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Abstract

Quantization emerges as one of the most promising compression technologies for1

deploying efficient large models in recent years. However, existing quantization2

schemes suffer from significant accuracy degradation at very low bits, or require3

some additional computational overhead when deployed, making it difficult to be4

applied to large-scale applications in industry. In this paper, we propose decoupleQ,5

achieving a substantial increase in model accuracy, especially at very low bits.6

decoupleQ abandons the traditional heuristic quantization paradigm and decouples7

the model parameters into integer and floating-point parts, then transforming the8

quantization problem into a mathematical constrained optimization problem, which9

is then solved alternatively by off-the-shelf solution methods. decoupleQ gets rid10

of any tricks for dealing with outliers, sensitive channels, etc., and focuses only11

on the basic optimization objective to achieve high model accuracy on extreme12

low bit quantization. Quantization via decoupleQ is linear and uniform, making13

it hardware-friendlier than non-uniform counterpart, and enabling the idea to be14

migrated to high-bit quantization to enhance its robustness.15

decoupleQ has achieved comparable accuracy as fp16/bf16 for 2-bit quantization of16

large speech models in our company. The code (including the W2 CUDA kernels)17

is attached and will be made public.18

1 Introduction19

Serving large models (1; 2; 37; 38) in industry is budget-consuming because of the huge computa-20

tional, IO and storage cost. Model compression (10; 11; 16) has therefore become a necessity to21

alleviate this pain. Among which, Post-Training Quantization (PTQ) (9; 26) has gained more and22

more popularity among researchers and engineers because it does not require heavy GPU-hours23

training with labeled datasets.24

However, previous quantization schemes remain confined within the traditional heuristic quantization25

paradigm, e.g., how to deal with outliers (33; 35), how to deal with sensitive channels (6), how26

to determine the clipping range (29), and so on. These methods have achieved some success, but27

the quantization at extreme low bit often suffers from significant accuracy degradation, thus failing28

to meet the launching requirements of industrial practice. There are also some other options to29

mitigate the accuracy loss. QuIP (4) pushes the accuracy limits of 2-bit quantization and can achieve30

performance close to fp16/bf16. However, compared to traditional quantization schemes, its inference31

imposes an additional burden due to the need to multiply two random orthogonal matrices to de-32

quant the weights. N2UQ (20) fit the real-value distribution with non-uniform grids then quantize33

them into equidistant output levels. But it need to train to get the input thresholds. SpQR (7)34
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and SqueezeLLM (14) use mixed-precision quantization or non-uniform scheme to safeguard the35

important channels, but they need customized hardware support.36

In order to alleviate the above pains in industry, we proposed decoupleQ, which completely abandons37

the traditional heuristic quantization paradigm and instead decouples the model parameters into38

integer and floating point parts, then transforming the quantization problem into a mathematical39

constrained optimization problem, which is then solved alternatively by off-the-shelf solution methods.40

The integer part contains the main weights of the model, and the floating-point part contains scales41

and zero points induced via quantization. decoulpeQ starts from an abstract objective function and42

thus does not need any tricks to deal with the minutiae of traditional quantization paradigm, such as43

outlier, salient weights (19), and so on. Quantization via decoupleQ is linear and uniform, making it44

hardware-friendlier than non-uniform counterpart, and enabling the idea to be migrated to high-bit45

quantization to enhance its robustness.46

decoupleQ contains two stages: 1. layer-wise minimization, defined in Eq. 1, is used to optimize47

the integer part and the floating-point part; 2. block-wise minimization, defined in Eq. 2, is used to48

further optimize the floating-point part while freezing the integer part1.49

Layer-wise minimization is to minimize the ℓ2 loss of the outputs between pre- and post-quantization50

for a linear layer:51

min
W̃

∥XW̃ −XW0∥22 (1)

where X ∈ Rbatch×din is the input of this layer, W0 ∈ Rdin×dout is the pre-trained full precision52

weight, din and dout are the input and output dimensions respectively. The objective is to find a53

matrix W̃ with quantized-then-dequantized elements to minimize Eq. 1.54

Some works (4; 8; 9; 13; 25) started from Eq. 1 and achieved some success, but they still haven’t55

thought outside the box of traditional quantization. GPTQ series (8; 9) fake-quantize the first element56

of W0 and then update the the remaining elements so as to keep Eq. 1 minimized. This process is57

then continued element by element until all elements are fake-quantized. However, on the one hand,58

they do not give any indication of how scale and zero point should be calculated, and on the other59

hand, the optimization problem formulated for updating the remaining elements is unconstrained60

(explained in detail later). decoupleQ models Eq. 1 as a constrained optimization problem, as shown61

in Eq. 6. It no longer needs to pay attention to some of the minutiae unique to quantization, such as62

outliers, clipping threshold, etc., but abstracts the essence of the problem from a higher level.63

In the second stage, block-wise minimization is used to further improve the model accuracy:64

min ∥ ˜Block(X)− Block(X)∥22 (2)

where B̃lock(·) is a common transformer block (32) with quantized weights. In this stage, we freeze65

the integer part of the weights, and train the scales, zero points and norm layers.66

decoupleQ implements 2-bit uniform quantization and achieves state-of-the-art accuracy in Llama-67

1/2 (30; 31). Like traditional uniform quantization, decoupleQ does not incur additional inference68

burden and only requires a linear transformation to convert the quantized weights into floating point69

ones.70

Our main highlights are summarized as follows:71

• New insight: We abandoned the traditional quantization paradigm, and no longer need72

to focus on some of the minutiae unique to quantization, but abstracts the essence of the73

problem from a higher level and transforms it into a constrained optimization problem.74

• Extreme low-bit: decoupleQ achieves 2-bit uniform quantization with performance match-75

ing fp16/bf16 for industrial applications in the ASR model in our company, and we will also76

release the W2A16 CUDA kernel as one of our core contribution.77

• Extensibility: As a bonus, if labeled datasets are available, the idea of decoupleQ can be78

easily extended to supervised fune-tuning (sft) to further improve model accuracy, or the79

adaptation to the downstream sub-tasks.80

1We define the term “layer" as a linear transformation, “block" as a common transformer block containing
the multi-head attention, feed forward, and some layer norm.
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2 Related Works81

Quantization can be roughly divided into Quantization Aware Training (QAT) (21; 33) and Post-82

Training Quantization (PTQ) (4; 35). In this paper, we focus on weight-only quantization in PTQ,83

and we will only summarize a few works that are closely related to our work.84

PTQ is commonly used for LLM quantization because it does not require a lot of GPU hours of85

training with labeled datasets. AdaRound (25) and BRECQ (18) start from the rounding operation86

and explore whether to round up or down is better. SqQR (7) and OWQ (17) use mixed-precision87

quantization strategy to protect sensitive parameters, while AWQ (19) opts for scaling up the weights88

of sensitive channels to reduce the loss of quantization of sensitive channels. OmniQuant (29) use89

gradient decent to optimize for the weight clipping threshold and the rescale factors. In decoupleQ, we90

abandon patchwork solutions and transform the quantization into a principled traditional optimization91

problem by decoupling the model parameters into integer and floating-point parts.92

GPTQ (9) is an influential work, and it quantizes the current weights and then updates the remaining93

weights to minimize the ℓ2 loss of the output of the layer between pre- and post-quantization. As we94

will see later, this update actually approximates much, and GPTQ does not optimize for the scale and95

zero point reduced by quantization.96

QALora (36) also decouples model parameters at a certain level and uses labeled datasets to fine-tune97

the zero points. decoupleQ takes this idea a step further, optimizing the scales, zero points and norm98

layers with supervised fine-tuning, while freezing the integer weights.99

3 Methods100

3.1 Preliminaries101

For a linear layer with input dimension din and output dimension dout, quantization maps the weights102

with high-precision into discrete level, and the previous scheme can be described as follows:103

Ŵ = clip(⌊W0 − z

s
⌉, α, β) (3) W̃ = Ŵ ∗ s+ z (4)104

where W0 ∈ Rdin×dout is the pre-trained full precision weights, s and z are the scale and zero point105

(what we call floating-point part above), ⌊·⌉ is the round-to-nearest function, Ŵ ∈ Rdin×dout is the106

quantized integer-point matrix (what we call integer part above), W̃ is the de-quantized floating-point107

matrix, α and β are the lower and upper bounds of the range of integer representations, respectively.108

For example, in 2-bit weight only linear quantization scheme, the value of each entry of Ŵ is109

limited to one of {−2,−1, 0, 1}, and α = −2, β = 1 in this case. To get the values of W̃ , previous110

methods (8; 9) show that layer-wise ℓ2 loss between the outputs pre- and post-quantization is well111

related to the model accuracy, i.e., to optimize the following objective function,112

argmin
W̃
∥XW̃ −XW0∥22 = tr{(W̃ −W0)

TH(W̃ −W0)} (5)

where X ∈ Rbatch×din is the input of this linear layer, generated by a small set of calibration dataset,113

and H = XTX .114

In the very low-bit quantization regime, the model accuracy can be further improved via finer-grained115

grouping. This would impose additional overhead on inference. For example, when groupsize = 64,116

it imposes an average overhead of 0.5 bit per element (FP16/BF16 for scale s and zero point z). The117

extra overhead is acceptable compared to the model accuracy gain.118

3.2 decoupleQ119

When a model is quantized, only the integer part Ŵ and the floating-point part (s, z) in Eq. 4 are120

delivered to the downstream inference engine, and the inference process does not need to know how121

Ŵ and (s, z) are obtained at all. That is, if we can find the values of Ŵ and (s, z) to minimize Eq. 5122

by other methods, then we don’t need to use Eq. 3. So, we can decouple the model parameters into123

integer part Ŵ and floating point part (s, z), which are then optimized alternatively via off-the-shelf124
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solution methods. decoupleQ views the process of solving for Ŵ and (s, z) in Eq. 4 as a constrained125

optimization problem independent of the previous quantization paradigm! We only need to regard126

Eq. 4 as an ordinary affine transformation, in which the value of s can be 0 or even negative.127

In per-channel quantization, each column of the weight matrix is optimized independently of each128

other. For simplicity of notation, we only focus on one column in Ŵ later and re-define the notations.129

Based on Eq. 5, the optimization problem of decoupleQ in the first stage, layer-wise minimization,130

can then be formulated as:131

min
w;s,z

g(w; s, z)

s.t. ∀i = 1, 2, ..., din
wi − β ≤ 0

− wi + α ≤ 0

wi ∈ Z

(6)

where the objective function is:132

g(w; s, z) =
1

2
(w ∗ s+ z − b)TH(w ∗ s+ z − b) (7)

w ∈ Rdin is one column of Ŵ , b ∈ Rdin is the corresponding column of W0, s ∈ Rng is the133

scale and z ∈ Rng is the zero point, ng is the number of groups when grouping-quantization. The134

operations w.r.t (s, z), i.e., ∗s and +z, need to be broadcasted to each group. In this paradigm,135

we have completely abandoned the traditional framework of quantization and instead transformed136

quantization into a constrained optimization problem 6, which is then solved to achieve the purpose137

of quantization. (s, z) in problem 6 have lost the traditional meaning of scale and zero point, and are138

just two optimization variables.139

Transforming the traditional quantization problem into problem 6 is the soul of decoupleQ! Problem 6140

is a quadratic programming problem with an additional non-convex constraints wi ∈ Z. Quadratic141

programming has been studied for many years and there are now many well-established solution (24;142

34). We provide one solution in the next subsection, which may not be efficient or optimal.143

The core idea of decoupleQ is to decouple the model weights into the integer part w and the144

floating-point part (s, z), with the integer part occupying most of the model’s expressive power. The145

extensibility of the idea of decoupleQ is that we can freeze the integer part of the entire model, and146

use labeled data to train the (s, z) as well as other floating point parameters. The advantage of this is147

that on the one hand, it can further improve the accuracy of the model, on the other hand, it can fit148

specific downstream sub-tasks while maintaining the generalization ability of the model.149

3.3 Optimization via Alternative Iteration150

The problem 6 is not easy to solve because of the non-convex constraint wi ∈ Z. After obtaining a151

good initialization (explained in detail later), we solve for w and (s, z) alternately and iteratively. In152

each round of alternation, the objective function 7 w.r.t (s, z) is an unconstrained quadratic function,153

thus (s, z) can be readily determined analytically: by differentiating the objective function and154

equating the derivative to zero, followed by solving the resultant linear system of equations. While155

for w, the problem become problem 8:156

min
w

g(w; s, z)

s.t. ∀i = 1, 2, ..., din
wi − β ≤ 0

− wi + α ≤ 0

wi ∈ Z

(8)

min
wi;i>j

g(w; s, z)

s.t. ∀i = j + 1, ..., din
wi − β ≤ 0

− wi + α ≤ 0

wi ∈ Z

(9)157

For problem 8, one solution is to round-and-clip one element of w to be integer in [α, β] and then158

update the remaining. And then this process is then performed sequentially for all elements. After the159

j-th element has been rounded-and-clipped, the objective for the updating then becomes problem 9.160

problem 9 is also intractable, and we can make two levels of approximation:161
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min
wi;i>j

g(w; s, z)

s.t. ∀i = j + 1, ..., din
wi − β ≤ 0

− wi + α ≤ 0

(10) min
wi;i>j

g(w; s, z) (11)162

In the first-level approximation 10, only the non-convex constraint wi ∈ Z is discarded, while in the163

second-level approximation 11, both the non-convex constraint wi ∈ Z and the convex constraint164

wi ∈ [α, β] are discarded. Intuitively, problem 11 is much simpler to solve than problem 10, but165

solving problem 10 will lead to a better convergence of the primary objective( 6) than solving166

problem 11. GPTQ (9) provides an efficient analytical solution for problem 11, which we will167

directly utilize in our experiments. ( GPTQ updates the remaining elements by considering only the168

second-level approximation 11 and ignoring the constrain wi ∈ [α, β] in the first ( 10), which is what169

we mentioned in the introduction, that the update of GPTQ is unconstrained.) As for problem 10,170

there are many mature solutions in the field of convex optimization, such as active-set method,171

projected gradient descent (PGD), projected coordinate descent and so on (3). We choose PGD172

because its parallelization is much better than the other two methods. In the experimental part, we173

will compare the final accuracy of the model via between solving the first level (10) and the second174

level 11 approximation on small models, while on large models (e.g. lager than 7 billion parameters),175

we have to choose the second level 11 approximation because the intolerable runtime of solving the176

first (10). The algorithm is shown in Alg. 1 and Alg. 2.177

Algorithm 1: Alternative Iteration to
solve problem 6.
Input: predefined iteration number N .
Result: w∗, s∗, z∗

1 Initialize t = 1, w0, s0, z0;
2 while t ≤ N do
3 Freeze (st−1, zt−1), and optimize

g(w; st−1, zt−1) to obtain an
approximate solution wt via
solving 8 via 2;

4 Freeze wt, and solve the
unconstraint quadratic equation
g(wt; s, z) to obtain an analytic
solution for (st, zt);

5 t = t+ 1
6 end
7 w∗ = wN ; s∗ = sN ; z∗ = zN

Algorithm 2: Approximate solution of 8
Input: predefined iteration number K,M , and

the froozen (s, z).
Result: w∗

1 if Approximaton (10) is used then
2 Ignoring the constraint wi ∈ Z in Eq. 8, and

train Eq. 8 with M iterations via PGD;
3 Initialize j = 1;
4 for j = 1 → din do
5 round and clip the j-th element of w, then

keep the first j elements frozen, and
update the remainings via PGD to
optimize 10 with K iterations or until
converged, or via the method in GPTQ to
optimize 11.

6 end
7 w∗ = w

178

3.4 Initialization of w and (s, z)179

min
p

1

2
(w ∗ s+ z − b)TH(w ∗ s+ z − b)

s.t.

w = clip(⌊b− z

s
⌉, α, β)

s =
p ∗ (bmax − bbmin)

β − α

z = p ∗ bmin − s ∗ α

(12)

Since the values of w are discrete, a good ini-180

tialization is very important in order to obtain a181

more accurate solution to the original problem 6182

with a faster convergence. Intuitively, the func-183

tion g(w; s, z) contains the term w ∗ s, which184

means that the scales of the initial values of w185

and s have to be reasonably distributed. For ex-186

ample, in the extreme case when the initial value187

of (s, z) have a very large scale, the first itera-188

tion will make most of the entries of w strictly189

0, which will make the iteration crash. We start190

by initializing (s, z). We can use grid search to191

solve the Eq. 12 for the initial value of (s, z). In192

Eq. 12, p is a single number, may be different193

for different columns of W0, bmin and bmax are the minimum and maximum value of b respectively.194

This step is the same as the previous post-training quantization (19) process. Once the grid search is195
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finished, we no longer need to concern ourselves with the (s, z) inside the ⌊·⌉ function. The point of196

this step is simply to find an initial value for (s, z) for the optimization problem 6.197

When solving problem 8 via the first-level approximation ( 10), before entering the for-loop in Alg. 2,198

we ignore the constraint wi ∈ Z in problem 8 and optimize it via projected gradient decent with M199

iterations. The purpose of this is to allow the first-level approximation to converge in a small number200

of iterations, i.e., a small K.201

3.5 Block-wise minimization202

After solving problem 6, we obtain a solution for the layer-wise minimization stage and a reasonable203

model accuracy. But minimizing the ℓ2 loss at the layer level does not necessarily lead to the204

minimizing the ℓ2 loss at the block level. We found that the model accuracy can be further improved205

via optimization 2. BRECQ (18) also shows that block-reconstruction results in a better model206

accuracy than layer-reconstruction. In this stage, we freeze the integer part Ŵ in the whole block and207

fine-tuning (s, z) and the parameters in norm layer with J epochs.208

4 Experiments209

In this section, we describe in detail the experimental results of our method in comparison with other210

methods. Unless otherwise stated, all the experiments are conducted on a single A100-SXM-80GB,211

and the default experimental setting is as follows:212

ResNet: 10240 images in the training dateloader are used as calibration data, with the standard213

augmentation in Pytorch official code (27), and the pretrained full precision checkpoints are from214

Torchvision (22). N = 4,M = 50 (N and M is defined in refalg1 and refalg2). All the convolution215

layers and fully-connected layers are quantized into W2 without groups.216

Llama-1/2: 128 2048-token segments from C4 (28) are used as calibration data. We choose C4217

as calibration dataset instead of WikiText2 (23) to be consistent with GPTQ. If the block-wise218

minimization is used, we use Adam optimizer (15) to finetune the (s, z) and the parameters in norm219

layer with J = 4 epochs. The learning rate is 1e-5, weight decay is 1e-6.220

4.1 Private Experiments221

Figure 1: The latency (in 1e-6 seconds) of the
four GEMMs in transformer block on L4 GPU,
(The three GEMMs for query, key and value are
concatenated into GEMM 1), with hidden_dim =
5120, batch_size = 4.

We applied decoupleQ to our company’s two222

Automatic Speech Recognition models(ASR)223

(corresponding to task A and task B). Each of224

the models contain an encoder and an LLM de-225

coder. The input of the models is a speech se-226

quence and some prompt, and the output is the227

corresponding text. We quantize the LLM de-228

coder to W2A16g64. The decoders of the two229

models contain 40 transformer blocks with 13230

billion parameters and 32 transformer blocks231

with 7 billion parameters, respectively. Word Er-232

ror Rate (WER) is used as metric to measure the233

accuracy of the models (less is better). In this234

experiments, we use about 8 millions of speech235

tokens as calibration dataset, and train 3 epoch236

in each block-wise minimization process. When237

an input batch contains sequences of varying238

lengths, we use a mask to make sure that the239

padding part is not involved in the computation of H and the loss of Eq. 2. In task B, once the whole240

model is quantized, we also fine-tune all the (s, z) and layer norm in the LLM with labeled dataset,241

while freezing all the integer part Ŵ , with 8 A100-SXM-80GB GPUs. The accuracy is shown in242

Tab. 1, and the CUDA kernel latency is shown in Fig. 1. The W2A16 CUDA kernel is attached and243

will be merged into the NVIDIA repo as one of our core contribution.244
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Table 1: The results of our two ASR models. The models are quantized into W2A16g64. runtime for
the quantization process is measured in hours. There are two sub-domains in task B, and we report
the WER of both.

Task A Task B
BF16 decoupleQ BF16 decoupleQ decoupleQ+sft

WER 6.68 6.70 (5.86, 11.43) (5.87, 11.56) (5.77, 11.43)
runtime - 25 - 32 32+5

Table 2: Comparison of decoupleQ with other methods. In decoupleQ, we only use the first stage,
layer-wise minimization. All the models are quantized into W2A16 without groups. In decoupleQ+sft,
we train the (s, z) and norm layers for one epoch, using the regular labeled dataset containing 1.2
million images.

method res18-69.76% res50-76.13%
2bit 3bit 4bit 2bit 3bit 4bit

GPTQ - 67.88 69.37 - 74.87 75.71
OBQ 64.04 68.69 69.56 70.71 75.24 75.72

BRECQ 64.70 68.47 69.37 72.41 75.32 75.88
decoupleQ 64.15 68.65 69.58 71.34 75.24 76.00

decoupleQ+sft 65.45 68.94 69.71 72.65 75.61 75.97

4.2 Public Comparison245

As a first comparison, we compare decoupleQ with other methods on ImageNet (5) with ResNet (12),246

which are standard benchmarks and are efficient to implement. Most importantly, its Top-1 is a strong247

indicator of model accuracy. Tab. 2 shows the results of decoupleQ and others. The results other than248

decoupleQ are copied from GPTQ (9) and OBQ (8).249

Tab. 3 shows the results on Llama. In this experiment, we have to choose the second level approxima-250

tion(11) because the intolerable runtime of solving the first(10). For a fair comparison, the calibration251

dataset contains 128 samples, although a larger calibration dataset will result in stronger results.252

we can see that decoupleQ outperforms others almost in all settings, although we use a weaker253

approximation(11) to save time. As for the hype-parameters, we choose {N = 4, J = 4}.254

4.3 Ablation studies255

4.3.1 the two approximations256

The soul of decoupleQ is problem 6, but when solving problem 6, we have to take some approxima-257

tions(10 or 11). Obviously, solving approximation 10 will be much more time consuming than solving258

approximation 11. But if solving approximation 10 yields better results, the time cost may be worth259

it. We first evaluate these two approximations from the perspective of model accuracy. In practice,260

we don’t have to wait for approximation 10 to fully converge when we solve it via projected gradient261

decent, and only need to iterate some steps to get a sub-optimal solution. In Alg. 2, the for-loop takes262

up the majority of the runtime. So, we first study the influence of the number of iterations K (defined263

in the for-loop) on the final accuracy of the model. Fig. 2 shows the Top-1 accuracy of ResNet-18 on264

ImageNet w.r.t the number of iterations K. First of all, in the blue line, we use only the layer-wise265

minimization of decooupleQ to quantize the model. After the quantization is finished, in the red line,266

we use the labeled dataset with the common 1.2 millions images to fine-tune all the (s, z) and norm267

layers for one epoch, with the integer part being frozen. In this step, we use SGD optimizer with268

learning rate 1e-6, weight decaying rate 1e-4 to train for only one epoch. Fig. 2 clearly indicates the269

following conclusions: 1. As the number of iterations K increases, the model accuracy increases270

almost monotonically; 2. When K > 4, model accuracy via the first approximation(10) is better than271

via the second(11). This is to be expected, since the second approximation(11) drops the constraint272

α ≤ wi ≤ β, leading to a looser approximation; 3. By the supervised fine-tuning (sft), the model273

accuracy is further improved. The same experimental phenomenon also occurs on the ResNet-50274

model, which we do not show here.275
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Table 3: The results of PPL of wikitext-2 on Llama-1/2. We also report the runtime (measured in
hours) for the W2 quantization via decoupleQ in the gray background row. The results other than
decoupleQ are copied from OmniQuant (29). All the results of decoupleQ use the approximation 11.

Llama 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B
FP16 5.68 5.09 4.10 3.53 5.47 4.88 3.31

GPTQ 2.1e3 5.5e3 499.75 55.91 7.7e3 2.1e3 77.95
OmniQuant 15.47 13.21 8.71 7.58 37.37 17.21 7.81
decoupleQ 9.49 7.86 6.37 5.59 9.74 13.03 5.23W2A16

runtime 2.5 4.8 12.7 27.6 2.5 4.5 33.4
GPTQ 44.01 15.60 10.92 9.51 36.77 28.14 -

OmniQuant 8.90 7.34 6.59 5.65 9.62 7.56 6.11
decoupleQ 8.65 7.25 6.04 5.19 8.79 7.44 4.96W2A16g128

runtime 3.7 7.7 24.3 55.0 3.7 7.9 70.6
GPTQ 22.10 10.06 8.54 8.31 20.85 22.44 -

OmniQuant 8.90 7.34 6.59 5.65 9.62 7.56 6.11
decoupleQ 8.18 6.96 5.81 5.07 8.41 6.98 5.34W2A16g64

runtime 4.3 8.9 27.9 64.5 4.4 9.0 98.2
GPTQ 8.06 6.76 5.84 5.06 8.37 6.44 4.82
AWQ 11.88 7.45 10.07 5.21 24.00 10.45 -

OmniQuant 6.49 5.68 4.74 4.04 6.58 5.58 3.92W3A16

decoupleQ 6.38 5.60 4.67 6.05 6.22 5.72 3.84
GPTQ 6.13 5.40 4.48 3.83 5.83 5.13 3.58
AWQ 6.08 5.34 4.39 3.76 6.15 5.12 -

OmniQuant 5.86 5.21 4.25 3.71 5.74 5.02 3.47W4A16

decoupleQ 5.85 5.21 4.24 3.67 5.70 5.06 3.45

Figure 2: The Top-1 accuracy of ResNet-18
on ImageNet. Solid and dashed lines are for
approximation 10 and 11 respectively.

Figure 3: The PPL of Llama-7B on Wiki-
Text2. Solid and dashed lines are for approxi-
mation 10 and 11 respectively.

In the experiment shown in 3, we randomly select 512 2048-token segments from C4 (28). We chose276

512 segments here instead of the common 128 in order to reduce the effect of overfitting and thus277

compare the two approximations more objectively. In this experiment, we take N = 2, and quantize278

Llama-7B into W2A16 without groups, and only the layer-wise minimization is used to exclude the279

interference of other factors. The PPL decrease almost monotonically as the number of iterations K280

increases. It shows that, when K > 1, solving approximation 10 yields better model accuracy than281

approximation 11.282

However, when block-wise minimization is introduced in addition to the experiment in 3, the situation283

becomes a little more elusive. The results are shown in 4. The model’s best PPL is where K = 1,284

and then fluctuates within a range as K continues to increase. But all PPLs are inferior to when285

the second-level approximation (11) is used. We also plot the loss, defined in 2, of the first block286

between pre-and post quantization on the right vertical axis. As K increases, the loss decreases287

strictly monotonically, and when K > 2, the loss falls below the case when the approximation 11 is288

used. This suggests that the correlation between PPL and loss is perhaps weak, and we will investigate289

this in the future.290
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Figure 4: The PPL of Llama-7B on WikiText2
and the loss of the first block between pre-and
post-quantization. Solid and dashed lines are
for approximation 10 and 11 respectively.

Figure 5: The perplexity of Llama-7B on
WikiText2 and C4 dataset w.r.t the number of
segments as calibration datasets. The model
is quantized into W2A16g64.

4.3.2 the size of calibration dataset291

The solution of problem 6 is dependent on H and thus on the the calibration dataset, as does Eq. 2.292

Fig. 5 shows the relationship between dataset size and PPL. In this experiment, Llama-7B is quantized293

into W2A16g64. We use the second-level approximation (11) to save time, and {N = 4, J = 4}. For294

runtime reference, when the number of segments is 128/2048, the experiment took 4.3/19.5 hours.295

4.3.3 the necessity of block-wise minimization296

Table 4: The perplexity of Llama on WikiText2 with
and without the block-wise minimization. All the mod-
els are quantized into W2A16.

Llama 1-7B 1-13B 1-30B 2-7B 2-13B
w/o 13.66 9.68 7.35 14.66 12.93
w 9.49 7.86 6.37 9.74 13.03

Tab. 4 shows that block-wise minimiza-297

tion(2) can further improve the model accu-298

racy. In this experiment, we choose N = 4299

and the approximation 11 for the layer-wise300

minimization, and J = 4 if block-wise min-301

imization is used.302

5 Conclusion and Discussion303

deocupleQ decouples the model parameters into the integer part and a floating point part, and304

then optimizes them alternately. This optimization process contains two stages. In the layer-wise305

minimization, we transform the quantization problem into the purely mathematical constrained306

optimization problem refdecoupleQ; while in the block-wise minimization, we freeze the integer part307

and then finetune the floating point part.308

The risks of decoupleQ include the following: 1. How much the minimization of the ℓ2 loss of309

the layer’s or block’s output correlates with the accuracy of the model; 2. decoupleQ is prone to310

overfitting the calibration dataset; 3. The runtime of the quantization process is longer than others.311

For the first risk, we find experimentally that the correlation between Top-1 and the loss is strong in312

the Imagenet classification task; however, the correlation between PPL and the loss is slightly weaker313

in LLM. This could be mainly because of an inherent bias between the loss and the accuracy of the314

model, or because PPL is not a good indicator of the accuracy of LLM, or for other reasons. For315

the second risk, when H in Eq. 7 is an underdetermined matrix, the risk of overfitting rises sharply.316

In this case, the possibility of H being underdetermined can be reduced either by enhancing the317

diagonal element values of H or by increasing the amount of calibration data. In our practice, we318

found that the accuracy of quantization models can rise monotonically with the increase of the size of319

the calibration dataset, especially in W2 quantization, but the runtime of quantization rise as well. In320

addition, due to time constraints, we do not provide a wealth of public comparisons. However, we321

believe that the novelty of a method may outweigh the number of experiments.322

The idea of decoupleQ is helpful for the adaptation of large model to downstream sub-task. We can323

quantize a large foundation model via decoupleQ, then freeze the integer part of the model, and324

finetune the floating-point part with labeled dataset from downstream sub-task. Tab. 1 and Tab. 2325

show that the model accuracy can be further improved by end-to-end supervised learning.326
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NeurIPS Paper Checklist426

1. Claims427

Question: Do the main claims made in the abstract and introduction accurately reflect the428

paper’s contributions and scope?429

Answer: [Yes]430

Justification: Our claims and justification include:431

a. Our results are higher than others in very low bit (2-bit) quantization.( This is432

justified in Tab. 3.);433

b. decoupleQ has achieved comparable accuracy as fp16/bf16 for 2-bit quantiza-434

tion of large speech models in our company. (This is justified in Tab. 1, and the435

W2 CUDA kernel used in our company are attached.);436

c. decoupleQ gets rid of any tricks for dealing with outliers, sensitive channels,437

etc. (This is justified in the Problem 6, we do not use any tricks, such as scaling438

factor (19; 29), mixed-precision quantization (6), etc., to deal with outliers and439

sensitive channels.)440

Guidelines:441

• The answer NA means that the abstract and introduction do not include the claims442

made in the paper.443

• The abstract and/or introduction should clearly state the claims made, including the444

contributions made in the paper and important assumptions and limitations. A No or445

NA answer to this question will not be perceived well by the reviewers.446

• The claims made should match theoretical and experimental results, and reflect how447

much the results can be expected to generalize to other settings.448

• It is fine to include aspirational goals as motivation as long as it is clear that these goals449

are not attained by the paper.450

2. Limitations451

Question: Does the paper discuss the limitations of the work performed by the authors?452

Answer: [Yes]453

Justification: The paper has discussed the three limitations of decoupleQ in the last section,454

Conclusion and Discussion, and the risk overall that we did not provide as many public455

comparison experiments as other work due to time constraints.456

Guidelines:457

• The answer NA means that the paper has no limitation while the answer No means that458

the paper has limitations, but those are not discussed in the paper.459

• The authors are encouraged to create a separate "Limitations" section in their paper.460

• The paper should point out any strong assumptions and how robust the results are to461

violations of these assumptions (e.g., independence assumptions, noiseless settings,462

model well-specification, asymptotic approximations only holding locally). The authors463

should reflect on how these assumptions might be violated in practice and what the464

implications would be.465

• The authors should reflect on the scope of the claims made, e.g., if the approach was466

only tested on a few datasets or with a few runs. In general, empirical results often467

depend on implicit assumptions, which should be articulated.468

• The authors should reflect on the factors that influence the performance of the approach.469

For example, a facial recognition algorithm may perform poorly when image resolution470

is low or images are taken in low lighting. Or a speech-to-text system might not be471

used reliably to provide closed captions for online lectures because it fails to handle472

technical jargon.473

• The authors should discuss the computational efficiency of the proposed algorithms474

and how they scale with dataset size.475

• If applicable, the authors should discuss possible limitations of their approach to476

address problems of privacy and fairness.477
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• While the authors might fear that complete honesty about limitations might be used by478

reviewers as grounds for rejection, a worse outcome might be that reviewers discover479

limitations that aren’t acknowledged in the paper. The authors should use their best480

judgment and recognize that individual actions in favor of transparency play an impor-481

tant role in developing norms that preserve the integrity of the community. Reviewers482

will be specifically instructed to not penalize honesty concerning limitations.483

3. Theory Assumptions and Proofs484

Question: For each theoretical result, does the paper provide the full set of assumptions and485

a complete (and correct) proof?486

Answer:[NA]487

Justification: This paper does not include theoretical results.488

Guidelines:489

• The answer NA means that the paper does not include theoretical results.490

• All the theorems, formulas, and proofs in the paper should be numbered and cross-491

referenced.492

• All assumptions should be clearly stated or referenced in the statement of any theorems.493

• The proofs can either appear in the main paper or the supplemental material, but if494

they appear in the supplemental material, the authors are encouraged to provide a short495

proof sketch to provide intuition.496

• Inversely, any informal proof provided in the core of the paper should be complemented497

by formal proofs provided in appendix or supplemental material.498

• Theorems and Lemmas that the proof relies upon should be properly referenced.499

4. Experimental Result Reproducibility500

Question: Does the paper fully disclose all the information needed to reproduce the main ex-501

perimental results of the paper to the extent that it affects the main claims and/or conclusions502

of the paper (regardless of whether the code and data are provided or not)?503

Answer: [Yes]504

Justification: At the beginning of the section Experiments, we provide details of the experi-505

mental parameters; specifically for each experiment, we also provide the key experimental506

parameters.507

Guidelines:508

• The answer NA means that the paper does not include experiments.509

• If the paper includes experiments, a No answer to this question will not be perceived510

well by the reviewers: Making the paper reproducible is important, regardless of511

whether the code and data are provided or not.512

• If the contribution is a dataset and/or model, the authors should describe the steps taken513

to make their results reproducible or verifiable.514

• Depending on the contribution, reproducibility can be accomplished in various ways.515

For example, if the contribution is a novel architecture, describing the architecture fully516

might suffice, or if the contribution is a specific model and empirical evaluation, it may517

be necessary to either make it possible for others to replicate the model with the same518

dataset, or provide access to the model. In general. releasing code and data is often519

one good way to accomplish this, but reproducibility can also be provided via detailed520

instructions for how to replicate the results, access to a hosted model (e.g., in the case521

of a large language model), releasing of a model checkpoint, or other means that are522

appropriate to the research performed.523

• While NeurIPS does not require releasing code, the conference does require all submis-524

sions to provide some reasonable avenue for reproducibility, which may depend on the525

nature of the contribution. For example526

(a) If the contribution is primarily a new algorithm, the paper should make it clear how527

to reproduce that algorithm.528

(b) If the contribution is primarily a new model architecture, the paper should describe529

the architecture clearly and fully.530
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(c) If the contribution is a new model (e.g., a large language model), then there should531

either be a way to access this model for reproducing the results or a way to reproduce532

the model (e.g., with an open-source dataset or instructions for how to construct533

the dataset).534

(d) We recognize that reproducibility may be tricky in some cases, in which case535

authors are welcome to describe the particular way they provide for reproducibility.536

In the case of closed-source models, it may be that access to the model is limited in537

some way (e.g., to registered users), but it should be possible for other researchers538

to have some path to reproducing or verifying the results.539

5. Open access to data and code540

Question: Does the paper provide open access to the data and code, with sufficient instruc-541

tions to faithfully reproduce the main experimental results, as described in supplemental542

material?543

Answer: [Yes]544

Justification: The code (including W2 CUDA kernels) is attached in supplementary material,545

and can reproduce the results in the public experiments.546

Guidelines:547

• The answer NA means that paper does not include experiments requiring code.548

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/549

public/guides/CodeSubmissionPolicy) for more details.550

• While we encourage the release of code and data, we understand that this might not be551

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not552

including code, unless this is central to the contribution (e.g., for a new open-source553

benchmark).554

• The instructions should contain the exact command and environment needed to run to555

reproduce the results. See the NeurIPS code and data submission guidelines (https:556

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.557

• The authors should provide instructions on data access and preparation, including how558

to access the raw data, preprocessed data, intermediate data, and generated data, etc.559

• The authors should provide scripts to reproduce all experimental results for the new560

proposed method and baselines. If only a subset of experiments are reproducible, they561

should state which ones are omitted from the script and why.562

• At submission time, to preserve anonymity, the authors should release anonymized563

versions (if applicable).564

• Providing as much information as possible in supplemental material (appended to the565

paper) is recommended, but including URLs to data and code is permitted.566

6. Experimental Setting/Details567

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-568

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the569

results?570

Answer: [Yes]571

Justification: At the beginning of the section Experiments, we provide details of the experi-572

mental parameters; specifically for each experiment, we also provide the key experimental573

parameters. The code is attached in supplementary material and will be made public.574

Guidelines:575

• The answer NA means that the paper does not include experiments.576

• The experimental setting should be presented in the core of the paper to a level of detail577

that is necessary to appreciate the results and make sense of them.578

• The full details can be provided either with the code, in appendix, or as supplemental579

material.580

7. Experiment Statistical Significance581

Question: Does the paper report error bars suitably and correctly defined or other appropriate582

information about the statistical significance of the experiments?583
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Answer: [No]584

Justification: The cost of the experiment is high.585

Guidelines:586

• The answer NA means that the paper does not include experiments.587

• The authors should answer "Yes" if the results are accompanied by error bars, confi-588

dence intervals, or statistical significance tests, at least for the experiments that support589

the main claims of the paper.590

• The factors of variability that the error bars are capturing should be clearly stated (for591

example, train/test split, initialization, random drawing of some parameter, or overall592

run with given experimental conditions).593

• The method for calculating the error bars should be explained (closed form formula,594

call to a library function, bootstrap, etc.)595

• The assumptions made should be given (e.g., Normally distributed errors).596

• It should be clear whether the error bar is the standard deviation or the standard error597

of the mean.598

• It is OK to report 1-sigma error bars, but one should state it. The authors should599

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis600

of Normality of errors is not verified.601

• For asymmetric distributions, the authors should be careful not to show in tables or602

figures symmetric error bars that would yield results that are out of range (e.g. negative603

error rates).604

• If error bars are reported in tables or plots, The authors should explain in the text how605

they were calculated and reference the corresponding figures or tables in the text.606

8. Experiments Compute Resources607

Question: For each experiment, does the paper provide sufficient information on the com-608

puter resources (type of compute workers, memory, time of execution) needed to reproduce609

the experiments?610

Answer: [Yes]611

Justification: We have reported that most of the experiments are conducted in one single612

A100-SXM-80GB, except for the sft process. And we also reported the time of execution.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,616

or cloud provider, including relevant memory and storage.617

• The paper should provide the amount of compute required for each of the individual618

experimental runs as well as estimate the total compute.619

• The paper should disclose whether the full research project required more compute620

than the experiments reported in the paper (e.g., preliminary or failed experiments that621

didn’t make it into the paper).622

9. Code Of Ethics623

Question: Does the research conducted in the paper conform, in every respect, with the624

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?625

Answer: [Yes]626

Justification: The research conducted in the paper conform, in every respect, with the627

NeurIPS Code of Ethics628

Guidelines:629

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.630

• If the authors answer No, they should explain the special circumstances that require a631

deviation from the Code of Ethics.632

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-633

eration due to laws or regulations in their jurisdiction).634
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10. Broader Impacts635

Question: Does the paper discuss both potential positive societal impacts and negative636

societal impacts of the work performed?637

Answer: [NA]638

Justification: This is a work for accelerating the inference of deep models, where the social639

impact is determined by the function of the model, not by how the inference is accelerated.640

Guidelines:641

• The answer NA means that there is no societal impact of the work performed.642

• If the authors answer NA or No, they should explain why their work has no societal643

impact or why the paper does not address societal impact.644

• Examples of negative societal impacts include potential malicious or unintended uses645

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations646

(e.g., deployment of technologies that could make decisions that unfairly impact specific647

groups), privacy considerations, and security considerations.648

• The conference expects that many papers will be foundational research and not tied649

to particular applications, let alone deployments. However, if there is a direct path to650

any negative applications, the authors should point it out. For example, it is legitimate651

to point out that an improvement in the quality of generative models could be used to652

generate deepfakes for disinformation. On the other hand, it is not needed to point out653

that a generic algorithm for optimizing neural networks could enable people to train654

models that generate Deepfakes faster.655

• The authors should consider possible harms that could arise when the technology is656

being used as intended and functioning correctly, harms that could arise when the657

technology is being used as intended but gives incorrect results, and harms following658

from (intentional or unintentional) misuse of the technology.659

• If there are negative societal impacts, the authors could also discuss possible mitigation660

strategies (e.g., gated release of models, providing defenses in addition to attacks,661

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from662

feedback over time, improving the efficiency and accessibility of ML).663

11. Safeguards664

Question: Does the paper describe safeguards that have been put in place for responsible665

release of data or models that have a high risk for misuse (e.g., pretrained language models,666

image generators, or scraped datasets)?667

Answer: [NA]668

Justification: This work does not release models or datasets.669

Guidelines:670

• The answer NA means that the paper poses no such risks.671

• Released models that have a high risk for misuse or dual-use should be released with672

necessary safeguards to allow for controlled use of the model, for example by requiring673

that users adhere to usage guidelines or restrictions to access the model or implementing674

safety filters.675

• Datasets that have been scraped from the Internet could pose safety risks. The authors676

should describe how they avoided releasing unsafe images.677

• We recognize that providing effective safeguards is challenging, and many papers do678

not require this, but we encourage authors to take this into account and make a best679

faith effort.680

12. Licenses for existing assets681

Question: Are the creators or original owners of assets (e.g., code, data, models), used in682

the paper, properly credited and are the license and terms of use explicitly mentioned and683

properly respected?684

Answer: [Yes]685

Justification: The paper has cited all related works, and included the relevant license.686
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Guidelines:687

• The answer NA means that the paper does not use existing assets.688

• The authors should cite the original paper that produced the code package or dataset.689

• The authors should state which version of the asset is used and, if possible, include a690

URL.691

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.692

• For scraped data from a particular source (e.g., website), the copyright and terms of693

service of that source should be provided.694

• If assets are released, the license, copyright information, and terms of use in the695

package should be provided. For popular datasets, paperswithcode.com/datasets696

has curated licenses for some datasets. Their licensing guide can help determine the697

license of a dataset.698

• For existing datasets that are re-packaged, both the original license and the license of699

the derived asset (if it has changed) should be provided.700

• If this information is not available online, the authors are encouraged to reach out to701

the asset’s creators.702

13. New Assets703

Question: Are new assets introduced in the paper well documented and is the documentation704

provided alongside the assets?705

Answer: [Yes]706

Justification: We provide the source code, and a readme and license file are alongside.707

Guidelines:708

• The answer NA means that the paper does not release new assets.709

• Researchers should communicate the details of the dataset/code/model as part of their710

submissions via structured templates. This includes details about training, license,711

limitations, etc.712

• The paper should discuss whether and how consent was obtained from people whose713

asset is used.714

• At submission time, remember to anonymize your assets (if applicable). You can either715

create an anonymized URL or include an anonymized zip file.716

14. Crowdsourcing and Research with Human Subjects717

Question: For crowdsourcing experiments and research with human subjects, does the paper718

include the full text of instructions given to participants and screenshots, if applicable, as719

well as details about compensation (if any)?720

Answer: [NA]721

Justification: the paper does not involve crowdsourcing nor research with human subjects722

Guidelines:723

• The answer NA means that the paper does not involve crowdsourcing nor research with724

human subjects.725

• Including this information in the supplemental material is fine, but if the main contribu-726

tion of the paper involves human subjects, then as much detail as possible should be727

included in the main paper.728

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,729

or other labor should be paid at least the minimum wage in the country of the data730

collector.731

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human732

Subjects733

Question: Does the paper describe potential risks incurred by study participants, whether734

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)735

approvals (or an equivalent approval/review based on the requirements of your country or736

institution) were obtained?737

Answer: [NA]738
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Justification: the paper does not involve crowdsourcing nor research with human subjects739

Guidelines:740

• The answer NA means that the paper does not involve crowdsourcing nor research with741

human subjects.742

• Depending on the country in which research is conducted, IRB approval (or equivalent)743

may be required for any human subjects research. If you obtained IRB approval, you744

should clearly state this in the paper.745

• We recognize that the procedures for this may vary significantly between institutions746

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the747

guidelines for their institution.748

• For initial submissions, do not include any information that would break anonymity (if749

applicable), such as the institution conducting the review.750
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