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Summary
The effectiveness of reinforcement learning algorithms is fundamentally determined by the

reward feedback they receive during training. However, in practical settings, obtaining large
quantities of reward feedback is often infeasible due to computational or financial constraints,
particularly when relying on human feedback. When reinforcement learning must proceed
with limited feedback—labeling rewards for only a fraction of samples—a fundamental ques-
tion arises: which samples should be labeled to maximize policy performance? We formalize
this reward selection problem for reinforcement learning from limited feedback (RLLF), in-
troducing a general problem setup to enable the study of different selection strategies. Our
investigation proceeds in two parts, evaluating the efficacy of (i) simple heuristics that priori-
tize high-frequency or high-value states, and (ii) learned selection strategies, trained in advance
to identify impactful samples for labeling. These strategies tend to select rewards that (1) guide
the agent along optimal trajectories, and (2) support recovery toward near-optimal behavior af-
ter deviations. Optimal selection methods yield near-optimal policies with significantly fewer
labeled rewards than full supervision, highlighting reward selection as a powerful paradigm for
scaling reinforcement learning in feedback-limited settings.

Contribution(s)
1. Formalize the problem of acquiring limited evaluative feedback for reinforcement learning

in a general and domain-agnostic way, highlighting its relevance across diverse real-world
applications such as RLHF for LLMs and AI-driven drug discovery.
Context: Existing RL frameworks typically assume access to full reward information
during training; our formulation centers the setting where only a limited subset of rewards
can be acquired, a regime that remains underexplored.

2. Design and evaluate a range of zero-shot heuristic strategies for reward selection, illustrating
how different selection principles influence downstream policy performance.
Context: In the absence of prior information about impact of rewards, simple strategies
like uniform sampling or visitation-based selection offer natural starting points, but their
performance has not been systematically explored.

3. Propose training-phase optimization of selection strategies, enabling data-driven ap-
proaches to improve reward acquisition decisions prior to evaluation.
Context: The search space of the reward selection problem is inherently combinatorial, but
strategies optimized during the training phase offer tractable and effective approximations
to the optimal solution.

4. Analyze the behavior of optimal reward selections and uncover key structural factors—
such as reward sparsity and transition structure—that help answer the central question of
this work: which rewards matter?
Context: The utility of acquiring rewards at different states depends on factors like tran-
sition dynamics and reward sparsity; understanding their effects helps guide more effective
reward selection.
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Abstract

The effectiveness of reinforcement learning algorithms is fundamentally determined by1
the reward feedback they receive during training. However, in practical settings, ob-2
taining large quantities of reward feedback is often infeasible due to computational or3
financial constraints, particularly when relying on human feedback. When reinforce-4
ment learning must proceed with limited feedback—labeling rewards for only a frac-5
tion of samples—a fundamental question arises: which samples should be labeled to6
maximize policy performance? We formalize this reward selection problem for rein-7
forcement learning from limited feedback (RLLF), introducing a general problem setup8
to enable the study of different selection strategies. Our investigation proceeds in two9
parts, evaluating the efficacy of (i) simple heuristics that prioritize high-frequency or10
high-value states, and (ii) learned selection strategies, trained in advance to identify im-11
pactful samples for labeling. These strategies tend to select rewards that (1) guide the12
agent along optimal trajectories, and (2) support recovery toward near-optimal behavior13
after deviations. Optimal selection methods yield near-optimal policies with signifi-14
cantly fewer labeled rewards than full supervision, highlighting reward selection as a15
powerful paradigm for scaling reinforcement learning in feedback-limited settings.16

1 Introduction17

Various real-world scenarios of sequential decision-making share a striking asymmetry: while data18
is abundant (or cheaply generated), obtaining evaluative feedback is prohibitively costly and there-19
fore limited by practical constraints. Consider the following examples: in reinforcement learning20
from human feedback (RLHF) for training large language models (LLMs), billions of tokens can21
be generated easily, but acquiring reliable human feedback carries significant operational overhead22
(Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022; ABAKA AI, 2025). In the field of23
AI-driven drug discovery, modern generative models can enumerate billions of syntactically valid24
molecular graphs in silico, sweeping through an estimated chemical space of ≈ 1060 drug-like25
molecules (Reymond, 2015; Gómez-Bombarelli et al., 2018; Jin et al., 2019). Yet confirming that26
any one of those structures is synthesizable, binds to the intended target, and is non-toxic requires27
weeks of wet-lab assays and thousands of dollars per compound (DiMasi et al., 2016; Anon, 2023).28
In these and many similar problems (Appendix A), where evaluative feedback is limited, it becomes29
critical to identify which subset of the abundant data should be selected for feedback in order to30
achieve maximal performance gain with minimal feedback.31

Reinforcement learning (RL) is the widely adopted approach for solving sequential decision-making32
problems (Popova et al., 2018; Ouyang et al., 2022; Feng et al., 2023). In the RL framing of the33
above scenarios, feedback corresponds to rewards, but obtaining rewards for all data points is in-34
feasible. In this work, we study the important question of reward selection—which subset of the35
data should be labeled with rewards to maximize the performance of the learned policy? Acquiring36
rewards for different subsets leads to policies of varying quality, and the goal is to select the parts37
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Figure 1: Each row represents a data sam-
ple; shaded green rows indicate samples that
have been labeled with rewards. The strategy
Qi determines which states to select for re-
ward labeling. In the limited feedback setup,
only a subset of states can be labeled. Differ-
ent choices of reward-labeled subsets yield
learnt policies of varying performances. The
objective is to identify the subset that leads
to the highest-performing policy.

of the dataset to be reward-labeled such that the resulting policy achieves the highest performance,38
as illustrated in Figure 1. Thus, reward selection is the problem of determining where to acquire39
limited feedback under the setting of reinforcement learning from limited feedback (RLLF). The40
question of which data points to acquire rewards for is equivalent to selecting the states at which to41
observe rewards. Consequently, the problem is formulated as the selection of a subset of states at42
which to obtain rewards.43

To accurately emulate the problem of reward selection, we formulate the setting such that the only44
degree of freedom allowed is the selection of states (as an input to RLLF), and the outcome observed45
is the resultant policy (as the output of RLLF), as illustrated in Figure 2 and detailed in Section 2.2.46
This abstraction of the details of the RLLF mechanism allows us to remain agnostic to specific de-47
sign choices—particularly the methodology for obtaining rewards—thereby enabling the setup and48
analysis to generalize to future methods of reward generation. Furthermore, we consider RLLF with49
an offline dataset to disentangle the difficulty of reward selection from that of online exploration.50
That is, any selection of states can be labeled with rewards, rather than requiring online exploration51
to encounter states to be labeled. This contrasts with prior setups within active RL (Krueger et al.,52
2020) and partially observable rewards (Parisi et al., 2024a), which share similar motivations. We53
adapt aspects of an existing algorithm that incorporates unlabeled data with labeled data for (offline)54
RL (Yu et al., 2022) as a stand-in algorithm within RLLF, in addition to a pessimistic adaptation of55
Q-learning (in Appendix D.6).56

Through extensive experiments across diverse domains, we find that zero-shot heuristic strategies57
are highly sensitive to domain properties. In environments with deterministic transitions and fre-58
quent rewards, selecting states along high-return trajectories leads to strong policy performance. In59
contrast, stochastic transitions or sparse rewards demand broader coverage of alternative or criti-60
cal states. Since it is impractical to know which rewards are most impactful without feedback on61
the effects of the selection, we introduce a training phase where state selection strategies can be62
evaluated and optimized using aggregate feedback on the performance of resulting policies. We63
show that optimal state sets—identified using training-phase optimization of selection strategies—64
can yield near-optimal policies with far fewer labeled rewards than full supervision, underscoring65
the potential of feedback-efficient learning. In this work, our contributions are:66

1. Formalize the problem of acquiring limited evaluative feedback for reinforcement learning in a67
general and domain-agnostic way, highlighting its relevance across diverse real-world applica-68
tions enumerated in Appendix A, such as RLHF for LLMs and AI-driven drug discovery.69

2. Design and evaluate a range of zero-shot heuristic strategies for reward selection, illustrating how70
different selection principles influence downstream policy performance.71

3. Propose training-phase optimization of selection strategies, enabling data-driven approaches to72
improve reward acquisition decisions prior to evaluation.73

4. Analyze the behavior of optimal reward selections and uncover key structural factors—such as74
reward sparsity and transition structure—that help answer the central question of this work: which75
rewards matter?76
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2 Problem Formulation and Preliminaries77

Preliminaries: An MDP is a tuple M := (S,A, p, r, γ, η) where S is a finite set of states, St78
is the state at time t ∈ {0, 1, . . . }, A is a finite set of actions, At is the action at time t, p :79
S ×A× S → [0, 1] is the transition function that characterizes state transition dynamics according80
to p(s, a, s′) := Pr(St+1=s′|St=s,At=a), r : S×A → R is the reward function that characterizes81
rewards according to r(s, a) := E[Rt|St=s,At=a], γ ∈ [0, 1] is the reward discount parameter, and82
η : S → [0, 1] characterizes the initial state distribution according to η(s) := Pr(S0=s). A policy83
π : S × A → [0, 1] characterizes how actions can be selected given the current state according84
to π(s, a) := Pr(At=a|St=s). We consider finite horizon MDPs (Sutton and Barto, 2018) where85
episodes terminate by some (unspecified) time T ∈ N.86

2.1 Reinforcement Learning from Limited Feedback87

We study the problem of reinforcement learning from limited feedback (RLLF) in the offline set-88
ting. An offline dataset Dn = {(St, At, St+1)

(i)}ni=1 of n samples is obtained by the interaction89
of a data-collecting policy πD with M .1 The dataset contains no reward, i.e., evaluative feedback.90
To emulate the limited feedback setting, the restriction imposed by the problem setup is that en-91
vironment rewards are permitted to be obtained at only a subset B of the states. Let S[B] denote92
the states that are reward-labeled. For samples in D where St ∈ S[B], reward labels are assigned;93
the remaining samples in D are unlabeled. In practice, since the labeling budget is smaller than94
the total number of states |S|, only a subset of the dataset can be reward-labeled. The process of95
reward-labeling part of the dataset and learning a policy from the resulting partially labeled data is96
referred to as reinforcement learning from limited feedback, and is denoted by RLLF(D,S[B]) (see97
the box in Figure 2). Different choices of S[B] result in different policies learned from the partially98
labeled dataset, with varying performance (see Figure 5 in Appendix D.2).99

Rather than passively learning a policy from a given partially labeled dataset, we study the problem100
of actively selecting the states to label with rewards in order to obtain the best-performing policy.101
Formally, the reward selection problem is to identify a subset of states S[B], subject to a labeling102
budget B, to be labeled with rewards such that the policy learned from the resulting partially labeled103
dataset achieves maximum performance.104

Policy Learning from Partially Reward-Labeled Data: The problem setup involves learning a105
policy from partially reward-labeled data. We use the UDS algorithm by Yu et al. (2022) to learn106
a policy from the partially reward-labeled dataset. This algorithm follows a simple procedure: un-107
known rewards are replaced with zero (or Rmin), and a policy is learned using these imputed re-108
wards. We adopt Q-learning as the policy update rule, as is standard in offline RL settings (Levine109
et al., 2020; Kostrikov et al., 2021). Other methods for handling partially labeled data could also be110
employed, but the focus of this work is on identifying a reward selection strategy that is effective for111
this instantiation of RLLF. An alternative policy learning rule—specifically, a pessimistic adaptation112
of Q-learning—is also studied in Appendix D.6.113

2.2 Reward Selection114

The strategy for selecting the B states from D to label with rewards is denoted by Q(B) : D → SB .115
Formally, given a budget B, the set of states at which rewards are observed is defined as S[B] =116

Q(B)(D). The resulting policy is denoted by π[B] = RLLF
(
D,Q(B)(D)

)
.2 The effectiveness of117

a strategy Q(B) is quantified by the expected return of the policy produced by RLLF when trained118
using the rewards selected by Q(B). The objective, denoted by P (·), is to maximize the average119

expected return of the resulting policy, J(π) := Eπ

[∑T
t=0 γ

tRt

]
, averaged over possible datasets120

1The data-collecting policy πD can be a single policy, or a mixture of policies of which the weighted average is denoted
by πD . For clarity, we drop the subscript n unless explicitly needed, and denote the dataset by D.

2To make the dependence on S[B] explicit, π[B] is equivalently denoted as π[S[B]]
when relevant.
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D. That is,121

max
Q(B)

P (Q(B)) := max
Q(B)

ED

[
J
(
π[B]

)]
= max

Q(B)
ED

[
J

(
RLLF

(
D,Q(B)(D)

))]
. (1)

WhenQ(B) is stochastic, the definition of P (·) includes an additional nested expectation overQ(B).122

Optimality: Given a budget B, the optimal reward selection strategy Q(B) maximizes the perfor-123
mance of the resultant policy π[S[B]]. There are

(|S|
B

)
candidate state sets that may be chosen byQ(B),124

all resulting in varying policies with varying performances (Appendix D.2). The optimal strategy125
entails selecting a state set, denoted by S∗[B], that results in a policy with the highest performance,126
i.e.,127

S∗[B] = arg max
S[B]⊆S,|S[B]|=B

P (π[S[B]]) = arg max
Q(B)(D)⊆S

P (RLLF(D,Q(B)(D))). (2)

It must be noted that S∗[B] may not be a unique set, rather, it belongs to a set of equally optimal128
state sets. For ease of exposition, we pick one such state set. The efficacy of any other strategy,129
that selects a different state set S[B], can be quantified by the optimality gap, i.e., the gap from the130
performance of the optimal policy under the labeling budget π∗

[B] = π∗
[S∗

[B]
], given by:131

OptimalityGap(S[B]) = P (π∗
[B])− P (π[S[B]]). (3)

Figure 2: Problem setup for reward selection:
The green arrows indicate the test phase, during
which the reward selection strategy is evaluated.
The blue arrows represent access to, and feedback
from, an evaluator available within the training
phase loop.

Without any insight into how selecting specific132
states affects the final performance of the pol-133
icy, it is challenging to design effective reward134
selection strategies. To enable more informed135
strategy design, we introduce an optional train-136
ing phase in which the reward selection strat-137
egy learner Q(B) may leverage feedback from138
an evaluator Ξ. This evaluator provides the ex-139
pected return of any given policy under the true140
reward function of M . In practice, for exam-141
ple, this could correspond to the online deploy-142
ment of a policy (trained on limited feedback)143
to assess its performance. This performance144
can then serve as a signal to refine the reward145
selection strategy, in turn improving the policy146
performance. Once the reward selection strategy is trained, it is evaluated in a test phase, where147
access to the evaluator is no longer available. This setup is illustrated in Figure 2.148

During the training phase, the evaluator Ξ helps assess the performance of different selections of149
state subsets. It is important to note that Ξ provides only aggregate performance evaluations of poli-150
cies—individual rewards obtained during evaluation are neither stored nor reused. The RLLF pro-151
cedure is treated as a black box: individual state-reward values and the specific policy update mech-152
anisms remain inaccessible to the designer of the reward selection strategy. RLLF simply outputs153
a policy given a state (or set of states) and the unlabeled dataset as input; the resulting policy may154
optionally be evaluated using Ξ to guide subsequent updates to the selection strategy.155

During the test phase, trained reward selection strategies are evaluated along two dimensions: (1)156
their performance, as defined in Equation 1, and (2) their training cost, measured by the number of157
calls made to the evaluator Ξ during the training phase. A strategy that maximizes test performance158
while minimizing evaluator usage during training is preferred. For strategies that undergo training,159
the training dataset Dtrain is generated using a data-collecting policy πtrain, while the test datasets160
Dtest are generated using a set of data-collecting policies Πtest = {π1, π2, . . . , πm}. Empirically, test161
performance is computed by averaging over Dtest, as in Equation 1.162
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3 Methodology: Selection Strategies163

We study two types of selection strategies. The first category consists of strategies guided by intuitive164
heuristics that are rule-based and do not rely on the training phase. Thus, they can be expected to165
perform well enough, though not optimally. The analysis serves to assess the utility of intuitive166
heuristics when applied to the problem of reward selection without access to any prior information.167
The second category includes strategies that incorporate a training phase prior to evaluation. Within168
this category, we study a spectrum of approaches: from strategies that identify the optimal reward-169
labeled state set S∗[B], albeit at high training cost, to approximate strategies that reduce training170
overhead at the expense of marginal loss in performance. Additionally, the strategies we study can171
be classified based on how they construct the reward-labeled state set: batch strategies, which select172
all B states at once, and iterative strategies, which select one state at a time over B iterations.173
Iterative strategies are indexed by b ∈ 1, . . . , B, with selected states and related quantities indexed174
by b, for instance the set of selected states S[b]. Appendix C provides a detailed categorization.175

3.1 Heuristic-Based Selection: Training-Free Strategies176

Given an offline dataset D, without any prior feedback to inform how labeling different states with177
rewards impacts the performance of the policy, we must rely on heuristics to guide our selection178
of states to label with rewards. The state-visitation distribution of the data collecting policy πD,179
captured within the offline test dataset, serves as a useful source of information to guide the selection180
of states for reward-labeling. Additionally, constructing the state set (of size B) iteratively, i.e.,181
adding one state at a time, allows us to leverage the intermediate updates to the policy and its182
corresponding Q-function as guidance to inform subsequent selections. The heuristics investigated183
are:184

(1) visitation sampling: This strategy encodes the intuitive notion that maximizing the185
fraction of the dataset that is reward-labeled is a good proxy for maximizing the expected186
return of the resultant policy. To do so, it samples the most commonly occurring states187
in the dataset without replacement from the state-visitation distribution dπD , i.e., S[B] ∼188
Samplew/o rep(S, dπD , B).189

(a) If S[B] is constructed in an iterative manner, i.e., adding one state at a time, as opposed to a190
batch manner as above, an additional on-policy variant of this strategy is studied, referred191
to as visitation-on-policy , where the state set S[B] is constructed by sampling192
states from the state-visitation distribution of the updated policy π[b−1] at each iteration b.193

(2) uniform sampling: This simple strategy samples B states without replacement from a uni-194
form distribution over all unlabeled states, i.e., S[B] ∼ UniformSamplew/o rep(S, B). Along195
with serving as a baseline for comparison with other strategies, this simple strategy turns out to196
be surprisingly effective in certain cases where states that are not frequently visited under πD197
can have high utility when labeled with rewards.198

(3) guided sampling : This is an iterative strategy that balances exploration and exploitation—by199
exploring via sampling from the state-visitation distribution, and exploiting by sampling from200
the neighborhood of the current highest valued state. Specifically, at each iteration b, the strategy201
samples from the distribution qb defined as:202

qb(·|Qπ[b−1] , b) ∝ αb d
πD (·)︸ ︷︷ ︸

explore

+(1− αb) dπD
prev(· | argmax

s∈S
max
a∈A

Qπ[b−1](s, a))︸ ︷︷ ︸
exploit: focus on areas near the most promising Q-values

where d̂πD
prev(· | s′) is the sample estimate of the distribution of states that lead to state s′ as203

the next state under πD. The term argmaxs∈S[b−1]
maxa∈A Qπ[b−1](s, a) identifies the state204

with the maximum (state-)value based on the rewards obtained thus far. The tradeoff weight205
αb initially places more weight on the exploratory term and then decays as b increases, with206
decreasing αb as Q-values become more reliable.207

5



Under review for RLC 2025, to be published in RLJ 2025

(a) The on-policy variant of this strategy, guided-on-policy , is also studied.208

We estimate the state visitation distribution(s) dπD (·) from the dataset D, denoted by d̂πD (·), as209
d̂πD (s) := N(s)∑

s′∈S N(s′) , where N(s) denotes the number of occurrences of state s in D. These210

strategies are empirically evaluated in Section 4 and compared to the training-based strategies de-211
scribed in the next section.212

3.2 Strategies Leveraging the Training Phase213

For the set of strategies that leverage the training phase, the feedback from the evaluator provides214
a key insight: the impact of the selected states on the performance of the resultant policy, and,215
consequently, the overall strategy performance as in Equation 1. The set of states selected can216
therefore be modified to improve the performance of the resultant policy. The cost of this training217
phase, prior to the strategy’s evaluation, is quantified by the number of calls to the evaluator Ξ.218

(1) The most straightforward strategy is to exhaustively search over all possible subsets of B states219
during the training phase, and select the one that results in the highest performing policy. This220
approach, referred to as brute-force , is guaranteed to find the optimal state set S∗[B], given221
sufficient coverage of the training data. However, it makes a prohibitive number of calls to the222
evaluator (training cost) on the order of O(|S|B)—since the search space is combinatorially223
large:

(|S|
B

)
≈ O(|S|min{|S|−B,B}) ≈ O(|S|B)—which is impractical for any reasonably sized224

state space S.225

(2) To mitigate the training cost, we investigate an iterative strategy that constructs the state set S[B]226
one state at a time. Specifically, define the utility of adding s to S[b] as227

∆(s|S[b]) := P (π[S[b]∪{s}])− P (π[S[b]]). (4)

The sequential-greedy strategy selects the state s that maximizes ∆(s|S[b]), i.e., the228
marginal utility of adding state s to the current set of states S[b] at each iteration b. As a result,229
this strategy has a training cost of O(B|S|), significantly lower than the brute force strategy.230
Furthermore, we empirically observe that the sequential-greedy strategy is approximately opti-231
mal in many cases.232

(3) Lastly, instead of relying on a rule-based approach, we optimize the selection strategy Q(B)233
using an evolutionary strategy (ES) (Rechenberg, 1989; Salimans et al., 2017). We parameterize234
the selection strategy Q(B) with parameters θ, i.e., Q(B)

θ . We define the fitness of each state235
set S[b] as the performance of the resulting policy J(π[Sb]), and run a few iterations of ES236
to optimize θ. The number of samples k in each iteration, and the number of iterations m,237
determine the overall training complexity O(km) of this strategy, referred to as ES .238

A categorization of all selection strategies is provided in Appendix C.1.239

4 Empirical Analysis240

This section evaluates reward selection strategies across diverse domains. Rather than proposing new241
heuristics, we study key factors that influence effective selection. We assess heuristic and optimal242
selection methods and analyze how environment characteristics shape reward acquisition outcomes.243

Domain: We evaluate performance across six small-scale domains and four large-scale MinAtar do-244
mains (Young and Tian, 2019) (Breakout, Freeway, Seaquest, Asterix). Some small domains (Graph,245
Tree, TwoRooms, TwoRooms-Trap) are hand-designed; others (FrozenLake, CliffWalk) are Gymna-246
sium benchmarks (Brockman et al., 2016; Foundation, 2023). Additional domain details, transition247
dynamics, reward structures, expert policies, data collection, and full results for TwoRooms-Trap248
and FrozenLake appear in Appendix D.1.249
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Evaluation: The primary evaluation metric is the average episode return, reported across all ex-250
periments. For heuristic selection results, we additionally report the optimality gap, as defined in251
Equation 3. All reward acquisition budgets are expressed as percentage feedback relative to the total252
number of unique states |S| in each dataset (Table 1, Figure 3, and Figure 4), allowing for consistent253
comparison across domains. After a selection strategy chooses a set of states, we train a policy using254
UDS and evaluate it; an alternative training algorithm and analysis are provided in Appendix D.6.255

4.1 Heuristic Reward Selection Performance Varies Across Domains256

We show the absolute return and optimality gap for the three reward selection strategies introduced in257
Section 3.1—guided, visitation, and uniform—on selected small-scale domains (Table 1;258
full results for all small-scale domains are provided in Appendix D.3) and large-scale domains (Fig-259
ure 3). Since these strategies do not involve a training phase, they are evaluated directly on the260
test dataset. Results for small-scale domains are averaged over 100 random seeds, while results for261
large-scale domains are averaged over 10 random seeds.262

We observe that the effectiveness of reward selection heuristics is highly domain-dependent , and no263
single strategy consistently dominates. Section 4.3 provides a more detailed analysis of when each264
heuristic tends to perform well. Below, we highlight several key empirical findings:265

1. Performance under low budgets: When the reward labeling budget is small, the learned Q-266
values are typically inaccurate and unstable. In such cases, using visitation-based heuristics267
often provides a more reliable signal for state selection. For example, in Graph, the off-policy268
visitation distribution induced by the data-collecting policy aligns well with the optimal path269
early on, leading to improved performance. In CliffWalk, however, it is more effective to use the270
on-policy visitation distribution, as shown in Table 1.271

2. Performance under high budgets: As the budget increases, the learned Q-function becomes272
more accurate and informative. In this setting, heuristics that rely more directly on the estimated273
Q-values—such as guided—tend to perform better. This trend is clearly observed in Graph,274
Tree, CliffWalk, TwoRooms-Trap, and all four MinAtar domains.275

3. Impact of bottleneck structures: In domains with bottleneck states—states that must276
be traversed to reach certain regions of the environment, such as TwoRooms and277
FrozenLake—visitation-based heuristics may underperform. Although these heuristics prioritize278
high-value regions, their reliance on visitation frequency under the data-collecting policy πD can279
lead them to overlook infrequently visited but critical states. In such cases, the uniform heuris-280
tic can sometimes outperform both guided and visitation by providing broader and more281
stable coverage across the entire state space, including areas rarely visited by πD but essential282
for task completion.283

4. Optimality gap trends: Across all domains, we observe that the optimality gap is large when the284
budget is small and gradually decreases as the budget increases. This reflects the inherent chal-285
lenge of selecting the most informative states under tight budget constraints, and the improvement286
in the quality of the learned policy as more targeted reward feedback becomes available.287

4.2 Training-Optimized Selection Strategies Achieve Near-Optimal Performance288

This section evaluates the quality of optimal state sets identified by the search algorithms introduced289
in Section 3.2: brute-force, sequential-greedy, and ES. Comparisons are conducted on290
both training and testing datasets to assess the robustness of the identified sets to variations in the291
datasets collected by different data-collecting policies.292

Due to its extreme training computational cost, brute-force search is only applied to small-293
scale domains. For example, in a domain with |S| = 50, exhaustively evaluating all possible state294
sets of size B = 25 would require

(
50
25

)
≈ 1014 calls to the evaluator. Even at a rate of 2,000295

calls to the evaluator per minute, completing this search would still take about one million years.296
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Table 1: Comparison of guided, visitation, and uniform heuristic selection strategies on
small-scale domains. For each domain, the table presents the mean policy return (± standard error)
and the corresponding optimality gap (in parentheses) across five feedback levels.

Domains Percentage Feedback guided guided-on-policy visitation visitation-on-policy uniform

Graph

0.1 3.701± 0.129 (3.302) 3.208± 0.139 (3.795) 3.797± 0.151 (3.206) 3.300± 0.142 (3.703) 2.949± 0.137 (4.054)
0.3 5.831± 0.137 (2.169) 5.760± 0.127 (2.240) 5.871± 0.146 (2.129) 5.690± 0.146 (2.310) 4.617± 0.156 (3.383)
0.5 7.110± 0.099 (0.890) 7.690± 0.070 (0.310) 7.199± 0.090 (0.801) 7.583± 0.086 (0.417) 5.978± 0.114 (2.022)
0.7 7.830± 0.040 (0.170) 8.000± 0.000 (0.000) 7.599± 0.060 (0.401) 7.991± 0.009 (0.009) 6.920± 0.084 (1.080)
0.9 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000)

Tree

0.1 8.003± 0.468 (9.053) 7.403± 0.869 (9.653) 6.133± 0.428 (10.924) 4.658± 0.370 (12.398) 5.665± 0.532 (11.392)
0.3 12.846± 0.373 (4.921) 12.755± 0.632 (5.013) 11.763± 0.427 (6.004) 12.601± 0.414 (5.167) 10.341± 0.524 (7.427)
0.5 16.072± 0.205 (1.695) 16.415± 0.207 (1.352) 15.395± 0.297 (2.372) 16.379± 0.216 (1.388) 13.218± 0.430 (4.550)
0.7 17.193± 0.083 (0.575) 17.444± 0.037 (0.323) 17.135± 0.153 (0.633) 17.174± 0.120 (0.594) 15.258± 0.312 (2.509)
0.9 17.673± 0.013 (0.094) 17.731± 0.031 (0.036) 17.609± 0.158 (0.049) 17.521± 0.110 (0.246) 17.695± 0.141 (0.072)

CliffWalk

0.1 −1248.872± 117.272 (1152.914) −616.760± 105.578 (520.803) −1262.067± 119.207 (1166.109) −392.040± 84.184 (296.082) −1156.960± 61.025 (1061.002)
0.3 −369.964± 86.539 (285.948) −93.637± 0.373 (9.621) −462.530± 100.633 (378.515) −92.981± 0.358 (8.965) −1274.561± 118.910 (1190.545)
0.5 −132.671± 32.819 (57.629) −89.390± 0.827 (14.348) −165.870± 46.201 (90.828) −86.746± 0.677 (11.704) −1235.823± 137.366 (1160.781)
0.7 −98.870± 0.647 (32.665) −74.821± 2.171 (8.615) −100.000± 0.000 (33.794) −72.995± 1.872 (6.790) −956.208± 136.611 (890.003)
0.9 −72.646± 3.909 (59.646) −38.592± 3.373 (25.592) −100.000± 0.000 (87.000) −96.819± 1.466 (83.819) −425.837± 99.188 (412.837)

TwoRooms

0.1 0.012± 0.010 (0.988) 0.022± 0.014 (0.978) 0.042± 0.020 (0.959) 0.022± 0.014 (0.979) 0.261± 0.044 (0.739)
0.3 0.077± 0.027 (0.923) 0.092± 0.029 (0.908) 0.071± 0.025 (0.929) 0.081± 0.027 (0.919) 0.530± 0.050 (0.470)
0.5 0.173± 0.039 (0.827) 0.151± 0.036 (0.849) 0.182± 0.038 (0.818) 0.181± 0.038 (0.819) 0.720± 0.045 (0.280)
0.7 0.270± 0.046 (0.730) 0.371± 0.048 (0.629) 0.481± 0.050 (0.519) 0.501± 0.050 (0.499) 0.910± 0.029 (0.090)
0.9 0.732± 0.046 (0.268) 0.800± 0.040 (0.200) 0.870± 0.034 (0.130) 0.770± 0.042 (0.230) 0.990± 0.010 (0.010)
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Figure 3: Comparison of guided, visitation, and uniform heuristic selection strategies on
four large-scale domains: Breakout, Freeway, Seaquest, and Asterix. For each domain, the plot
shows the mean policy return with error bars indicating the standard error.

Sequential-greedy search, while more scalable, is also limited to small domains; its training297
cost scales linearly with both the budget and dataset size. For instance, applying it to Breakout298
would require roughly 108 evaluations when the budget equals the number of unique states in the299
dataset, which under the same assumptions would take about a month. A notable exception exists in300
sparse-reward domains, where only states with non-zero rewards need to be considered, substantially301
reducing the search space (see Appendix D.4).302

In contrast, the training computational complexity of ES depends only on the number of samples303
per iteration M and number of iterations K, remaining independent of the state space size and304
budget. Unlike sequential-greedy, which constructs the set incrementally, ES evaluates full305
candidate sets in batch. On small-scale domains, we set K = 10 and evaluate two variants: ES306
50 (M = 5) and ES 200 (M = 20), where the number in the method name (e.g., 50, 200) refers307
to the total number of candidate sets evaluated per run, computed as K ×M ; additional ablations308
varying K and M on small domains are provided in Appendix D.4. For large-scale domains, we use309
K = 10,M = 100 (ES 1000) to accommodate the greater complexity of the state space.310

The results on selected small-scale domains (Figure 4) yield three key findings, discussed below.311
We report only test dataset performance, as policies trained on the same selected state sets across312
different test datasets exhibit minimal variance, resulting in near-zero standard errors that are omitted313
for clarity. Full results including training scores and standard errors for all small-scale domains are314
provided in Appendix D.4.315

• Sequential-greedy achieves performance comparable to brute-force, validating its ef-316
fectiveness as a scalable approximation to the optimal state set.317

• On small-scale domains, ES 200 achieves performance similar to sequential-greedy,318
while ES 50 underperforms but can still occasionally exceed the performance of the guided319
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heuristic; this highlights ES as a viable alternative when sufficient samples and iterations are320
used.321

• Optimal state sets identified on training datasets generalize well when evaluated on test datasets322
generated by different data-collecting policies, suggesting robustness to moderate dataset distri-323
bution shifts (assuming the test datasets cover the same state space as the training dataset).324

On large-scale domains, we observe that ES achieves reasonable performance but does not consis-325
tently match the best performance at the same budget, as determined by reduced brute-force326
evaluation in sparse-reward domains. This highlights the inherent difficulty of identifying optimal327
state sets in large state spaces, where the vast number of possible combinations makes accurate es-328
timation challenging. Results and further details are provided in Appendix D.4. Nevertheless, ES329
provides a scalable approximation method when sequential-greedy becomes computation-330
ally infeasible.331
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Figure 4: Performance comparison of brute-force, sequential-greedy, ES, and guided
on selected small-scale domains. Values indicate mean policy return on test datasets; standard errors
are near-zero and thus omitted. ES 200 corresponds to K = 10,M = 20 and ES 50 to K =
10,M = 5. Results are averaged over five test datasets at five percentage feedback levels.

4.3 Structural Patterns and Domain Characteristics332

As shown in Figure 4, partially labeled datasets can achieve performance close to fully labeled333
datasets. To understand this, we examine structural patterns of optimal state sets across domains and334
identify domain characteristics that influence the effectiveness of reward selection heuristics.335

Pattern 1: Prioritizing the Optimal Path. Optimal sets typically include states that allow the336
agent to consistently follow high-return trajectories. In environments with deterministic transition337
dynamics—such as Graph—state selection expands backward from the goal as the budget increases.338
In sparse-reward domains like TwoRooms, labeling the goal state alone suffices under low budgets.339
MinAtar domains exhibit similar behavior, with selected states reinforcing high-reward behaviors340
(e.g., paddle-ball alignment in Breakout). Detailed analysis of Breakout, FrozenLake, TwoRooms-341
Trap, and CliffWalk—which exhibit related but distinct behaviors—is provided in Appendix D.5.342

Optimal sets typically include states that allow the agent to consistently follow high-return tra-343
jectories. In environments with deterministic transition dynamics—such as Graph—state selection344
expands backward from the goal as the budget increases. In sparse-reward domains like TwoRooms,345
labeling the goal state alone suffices under low budgets. MinAtar domains exhibit similar behav-346
ior, with selected states reinforcing high-reward behaviors, e.g., paddle-ball alignment in Breakout347
as shown in Appendix D.5, along with analysis for FrozenLake, TwoRooms-Trap, and CliffWalk,348
which exhibit related but slightly distinct behaviors.349

Pattern 2: Expanding Coverage to Near-Optimal Paths. In stochastic domains like Tree, ran-350
domness prevents consistently staying on the optimal path. Optimal state sets expand to include351
secondary high-reward paths, providing robustness under uncertainty.352
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Explaining Heuristic Performance via Domain Properties. These patterns explain heuristic re-353
sults in Section 3.1. Visitation works well when the data-collecting policy already visits valu-354
able states (e.g., Graph, MinAtar). Guided improves over visitation by favoring states leading355
to high-value regions (Pattern 1). Both fail in domains where avoiding bad outcomes is critical, such356
as CliffWalk (Appendix D.5). Bottlenecks, like in TwoRooms, cause visitation to over-focus357
on frequent but suboptimal regions, where uniform achieves better stable coverage.358

5 Related Work359

The setup of active reward selection for RLLF has not been previously explored much. The closest360
formalization is by Parisi et al. (2024a), who consider partially observable rewards in online RL,361
but their setting conflates exploration with reward acquisition, making the focus different from our362
purely offline formulation. Zhan et al. (2023) propose a sampling approach for reward annotation363
but assume linear reward models, whereas our method does not impose such structural constraints.364
Active RL studies querying strategies under online exploration constraints, where agents must pay365
to observe rewards (Krueger et al., 2020; Schulze and Evans, 2018; Tucker et al., 2023). Our set-366
ting differs fundamentally: we study offline data with no additional exploration burden. Relatedly,367
Konyushova et al. (2021) address active off-policy data selection to improve policy evaluation, fo-368
cusing on policy-level data collection rather than fine-grained reward state selection. The use of non369
reward labeled data has been studied for online (state-based) exploration with unlabeled samples.370
Some methods pseudo-label unlabeled samples to improve online exploration (Wilcoxson et al.,371
2024; Li et al., 2024), or develop exploration algorithms that operate under missing reward labels372
(Parisi et al., 2024b; Huang et al.). However, these primarily study exploration dynamics, whereas373
our focus is purely on optimizing offline reward label acquisition. Yu et al. (2022) show that imput-374
ing zero reward for unlabeled samples can work surprisingly well, which aligns with certain obser-375
vations in our study. Other recent work explores reward modeling under uncertainty, for example,376
using priors over reward functions (Hu et al., 2023) or studying data influence (Munos and Moore,377
2002; Koh and Liang, 2017; Gottesman et al., 2020). We complement these analyses by studying378
how selectively adding reward labels to previously unlabeled data influences the resulting policy379
performance. A detailed comparison with these and additional works is provided in Appendix B.380

6 Discussion and Conclusion381

We introduce reward selection as a critical but underexplored challenge in RLLF. By decoupling382
selection from policy learning, we present the first systematic evaluation of zero-shot heuristics and383
optimized strategies across diverse environments, defining simple yet strong baselines and offering384
insights for future reward-efficient algorithms in domains like RLHF and drug discovery. The effec-385
tiveness of reward selection varies with domain dynamics and reward structure: in deterministic set-386
tings with frequent rewards, path-following heuristics perform well; in stochastic or sparse-reward387
domains,strategies that promote broader state coverage prove more effective. No single heuristic388
dominates across all cases, and effective selection must align with both the domain and learning389
algorithm.390

While our study focuses on value-based policy updates, extending selection strategies to policy-391
gradient methods is a promising direction. Additionally, our general framework abstracts away392
domain-specific structure; however, incorporating inductive biases, such as temporal correlations in393
time-series tasks, may further aid selection strategies. Exploring how to integrate such structured394
priors offers an exciting path for future work. Together, these findings establish reward selection as395
a powerful paradigm for scaling reinforcement learning in limited feedback settings.396
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498

A Additional Motivating Examples499

1. Reinforcement Learning from Human Feedback (RLHF) in LLMs: In training large lan-500
guage models (LLMs), model-generated outputs are plentiful, but high-quality human preference501
labels remain costly and scarce (Ouyang et al., 2022; Christiano et al., 2017). This creates a re-502
ward selection challenge: which model completions should be labeled with human feedback to503
best guide downstream policy improvement? This mirrors our setup, where a budgeted selec-504
tion of feedback points must be made to train a performant policy while minimizing labeling505
operational cost (ABAKA AI, 2025).506

2. AI-driven Drug Discovery: Generative models can propose vast libraries of candidate507
molecules (Gómez-Bombarelli et al., 2018; Reymond, 2015; Jin et al., 2019), but only a lim-508
ited subset can be experimentally evaluated for synthesizability, bioactivity, and toxicity due to509
the cost and time of wet-lab trials (DiMasi et al., 2016). Reward selection here involves choosing510
which molecular candidates to evaluate, analogous to selecting states for reward labeling in our511
framework to maximize downstream performance within a practically limited evaluation budget.512

3. Autonomous Driving: Simulation platforms can produce diverse driving trajectories across en-513
vironments and policies at scale (Dosovitskiy et al., 2017), but obtaining expert evaluations—514
such as comfort, rule compliance, or safety—is resource-intensive (Feng et al., 2023). Thus, a515
reward selection strategy is needed to determine which trajectories to annotate to yield robust,516
deployable policies, much like our proposed approach to feedback-efficient learning.517

4. Robotics: Simulated environments enable generation of numerous trajectories, but transferring518
and evaluating those policies in the real world involves expensive and time-consuming physi-519
cal experiments (Rajeswaran et al., 2017; Chebotar et al., 2019). Reward selection in this do-520
main involves prioritizing which simulated or real-world interactions to evaluate, paralleling our521
method’s goal of selecting the most informative reward-labeled samples for efficient policy learn-522
ing under cost constraints.523
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B Additional Related Works524

The setup of active reward selection for RLLF has not been previously explored much. The clos-525
est formulation of this problem is in Parisi et al. (2024a), who provide a formulation for partially526
observable rewards in online RL and propose algorithms for that setting. The online formulation527
conflates the difficulty on online exploration with the utility of rewards, the latter being the focus528
of this work. sampling approach to acquiring exploratory trajectories that enable accurate learning529
of hidden reward functions before collecting any human feedback. Zhan et al. (2023) propose a530
sampling approach to acquire data to be reward-annotated, although their analysis assumes linear-531
ity of reward functions. Similar to discovering high-utility reward states, Konyushova et al. (2021)532
study active collection of online data to determine promising policies and improve their performance533
estimates, as active off-policy selection.534

The topic of reward selection has been studied under Active RL, which is perhaps closest in its moti-535
vation to our setting: where the agent must pay a cost to observe the reward, although for an online536
setting, yet again conflating the difficulty of exploration with the utility of rewards. Krueger et al.537
(2020) study this in the bandit setting, while Tucker et al. (2023) extend it to structured settings538
but retain the bandit-style objective of identifying the best arm by using reward queries to increase539
confidence in the average (stochastic) outcomes of each arm. This differs from our problem in two540
major ways: the stochasticity of rewards for each arm forces repeated sampling, and the lack of541
sequentiality of actions (leading to different outcomes for repeated pulls of the same arm) shifts the542
focus from reward utility to uncertainty mitigation. In contrast, Schulze and Evans (2018) propose a543
Bayes-optimal algorithm using Monte Carlo Tree Search (MCTS) to actively select reward observa-544
tions. Finally, approaches like Lindner et al. (2021) actively select queries to maximize information545
gain about the reward function for modeling it.546

The use of non-reward-labeled data has been extensively explored in the context of online state-547
based exploration with unlabeled samples. Wilcoxson et al. (2024) propose assigning pseudolabels548
to unlabeled data to guide exploration, while Li et al. (2024) leverage prior offline datasets and549
online rewards to pseudo-label new data for improved exploration. Parisi et al. (2024b) examine550
exploration under partially observed rewards, a setting closely related to ours but focused on online551
interaction. Huang et al. introduce a data collection strategy combining online RL with offline552
datasets to approach the performance of the optimal policy. Yu et al. (2022) show that setting553
unknown rewards to zero can perform surprisingly well in certain offline RL settings, a finding we554
also confirm in our experiments. Hu et al. (2023) propose using unlabeled data by assuming priors555
over possible reward functions and optimizing over sampled realizations of those reward functions.556

Beyond data-driven exploration, influence functions have been proposed as signals for high-utility557
rewards. Munos and Moore (2002) defines the influence of a reward on value as ∂V ∗(s)

∂R(s′) , equiva-558
lent to the state visitation frequency under the optimal policy. Other works, such as Koh and Liang559
(2017) and Gottesman et al. (2020), analyze the effect of removing known datapoints on prediction560
performance. In contrast, we study the anticipated influence of adding partially unknown data-561
points, requiring assumptions about their potential impact. Finally, Lindner et al. (2021) provide an562
algorithm for learning reward models independently of the reward querying process, which relates563
directly to the focus of our study.564
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C Additional Notes on Methodology565

C.1 Categorization of Reward Selection Strategies Investigated566

We categorize the reward state selection strategies introduced in Section 3 according to three key567
design dimensions: (i) whether selection during the test phase is performed in an open-loop or568
closed-loop manner, (ii) whether training-phase selection operates in a batch or iterative mode, and569
(iii) the degree to which each strategy utilizes the evaluator during training. Table 2 presents a570
high-level taxonomy across these dimensions.571

Selection Strategy Test: Open/Closed Loop Train: Batch/Iterative Train: Evaluator Use

Trained Strategies
brute-force Open loop Batch Yes
sequential-greedy Open loop Iterative Yes
evolutionary-strategy Open loop Batch Yes

Training-free Heuristics
guided Closed loop Iterative No
guided-on-policy Closed loop Iterative No
visitation Open loop Batch No
visitation-on-policy Closed loop Iterative No
uniform Open loop Batch No

Table 2: Categorization of reward selection methods by design dimensions. Columns are shaded to
distinguish test-phase (green) and training-phase (blue) attributes. Methods are grouped based on
whether they use the evaluator during training.

C.2 Description and Notation for Iterative Reward Selection Strategies572

Iterative reward selection strategies construct the reward-labeled state set S[B] in a sequential man-573
ner. At each step b ∈ {1, . . . , B}, a new state sb ∈ S is selected—conditioned on relevant infor-574
mation such as the current estimates of the Q-values of the policy or current policy’s state-visitation575
distribution—and added to the selection set S[b−1] to form S[B]. Relevant notation:576

• S[b]: The set of selected states after b iterations, i.e., S[b] = S[b−1] ∪ {sb}.577

• qb: The selection strategy or distribution used to sample the next state sb at iteration b, potentially578
conditioned on policy information or prior selections.579

• π[b]: The intermediate policy obtained after the bth reward selection and updated via RLLF.580

• Qπ[b−1] : The Q-function corresponding to π[b−1] after the (b− 1)th reward selection and update.581
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D Additional Experiments and Empirical Details582

D.1 Domain Details583

Table 3 summarizes the domains and their corresponding experimental setup. We study six small-584
scale domains (Graph, Tree, TwoRooms, TwoRooms-Trap, FrozenLake, and CliffWalk) and four585
large-scale MinAtar domains (breakout, freeway, seaquest, and asterix). The graph, tree, twoRooms,586
and twoRooms-Trap domains are custom-designed to expose structural properties relevant for ana-587
lyzing reward selection strategies, while frozenLake and cliffWalk are standard Gymnasium bench-588
marks (Brockman et al., 2016; Foundation, 2023).589

Table 3: Summary of domains and their experimental setup.

Small-scale Domains Large-scale Domains (MinAtar)
Domain Names graph, tree, twoRooms, twoRooms-Trap,

frozenLake, cliffWalk
breakout, freeway, seaquest, asterix

State Representation Numeric (tabular) Image-based (10×10 pixels)
Expert Policy Value Iteration Online DQN
Policy Learning Algorithm Offline Q-learning Implicit Q-learning (IQL)

Domain description Brief descriptions of all domains are provided below.590

• Graph: A two-row graph structure with 8 nodes per row. In each adjacent column, the 2 × 2591
nodes are fully connected. Transitions are deterministic; actions move the agent between rows or592
advance to the next column in the same row. States correspond to nodes; every movement yields593
a dense reward.594

• Tree: A complete binary tree where actions correspond to moving left or right. Transitions are595
stochastic: the agent moves in the intended direction with 85% probability and in the alternate596
direction with 15%. Rewards are dense and provided at every step.597

• TwoRooms: Two 5× 5 gridworld rooms connected by a narrow bottleneck state. The agent starts598
in one room and must reach a goal located in the other. Rewards are sparse: zero everywhere599
except a reward of 1 at the goal state.600

• TwoRooms-Trap: A variant of TwoRooms with six additional trap states. Entering a trap ter-601
minates the episode immediately with a penalty of −100. The environment otherwise shares the602
layout and reward structure of TwoRooms.603

• FrozenLake: A standard Gymnasium benchmark (Brockman et al., 2016; Foundation, 2023).604
The agent navigates a slippery grid from start to goal, avoiding holes that cause termination.605
Transitions are stochastic and rewards are sparse (reward only at the goal).606

• CliffWalk: Another Gymnasium benchmark. The agent must traverse a grid from start to goal607
while avoiding a high-penalty cliff region. Transitions are deterministic.608

• Minatar: A set of simplified Atari-inspired environments with compact state and action609
spaces (Young and Tian, 2019). We evaluate on Breakout, Freeway, Seaquest, and Asterix.610

Policy training For small-scale domains, expert policies are generated using value iteration and611
policies are trained with offline Q-learning. For large-scale MinAtar domains, expert policies612
are obtained by training online DQN agents, and offline learning uses implicit Q-learning (IQL).613
Small-scale domains use tabular Q-functions due to their discrete, low-dimensional state spaces,614
while large-scale domains rely on neural network approximators for Q-values, given their high-615
dimensional 10× 10 image-based states.616

Dataset collection Datasets are collected using a mixture-based data-collecting policy that com-617
bines expert and random actions. At each timestep, the agent follows the expert policy with prob-618
ability ϵ and takes a uniformly random action with probability 1 − ϵ. For training, we use a single619
data-collecting policy with ϵ = 0.5. For evaluation, five test data-collecting policies are created with620
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Figure 5: Performance variability across different reward-labeled state sets at fixed budgets. The
first row shows results for the Graph domain; the second row shows results for the Tree domain.
Columns correspond to percentage feedback levels of 20%, 40%, and 60%, respectively. The results
illustrate that at the same feedback level, the choice of which states are labeled strongly affects the
resulting policy performance.

ϵ ∈ {0.55, 0.53, 0.51, 0.48, 0.45} to study the robustness of learned policies under small distribution621
shifts.622

Computing resource All experiments on small-scale domains were conducted on CPUs, while623
those on large-scale domains were run on GeForce RTX 2080 Tis.624

D.2 Different reward-labeled-sets result in policies with varying performances625

In Figure 1, we illustrate that different reward-labeled sets lead to policies with varying performance.626
We empirically validate this observation in two small-scale domains, Graph and Tree. For each627
domain, we select three percentage feedbacks (20%, 40%, and 60%), and report the average return628
of policies learned from all possible combinations at that budget. For example, in the Graph domain,629
which has 16 total states, selecting b = 2 yields

(
16
2

)
= 120 possible combinations; we report the630

average return across policies trained on datasets labeled by each of these 120 state sets. The results,631
shown in Figure 5, demonstrate that for a fixed budget, different combinations of labeled states can632
lead to significantly different policy performance.633

D.3 Additional Results for Selection Heuristics634

The heuristics results on all small-scale domains are shown in Table 4.635
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Table 4: Comparison of guided, visitation, and uniform heuristic selection strategies on
small-scale domains. For each domain, the table presents the mean policy return (± standard error)
and the corresponding optimality gap (in parentheses) across five percentage feedback levels.

Domains Percentage Feedback guided guided-on-policy visitation visitation-on-policy uniform

Graph

0.1 3.701± 0.129 (3.302) 3.208± 0.139 (3.795) 3.797± 0.151 (3.206) 3.300± 0.142 (3.703) 2.949± 0.137 (4.054)
0.3 5.831± 0.137 (2.169) 5.760± 0.127 (2.240) 5.871± 0.146 (2.129) 5.690± 0.146 (2.310) 4.617± 0.156 (3.383)
0.5 7.110± 0.099 (0.890) 7.690± 0.070 (0.310) 7.199± 0.090 (0.801) 7.583± 0.086 (0.417) 5.978± 0.114 (2.022)
0.7 7.830± 0.040 (0.170) 8.000± 0.000 (0.000) 7.599± 0.060 (0.401) 7.991± 0.009 (0.009) 6.920± 0.084 (1.080)
0.9 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000) 8.000± 0.000 (0.000)

Tree

0.1 8.003± 0.468 (9.053) 7.403± 0.869 (9.653) 6.133± 0.428 (10.924) 4.658± 0.370 (12.398) 5.665± 0.532 (11.392)
0.3 12.846± 0.373 (4.921) 12.755± 0.632 (5.013) 11.763± 0.427 (6.004) 12.601± 0.414 (5.167) 10.341± 0.524 (7.427)
0.5 16.072± 0.205 (1.695) 16.415± 0.207 (1.352) 15.395± 0.297 (2.372) 16.379± 0.216 (1.388) 13.218± 0.430 (4.550)
0.7 17.193± 0.083 (0.575) 17.444± 0.037 (0.323) 17.135± 0.153 (0.633) 17.174± 0.120 (0.594) 15.258± 0.312 (2.509)
0.9 17.673± 0.013 (0.094) 17.731± 0.031 (0.036) 17.609± 0.158 (0.049) 17.521± 0.110 (0.246) 17.695± 0.141 (0.072)

CliffWalk

0.1 −1248.872± 117.272 (1152.914) −616.760± 105.578 (520.803) −1262.067± 119.207 (1166.109) −392.040± 84.184 (296.082) −1156.960± 61.025 (1061.002)
0.3 −369.964± 86.539 (285.948) −93.637± 0.373 (9.621) −462.530± 100.633 (378.515) −92.981± 0.358 (8.965) −1274.561± 118.910 (1190.545)
0.5 −132.671± 32.819 (57.629) −89.390± 0.827 (14.348) −165.870± 46.201 (90.828) −86.746± 0.677 (11.704) −1235.823± 137.366 (1160.781)
0.7 −98.870± 0.647 (32.665) −74.821± 2.171 (8.615) −100.000± 0.000 (33.794) −72.995± 1.872 (6.790) −956.208± 136.611 (890.003)
0.9 −72.646± 3.909 (59.646) −38.592± 3.373 (25.592) −100.000± 0.000 (87.000) −96.819± 1.466 (83.819) −425.837± 99.188 (412.837)

FrozenLake

0.1 0.021± 0.007 (−0.721) 0.056± 0.017 (−0.686) 0.028± 0.010 (−0.714) 0.020± 0.007 (−0.722) 0.145± 0.028 (−0.598)
0.3 0.087± 0.022 (−0.655) 0.078± 0.021 (−0.663) 0.079± 0.021 (−0.663) 0.050± 0.016 (−0.692) 0.306± 0.036 (−0.436)
0.5 0.165± 0.029 (−0.578) 0.127± 0.026 (−0.617) 0.171± 0.030 (−0.573) 0.086± 0.022 (−0.657) 0.467± 0.036 (−0.276)
0.7 0.261± 0.034 (−0.482) 0.251± 0.034 (−0.492) 0.326± 0.036 (−0.416) 0.160± 0.029 (−0.582) 0.582± 0.031 (−0.160)
0.9 0.477± 0.035 (−0.263) 0.508± 0.033 (−0.232) 0.566± 0.031 (−0.174) 0.427± 0.036 (−0.313) 0.697± 0.019 (−0.043)

TwoRooms

0.1 0.012± 0.010 (0.988) 0.022± 0.014 (0.978) 0.042± 0.020 (0.959) 0.022± 0.014 (0.979) 0.261± 0.044 (0.739)
0.3 0.077± 0.027 (0.923) 0.092± 0.029 (0.908) 0.071± 0.025 (0.929) 0.081± 0.027 (0.919) 0.530± 0.050 (0.470)
0.5 0.173± 0.039 (0.827) 0.151± 0.036 (0.849) 0.182± 0.038 (0.818) 0.181± 0.038 (0.819) 0.720± 0.045 (0.280)
0.7 0.270± 0.046 (0.730) 0.371± 0.048 (0.629) 0.481± 0.050 (0.519) 0.501± 0.050 (0.499) 0.910± 0.029 (0.090)
0.9 0.732± 0.046 (0.268) 0.800± 0.040 (0.200) 0.870± 0.034 (0.130) 0.770± 0.042 (0.230) 0.990± 0.010 (0.010)

TwoRooms-Trap

0.1 −58.492± 0.642 (59.492) −60.151± 0.673 (61.151) −59.390± 1.156 (60.390) −61.520± 0.723 (62.520) −46.850± 2.884 (47.850)
0.3 −45.692± 1.015 (46.692) −47.391± 0.899 (48.391) −47.130± 1.538 (48.130) −49.960± 1.022 (50.960) −29.340± 2.983 (30.340)
0.5 −16.440± 0.968 (17.440) −15.374± 0.874 (16.374) −23.320± 1.396 (24.320) −20.140± 0.934 (21.140) −13.270± 2.261 (14.270)
0.7 −0.336± 0.056 (1.336) −0.210± 0.065 (1.210) −0.300± 0.349 (1.300) −0.700± 0.160 (1.700) −1.600± 0.916 (2.600)
0.9 1.000± 0.000 (0.000) 1.000± 0.000 (0.000) 1.000± 0.000 (0.000) 0.851± 0.040 (0.149) 1.000± 0.000 (0.000)

D.4 Additional Results for Selection Optimality636

In sparse-reward environments, brute-force search can be accelerated by recognizing that only637
states with non-zero rewards must be labeled. This greatly reduces the number of combinations to638
consider, making exact evaluation tractable in small domains. The optimality results on all small-639
scale domains are shown in Table 5.640

Table 5: Performance comparison of brute-force, sequential greedy, and Evolutionary Strategy (ES)
on small-scale domains. Results are reported on training datasets, with test performance shown in
parentheses (e.g., train score (test score)). Test scores are reported as mean ± standard error across
five test datasets. ES 200 corresponds to K = 10,M = 20 and ES 50 to K = 10,M = 5.

Domains Percentage Feedback brute-force sequential-greedy ES 200 ES 50 guided

Graph

0.1 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000) 4.999(4.996± 0.000) 3.701
0.3 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 6.000(6.000± 0.000) 5.831
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.003(7.003± 0.000) 7.110
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.830
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000

Tree

0.1 17.056(16.773± 0.000) 17.056(16.773± 0.000) 12.990(12.978± 0.000) 8.841(8.768± 0.000) 8.003
0.3 17.767(17.592± 0.017) 17.767(17.592± 0.033) 17.198(17.157± 0.000) 16.199(16.271± 0.000) 12.846
0.5 17.767(17.629± 0.020) 17.767(17.629± 0.018) 17.781(17.680± 0.000) 17.445(17.275± 0.009) 16.072
0.7 17.767(17.649± 0.000) 17.767(17.649± 0.000) 17.777(17.623± 0.000) 17.642(17.547± 0.000) 17.193
0.9 17.767(17.657± 0.000) 17.767(17.657± 0.000) 17.736(17.639± 0.000) 17.746(17.564± 0.000) 17.673

CliffWalk

0.1 −95.958(−96.081± 0.001) −95.958(−96.081± 0.001) −713.261(−714.600± 0.019) −1086.006(−1086.526± 0.039) −1248.872
0.3 −84.016(−83.986± 0.001) −84.016(−83.986± 0.001) −97.237(−97.276± 0.000) −100.000(−100.000± 0.000) −369.964
0.5 −75.042(−75.059± 0.001) −75.042(−75.059± 0.001) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −132.671
0.7 −66.206(−66.477± 0.001) −66.206(−66.477± 0.001) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −98.870
0.9 −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −100.000(−100.000± 0.000) −72.646

FrozenLake

0.1 0.746(0.729± 0.010) 0.746(0.729± 0.010) 0.742(0.728± 0.009) 0.014(0.014± 0.000) 0.021
0.3 0.746(0.736± 0.006) 0.746(0.736± 0.006) 0.738(0.702± 0.010) 0.738(0.730± 0.008) 0.087
0.5 0.746(0.719± 0.012) 0.746(0.719± 0.012) 0.740(0.731± 0.009) 0.737(0.714± 0.009) 0.165
0.7 0.746(0.728± 0.007) 0.746(0.728± 0.007) 0.733(0.730± 0.010) 0.742(0.737± 0.002) 0.261
0.9 0.746(0.719± 0.008) 0.746(0.719± 0.008) 0.739(0.740± 0.001) 0.743(0.734± 0.005) 0.477

TwoRooms

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.055
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.109
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.195
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.270
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.732

TwoRooms-Trap

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −37.204
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −16.440
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) −1.397
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.966
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000

In addition to the two ES variants presented in Section 4.2, we provide an ablation study examining641
how performance varies with different numbers of samples per iteration M and iterations K. In642
Table 6, we fix M = 20 and vary K across {3, 5, 8, 10}. In Table 7, we fix K = 10 and vary M643
across {5, 10, 15, 20}. We find that larger values of K ×M generally lead to better performance.644
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Notably, increasing M (the number of samples per iteration) tends to have a greater impact than645
increasing K (the number of iterations), suggesting that sampling more candidates per iteration646
contributes more significantly to performance gains than simply running additional iterations.647

Table 6: Ablation study of ES performance as a function of the number of iterations K (with M = 20
fixed). Results are reported as K×M for consistency with the main paper (e.g., ES 10×20 indicates
K = 10 and M = 20).

Domains Percentage Feedback ES 10× 20 ES 8× 20 ES 5× 20 ES 3× 20

Graph

0.1 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000) 7.003(7.003± 0.000)
0.3 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000)

Tree

0.1 12.990(12.978± 0.000) 12.990(12.978± 0.000) 12.880(12.884± 0.000) 11.820(11.897± 0.086)
0.3 17.198(17.157± 0.000) 17.329(17.111± 0.000) 17.436(17.464± 0.000) 16.357(16.161± 0.000)
0.5 17.781(17.680± 0.000) 17.692(17.518± 0.009) 17.583(17.535± 0.000) 17.016(16.911± 0.000)
0.7 17.777(17.623± 0.000) 17.763(17.603± 0.000) 17.846(17.668± 0.000) 17.721(17.552± 0.000)
0.9 17.736(17.639± 0.000) 17.746(17.564± 0.000) 17.746(17.564± 0.000) 17.746(17.564± 0.000)

CliffWalk

0.1 −713.261(−714.600± 0.019) −713.261(−714.567± 0.012) −767.641(−769.536± 0.028) −783.801(−786.146± 0.021)
0.3 −97.237(−97.276± 0.000) −97.329(−97.361± 0.000) −95.920(−95.841± 0.001) −100.000(−100.000± 0.000)
0.5 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000)
0.7 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000)
0.9 −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −13.000(−13.000± 0.000) −14.000(−13.996± 0.000)

FrozenLake

0.1 0.742(0.728± 0.009) 0.743(0.741± 0.001) 0.740(0.740± 0.001) 0.737(0.721± 0.010)
0.3 0.738(0.702± 0.010) 0.740(0.727± 0.006) 0.743(0.735± 0.006) 0.738(0.735± 0.006)
0.5 0.740(0.731± 0.009) 0.743(0.735± 0.005) 0.740(0.710± 0.011) 0.737(0.734± 0.005)
0.7 0.733(0.730± 0.010) 0.740(0.714± 0.014) 0.741(0.725± 0.013) 0.739(0.710± 0.008)
0.9 0.739(0.740± 0.001) 0.739(0.723± 0.007) 0.742(0.710± 0.013) 0.740(0.734± 0.005)

TwoRooms

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)

TwoRooms-Trap

0.1 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.3 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000)

Table 7: Ablation study of ES performance as a function of the number of samples per iteration M
(with K = 10 fixed). Results are reported as K ×M for consistency with the main paper (e.g., ES
10× 20 indicates K = 10 and M = 20).

Domains Percentage Feedback ES 10 × 20 ES 10 × 15 ES 10 × 10 ES 10 × 5

Graph

0.1 7.003(7.003 ± 0.000) 5.999(6.001 ± 0.000) 5.999(6.001 ± 0.000) 4.999(4.996 ± 0.000)
0.3 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 6.000(6.000 ± 0.000)
0.5 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 7.003(7.003 ± 0.000)
0.7 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000)
0.9 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000) 8.000(8.000 ± 0.000)

Tree

0.1 12.990(12.978 ± 0.000) 12.754(12.301 ± 0.116) 12.427(12.516 ± 0.000) 8.841(8.768 ± 0.000)
0.3 17.198(17.157 ± 0.000) 17.319(17.219 ± 0.000) 17.082(17.015 ± 0.002) 16.199(16.271 ± 0.000)
0.5 17.781(17.680 ± 0.000) 17.454(17.334 ± 0.000) 17.328(17.290 ± 0.034) 17.445(17.275 ± 0.009)
0.7 17.777(17.623 ± 0.000) 17.742(17.603 ± 0.000) 17.727(17.726 ± 0.000) 17.642(17.547 ± 0.000)
0.9 17.736(17.639 ± 0.000) 17.736(17.639 ± 0.000) 17.736(17.639 ± 0.000) 17.746(17.564 ± 0.000)

CliffWalk

0.1 −713.261(−714.600 ± 0.019) −755.425(−754.434 ± 0.000) −867.262(−865.682 ± 0.021) −1086.006(−1086.526 ± 0.039)
0.3 −97.237(−97.276 ± 0.000) −98.579(−98.576 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.5 −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.7 −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)
0.9 −13.000(−13.000 ± 0.000) −13.000(−13.000 ± 0.000) −100.000(−100.000 ± 0.000) −100.000(−100.000 ± 0.000)

FrozenLake

0.1 0.742(0.728 ± 0.009) 0.739(0.698 ± 0.011) 0.741(0.720 ± 0.013) 0.014(0.014 ± 0.000)
0.3 0.738(0.702 ± 0.010) 0.744(0.741 ± 0.002) 0.740(0.728 ± 0.007) 0.738(0.730 ± 0.008)
0.5 0.740(0.731 ± 0.009) 0.739(0.723 ± 0.009) 0.740(0.733 ± 0.005) 0.737(0.714 ± 0.009)
0.7 0.733(0.730 ± 0.010) 0.739(0.711 ± 0.014) 0.739(0.722 ± 0.006) 0.742(0.737 ± 0.002)
0.9 0.739(0.740 ± 0.001) 0.738(0.737 ± 0.005) 0.738(0.731 ± 0.008) 0.743(0.734 ± 0.005)

TwoRooms

0.1 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.3 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.5 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.7 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.9 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)

TwoRooms-Trap

0.34 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.48 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.61 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.75 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)
0.89 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000) 1.000(1.000 ± 0.000)

We also report ES results on large-scale MinAtar domains, using K = 10,M = 100 (ES 1000).648
Although the training computation of ES remains fixed, achieving accurate performance estimates649
still requires large K×M values. Even under this configuration, ES does not consistently outperform650
guided, illustrating the inherent difficulty of discovering optimal state sets in large state spaces651
even when an evaluator is available, as shown in Table 8.652
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In addition, Table 8 includes a column for reduced brute-force. By leveraging UDS, we only653
label the data points where rewards are non-zero. All four MinAtar domains exhibit sparse rewards,654
with fewer than 10% of states containing non-zero rewards. As a result, reduced brute-force655
is expected to identify a state set that achieves equivalent performance to the fully labeled dataset,656
while substantially reducing the labeling effort.657

Table 8: Performance comparison of ES and guided for optimal state set selection on large-scale
domains. Results are reported only on training datasets because the guided heuristic is defined
with respect to the training dataset, and our comparison focuses on matching the settings for both
methods. Although the training computation of ES is fixed, accurately evaluating its performance
on large datasets remains costly, and small values of K ×M yield poor results. Even with K =
10,M = 100 (denoted as ES 1000), ES does not consistently outperform guided. Scores are
reported as mean ± standard error.

Domains Percentage Feedback Reduced Brute-force ES 1000 guided

Breakout

0.15

17.75

17.75 ± 0.85 7.13 ± 0.11
0.29 17.75 ± 0.40 14.12 ± 0.34
0.44 17.66 ± 0.89 17.39 ± 0.29
0.58 17.32 ± 1.05 17.60 ± 0.33
0.73 17.46 ± 1.08 16.17 ± 0.35
0.87 17.40 ± 1.43 17.06 ± 0.37

Freeway

0.16

58.28

43.44 ± 1.41 42.31 ± 0.25
0.32 55.82 ± 0.93 54.01 ± 0.21
0.48 58.28 ± 0.48 58.02 ± 0.20
0.64 58.28 ± 0.46 58.28 ± 0.20
0.80 58.28 ± 0.81 58.28 ± 0.15
0.96 58.28 ± 0.45 58.28 ± 0.24

Seaquest

0.16

34.99

1.42 ± 0.26 7.30 ± 0.23
0.32 9.16 ± 1.09 14.35 ± 0.47
0.48 18.80 ± 2.25 19.77 ± 0.71
0.64 23.58 ± 3.00 23.46 ± 0.80
0.80 24.99 ± 3.44 23.79 ± 0.88
0.96 25.48 ± 3.31 27.17 ± 1.04

Asterix

0.15

35.16

4.88 ± 0.74 7.38 ± 0.34
0.30 9.06 ± 1.10 16.21 ± 0.65
0.45 22.36 ± 2.45 24.00 ± 0.84
0.60 28.92 ± 2.52 30.19 ± 0.91
0.75 32.28 ± 3.03 30.71 ± 0.94
0.90 35.16 ± 2.96 34.94 ± 1.01

D.5 Additional Pattern Analysis658

In frozenLake and twoRooms-Trap, trap states can prematurely terminate episodes, leading to opti-659
mal sets focusing on avoiding trap states as well as reaching the goal. In cliffwalk, the large penalty660
for falling into the cliff causes optimal sets to include off-path states adjacent to the cliff, effectively661
constraining the agent’s behavior. These effects are accentuated by the reward imputation strategy662
in UDS (Yu et al., 2022), which assumes unlabeled states have zero reward. Further ablation with663
alternative settings (e.g., Q-truncated) is shown in Appendix D.6.664

To better understand the effectiveness of heuristic strategies in Breakout, we further analyze the665
state sets selected by visitation and uniform methods. As shown in Figure 3, visitation666
consistently outperforms uniform across all budget levels. To investigate this, we sampled 100667
state sets from each strategy and calculated the cumulative reward present within the selected states.668

Table 9 shows the average sum of rewards across these samples at varying feedback levels. The669
results indicate that state sets selected by visitation heuristics consistently contain a higher670
concentration of high-reward states compared to uniform. In Breakout, high-reward states often671
correspond to frames where the paddle is well-aligned with the ball to prevent it from being lost,672
which yields a reward of 1. The visitation heuristic is biased toward such frequently encoun-673
tered high-value configurations during data collection, whereas uniform sampling provides more674
dispersed but less reward-focused coverage.675

This quantitative observation directly supports the qualitative interpretation of the performance gap676
seen in Figure 3: visitation’s tendency to prioritize paddle-ball alignment states leads to a677
higher sum of rewards in the labeled dataset and therefore facilitates better value propagation during678
offline RL training.679
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Table 9: Sum of rewards in the state sets selected by visitation and uniform heuristics on
Breakout. At each feedback level, we sample 100 state sets and report the mean (± standard error)
of total rewards present in the selected states. Higher values for visitation indicate its stronger
tendency to select high-reward (paddle-ball alignment) states.

Percentage Feedback visitation uniform

0.146 60936.980 ± 49.963 10039.340 ± 368.025
0.291 65967.740 ± 15.982 20394.690 ± 514.998
0.437 67718.620 ± 9.163 30736.510 ± 609.436
0.583 68640.250 ± 4.266 39807.620 ± 668.318
0.728 69182.230 ± 2.760 51333.890 ± 522.632
0.874 69522.340 ± 1.531 61671.510 ± 347.499

D.6 Ablation Study: A Variant of Alg680

As illustrated in Figure 2, the core of this work is to propose and compare different reward selection681
strategies, which should be applicable to any Alg. While our main results focus on using UDS, in682
this section we apply the same selection strategies to an alternative Alg we propose.683

D.6.1 Adapted Q-Learning684

We use Q-learning—a value-based algorithm variants of which are widely used in offline settings685
(Levine et al., 2020; Kostrikov et al., 2021)—for policy updates in Alg. However, missing reward686
labels for some samples in RLLF pose a challenge: how should the policy be updated when samples687
without rewards are encountered? While assumptions might be made to facilitate modeling of un-688
known rewards, those reward estimates may be arbitrarily incorrect, especially in discrete domains.689

Consequently, for states where rewards are unavailable (i.e., s /∈ S[B]), we make no assumptions690
and treat the reward as being undefined. As a result, this algorithm sets unknown Q-values to zero,691
in contrast the UDS algorithm sets unknown reward values to zero. This approach aligns with the692
principle of pessimism in offline RL, which ensures that potentially erronous value estimates from693
unseen data are not used to update values of seen data—a strategy whose benefits are widely studied694
(Jin et al., 2021; Xie et al., 2021). To accommodate undefined rewards, we modify the vanilla695
Q-learning update rule as follows:696

Q(s, a)←−


Q(s, a) + α

(
r(s, a) + γ ∗maxa′ Q(s′, a′)−Q(s, a)

)
, s ∈ S[B] & s′ ∈ S[B]

α r(s, a), s ∈ S[B] & s′ /∈ S[B]

undefined︸ ︷︷ ︸
=0

, s /∈ S[B]

(5)
For B = |S|, i.e., when all rewards are known for all states, this reduces to the standard Q-learning697
update rule (Sutton and Barto, 2018). For B < |S|, this update rule yields a truncated estimate698
of the standard Q-values, with a corresponding truncated Bellman operator. To distinguish these699
Q-values from the standard definition, we use Q̃ to denote Q-values estimated from the update rule700
in Equation 5.701

The values Q̃(s, a) are only defined for states s ∈ S[B]. Consequently, a greedy policy derived from702
the truncated Q-values can only be defined for s ∈ S[B]. For states s /∈ S[B], there is no reward703
feedback is available and Q̃(s, a) is undefined, and we cannot evaluate the varying effects of actions704
in those states. In the absence of any evaluative signal for actions, we default to the data collecting705
policy πD at those states.706

π[B] = π[S[B]] =

{
argmaxa Q̃(s, a), s ∈ S[B]

πD, s /∈ S[B]

(6)

This update scheme is denoted by Alg, and the policy output by Alg(D,S[B]) is denoted by π[B],707
or equivalently, π[S[B]] when emphasizing the dependence on S[B]. Policy updates only occur at708
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states s ∈ S[B]. Selecting a set of states to label with reward amounts determines states at which709
the policy gets updated—potentially to differ from the data-collecting policy—and the strategy for710
selecting these states Q(B) to optimize Equation (1) is the focus of the following sections.711

D.6.2 Performance of Heuristics Selection Strategy712

We evaluate guided, visitation, and uniform selection strategies under Adaptive Q-713
Learning on small domains as shown in the Table 10. The trends largely align with the findings714
in the main text and remain consistent with those observed under UDS. In domains such as Graph,715
Tree, CliffWalk, and TwoRooms-Trap, where the optimal policy follows a narrow set of trajectories,716
path-following methods (guided and visitation) perform best. In contrast, TwoRooms and717
FrozenLake contain multiple viable paths to the goal, making broader state coverage more advanta-718
geous; here, uniform selection achieves superior results. Adaptive Q-Learning confirms the strong719
dependence of heuristic effectiveness on domain characteristics, including transition determinism,720
reward sparsity, and bottleneck structures (as discussed in Section 4.1).721

Table 10: Comparison of guided, visitation, and uniform heuristic selection strategies on
small-scale domains. For each domain, the table presents the mean policy return (± standard error)
and the corresponding optimality gap (in parentheses) across five percentage feedback levels.

Domains Percentage Feedback guided visitation uniform

Graph

0.1 4.477 ± 0.040 (0.860) 4.397 ± 0.036 (0.940) 4.171 ± 0.040 (1.166)
0.3 5.616 ± 0.069 (1.549) 5.480 ± 0.068 (1.685) 5.048 ± 0.062 (2.117)
0.5 6.604 ± 0.098 (1.396) 6.385 ± 0.101 (1.615) 5.697 ± 0.081 (2.303)
0.7 7.502 ± 0.086 (0.498) 7.229 ± 0.093 (0.771) 6.019 ± 0.127 (1.981)
0.9 8.000 ± 0.000 (0.000) 8.000 ± 0.000 (0.000) 8.000 ± 0.000 (0.000)

Tree

0.1 8.300 ± 0.144 (3.424) 8.059 ± 0.116 (3.665) 6.753 ± 0.076 (4.971)
0.3 13.317 ± 0.337 (3.608) 12.126 ± 0.238 (4.798) 8.484 ± 0.134 (8.440)
0.5 16.120 ± 0.183 (1.340) 14.917 ± 0.277 (2.543) 10.445 ± 0.240 (7.014)
0.7 17.354 ± 0.041 (0.269) 16.870 ± 0.151 (0.753) 11.637 ± 0.343 (5.985)
0.9 17.689 ± 0.012 (0.030) 17.675 ± 0.012 (0.016) 16.280 ± 0.292 (1.379)

CliffWalk

0.1 −414.059 ± 7.923 (171.814) −414.059 ± 7.923 (171.814) −488.198 ± 6.642 (245.953)
0.3 −236.441 ± 18.131 (136.441) −237.081 ± 18.171 (137.081) −433.176 ± 15.181 (333.176)
0.5 −155.088 ± 13.893 (55.088) −154.042 ± 13.888 (54.042) −409.481 ± 20.146 (309.481)
0.7 −123.490 ± 7.651 (92.459) −100.437 ± 0.881 (69.406) −378.334 ± 24.350 (347.302)
0.9 −146.676 ± 11.375 (132.023) −107.590 ± 5.313 (92.937) −341.785 ± 27.414 (327.131)

FrozenLake

0.1 0.024 ± 0.000 (0.010) 0.024 ± 0.000 (0.010) 0.024 ± 0.000 (0.010)
0.3 0.024 ± 0.000 (0.048) 0.024 ± 0.000 (0.048) 0.025 ± 0.001 (0.047)
0.5 0.024 ± 0.000 (0.222) 0.023 ± 0.000 (0.223) 0.027 ± 0.001 (0.218)
0.7 0.073 ± 0.015 (0.595) 0.036 ± 0.007 (0.631) 0.098 ± 0.014 (0.569)
0.9 0.374 ± 0.030 (0.336) 0.267 ± 0.025 (0.443) 0.368 ± 0.026 (0.341)

TwoRooms

0.1 0.025 ± 0.001 (0.289) 0.025 ± 0.001 (0.289) 0.030 ± 0.001 (0.283)
0.3 0.013 ± 0.001 (0.939) 0.012 ± 0.001 (0.939) 0.033 ± 0.003 (0.919)
0.5 0.007 ± 0.000 (0.992) 0.008 ± 0.000 (0.992) 0.043 ± 0.005 (0.956)
0.7 0.159 ± 0.035 (0.841) 0.085 ± 0.027 (0.915) 0.230 ± 0.034 (0.770)
0.9 0.721 ± 0.044 (0.279) 0.761 ± 0.043 (0.239) 0.720 ± 0.042 (0.280)

TwoRooms-Trap

0.1 −55.947 ± 0.920 (32.444) −57.720 ± 0.628 (34.217) −62.899 ± 0.487 (39.396)
0.3 −41.188 ± 1.123 (39.950) −44.392 ± 0.832 (43.154) −53.528 ± 0.692 (52.290)
0.5 −14.334 ± 0.837 (14.872) −21.868 ± 0.894 (22.406) −40.030 ± 0.837 (40.568)
0.7 −0.178 ± 0.057 (1.176) −1.001 ± 0.332 (1.999) −26.138 ± 0.966 (27.136)
0.9 1.000 ± 0.000 (0.000) 1.000 ± 0.000 (0.000) −4.577 ± 0.689 (5.577)

D.6.3 Performance of Optimal Selection Strategy722

We evaluate brute-force, sequential-greedy, ES 200, and ES 50 under Adaptive Q-723
Learning with the same setting as in the main text shown in Table 11. The findings closely mir-724
ror those observed with UDS. Sequential-greedy consistently matches the performance of725
brute-force, validating its effectiveness as a scalable approximation to the true optimal state726
set. ES 200 reliably outperforms ES 50, and both evolutionary variants generally exceed the727
performance of guided selection at moderate to high budgets. These results reaffirm the relative728
ordering and conclusions reported in the main text, demonstrating that the effectiveness of optimized729
selection strategies remains stable across different policy learning algorithms.730
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Table 11: Performance comparison of brute-force, sequential greedy, and Evolutionary Strategy
(ES) on small-scale domains. Results are reported on training datasets, with test performance shown
in parentheses (e.g., train score (test score)). Test scores are reported as mean ± standard error
across five test datasets. ES 200 corresponds to K = 10,M = 20 and ES 50 to K = 10,M = 5.

Domains Percentage Feedback brute-force sequential-greedy ES 200 ES 50 guided

Graph

0.1 5.337(3.032± 0.213) 5.337(3.032± 0.213) 5.308(3.014± 0.211) 4.214(1.521± 0.226) 4.477
0.3 7.165(6.004± 0.128) 7.165(6.004± 0.128) 7.157(5.994± 0.124) 6.275(4.518± 0.164) 5.616
0.5 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 6.589(5.256± 0.115) 6.604
0.7 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 7.502
0.9 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000(8.000± 0.000) 8.000

Tree

0.1 11.724(8.092± 0.276) 11.724(8.092± 0.276) 11.724(8.092± 0.276) 9.073(4.078± 0.384) 8.300
0.3 16.925(16.349± 0.056) 16.925(16.349± 0.056) 13.282(10.283± 0.238) 9.637(5.187± 0.334) 13.317
0.5 17.460(17.406± 0.017) 17.460(17.406± 0.017) 17.235(16.982± 0.025) 12.656(9.909± 0.184) 16.120
0.7 17.623(17.627± 0.006) 17.623(17.627± 0.006) 17.513(17.489± 0.009) 15.217(13.324± 0.142) 17.354
0.9 17.659(17.788± 0.001) 17.659(17.788± 0.001) 17.678(17.777± 0.000) 17.655(17.728± 0.001) 17.689

CliffWalk

0.1 −242.245(−231.272± 6.042) −242.245(−231.272± 6.042) −322.823(−347.828± 12.005) −409.384(−414.365± 26.537) −414.059
0.3 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −150.081(−150.586± 4.002) −320.748(−308.868± 13.555) −236.441
0.5 −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −180.969(−189.833± 3.670) −155.088
0.7 −31.031(−31.142± 1.045) −31.031(−31.142± 1.045) −100.000(−100.000± 0.000) −186.756(−180.828± 8.232) −123.490
0.9 −14.653(−14.506± 0.138) −14.653(−14.506± 0.138) −100.000(−100.000± 0.000) −100.000(−100.000± 0.000) −146.676

FrozenLake

0.1 0.034(0.032± 0.001) 0.034(0.032± 0.001) 0.031(0.030± 0.000) 0.031(0.030± 0.001) 0.024
0.3 0.072(0.049± 0.003) 0.072(0.049± 0.003) 0.036(0.032± 0.001) 0.032(0.034± 0.001) 0.024
0.5 0.246(0.347± 0.029) 0.246(0.347± 0.029) 0.067(0.057± 0.004) 0.054(0.045± 0.005) 0.024
0.7 0.667(0.629± 0.011) 0.667(0.629± 0.011) 0.199(0.212± 0.006) 0.196(0.223± 0.008) 0.073
0.9 0.710(0.688± 0.013) 0.710(0.688± 0.013) 0.679(0.703± 0.006) 0.699(0.709± 0.013) 0.374

TwoRooms

0.1 0.314(0.321± 0.031) 0.314(0.321± 0.031) 0.063(0.073± 0.014) 0.038(0.046± 0.009) 0.025
0.3 0.952(0.952± 0.005) 0.952(0.952± 0.005) 0.310(0.314± 0.029) 0.052(0.057± 0.009) 0.013
0.5 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.365(0.362± 0.026) 0.270(0.270± 0.022) 0.007
0.7 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.999(1.000± 0.000) 0.159
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.721

TwoRooms-Trap

0.1 −23.503(−23.047± 0.319) −23.503(−23.047± 0.319) −31.646(−32.431± 0.736) −53.449(−53.509± 0.204) −55.947
0.3 −1.238(−1.243± 0.017) −1.238(−1.243± 0.017) −11.259(−10.935± 0.174) −35.621(−35.996± 0.556) −41.188
0.5 0.538(0.540± 0.016) 0.538(0.540± 0.016) −0.845(−0.793± 0.030) −17.590(−17.505± 0.139) −14.334
0.7 0.998(0.998± 0.000) 0.998(0.998± 0.000) −0.233(−0.258± 0.024) −14.739(−14.826± 0.245) −0.178
0.9 1.000(1.000± 0.000) 1.000(1.000± 0.000) 1.000(1.000± 0.000) 0.862(0.845± 0.010) 1.000
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