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ABSTRACT

Lighter and faster image restoration (IR) models are crucial for the deployment
on resource-limited devices. Binary neural network (BNN), one of the most
promising model compression methods, can dramatically reduce the computations
and parameters of full-precision convolutional neural networks (CNN). However,
there are different properties between BNN and full-precision CNN, and we can
hardly use the experience of designing CNN to develop BNN. In this study, we
reconsider components in binary convolution, such as residual connection, Batch-
Norm, activation function, and structure, for IR tasks. We conduct systematic
analyses to explain each component’s role in binary convolution and discuss the
pitfalls. Specifically, we find that residual connection can reduce the informa-
tion loss caused by binarization; BatchNorm can solve the value range gap be-
tween residual connection and binary convolution; The position of the activa-
tion function dramatically affects the performance of BNN. Based on our find-
ings and analyses, we design a simple yet efficient basic binary convolution unit
(BBCU). Furthermore, we divide IR networks into four parts and specially de-
sign variants of BBCU for each part to explore the benefit of binarizing these
parts. We conduct experiments on different IR tasks, and our BBCU signifi-
cantly outperforms other BNNs and lightweight models, which shows that BBCU
can serve as a basic unit for binarized IR networks. The code is available at
https://github.com/Zj-BinXia/BBCU

1 INTRODUCTION

Image restoration (IR) aims to restore a high-quality (HQ) image from its low-quality (LQ) coun-
terpart corrupted by various degradation factors. Typical IR tasks include image denoising, super-
resolution (SR), and compression artifacts reduction. Due to its ill-posed nature and high practical
values, image restoration is an active yet challenging research topic in computer vision. Recently,
the deep convolutional neural network (CNN) has achieved excellent performance by learning a
mapping from LQ to HQ image patches for image restoration (Chen & Pock, 2016; Zhang et al.,
2018a; Tai et al., 2017; Xia et al., 2023). However, most IR tasks require dense pixel prediction
and the powerful performance of CNN-based models usually relies on increasing model size and
computational complexity. That requires extensive computing and memory resources. While, most
hand-held devices and small drones are not equipped with GPUs and enough memory to store and
run the computationally expensive CNN models. Thus, it is quite essential to largely reduce its
computation and memory cost while preserving model performance to promote IR models.

Binary neural network (Courbariaux et al., 2016) (BNN, also known as 1-bit CNN) has been rec-
ognized as one of the most promising neural network compression methods (He et al., 2017; Jacob
et al., 2018; Zoph & Le, 2016) for deploying models onto resource-limited devices. BNN could
achieve 32× memory compression ratio and up to 64× computational reductions on specially de-
signed processors (Rastegari et al., 2016). Nowadays, the researches of BNN mainly concentrate on
high-level tasks, especially classification (Liu et al., 2018; 2020), but do not fully explored in low-
level vision, like image denoising. Considering the great significance of BNN for the deployment
of IR deep networks and the difference between high-level and low-level vision tasks, there is an
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Figure 1: Our BBCU achieves the SOTA performance on IR tasks with efficient computation.

urgent need to explore the property of BNN on low-level vision tasks and provide a simple, strong,
universal, and extensible baseline for latter researches and deployment.

Recently, there have been several works exploring the application of BNN on image SR networks.
Specifically, Ma et al. (Ma et al., 2019) tried to binarize the convolution kernel weight to decrease
the SR network model size. But, the computational complexity is still high due to the preservation
of full-precision activations. Then BAM (Xin et al., 2020) adopted the bit accumulation mechanism
to approximate the full-precision convolution for the SR network. Zhang et al. (Zhang et al., 2021b)
designed a compact uniform prior to constrain the convolution weight into a highly narrow range
centered at zero for better optimization. BTM (Jiang et al., 2021) further introduced knowledge
distillation (Hinton et al., 2015) to boost the performance of binarized SR networks.

However, the above-mentioned binarized SR networks can hardly achieve the potential of BNN. In
this work, we explore the properties of three key components of BNN, including residual connec-
tion (He et al., 2016), BatchNorm (BN) (Ioffe & Szegedy, 2015), and activation function (Glorot
et al., 2011) and design a strong basic binary Conv unit (BBCU) based on our analyses.

(1) For the IR tasks, we observe that residual connection is quite important for binarized IR networks.
That is because that BNN will binarize the input full-precision activations to 1 or -1 before binary
convolution (BC). It means that BNN would lose a large amount of information about the value
range of activations. By adding the full-precision residual connection for each binary convolution
(BC), BNN can reduce the effect of value range information loss.

(2) Then, we explore the BN for BBCU. BNN methods (Liu et al., 2020) for classification always
adopt a BN in BC. However, in IR tasks, EDSR (Lim et al., 2017) has demonstrated that BN is
harmful to SR performance. We find that BN in BNN for IR tasks is useful and can be used to
balance the value range of residual connection and BC. Specifically, as shown in Fig. 2 (b), the
values of the full-precision residual connection are mostly in the range of - 1 to 1 because the value
range of input images is around 0 to 1 or -1 to 1, while the values of the BC without BN are large
and ranges from -15 to 15 for the bit counting operation (Fig. ??). The value range of BC is larger
than that of the residual connection, which covers the preserved full-precision image information in
the residual connection and limits the performance of BNN. In Fig. 2 (a), the BN in BNN for image
restoration can realize the value range alignment of the residual connection and BC.

(3) Based on these findings, to remove BN, we propose a residual alignment (RA) scheme by mul-
tiplying the input image by an amplification factor k to increase the value range of the residual
connection rather than using BN to narrow the value range of the BC (Fig. 2 (c)). Using this scheme
can improve the performance of binarized IR networks and simplify the BNN structure (Sec. 4.5).

(4) In Fig. 2 (d), different from BNNs (Liu et al., 2020; 2018) for classification, we further move
the activation function into the residual connection and can improve performance (Sec. 4.5). That
is because activation function would narrow the negative value ranges of residual connection. Its
information would be covered by the next BC with large negative value ranges (Fig. 2 (c)).

(5) Furthermore, we divide IR networks into four parts: head, body, upsampling, and tail (Fig. 3
(a)). These four parts have different input and output channel numbers. Previous binarized SR
networks (Xin et al., 2020; Jiang et al., 2021) merely binarize the body part. However, upsampling
part accounts for 52.3% total calculations and needs to be binarized. Besides, the binarized head
and tail parts are also worth exploring. Thus, we design different variants of the BBCU to binarize
these four parts (Fig. 3 (b)). Overall, our contributions can be mainly summarized in threefold:
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• We believe our work is timely. The high computational and memory cost of IR networks
hinder their application on resource-limited devices. BNN, as one of the most promising
compression methods, can help IR networks to solve this dilemma. Since the BNN-based
networks have different properties from full-precision CNN networks, we reconsider, ana-
lyze, and visualize some essential components of BNN to explore their functions.

• According to our findings and analyses on BNN, we specially develop a simple, strong,
universal, and extensible basic binary Conv unit (BBCU) for IR networks. Furthermore,
we develop variants of BBCU and adapt it to different parts of IR networks.

• Extensive experiments on different IR tasks show that BBCU can outperform the SOTA
BNN methods (Fig. 1). BBCU can serve as a strong basic binary convolution unit for
future binarized IR networks, which is meaningful to academic research and industry.

2 RELATED WORK

2.1 IMAGE RESTORATION

As pioneer works, SRCNN (Dong et al., 2015b), DnCNN (Zhang et al., 2017), and ARCNN (Dong
et al., 2015a) use the compact networks for image super-resolution, image denoising, and compres-
sion artifacts reduction, respectively. Since then, researchers had carried out its study with different
perspectives and obtained more elaborate neural network architecture designs and learning strate-
gies, such as residual block (Kim et al., 2016; Zhang et al., 2021a; Cavigelli et al., 2017), dense
block (Zhang et al., 2018c; 2020; Wang et al., 2018), attention mechanism (Zhang et al., 2018b; Xia
et al., 2022a; Dai et al., 2019), GAN (Gulrajani et al., 2017; Wang et al., 2018), and others (Wei
et al., 2021; Peng et al., 2019; Jia et al., 2019; Fu et al., 2019; Kim et al., 2019; Fu et al., 2021;
Soh et al., 2020; Xia et al., 2022d;c;b), to improve model representation ability. However, these IR
networks require high computational and memory costs, which hinders practical application on edge
devices. To address this issue, we explore and design a BBCU for binarized IR networks.

2.2 BINARY NEURAL NETWORKS

Binary neural network (BNN) is the most extreme form of model quantization as it quantizes convo-
lution weights and activations to only 1 bit, achieving great speed-up compared with its full-precision
counterpart. As a pioneer work, BNN (Courbariaux et al., 2016) directly applied binarization to a
full-precision model with a pre-defined binarization function. Afterward, XNOR-Net (Rastegari
et al., 2016) adopted a gain term to compensate for lost information to improve the performance of
BNN (Courbariaux et al., 2016). After that, Bi-Real (Liu et al., 2018) introduced residual connection
to preserve full-precision information in forward propagation. IRNet (Qin et al., 2020) developed a
scheme to retain the information in forward and backward propagations. Recently, ReActNet (Liu
et al., 2020) proposed generalized activation functions to learn more representative features. For
super-resolution task, Ma et al. (2019) binarized convolution weights to save model size. However,
it can hardly speed up inference enough for retaining full-precision activations. Then, Xin et al.
(2020) further binarized activations and used the bit accumulation mechanism to approximate the
full-precision convolution for SR networks. Besides, Zhang et al. (2021b) introduced a compact
uniform prior for better optimization. Subsequently, Jiang et al. (2021) designed a binary training
mechanism by adjusting the feature distribution. In this paper, we reconsider the function of each
basic component in BC and develop a strong, simple, and efficient BBCU.

3 PROPOSED METHOD

3.1 BASIC BINARY CONV UNIT DESIGN

As shown in Fig. 2(a), we first construct the BBCU-V1. Specifically, the full-precision convolu-
tion X f

j ⊗ Wf
j (X f

j , Wf
j , and ⊗ are full-precision activations, weights, and Conv respectively) is

approximated by the binary convolution Xb
j ⊗Wb

j . For binary convolution, both weights and acti-
vations are binarized to -1 and +1. Efficient bitwise XNOR and bit counting operations can replace
computationally heavy floating-point matrix multiplication, which can be defined as:

Xb
j ⊗Wb

j = bitcount
(
XNOR

(
Xb

j ,Wb
j

))
, (1)

xb
i,j = Sign

(
xf
i,j

)
=

{
+1, if xf

i,j > αi,j

−1, if xf
i,j ≤ αi,j

, xf
i,j ∈ X

f
j , x

b
i,j ∈ X b

j , i ∈ [0, C), (2)

3



Published as a conference paper at ICLR 2023

Sign RPReLUBatchNormBinary 
Conv

×𝑘

RA RA

÷ 𝑘…

(a) Basic Binary Conv Unit V1 (BBCU-V1) (b) Basic Binary Conv Unit V2 (BBCU-V2)

(c) Basic Binary Conv Unit V3 (BBCU-V3)

Sign RPReLU

Sign RPReLU

Binary 
Conv

Binary 
Conv

… ×𝑘

RA RA

÷ 𝑘…

(d) Basic Binary Conv Unit V4 (BBCU-V4, Adopted)

Sign RPReLUBinary 
Conv

…

Figure 2: The illustration of the improvement process of our BBCU. (a) The initial BBCU design.
(b) We remove BatchNorm to explore its actual function in IR tasks. We find that BatchNorm
is essential because it can balance the value range gap between residual connection and binary
convolution. (c) We further propose the residual alignment (RA) by multiplying an amplification
factor k on the input image to address the value range gap. (d) Based on BBCU-V3, we move the
activation function into the residual connection to reduce the negative value information loss.

wb
i,j =

∥∥∥Wf
j

∥∥∥
1

n
Sign

(
wf

i,j

)
=

 +
∥Wf

j ∥1
n , if wf

i,j > 0

−∥
Wf

j ∥1
n , if wf

i,j ≤ 0
, wf

i,j ∈ W
f
j , w

b
i,j ∈ Wb

j , i ∈ [0, C),

(3)
where X f

j ∈ RC×H×W andWf
j ∈ RCout×Cin×Kh×Kw are full-precision activations and convolu-

tion weights in j-th layer, respectively. Similarly, Xb
j ∈ RC×H×W andWb

j ∈ RCout×Cin×Kh×Kw

are binarized activations and convolution weights in j-th layer separately. xf
i,j , wf

i,j , xb
i,j , and wb

i,j

are the elements of i-th channel of X f
j ,Wf

j , Xb
j , andWb

j respectively. αi,j is the learnable coeffi-
cient controlling the threshold of sign function for i-th channel of X f

j . It is notable that the weight

binarization method is inherited from XONR-Net (Rastegari et al., 2016), of which
∥Wf

j ∥1
n is the

average of absolute weight values and acts as a scaling factor to minimize the difference between
binary and full-precision convolution weights.

Then, we use the RPReLU (Liu et al., 2020) as our activation function, which is defined as follows:

f (yi,j) =

{
yi,j − γi,j + ζi,j , if yi,j > γi,j
βi,j (yi,j − γi,j) + ζi,j , if yi,j ≤ γi,j

, yi,j ∈ Yj , i ∈ [0, C), (4)

where Yj ∈ RC×H×W is the input feature maps of RPReLU function f(.) in j-th layer. yi,j is the
element of i-th channel of Yj. γi,j and ζi,j are learnable shifts for moving the distribution. βi,j is a
learnable coefficient controlling the slope of the negative part, which acts on i-th channel of Yj.
Different from the common residual block, which consists of two convolutions used in full-precision
IR network (Lim et al., 2017), we find that residual connection is essential for binary convolution to
supplement the information loss caused by binarization. Thus, we set a residual connection for each
binary convolution. Therefore, the BBCU-V1 can be expressed mathematically as:

X f
j+1 = f

(
BatchNorm

(
Xb

j ⊗Wb
j

)
+ X f

j

)
= f

(
κj

(
Xb

j ⊗Wb
j

)
+ τj + X f

j

)
, (5)

where κj, τj ∈ RC are learnable parameters of BatchNorm in j-th layer.
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In BNNs, the derivative of the sign function in Eq. 2 is an impulse function that cannot be utilized in
training. Thus, we adopt the approximated derivative function as the derivative of the sign function.
It can be expressed mathematically as:

Approx

∂ Sign
(
xf
i

)
∂xf

i

 =


2 + 2

(
xf
i − αi

)
if αi − 1 ⩽ xf

i < αi

2− 2
(
xf
i − αi

)
if αi ⩽ xf

i < αi + 1

0 otherwise

. (6)

However, EDSR (Lim et al., 2017) demonstrated that BN changes the distribution of images, which
is harmful to accurate pixel prediction in SR. So, can we also directly remove the BN in BBCU-
V1 to obtain BBCU-V2 (Fig. 2 (b))? In BBCU-V1 (Fig. 2 (a)), we can see that the bit counting
operation of binary convolution tends to output large value ranges (from -15 to 15). In contrast,
residual connection preserves the full-precision information, which flows from the front end of IR
network with a small value range from around -1 to 1. By adding a BN, its learnable parameters
can narrow the value range of binary convolution and make it close to the value range of residual
connection to avoid full-precision information being covered. The process can be expressed as:

Mean
(∣∣κj

(
Xb

j ⊗Wb
j

)
+ τj

∣∣)→ Mean
(∣∣X f

j

∣∣) , (7)

where κj, τj ∈ RC are learnable parameters of BN in j-th layer. Thus, compared with BBCU-V1,
BBCU-V2 simply removes BN and suffers a huge performance drop.

After the above exploration, we know that BN is essential for BBCU, because it can balance the
value range of binary convolution and residual connection. However, BN changes image distribu-
tions limiting restoration. In BBCU-V3, we propose residual alignment (RA) scheme by multiplying
the value range of input image by an amplification factor k (k > 1) to remove BN Figs. 2(c) and 3(b):

Mean
(∣∣Xb

j

∣∣)← Mean
(∣∣kX f

j

∣∣) . (8)
We can see from the Eq. 8, since the residual connection flows from the amplified input image, the
value range of X f

j also is amplified, which we define as kX f
j . Meanwhile, the values of binary con-

volution are almost not affected by RA, because Xb
j filters amplitude information of kX f

j . Different
from BatchNorm, RA makes the value range of residual connection close to binary convolution (-60
to 60). Besides, we find that using RA to remove the BatchNorm has two main benefits: (1) Similar
to full-precision IR networks, the binarized IR networks would have better performance without
BatchNorm. (2) The structure of BBCU becomes more simple, efficient, and strong.

Based on the above findings, we are aware that the activation function (Eq. 4) in BBCU-V3
(Fig. 2(c)) narrows the negative value range of residual connection, which means it loses negative
full-precision information. Thus, we further develop BBCU-V4 by moving the activation function
into the residual connection to avoid losing the negative full-precision information. The experiments
(Sec. 4.5) show that our design is accurate. We then take BBCU-V4 as the final design of BBCU.

3.2 ARM IR NETWORKS WITH BBCU

As shown in Fig. 3(a), the existing image restoration (IR) networks could be divided into four parts:
head H, body B, upsampling U , and tail T . If the IR networks do not need increasing resolu-
tion (Zhang et al., 2017), it can remove the upsampling U part. Specifically, given an LQ input ILQ,
the process of IR network restoring HQ output ÎHQ can be formulated as:

ÎHQ = T (U(B(H(ILQ)))). (9)
Previous BNN SR works (Xin et al., 2020; Jiang et al., 2021; Zhang et al., 2021b) concentrate on
binarizing the body B part. However, upsampling U part accounts for 52.3% total calculations and
is essential to be binarized. Besides, the binarized headH and tail T parts are also worth exploring.

As shown in Fig. 3(b), we further design different variants of BBCU for these four parts. (1) For
the head H part, its input is ILQ ∈ R3×H×W and the binary convolution output with C channels.
Thus, we cannot directly add ILQ to the binary convolution output for the difference in the number
of channels. To address the issue, we develop BBCU-H by repeating ILQ to have C channels. (2)
For body B part, since the input and output channels are the same, we develop BBCU-B by directly
adding the input activation to the binary convolution output. (3) For upsampling U part, we develop
BBCU-U by repeating the channels of input activations to add with the binary convolution. (4) For
the tail T part, we develop BBCU-T by adopting ILQ as the residual connection. To better evaluate
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Figure 3: The illustration of full-precision and binary IR networks. (a) The IR network can be
generally divided into four parts: head, body, upsampling, and tail. Notably, for IR tasks whose
resolution remains unchanged, such as denoising and deblocking, we can ignore the upsampling
part. (b) We equip different parts of binarized IR networks with the variants of BBCU.
the benefits of binarizing each part on computations and parameters, we define two metrics:

VC =
(
PSNRf −PSNRb

)
/
(
OPsf −OPsb

)
, (10)

VP =
(
PSNRf −PSNRb

)
/
(
Parmsf −Parmsb

)
, (11)

where PSNRb, OPsb, and Parmsb denote the performance, calculations, and parameters after bina-
rizing one part of networks. Similarly, PSNRf , OPsf , and Parmsf measure full-precision networks.

We adopt reconstruction loss Lrec to guide the image restoration training, which is defined as:

Lrec =
∥∥∥IHQ − ÎHQ

∥∥∥
1
, (12)

where IHQ and ÎHQ are the real and restored HQ images, respectively. ∥ · ∥1 denotes the L1 norm.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Training Strategy. We apply our method to three typical image restoration tasks: image super-
resolution, color image denoising, and image compression artifacts reduction. We train all models on
DIV2K (Agustsson & Timofte, 2017), which contains 800 high-quality images. Besides, we adopt
widely used test sets for evaluation and report PSNR and SSIM. For image super-resolution, we take
simple and practical SRResNet (Ledig et al., 2017) as the backbone. The mini-batch contains 16
images with the size of 192×192 randomly cropped from training data. We set the initial learning
rate to 1×10−4, train models with 300 epochs, and perform halving every 200 epochs. For image
denoising and compression artifacts reduction, we take DnCNN and DnCNN3 as backbone (Zhang
et al., 2017). The mini-batch contains 32 images with the size of 64×64 randomly cropped from
training data. We set the initial learning rate to 1×10−4, train models with 300,000 iterations, and
perform halving per 200,000 iterations. The amplification factor k in the residual alignment is set to
130. We implement our models with a Tesla V100 GPU.

OPs and Parameters Calculation of BNN. Following Rastegari et al. (2016); Liu et al. (2018),
the operations of BNN (OPsb) is calculated by OPsb = OPsf / 64 (OPsf indicates FLOPs), and the
parameters of BNN (Parmsb) is calculated by Parmsb = Parmsf / 32.

4.2 EVALUATION ON IMAGE SUPER-RESOLUTION

Following BAM (Xin et al., 2020), we take SRResNet (Ledig et al., 2017) as backbone. We binarize
body B part of SRResNet with some SOTA BNNs including BNN (Courbariaux et al., 2016), Bi-
Real (Liu et al., 2018), IRNet (Qin et al., 2020), ReActNet (Liu et al., 2020), and BAM (Xin et al.,
2020), BTM (Jiang et al., 2021). For comparison, we adopt our BBCU to binarize body B part to ob-
tain BBCU-L. Furthermore, we binarize body B and upsampling U parts simultaneously to develop
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Table 1: Quantitative comparison (average PSNR/SSIM) with BNNs for classical image Super-
Resolution on benchmark datasets. Best and second best performance among BNNs are in red and
blue colors, respectively. OPs are computed based on LQ images with a resolution of 320×180.

Methods Scale Ops (G) Params (K)
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRResNet

×2

85.43 1367 38.00 0.9605 33.59 0.9171 32.19 0.8997 32.11 0.9282 38.56 0.9770
SRResNet-Lite 3.08 49 37.21 0.9578 32.86 0.9113 31.67 0.8936 30.48 0.9109 36.70 0.9722

Bicubic - - 33.97 0.9330 30.55 0.8750 29.73 0.8494 27.07 0.8456 31.24 0.9383
BNN 18.55 225 32.25 0.9118 29.25 0.8406 28.68 0.8104 25.96 0.8088 29.16 0.9127

Bi-Real 18.55 225 32.32 0.9123 29.47 0.8424 28.74 0.8111 26.35 0.8161 29.64 0.9167
BAM 20.52 226 37.21 0.9560 32.74 0.9100 31.6 0.8910 30.20 0.9060 - -
IRNet 18.55 225 37.27 0.9579 32.92 0.9115 31.76 0.8941 30.63 0.9122 36.77 0.9724
BTM 18.55 225 37.22 0.9575 32.93 0.9118 31.77 0.8945 30.79 0.9146 36.76 0.9724

ReActNet 18.55 225 37.26 0.9579 32.97 0.9124 31.81 0.8954 30.85 0.9156 36.92 0.9728
BBCU-M (Ours) 1.83 46 37.44 0.9584 33.04 0.9127 31.81 0.8946 30.84 0.9149 37.20 0.9738
BBCU-L (Ours) 18.55 225 37.58 0.9590 33.18 0.9143 31.91 0.8962 31.12 0.9179 37.50 0.9746

SRResNet

×4

146.14 1515 32.16 0.8951 28.60 0.7822 27.58 0.7364 26.11 0.7870 30.46 0.9089
SRResNet-Lite 5.39 54 31.40 0.8843 28.11 0.7692 27.26 0.7243 25.19 0.7544 28.92 0.8863

Bicubic - - 28.63 0.8128 26.21 0.7087 26.04 0.6719 23.24 0.6114 25.07 0.7904
BNN 79.20 372 27.56 0.7896 25.51 0.6820 25.54 0.6466 22.68 0.6352 24.19 0.7670

Bi-Real 79.20 372 27.75 0.7935 25.79 0.6879 25.59 0.6478 22.91 0.6450 24.57 0.7752
BAM 81.17 373 31.24 0.8780 27.97 0.7650 27.15 0.7190 24.95 0.7450 - -
IRNet 79.20 372 31.38 0.8835 28.08 0.7679 27.24 0.7227 25.21 0.7536 28.97 0.8863
BTM 79.20 372 31.43 0.8850 28.16 0.7706 27.29 0.7256 25.34 0.7605 29.19 0.8912

ReActNet 79.20 372 31.54 0.8859 28.19 0.7705 27.31 0.7252 25.35 0.7603 29.25 0.8912
BBCU-M (Ours) 3.95 51 31.54 0.8862 28.20 0.7718 27.31 0.7263 25.35 0.7602 29.22 0.8918
BBCU-L (Ours) 79.20 372 31.79 0.8905 28.38 0.7762 27.41 0.7303 25.62 0.7696 29.69 0.8992

HR SRResNet-Lite Bi-Real BBCU-M

Bicubic SRResNet ReActNet BBCU-L

HR SRResNet-Lite Bi-Real BBCU-M

Bicubic SRResNet ReActNet BBCU-L

HR SRResNet-Lite Bi-Real BBCU-M

Bicubic SRResNet ReActNet BBCU-L

HR SRResNet-Lite Bi-Real BBCU-M

Bicubic SRResNet ReActNet BBCU-L

Figure 4: Visual comparison of BNNs for 4× image super-resolution.

BBCU-M. Besides, we reduce the number of channels of SRResNet to 12, obtaining SRResNet-
Lite. In addition, we use Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), B100 (Martin
et al., 2001), Urban100 (Huang et al., 2015), and Manga109 (Matsui et al., 2017) for evaluation.

The quantitative results (PSNR and SSIM), the number of parameters, and operations of different
methods are shown in Tab. 1. Compared with other binarized methods, our BBCU-L achieves the
best results on all benchmarks and all scale factors. Specifically, for 4× SR, our BBCU-L surpasses
ReActNet by 0.25dB, 0.27dB, and 0.44dB on Set5, Urban100, and Manga109, respectively. For 2×
SR, BBCU-L also achieves 0.32dB, 0.27dB, and 0.58dB improvement on these three benchmarks
compared with ReActNet. Furthermore, our BBCU-M achieves the second best performance on
most benchmarks consuming 5% of operations and 13.7% parameters of ReActNet (Liu et al., 2020)
on 4× SR. Besides, BBCU-L significantly outperforms SRResNet-Lite by 0.16dB and 0.3dB with
less computational cost, showing the superiority of BNN. The qualitative results are shown in Fig. 4,
and our BBCU-L has the best visual quality containing more realistic details close to respective
ground-truth HQ images. More qualitative results are provided in appendix.

4.3 EVALUATION ON IMAGE DENOISING

For image denoising, we use DnCNN (Zhang et al., 2017) as the backbone and binarize its body B
part with BNN methods, including BNN, Bi-Real, IRNet, BTM, ReActNet, and our BBCU. We also
develop DnCNN-Lite by reducing the number of channels of DnCNN from 64 to 12. The standard
benchmarks: Urban100 (Huang et al., 2015), BSD68 (Martin et al., 2001), and Set12 (Shan et al.,
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Table 2: Quantitative comparison (average PSNR) with BNNs for classical image denoising on
benchmark datasets. Best and second best performance among BNNs are in red and blue colors,
respectively. OPs is computed based on LQ images with a resolution of 320×180.

Methods OPs (G) Params (K)
CBSD68 Kodak24 Urban100

σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

DnCNN 38.42 667 33.90 31.24 27.95 34.60 32.14 28.95 32.98 30.81 27.59
DnCNN-Lite 1.38 24 32.26 29.64 26.49 32.73 30.25 27.22 30.97 28.46 25.21

BNN 0.8 24 26.90 22.67 16.41 27.12 22.58 16.25 26.67 22.67 16.54
Bi-Real 0.8 24 30.73 28.72 25.63 30.97 29.17 26.11 30.18 28.18 25.11
IRNet 0.8 24 31.37 29.01 26.75 31.61 29.54 27.48 30.57 28.35 26.00
BTM 0.8 24 32.25 29.91 26.79 32.75 30.64 27.62 30.99 29.05 25.86

ReActNet 0.8 24 32.26 29.95 26.93 32.78 30.65 27.70 31.27 29.20 26.01
BBCU (Ours) 0.8 24 33.08 30.56 27.33 33.66 31.28 28.15 32.27 29.96 26.61

Table 3: Quantitative comparison (average PSNR/SSIM) with BNNs for classical JPEG compres-
sion artifact reduction. Best and second best performance among BNNs are in red and blue colors,
respectively. OPs is computed based on LQ images with a resolution of 320×180.

Methods OPs (G) Params (K)
Live1 Classic5

q = 10 q = 20 q = 30 q = 40 q = 10 q = 20 q = 30 q = 40

DnCNN-3 38.29 665 29.19/0.8123 31.59/0.8802 32.98/0.9090 33.96/0.9247 29.40/0.8026 31.63/0.8610 32.91/0.8861 33.77/0.9003
Dncnn-3-Lite 1.36 24 28.90/0.8061 31.27/0.8746 32.62/0.9029 33.52/0.9179 29.80/0.8000 32.09/0.8611 33.39/0.8868 34.25/0.9011

BNN 0.66 22 28.48/0.7925 30.82/0.8661 32.19/0.8965 33.12/0.9128 29.41/0.7879 31.71/0.8537 33.04/0.8817 33.89/0.8964
Bi-Real 0.66 22 28.67/0.8011 31.06/0.8706 32.42/0.8998 33.36/0.9158 29.54/0.7934 31.88/0.8573 33.21/0.8845 34.08/0.8996
IRNet 0.66 22 28.73/0.8019 31.13/0.8704 32.49/0.8993 33.40/0.9148 29.63/0.7947 31.96/0.8570 33.28/0.8836 34.12/0.8983
BTM 0.66 22 28.75/0.8032 31.18/0.8725 32.51/0.9005 33.38/0.9153 29.65/0.7968 32.02/0.8597 33.30/0.8853 34.11/0.8991

ReActNet 0.66 22 28.81/0.8025 31.20/0.8709 32.52/0.8981 33.37/0.9123 29.70/0.7956 32.04/0.8581 33.32/0.8831 34.11/0.8964
BBCU (Ours) 0.66 22 29.06/0.8087 31.43/0.8780 32.80/0.9067 33.75/0.9221 30.00/0.8028 32.27/0.8645 33.59/0.8903 34.45/0.9044

2019) are applied to evaluate each method. Additive white Gaussian noises (AWGN) with different
noise levels σ (15, 25, 50) are added to the clean images.

The quantitative results of image denoising are shown in Tab. 2, respectively. As one can see, our
BBCU achieves the best performance among compared BNNs. In particular, our BBCU surpasses
the state-of-the-art BNN model ReActNet by 0.82dB, 0.88dB, and 1dB on CBSD68, Kodak24, and
Urban100 datasets respectively as σ = 15. Compared with DnCNN-Lite, our BBCU surpasses it by
0.92dB, 1.03dB, and 1.5dB on these three benchmarks as σ = 15 consuming 58% computations of
DnCNN-Lite. Qualitative results are provided in appendix.

4.4 EVALUATION ON JPEG COMPRESSION ARTIFACT REDUCTION

For this JPEG compression deblocking, we use practical DnCNN-3 (Zhang et al., 2017) as the back-
bone and replace the full-precision body B part of DnCNN3 with some competitive BNN methods,
including BNN, Bi-Real, IRNet, BTM, ReActNet, and our BBCU. The compressed images are gen-
erated by Matlab standard JPEG encoder with quality factors q ∈ {10, 20, 30, 40}. We take the
widely used LIVE1 (Sheikh, 2005) and Classic5 (Foi et al., 2007) as test sets to evaluate the per-
formance of each method. The quantitative results are presented in Tab. 3. As we can see, our
BBCU achieves the best performance on all test sets and quality factors among all compared BNNs.
Specifically, our BBCU surpasses the state-of-the-art BNN model ReActNet by 0.38dB and 0.34dB
on the Live1 and Classic5 as q = 40. In addition, our BBCU surpasses DnCNN-3-Lite by 0.16dB
and 0.2dB on benchmarks as q = 10. The visual comparisons are provided in appendix.

4.5 ABLATION STUDY

Table 4: PSNR (dB) values (4×) on four types of
basic binary convolution unit (BBCU).

Methods OPs (G) Set5 Set14 B100 Urban100 Manga109

BBCU-V1 79.20 31.54 28.19 27.31 25.35 29.25
BBCU-V2 79.20 31.37 28.07 27.22 25.21 29.01
BBCU-V3 79.20 31.71 28.31 27.37 25.51 29.54
BBCU-V4 79.20 31.79 28.38 27.41 25.62 29.69

Basic Binary Convolution Unit. To validate
BBCU for the binarized IR network, we bina-
rize the body part of SRResNet with four vari-
ants of BBCU (Fig. 2) separately. The results
are shown in Tab. 4. (1) Compared with BBCU-
V1, BBCU-V2 declines by 0.14dB and 0.24dB
on Urban100 and Manga109. This is because BBCU-V2 simply removes the BN making the
value range of binary Conv far larger than residual connection and cover full-precision informa-
tion (Fig. 2). (2) BBCU-V3 adds residual alignment scheme on BBCU-V2, which addresses the
value range imbalance between binary Conv and residual connection and removes the BN. Since
the BN is harmful for IR networks, BBCU-V3 surpasses BBCU-V1 by 0.17dB, 0.16dB, and 0.29dB
on Set5, Urban100, and Manga109 respectively. (3) BBCU-V4 moves the activation function into
the residual connection, which preserves the full-precision negative values of residual connection
(Fig. 2). Thus, BBCU-V4 outperforms BBCU-V3.
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Table 5: The breakpoint posi-
tion of residual connection.

Position Idx PSNRb (dB)

1 25.43
5 25.44
10 25.48
15 25.46
20 25.45
25 25.44
- 25.62

Table 6: The binarization benefit of different parts in IR net-
works. We test models on Set14, and PSNRf is 28.60dB.

HeadH Body B Upsampling U Tail T
OPsf (M) 99.53 67947.73 76441.19 1592.53
OPsb (M) 1.56 1061.68 1194.39 24.88

Paramsf (K) 1.73 1179.65 294.91 1.73
Paramsb (K) 0.05 36.86 9.22 0.05

PSNRb (dB) 28.58 28.38 28.59 27.76

VC ↓ (×10−6) 204.14 3.29 0.13 535.83
VP ↓ (×10−3) 11.91 0.19 0.04 500.00
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Figure 5: The effect of number of binary convo-
lution in residual connection on SRResNet.
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Figure 6: The effect of amplification factor on
SRResNet with various number of channels.

Residual Connection. We take SRResNet as the backbone with 32 Convs in body part and explore
the relationship between performance and the number of binary convolution in residual connection.
Specifically, for both full-precision and binarized SRResNet, we set 1,2,4,8,16, and 32 Convs with a
residual connection as basic convolution units, respectively. We evaluate SRResNet equipped with
these basic convolution units on 4× Urban100 (see Fig. 5). (1) For full-precision networks, it is
best to have 2 Convs with a residual connection to form a basic convolution unit. Besides, if there
are more than 4 Convs in a basic convolution unit, its performance would sharply drop. For bina-
rized networks, it is best to equip each binary convolution with a residual connection. In addition,
compared with the full-precision network, the binarized network is more insensitive to the growth
of the Convs number in the basic convolution unit. (2) For binarized SRResNet, we delete residual
connection of a BBCU in a certain position. In Tab. 5, it seems that once the residual connection
is removed (the full-precision information is lost) at any position, the binarized SRResNet would
suffer a severe performance drop.

Amplification Factor. As shown in Fig. 6, the performance of full-precision remain basically un-
changed with the variation of amplification factor k. However, the binarized network is sensitive to
the k. The best k∗ is related to the number of channels n, which empirically fits k∗ = 130n/64.
Intuitively, the larger number of channels makes binary convolution count more elements and have
larger results, which needs larger k to increase the value of residual connection for balance.

The Binarization Benefit for Different Parts of IR Network. We binarize one part in SRResNet
with BBCU in Fig. 3 while keeping other parts full-precision. The results are shown in Tab. 6. We
use VC (Eq. 10) and VP (Eq. 11) as metric to value binarization benefit of different parts. We can see
that Upsampling part is most worth to be binarized. However, it is ignored by previous works (Xin
et al., 2020). The binarization benefit of first and last convolution is relatively low.

5 CONCLUSION

This work devotes attention to exploring the performance of BNN on low-level tasks and search of
generic and efficient basic binary convolution unit. Through decomposing and analyzing existing
elements, we propose BBCU, a simple yet effective basic binary convolution unit, that outperforms
existing state-of-the-arts with high efficiency. Furthermore, we divide IR networks to four parts,
and specially develop the variants of BBCU for them to explore the binarization benefits. Overall,
BBCU provide insightful analyses on BNN and can serve as strong basic binary convolution unit for
future binarized IR networks, which is meaningful to academic research and industry.
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