
, (56)

which is bounded and independent of N . For the entropy, we notice that on [0, 1] the function
−p ln p is non-negative, increasing on [0, 1/e] and decreasing on [1/e, 1].

H(AS) =

N∑
i=1

−pi ln(pi) ≤
∑

pi>1/e

1

e
+
∑

pi<1/e

C

iα
ln

iα

C
(57)

≤ 1 +
∑
i≥1

Cα ln i

iα
≤ 1 + Cα

(
ln(2)

2α
+

ln(3)

3α
+

31−α((α− 1) ln(3) + 1)

(α− 1)2

)
. (58)

In the second case, the normalization constant Z diverges with N ,

Z =

N∑
i=1

ci
iα
≤

N∑
i=1

C

iα
≤ C

(
1 +

∫ N

1

dx

xα

)
≤ C

(
N1−α

1− α

)
. (59)

And using ci ≥ c, we have a lower bound for Z

Z ≥ c

(∫ N

1

dx

xα

)
≥ c(N1−α − 1)

1− α
. (60)

Thus Z is of order N1−α, i.e. Z = Ω(N1−α).

We recall the formula of Cλ from (14)

lnCλ = ln

(
N∑
i=1

p1−λ
i

)
− λH(AS). (61)

For the first term on the righthand side of (61), we have

ln

(
N∑
i=1

p1−λ
i

)
= ln

(
N∑
i=1

( ci
Ziα

)1−λ
)

= −(1− λ) ln(Z) + ln

(
N∑
i=1

c1−λ
i

i(1−λ)α

)
= −(1− λ) ln(N1−α) + ln(N1−(1−λ)α) + E0 = λ lnN + E0,

(62)

where

|E0 − (ln(1− (1− λ)α)− (1− λ) ln(1− α))| ≤ (1− λ) ln(C/c) (63)
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Next we compute the entropy H(AS) and show it diverges as lnN .

H(AS) = −
N∑
i=1

pi ln(pi) = −
N∑
i=1

pi ln
ci
iαZ

= α

N∑
i=1

pi ln(i) + ln(Z)−
N∑
i=1

pi ln(ci)

= α

N∑
i=1

pi ln(i) + (1− α) lnN + E1,

(64)

where

ln(c/C)− ln(1− α) ≤ E1 ≤ ln(C/c)− ln(1− α) (65)

To compute the first term on the righthand side of (64), we introduce

Si =
c1
1α

+
c2
2α

+ · · ·+ ci
iα

, 1 ≤ i ≤ N, (66)

then SN = Z. Next we can do a summation by part

N∑
i=1

pi ln(i) =
1

Z

N∑
i=1

ci
iα

ln(i) =
1

Z

N∑
i=1

(Si − Si−1) ln(i)

=
1

Z

N−1∑
i=1

Si(ln(i)− ln(i+ 1)) +
SN lnN

Z

=
1

Z

N−1∑
i=1

Si(ln(i)− ln(i+ 1)) + lnN

(67)

The same as in (59), we have |Si| ≤ Ci1−α/(1 − α). Moreover ln(1 + 1/i) ≤ 1/i. Thus the first
term on the righthand side of (67) can be bounded as∣∣∣∣∣ 1Z

N−1∑
i=1

Si(ln(i)− ln(i+ 1))

∣∣∣∣∣ ≤ 1

Z

N∑
i=1

C

(
i1−α

1− α

)
1

i
≤ C

c(1− α)
(68)

By plugging (67) and (68) into (64), we conclude the following bound on the entropy

H(AS) = ln(N) + E2. (69)

where

ln(c/C)− ln(1− α)− C

c(1− α)
≤ E2 ≤ ln(C/c)− ln(1− α) +

C

c(1− α)
(70)

The two estimates (62) and (69) together imply that Cλ = E0 − λE2, and

|Cλ − (ln(1− (1− λ)α)− (1− 2λ) ln(1− α))| ≤ (2− λ) ln(C/c) +
C

c(1− α)
(71)

C EXPERIMENTAL DETAILS FOR SECTION 4.1

C.1 TRAINING

Data. The dataset was 5-way classification on 2D clustered inputs (fig. 3). Each dataset draw
contained 50 training points and 250 test points.
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Figure 3: Example draw for 2D classification dataset.

Training. 216 models were trained for all combinations of options: 4 ReLU-activated MLP ar-
chitectures (per-layer widths of [256, 256, 128, 128], [128, 128, 64, 64], [64, 64, 32, 32], [32, 32,
16, 16]), 3 weight decay rates (0, 0.01, 0.1), 3 dataset draws, 3 random seeds, and 2 sample set
sizes for evaluating I(X;Zs

l ) and I(X;Zs
l |Y ). Final features were sampled from deterministically

computed mean and standard deviation vectors and mapped to class probabilities with a softmax-
activated linear layer. The expectation in MI over P(Zs

l |x) depends on neural network parameters,
so the reparameterization trick was used to optimize the expectation with respect to neural network
parameters by rewriting the expectation over Zs

l as an expectation over random noise (Kingma et al.,
2015). Models were trained for 300 iterations with a learning rate of ηθ = 1e − 2. Out of all set-
tings, 36 models with training set accuracy < 85% were discarded. Statistics for accepted models
are given in table 4. Of 180 accepted models, 9 (5%) had a small negative generalization gap in loss
(−0.0258± 0.0161). These models were not screened out before evaluating the metrics because the
generalization gap is not estimatable without access to labelled test data.

Mean Standard deviation Max Min

Train loss 0.1265 0.1603 0.5757 0.0018
Train accuracy 0.9680 0.0479 1.0000 0.8600
Test loss 0.1984 0.1593 0.5487 0.0247
Test accuracy 0.9356 0.0568 0.9960 0.7880

Table 4: Performance statistics of 180 accepted models.

Constrained optimization. In each learning iteration, the gradient of the relaxed problem θ ←
θ− ηθ∇θ

[(
− 1

|s|
∑

(x,y)∈s

(
log 1

k

∑k
j=1 qθ(y|zj)

))
+ λ(ρ− Î(X;Zs

l ))
]

was applied to update the

model and λ ← λ + ηλ(ρ − Î(X;Zs
l )) was applied to update the multiplier λ, where ηθ and ηλ

are learning rates. For a similar use case for dual gradient descent, see Eysenbach et al. (2021).
Example plots showing the change in Î(X;Zs

l ) and λ during training are given in fig. 4. Note that
the gradient of λ is a term in the gradient of θ, thus updating λ incurs negligible additional cost.

C.2 METRICS

SWAG provides an estimate of the posterior as a multivariate Gaussian by averaging gra-
dient updates across training epochs. SWAG was used in the estimator Ĭ(S; θSl ) =

(1/|D|)
∑

s∈D(1/k)
∑k

j=1(log p(w
j |s)) − ((1/|D|)

∑
s′∈D log p(wj |s′)) ≥ (1/|D|)∑

s∈D(1/k)
∑k

j=1 log(p(w
j |s)/((1/|D|)

∑
s′∈D p(wj |s′))) where wj ∼ P(θSl |S = s) and

the upper bound is obtained via Jensen’s inequality. We found that averaging in the log domain
by using the upper bound improved numerical stability compared to averaging in the probability
domain due to large magnitudes of log p(wj |s′).
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Figure 4: Example plots of Î(X;Zs
l ) and λ during constrained optimized of a neural network model

with ρ = 1.5.

Mutual information between variables is a measure of their statistical dependence and is defined in
our setting as:

I(X;Zs
l ) = EX,Zs

l
log

qθ(Z
s
l |X)

EX′qθ(Zl|X ′)
, (72)

I(X;Zs
l |Y ) = EY EXY ,Zs

l
log

qθ(Z
s
l |XY )

EX′
Y
qθ(Zs

l |X ′
Y )

, (73)

I(S; θSl ) = ESEθS
l |S

log
P(Θ|S)

ES′P(Θ|S′)
, (74)

(75)

where X ′, X ′
Y , S′ are independent copies of variables X , XY , S respectively. Let C be the set of

classes and sc denote dataset samples for class c. We use Î to denote estimation by Monte-Carlo
sampling and Ĭ to denote upper bounding via the Jensen inequality:

Î(X;Zs
l ) =

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log
qθ(z

j |x)
1
|s|
∑

(x′,y′)∈s qθ(z
j |x′)

, (76)

Î(X;Zs
l |Y ) =

1

|s|
∑
c∈C

∑
(x,y)∈sc

1

k

k∑
j=1

log
qθ(z

j |x)
1

|sc|
∑

(x′,y′)∈sc
qθ(zj |x′)

, (77)

Ĭ(X;Zs
l ) =

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log qθ(z
j |x)−

(
1

|s|
∑

(x′,y′)∈s

log qθ(z
j |x′)

) , (78)

Ĭ(X;Zs
l |Y ) =

1

|s|
∑
c∈C

∑
(x,y)∈sc

1

k

k∑
j=1

log qθ(z
j |x)−

(
1

|sc|
∑

(x′,y′)∈sc

log qθ(z
j |x′)

) , (79)

where zj ∼ qθ(Z
s
l |x) for all j.

For mutual information between the model and training dataset, we compute:

Ĭ(S; θSl ) =
1

|D|
∑
s∈D

1

k

k∑
j=1

(
log p(wj |s)−

(
1

|D|
∑
s′∈D

log p(wj |s′)
))

, (80)

where wj ∼ P(θSl |S = s). The learning algorithm is defined by the variables excluding the training
dataset, i.e. architecture, weight decay, multiplier learning rate, seed. Denote the average values of
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Ĭ(S; θSl ) and Î(X;Zs
l |Y ) across learning algorithms by µ and µ′ respectively. The rescaled value

Ĩ(S; θSl ) is defined by:

Ĩ(S; θSl ) =
µ′

µ
Ĭ(S; θSl ). (81)

Note that MI is measured in universal units, but we test multiple estimation procedures for I(X;Zs
l )

and I(S; θSl ). Scaling was tested because of the difference of estimators, rather than of units of the
estimated quantity.

C.3 ADDITIONAL RESULTS

As the true data generator is available for the toy dataset, 2 sample set sizes were considered for
computing estimators of I(X;Zs

l ) and I(X;Zs
l |Y ) during evaluation of the metrics (appendix C.1):

using the training dataset (50 data points), and using a sample 10 times larger drawn from the
generator (500 data points). Using the larger sample size (tables 1 and 5) improved the predictive
ability of the baseline representation compression metrics compared to using the small sample size
(table 6).

Metric Spearman Pearson Kendall

Num. params. m -0.0576 -0.0294 -0.0402
m logm -0.0576 -0.0287 -0.0402∑

l θ
S
l -0.2550 -0.1366 -0.1567∏

l θ
S
l -0.2172 -0.0871 -0.1374

Î(X;Zs
l ) 0.1816 0.2878 0.1280

Î(X;Zs
l |Y ) 0.1749 0.3167 0.1129

Ĭ(X;Zs
l ) 0.1648 0.3712 0.1223

Ĭ(X;Zs
l |Y ) 0.2293 0.3842 0.1515

Ĭ(S; θSl ) 0.0020 0.0211 0.0074
Ĭ(S; θSD+1) -0.0221 0.0091 -0.0090
Ĭ(S; θSl ) + Î(X;Zs

l ) 0.0178 0.0211 0.0178
Ĭ(S; θSl ) + Î(X;Zs

l |Y ) 0.0163 0.0211 0.0167
Ĭ(S; θSl ) + Ĭ(X;Zs

l ) 0.0135 0.0212 0.0162
Ĭ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.0164 0.0211 0.0167
Ĩ(S; θSl ) + Î(X;Zs

l ) 0.1104 0.1401 0.0794
Ĩ(S; θSl ) + Î(X;Zs

l |Y ) 0.2253 0.3177 0.1567
Ĩ(S; θSl ) + Ĭ(X;Zs

l ) 0.2684 0.3928 0.1912
Ĩ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.3015 0.4130 0.2085

Table 5: Correlation coefficients for metrics and the generalization gap in loss, large sample setting
for estimation of I(X;Zs

l ) and I(X;Zs
l |Y ). θSl denotes parameters of layer l and θSl denotes

parameters up to layer l. Layer l is fixed to the penultimate layer. > 0 indicates positive correlation.

Metric Spearman Pearson Kendall

Î(X;Zs
l ) -0.1066 -0.0972 -0.0709

Î(X;Zs
l |Y ) 0.0868 0.0394 0.0698

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) 0.2360 0.2489 0.1611

Ĩ(S; θSl ) + Î(X;Zs
l |Y ) 0.3277 0.2888 0.2257

Table 6: Correlation coefficients for metrics and the generalization gap in loss, small sample setting
for estimation of I(X;Zs

l ) and I(X;Zs
l |Y ). Best metric and ablation shown. Layer l is fixed to the

penultimate layer. > 0 indicates positive correlation.
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Figure 5: Correlation of best 3 metrics with the generalization gap. Color denotes network width.
Dashed line denotes best polynomial fit with degree 2.

D MNIST AND FASHION MNIST

We conducted experiments on the MNIST and Fashion MNIST datasets. These experiments follow
the same protocol described in section 4.1 and appendix C except that MI was not constrained, in
order to investigate predictive ability of the metrics in the setting of unconstrained stochastic feature
models. 144 models were trained over all combinations of options: 2 datasets, 3 ReLU-activated
architectures (1 convolutional layer and 3 linear layers, with per hidden layer channel sizes of [64,
512, 512], [32, 256, 256], [16, 128, 128]), 2 weight decay rates (0, 1e-3), 2 batch sizes (128, 32),
3 dataset draws, 2 random seeds. As in section 4.1 and appendix C, the penultimate layer of the
network infers mean and standard deviation vectors that define a distribution over latent features. To
construct multiple instances of the training dataset, we sampled training datasets of size 8K from the
training set, and each test set was the original 10K test set. Performance of trained models are given
in tables 9 and 10. In line with sections 4.1 and 4.2 and appendices C and E, results on MNIST
and Fashion MNIST indicate that metrics which combine model compression with representation
compression outperform metrics for representation compression alone (tables 7 and 8).

Metric Spearman Pearson Kendall

Î(X;Zs
l ) 0.2738 -0.1268 0.2178

Î(X;Zs
l |Y ) 0.4399 0.2059 0.3243

Ĭ(X;Zs
l ) 0.7895 0.5467 0.6346

Ĭ(X;Zs
l |Y ) 0.7931 0.5348 0.6416

Ĭ(S; θSl ) 0.6004 0.7044 0.4193
Ī(S; θSl ) 0.5328 0.6906 0.3771
Ĭ(S; θSD+1) 0.5384 0.6619 0.3768
Ī(S; θSD+1) 0.5328 0.6507 0.3771
Ĩ(S; θSl ) + Î(X;Zs

l ) 0.6021 0.7043 0.4130
Ĩ(S; θSl ) + Î(X;Zs

l |Y ) 0.5958 0.7044 0.3955
Ĩ(S; θSl ) + Ĭ(X;Zs

l ) 0.8352 0.6367 0.6452
Ĩ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.8303 0.6242 0.6384
Ĭ(S; θSl ) + Î(X;Zs

l ) 0.6021 0.7044 0.4130
Ĭ(S; θSl ) + Î(X;Zs

l |Y ) 0.5958 0.7044 0.3955
Ĭ(S; θSl ) + Ĭ(X;Zs

l ) 0.7128 0.7626 0.5119
Ĭ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.6566 0.7329 0.4610

Table 7: MNIST. Correlation coefficients for metrics and the generalization gap in loss. Layer l is
fixed to the penultimate layer. > 0 indicates positive correlation.

41



Under review as a conference paper at ICLR 2023

Metric Spearman Pearson Kendall

Î(X;Zs
l ) -0.0299 -0.2056 -0.0261

Î(X;Zs
l |Y ) 0.2318 0.1185 0.1458

Ĭ(X;Zs
l ) 0.3861 0.5146 0.2293

Ĭ(X;Zs
l |Y ) 0.3848 0.5115 0.2308

Ĭ(S; θSl ) 0.3479 0.3191 0.2682
Ī(S; θSl ) 0.3471 0.2804 0.2684
Ĭ(S; θSD+1) 0.3479 0.3187 0.2682
Ī(S; θSD+1) 0.3928 0.3121 0.2998
Ĩ(S; θSl ) + Î(X;Zs

l ) 0.3377 0.3188 0.2469
Ĩ(S; θSl ) + Î(X;Zs

l |Y ) 0.3446 0.3191 0.2660
Ĩ(S; θSl ) + Ĭ(X;Zs

l ) 0.5623 0.6488 0.4238
Ĩ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.5637 0.6441 0.4344
Ĭ(S; θSl ) + Î(X;Zs

l ) 0.3377 0.3191 0.2469
Ĭ(S; θSl ) + Î(X;Zs

l |Y ) 0.3446 0.3191 0.2660
Ĭ(S; θSl ) + Ĭ(X;Zs

l ) 0.3734 0.3280 0.2677
Ĭ(S; θSl ) + Ĭ(X;Zs

l |Y ) 0.3679 0.3217 0.2766

Table 8: Fashion MNIST. Correlation coefficients for metrics and the generalization gap in loss.
Layer l is fixed to the penultimate layer. > 0 indicates positive correlation.

Mean Standard deviation Max Min

Train loss 0.0071 0.0165 0.1053 0.0001
Train accuracy 0.9986 0.0060 1.0000 0.9628
Test loss 0.1355 0.0285 0.2564 0.0915
Test accuracy 0.9673 0.0065 0.9737 0.9358

Table 9: Performance statistics for MNIST models.

Mean Standard deviation Max Min

Train loss 0.0692 0.0640 0.1908 0.0003
Train accuracy 0.9765 0.0234 1.0000 0.9329
Test loss 0.5609 0.1682 0.8819 0.3791
Test accuracy 0.8721 0.0090 0.8864 0.8262

Table 10: Performance statistics for Fashion MNIST models.
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E EXPERIMENTAL DETAILS FOR SECTION 4.2

E.1 TRAINING

540 models were trained for all combinations of the options: 3 architecutres (PreResNet56, Pre-
ResNet83, PreResNet110), 3 weight decay rates (1e-3, 1e-4, 1e-5), 3 batch sizes (64, 128, 1024), 5
dataset draws and 4 random seeds. The PreResNet architecture (He et al., 2016) consists of a convo-
lutional layer, 3 residual blocks and a final linear prediction layer. We consider representations from
D = 5 layers: input layer, after convolutional layer, and after each residual block. Models were
trained for 200 epochs with SGD and a learning rate of 1e− 2. Statistics are given in table 11.

Mean Standard deviation Max Min

Train loss 0.2157 0.2815 1.4174 0.0005
Train accuracy 0.9282 0.0937 1.0000 0.5433
Test loss 0.9704 0.2023 1.6269 0.5989
Test accuracy 0.8043 0.0554 0.8770 0.5192

Table 11: Performance statistics of 540 models.

E.2 METRICS

We used the same metrics as defined in appendix C.2 and additionally test excluding the seed from
the definition of the learning algorithm by averaging across seeds. Let G denote the set of seeds and
let Γ denote the seed variable:

Ī(S; θSl ) =
1

|D||G|
∑
s∈D

∑
γ∈G

1

k

k∑
j=1

((
1

|G|
∑
γ′∈G

log p(wj |s, γ′)

)
(82)

−
(

1

|D||G|
∑
s′∈D

∑
γ′∈G

log p(wj |s′, γ′)

))
where wj ∼ P(θSl |S = s,Γ = γ) is sampled from the estimated posterior produced by SWAG.

E.3 KERNEL DENSITY ESTIMATION

Without the addition of noise in the hidden representation, mutual information between inputs and
deterministic continuous features is ill-defined (Saxe et al., 2019). One way to add noise is to dis-
cretize hidden activity into bins (Shwartz-Ziv & Tishby, 2017). Another approach is kernal density
estimation (Kolchinsky & Tracey, 2017), which assumes for the purpose of analysis that Gaussian
noise with variance σ2

l is added to the representation produced by layer l. In adaptive KDE (Ch-
elombiev et al., 2019) σ2

l is scaled from a base by the maximum observed activation level in the
layer, improving on constant σ2

l (Saxe et al., 2019) by allowing the level of noise to vary with layers.
Following the previous work, we found 1e− 3 to work well as the base value.

As an alternative method for specifying σ2
l , we selected σ2

l from a discrete set by maximum log
likelihood of observed features,

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log
1

|s|
∑

(x′,y′)∈s

qθ(z
j |x′) where zj ∼ qθ(Z

s
l |x), (83)

under the constraint that estimated MI decreased with layer, which follows from the information
processing inequality. This was performed by iterating from layer D to layer 1 and choosing σ2

l with
maximum likelihood such that the estimator of MI was non-decreasing, i.e. Î(X;Zs

l ) ≥ Î(X;Zs
l+1)

for l < D. As with estimators in appendix C.2, averaging can be done in the log domain to yield the
lower bound:

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

1

|s|
∑

(x′,y′)∈s

log qθ(z
j |x′) where zj ∼ qθ(Z

s
l |x). (84)
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For consistency, eq. (83) was used with Î(X;Zs
l ) (eq. (76)) and eq. (84) with Ĭ(X;Zs

l ) (eq. (78)).

E.4 FURTHER RESULTS
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Figure 6: Illustration of performance-based clustering behaviour that emerged from training, at-
tributed mostly to batch size and weight decay.

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Train loss -0.8075 -0.7229 -0.8376 -0.8730 -0.5632 -0.5307
Test loss 0.6970 0.6095 0.6497 0.5210 0.5938 0.4777
Train error -0.8114 -0.7269 -0.8489 -0.8831 -0.5707 -0.5381
Test error -0.4609 -0.3834 -0.5896 -0.6087 -0.2652 -0.2020
Gen. gap error 0.9443 1.0000 0.9562 1.0000 0.8149 1.0000
Gen. gap loss 1.0000 0.9443 1.0000 0.9562 1.0000 0.8149

Table 12: Results for prediction with performance metrics.
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Layer index l: 1 2 3 4 5

Ĭ(X;Zs
l ) 5.9422E+04 1.8236E+04 1.5514E+04 7.7865E+03 5.7027E+03

Ĭ(X;Zs
l |Y ) 5.7783E+04 1.7790E+04 1.5429E+04 7.6948E+03 5.3298E+03

Ī(S; θSl ) 0.0000E+00 3.7136E+03 9.4890E+05 2.1247E+06 5.8244E+06
Ī(S; θSl ) + Ĭ(X;Zs

l |Y ) 5.7783E+04 2.1504E+04 9.6433E+05 2.1324E+06 5.8297E+06

Table 13: Example values of metrics, for best performing model by test loss (PreResNet56, batch
size 128, weight decay 0.001). l = 1 is the input layer.

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Ĭ(S; θSD+1) 0.4688 0.3112 0.2512 0.0775 0.2121 0.1208
Ī(S; θSD+1) 0.5370 0.3800 0.2924 0.1218 0.2442 0.1526

Table 14: Results for model compression metrics.

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l ) l = 1 0.7345 0.6156 0.5722 0.3853 0.5174 0.4215

Î(X;Zs
l ) l = D 0.7170 0.5740 0.7063 0.5602 0.4784 0.3721

Î(X;Zs
l |Y ) l = 1 0.7199 0.6073 0.5724 0.3854 0.5005 0.4111

Î(X;Zs
l |Y ) l = D 0.7126 0.5691 0.7071 0.5616 0.4768 0.3700

Ĭ(X;Zs
l ) l = 1 0.6765 0.5655 0.1554 0.1328 0.4553 0.3781

Ĭ(X;Zs
l ) l = D 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404

Ĭ(X;Zs
l |Y ) l = 1 0.6476 0.5292 0.1557 0.1331 0.4307 0.3504

Ĭ(X;Zs
l |Y ) l = D 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Table 15: Results for representation compression metrics for l ∈ {1, D} summarization over layers
(MLE selection of σ2

l ).

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l ) l = 1 -0.0681 -0.0659 -0.0645 -0.0617 -0.0464 -0.0447

Î(X;Zs
l ) l = D 0.7019 0.5452 0.4596 0.2845 0.4329 0.3293

Î(X;Zs
l |Y ) l = 1 0.0050 0.0032 0.0146 0.0191 0.0035 0.0022

Î(X;Zs
l |Y ) l = D 0.6977 0.5403 0.4544 0.2798 0.4302 0.3268

Ĭ(X;Zs
l ) l = 1 -0.0196 -0.0080 -0.0070 -0.0029 -0.0139 -0.0051

Ĭ(X;Zs
l ) l = D 0.7314 0.5848 0.5109 0.3350 0.4645 0.3624

Ĭ(X;Zs
l |Y ) l = 1 0.0005 -0.0060 0.0036 -0.0001 0.0005 -0.0038

Ĭ(X;Zs
l |Y ) l = D 0.7033 0.5465 0.4587 0.2846 0.4342 0.3304

Table 16: Results for metrics for l ∈ {1, D} summarization over layers (adaptive KDE selection of
σ2
l ).
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Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l ) Mean 0.7598 0.6184 0.5781 0.3911 0.4970 0.3936

Î(X;Zs
l ) Max 0.7345 0.6156 0.5722 0.3853 0.5174 0.4215

Î(X;Zs
l ) Min 0.7170 0.5740 0.7063 0.5602 0.4784 0.3721

Î(X;Zs
l |Y ) Mean 0.7720 0.6378 0.5790 0.3920 0.5186 0.4145

Î(X;Zs
l |Y ) Max 0.7049 0.5814 0.5723 0.3853 0.4712 0.3785

Î(X;Zs
l |Y ) Min 0.7137 0.5701 0.7112 0.5679 0.4775 0.3697

Ĭ(X;Zs
l ) Mean 0.8481 0.7410 0.2116 0.1831 0.6425 0.5436

Ĭ(X;Zs
l ) Max 0.6765 0.5655 0.1554 0.1328 0.4553 0.3781

Ĭ(X;Zs
l ) Min 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404

Ĭ(X;Zs
l |Y ) Mean 0.8481 0.7406 0.2140 0.1853 0.6427 0.5435

Ĭ(X;Zs
l |Y ) Max 0.6486 0.5297 0.1557 0.1331 0.4316 0.3511

Ĭ(X;Zs
l |Y ) Min 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Ĭ(S; θSl ) + Î(X;Zs
l ) Mean 0.4546 0.3055 0.1867 0.0160 0.2304 0.1398

Ĭ(S; θSl ) + Î(X;Zs
l ) Max 0.5111 0.3609 0.2572 0.0858 0.2634 0.1715

Ĭ(S; θSl ) + Î(X;Zs
l ) Min 0.8134 0.6906 0.5363 0.3729 0.5840 0.4870

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Mean 0.4543 0.3052 0.1858 0.0152 0.2305 0.1397

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Max 0.5112 0.3609 0.2572 0.0858 0.2637 0.1718

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Min 0.8136 0.6949 0.5193 0.3591 0.5817 0.4871

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Mean 0.4513 0.3026 0.1832 0.0132 0.2305 0.1398

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Max 0.5112 0.3609 0.2572 0.0858 0.2636 0.1715

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Min 0.8489 0.7353 0.8459 0.7216 0.6354 0.5386

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Mean 0.4513 0.3026 0.1832 0.0132 0.2301 0.1397

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Max 0.5113 0.3609 0.2572 0.0858 0.2638 0.1716

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Min 0.8434 0.7313 0.8437 0.7195 0.6270 0.5332

Ī(S; θSl ) + Î(X;Zs
l ) Mean 0.4770 0.3244 0.2901 0.1155 0.2510 0.1568

Ī(S; θSl ) + Î(X;Zs
l ) Max 0.5709 0.4205 0.2993 0.1311 0.2878 0.1946

Ī(S; θSl ) + Î(X;Zs
l ) Min 0.7898 0.6548 0.6706 0.4929 0.5432 0.4412

Ī(S; θSl ) + Î(X;Zs
l |Y ) Mean 0.4764 0.3241 0.2869 0.1128 0.2489 0.1558

Ī(S; θSl ) + Î(X;Zs
l |Y ) Max 0.5709 0.4205 0.2993 0.1311 0.2882 0.1952

Ī(S; θSl ) + Î(X;Zs
l |Y ) Min 0.7917 0.6595 0.6490 0.4753 0.5447 0.4450

Ī(S; θSl ) + Ĭ(X;Zs
l ) Mean 0.4429 0.2910 0.2785 0.1060 0.2353 0.1432

Ī(S; θSl ) + Ĭ(X;Zs
l ) Max 0.5707 0.4205 0.2993 0.1311 0.2880 0.1946

Ī(S; θSl ) + Ĭ(X;Zs
l ) Min 0.8635 0.7576 0.8493 0.7544 0.6660 0.5684

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Mean 0.4429 0.2908 0.2783 0.1059 0.2349 0.1426

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Max 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Min 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664

Table 17: Results for metrics for mean, min, max summarization over layers (MLE selection of σ2
l ).

Best metrics highlighted.
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Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l ) Mean 0.7322 0.5837 0.6823 0.5067 0.4606 0.3605

Î(X;Zs
l ) Max 0.7805 0.6521 0.6848 0.5088 0.5299 0.4360

Î(X;Zs
l ) Min 0.7726 0.6450 0.8131 0.7004 0.5126 0.4205

Î(X;Zs
l |Y ) Mean 0.7323 0.5833 0.6863 0.5110 0.4604 0.3598

Î(X;Zs
l |Y ) Max 0.7865 0.6548 0.6920 0.5160 0.5378 0.4380

Î(X;Zs
l |Y ) Min 0.7731 0.6451 0.8175 0.7041 0.5131 0.4221

Ĭ(X;Zs
l ) Mean 0.7401 0.5933 0.7078 0.5334 0.4739 0.3727

Ĭ(X;Zs
l ) Max 0.7452 0.6264 0.6891 0.5116 0.4927 0.4109

Ĭ(X;Zs
l ) Min 0.7981 0.6720 0.8515 0.7262 0.5490 0.4500

Ĭ(X;Zs
l |Y ) Mean 0.7375 0.5894 0.7010 0.5263 0.4701 0.3685

Ĭ(X;Zs
l |Y ) Max 0.7449 0.6177 0.7056 0.5289 0.4924 0.4053

Ĭ(X;Zs
l |Y ) Min 0.7686 0.6270 0.8130 0.6699 0.5093 0.4055

Ĭ(S; θSl ) + Î(X;Zs
l ) Mean 0.4555 0.3070 0.1856 0.0153 0.2334 0.1425

Ĭ(S; θSl ) + Î(X;Zs
l ) Max 0.5133 0.3633 0.2580 0.0865 0.2650 0.1735

Ĭ(S; θSl ) + Î(X;Zs
l ) Min 0.8112 0.7033 0.8272 0.7243 0.5775 0.4914

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Mean 0.4542 0.3058 0.1849 0.0146 0.2322 0.1414

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Max 0.5126 0.3625 0.2578 0.0863 0.2643 0.1730

Ĭ(S; θSl ) + Î(X;Zs
l |Y ) Min 0.8205 0.7203 0.8281 0.7313 0.5913 0.5108

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Mean 0.4602 0.3115 0.1878 0.0172 0.2378 0.1468

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Max 0.5146 0.3647 0.2588 0.0871 0.2666 0.1748

Ĭ(S; θSl ) + Ĭ(X;Zs
l ) Min 0.8014 0.6854 0.8423 0.7107 0.5658 0.4760

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Mean 0.4598 0.3111 0.1874 0.0168 0.2374 0.1464

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Max 0.5143 0.3643 0.2584 0.0868 0.2661 0.1743

Ĭ(S; θSl ) + Ĭ(X;Zs
l |Y ) Min 0.8069 0.6913 0.8440 0.7135 0.5732 0.4849

Ī(S; θSl ) + Î(X;Zs
l ) Mean 0.4783 0.3249 0.2868 0.1134 0.2495 0.1577

Ī(S; θSl ) + Î(X;Zs
l ) Max 0.5765 0.4250 0.3021 0.1333 0.2971 0.2057

Ī(S; θSl ) + Î(X;Zs
l ) Min 0.8031 0.6920 0.8270 0.7149 0.5664 0.4793

Ī(S; θSl ) + Î(X;Zs
l |Y ) Mean 0.4766 0.3242 0.2842 0.1110 0.2468 0.1551

Ī(S; θSl ) + Î(X;Zs
l |Y ) Max 0.5759 0.4247 0.3013 0.1326 0.2958 0.2049

Ī(S; θSl ) + Î(X;Zs
l |Y ) Min 0.8130 0.7070 0.8295 0.7203 0.5799 0.4963

Ī(S; θSl ) + Ĭ(X;Zs
l ) Mean 0.4864 0.3335 0.2946 0.1205 0.2613 0.1689

Ī(S; θSl ) + Ĭ(X;Zs
l ) Max 0.5769 0.4253 0.3048 0.1356 0.2978 0.2067

Ī(S; θSl ) + Ĭ(X;Zs
l ) Min 0.7974 0.6749 0.8206 0.6842 0.5608 0.4684

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Mean 0.4851 0.3317 0.2933 0.1192 0.2596 0.1674

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Max 0.5770 0.4253 0.3034 0.1343 0.2981 0.2068

Ī(S; θSl ) + Ĭ(X;Zs
l |Y ) Min 0.7989 0.6763 0.8242 0.6891 0.5628 0.4703

Table 18: Results for metrics for mean, min, max summarization over layers (adaptive KDE selec-
tion of σ2

l ). Best metrics highlighted.
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