
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Anonymous Authors1

Abstract
Tabular foundation models pre-trained on synthet-
ically generated datasets have exhibited strong in-
context learning capabilities. While fine-tuning
can further enhance predictive performance, over-
fitting to the training data of a downstream task
poses a significant risk in tiny-to-small data
regimes. We propose a fine-tuning method that
employs synthetically generated fine-tuning data
to avoid overfitting and improve generalization
performance. We study three variants of data
generation methods and empirically demonstrate
that they mitigate overfitting and outperform stan-
dard fine-tuning approaches across five tiny-to-
small real-world datasets. Our data generation
methods leverage density estimators and struc-
tural causal models, akin to those employed dur-
ing pre-training, to yield the best performance.
Our findings indicate that synthetic data gener-
ation, a central element in pre-training, can be
successfully adapted to enhance fine-tuning.

1. Introduction
Deep learning methods have recently begun to rival tree-
based models in the domain of tabular classification, demon-
strating competitive performance on a wide range of bench-
marks. A particularly promising line of work leverages
transfer learning across diverse datasets, often referred to
as foundation models (Hollmann et al., 2025; Müller et al.,
2023; Qu et al., 2025; Hollmann et al., 2022). One piv-
otal example is TabPFN, a pre-trained transformer architec-
ture, using in-context learning (ICL). The model is given
a set of correctly labled context samples and predicts class
probabilities for query samples in a single forward pass.
TabPFN bypasses the limited avaiability of publicly accessi-
ble, high-quality, tabular data sets by purely pre-training on
synthetically generated data (Hollmann et al., 2025).

Despite the strong zero-shot performance of such models,
further performance can often be achieved by fine-tuning
them on a target dataset (den Breejen & Yun, 2025; Bree-
jen et al., 2024; Thomas et al., 2024a)1. However, fine-

1AutoGluon provides an accessible fine-tuning API for their

tuning tabular foundation models remains challenging due
to the tiny-to-small size of most real-world tabular datasets
which can lead to overfitting to the training data after only
a few gradient steps and consequently poor predictive per-
formance when generalizing to unseen data. A common
mitigation strategy is to divide the training data into training
and validation subsets, using validation performance as a
proxy for generalization, and selecting the model check-
point with the best validation score. However, this approach
further reduces the limited number of available training
samples, constraining the model’s ability to learn the full
complexity of the underlying data distribution. As a re-
sult, fine-tuning may cause the model to learn only from a
simplified or biased representation of the data distribution,
ultimately worsening its performance on unseen data.

To address this issue, we propose fine-tuning with syntheti-
cally generated data, a method for fine-tuning tabular foun-
dation models on tiny-to-small datasets. Inspired by the suc-
cess of transfer learning across datasets during pre-training,
we use data-generating models tailored to the training data
distribution to enable efficient sampling of synthetic datasets.
These synthetic datasets retain the structural characteristics
of the target distribution while mitigating the problem of
overfitting by allowing us to fine-tune on more data.

Empirically, we demonstrate that conventional fine-tuning,
using the training dataset directly, often does not improve
performance on the test set, compared to the pre-trained
models. Further, we show that fine-tuning with data gener-
ated through our methods often yields superior test perfor-
mance compared to conventional fine-tuning and improves
the downstream performance compared to the pre-trained
model. Especially in data-scarce applications fine-tuning on
synthetically generated data poses a promising solution to
improve predictive performance without the drawbacks of
too little training data.

2. Related Work
Recent studies have explored various methods for fine-
tuning TabPFN: updating all weights (Breejen et al., 2024;
den Breejen et al., 2023; Thomas et al., 2024b), training
only a tokenizer layer (Liu et al., 2024), learning a com-

TabPFN variant TabPFN-Mix

1

https://huggingface.co/autogluon/tabpfn-mix-1.0-classifier

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Training Dataset

Data
 Generator

Foundation Model
(e.g. TabPFNv2)

X1 X2 X3 Y X̂1 X̂2 X̂3
̂Ytrue

CrossEntropy(,)
̂Ytrue ̂Ypred

Fine-tuning Dataset

Update final model on
improvement

Validation Dataset

B
ack Prop.

Repeat until time is up

X1 X2 X3 Y

Figure 1. Overview of the fine-tuning pipeline. The data generator is trained on the training set. Each iteration samples a synthetic
dataset, split into context and query samples. The model predicts query labels based on context and query features. Performance is
evaluated on the validation set, and the final model is updated upon improvement.

pressed data representation (Feuer et al., 2024; Ma et al.,
2024b), training separate encoders and a routing mechanism
Xu et al. (2024), or training an ensemble encoder (Liu &
Ye, 2025). All these studies have fine-tuned TabPFN on the
training data of downstream tasks. In contrast, we keep the
method static and change the data used for fine-tuning. Sev-
eral works have explored tabular data synthesis, including
class-specific energy-based models (Margeloiu et al., 2024),
conditional GANs for mixed-type data (Xu et al., 2019),
GANs with privacy-enhanced extensions (Zhao et al., 2024),
and diffusion-based foundation models (Lin et al., 2024). In
contrast to much of the existing work in the field of tabular
data synthesis, our work does not focus on privacy-related
aspects. Instead, we focus on improving downstream pre-
diction performance, which could be enhanced using deep
learning methods of tabular synthesis mentioned above.

To pre-train tabular foundation models (TFMs), several stud-
ies have used cost-efficient parametrized models to generate
synthetic datasets. Hollmann et al. (2022) utilized multi-
layer perceptrons (MLPs), Gaussian processes (GPs), and
structural causal models (SCMs), while Hollmann et al.
(2025) and Qu et al. (2025) incorporated tree-based models
and varied activation functions to introduce non-linearities.
Unlike pre-training, which benefits from highly diverse
datasets, our synthetic data generation for fine-tuning aims
to generate data resembling the target dataset to enhance
downstream performance.

3. Method
Below, we describe our fine-tuning pipeline and outline
the data generation strategies employed by the different
methods. Notably, the only varying component across the
evaluated variants is the fine-tuning data generator.

Fine-tuning Pipeline. Fine-tuning is constrained to a
maximum runtime of 4 hours. We employ the AdamWSched-
uleFree optimizer with a learning rate of 1 × 10−7, batch
size of 4, weight decay of 0.01, and gradient norm clip-
ping capped at 1.0. During the iterative training loop, a
batch of datasets is sampled from the data-generating pro-
cess, split into context and query sets, and both the context
samples and query features are forwarded to the foundation
model. The loss criterion depends on the dataset’s number
of classes, binary cross-entropy for binary classification and
cross-entropy for multiclass settings, following Hollmann
et al. (2025). We perform full weight updates. To ensure
consistency of the data during training and inference, we
disable the heuristic preprocessing applied by the founda-
tion models in both stages. The data loader utilizes 16 CPU
workers, and fine-tuning is conducted on a single RTX2080
GPU. The fine-tuning process is illustrated in Figure 1, with
further implementation details in Appendix A.

The data-generating methods differ in their underlying strate-
gies for synthetic data generation. All methods are illus-
trated in Figure 2 and described below, with additional de-
tails on the individual variants provided in Appendix B.

Baseline: The baseline fine-tuning method uses standard

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Features Targets

YX1 X2 X3

Features Targets

YX1 X2 X3

(a) No Augmentation (Baseline)

FeaturesTargets

X3 YX̂1

Features Targets

YX1 X2 X3

(b) TableAugmentation

Bayesian
Gaussian
Mixture

~ Features

Classifier
Features Targets→

Features TargetsFeatures Targets

X1 X2 X3 Y X̂1 X̂2 X̂3 ̂Y

(c) MixedModel

Features Targets

Structural
Causal
Model

X1

X3X2

Y

X1 X2 X3 Y

Features Targets

X̂1 X̂2 X̂3 ̂Y

(d) Structural Causal Model (SCM)

Figure 2. Visual representation of the data-generating methods. Blue and red indicate real training data; green and purple indicate
synthetically generated data. MixedModel and SCM method first train internal models on real training data and then sample synthetic
features from the fitted models.

minibatch updates on real data and serves as the refer-
ence point for all experimental comparisons.

TableAugmentation: Inspired by the dataset augmentation
used by Ma et al. (2024a), the TableAugmentation
method applies manually defined transformations on
the dataset. First, we sample a random subset (50-
100%) of training features (including the target). From
this subset, one feature is randomly chosen as the new
prediction target. This target is then discretized into
classes, with the number of classes drawn uniformly
between 2 and 10. Learning to predict the new target
using a subset of features allows the model to view the
dataset from different perspectives and to adapt to the
relationships between features.

MixedModel: Our MixedModel method leverages ma-
chine learning predictors to augment the dataset in
an automated way. To sample a synthetic dataset, a
Bayesian Gaussian Mixture Model2(BGM) is first fit-
ted to the training features, and a classification model
is randomly selected from a predefined pool of clas-
sifiers and trained on the real training features and
labels. Synthetic features are sampled from the BGM
and passed through the trained classifier to generate
synthetic labels.

SCM: To generate synthetic datasets using our Structural

2We use the scikit-learn implementation of the Bayesian
Gaussian Mixture Model.

Causal Model (SCM) approach, we first fit the SCM to
the training data through a two-stage procedure. In the
first stage, we infer the structure of a directed acyclic
graph (DAG) that encodes the causal relationships
among features. This is achieved using established
causal discovery algorithms—specifically, the Peter-
Clark (PC) (Spirtes et al., 2000) and Fast Causal Infer-
ence (FCI)(Spirtes et al., 2013) algorithms—applied
with randomly sampled hyperparameters. The out-
put adjacency matrices are aggregated to construct a
probabilistic adjacency matrix, where edge frequen-
cies indicate the strength of inferred relationships. A
DAG is then sampled from this matrix, with cycles and
bidirectional edges systematically removed to ensure
acyclicity. Visualizations of an examplary probabilistic
adjacency matrix are provided in Appendix 3(a).

In the second stage, we model the conditional depen-
dencies between variables using learnable functions
trained on the original data, consistent with the model
class employed by Hollmann et al. (2025). The result-
ing SCM enables the generation of synthetic datasets
that approximate the target distribution. Additional
implementation details are provided in Appendix B.

4. Results
Data Setup. We evaluate our method using classifica-
tion datasets from OpenML (IDs: 31, 37, 46, 1464, 40701),
subsampling uniformly down to 1,000 instances if needed.

3

scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html
scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Table 1. Performance Across Different Data-Generating Methods for Fine-tuning. Average test log-loss of TabPFNv2, with lower
values indicate better performance. A dash (“–”) denotes a crashed fine-tuning run. Raw represents fine-tuning with the training dataset
(baseline). Green marks improvement over the pre-trained model (ICL), red highlights cases where fine-tuning degraded performance and
bold indicates the best result per dataset. Values are rounded to five decimal places.

Dataset ICL Raw MixedModel SCM TableAugmentation

blood. 0.49801 0.47887 - 0.47134 0.47735
churn 0.15646 0.27553 0.23701 0.23822 0.23407

credit-g 0.50738 0.55297 0.50228 0.49834 0.52894
diabetes 0.47791 0.53445 0.47712 0.49334 0.48838
splice 0.14111 0.54726 0.11576 0.11846 0.13174

Each dataset is split into five stratified folds with 60% train-
ing, 20% validation, and 20% test sets, using distinct ran-
dom seeds to ensure robustness. Stratification is performed
with respect to class labels to preserve the original distri-
bution. Datasets are pre-processed using AutoGluon’s au-
tomated preprocessing pipeline3, which ordinally encodes
non-numerical values, keeps missing values, and flags cat-
egorical features. The data-generating methods are con-
structed from a copy of the training set with additional mean
imputation for numerical features and mode imputation for
categorical features; z-score normalization is applied to
all features except in the baseline and TableAugmentation
method.

We report test set performance over five folds, using the cor-
responding training and validation sets as context for the test
set prediction for fine-tuning of TabPFNv2, while providing
further analysis for TabDPT and TabICL in Appendix C.

Table 1 presents the average log-loss performance on the
holdout test sets across multiple datasets. Values marked in
green indicate an improvement compared to the pre-trained
model. Notably, baseline fine-tuning using real data did not
yield the best performance on any of the datasets and re-
sulted in improved performance over the pre-trained model
in only one case. This outcome is interpreted as a conse-
quence of overfitting, despite the use of validation-based
checkpointing, highlighting the inherent challenges asso-
ciated with fine-tuning tabular foundation models under
limited data conditions.

For the synthetic data genearting methods, the SCM and
MixedModel variants consistently achieve strong perfor-
mance, indicating that they effectively leverage classifica-
tion models to generate synthetic data that captures key
properties of the training distribution. In 3 out of 5 cases,
these methods substantially improved over the performance
of the pre-trained model each, and all synthetic data vari-
ants consistently outperform baseline fine-tuning across
all scenarios.

3AutoMLPipelineFeatureGenerator

5. Conclusion
We demonstrate that competitive fine-tuning performance
for tabular foundation models can be achieved using syn-
thetic fine-tuning data. In particular, we find that con-
ventional machine learning models can generate synthetic
datasets that improve performance while preserving robust-
ness on unseen test samples. Future work will explore a
wider range of datasets and investigate how different data
characteristics influence the finetunability.

4

https://auto.gluon.ai/dev/_modules/autogluon/features/generators/auto_ml_pipeline.html

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

References
Breejen, F. d., Bae, S., Cha, S., and Yun, S.-Y. Fine-tuned

in-context learning transformers are excellent tabular data
classifiers. arXiv preprint arXiv:2405.13396, 2024.

den Breejen, F. and Yun, S.-Y. Attic: A new ar-
chitecture for tabular in-context learning transformers,
2025. URL https://openreview.net/forum?
id=DSl9sSuUhp.

den Breejen, F., Bae, S., Cha, S., Kim, T.-Y., Koh, S. H.,
and Yun, S.-Y. Fine-tuning the retrieval mechanism for
tabular deep learning. In NeurIPS 2023 Second Table
Representation Learning Workshop, 2023.

Feuer, B., Schirrmeister, R., Cherepanova, V., Hegde, C.,
Hutter, F., Goldblum, M., Cohen, N., and White, C.
Tunetables: Context optimization for scalable prior-data
fitted networks. Advances in Neural Information Process-
ing Systems, 37:83430–83464, 2024.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tabu-
lar classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

Hollmann, N., Müller, S., Purucker, L., Krishnakumar,
A., Körfer, M., Hoo, S. B., Schirrmeister, R. T.,
and Hutter, F. Accurate predictions on small data
with a tabular foundation model. Nature, 637(8045):
319–326, 2025. ISSN 1476-4687. doi: 10.1038/
s41586-024-08328-6. URL https://doi.org/10.
1038/s41586-024-08328-6.

Lin, X., Xu, C., Yang, M., and Cheng, G. Ctsyn: A foun-
dational model for cross tabular data generation. arXiv
preprint arXiv:2406.04619, 2024.

Liu, Q., Yang, W., Liang, C., Pang, L., and Zou, Z. Tokenize
features, enhancing tables: the ft-tabpfn model for tabular
classification. arXiv preprint arXiv:2406.06891, 2024.

Liu, S.-Y. and Ye, H.-J. Tabpfn unleashed: A scalable and
effective solution to tabular classification problems. arXiv
preprint arXiv:2502.02527, 2025.

Ma, J., Thomas, V., Hosseinzadeh, R., Kamkari, H., Labach,
A., Cresswell, J. C., Golestan, K., Yu, G., Volkovs, M.,
and Caterini, A. L. Tabdpt: Scaling tabular foundation
models. arXiv preprint arXiv:2410.18164, 2024a.

Ma, J., Thomas, V., Yu, G., and Caterini, A. In-context data
distillation with tabpfn. arXiv preprint arXiv:2402.06971,
2024b.

Margeloiu, A., Jiang, X., Simidjievski, N., and Jamnik, M.
Tabebm: A tabular data augmentation method with dis-
tinct class-specific energy-based models. arXiv preprint
arXiv:2409.16118, 2024.

Müller, A., Curino, C., and Ramakrishnan, R. Mothernet:
A foundational hypernetwork for tabular classification.
arXiv preprint arXiv:2312.08598, 2023.

Qu, J., Holzmüller, D., Varoquaux, G., and Morvan, M. L.
Tabicl: A tabular foundation model for in-context learn-
ing on large data. arXiv preprint arXiv:2502.05564, 2025.

Spirtes, P., Glymour, C. N., and Scheines, R. Causation,
prediction, and search. MIT press, 2000.

Spirtes, P. L., Meek, C., and Richardson, T. S. Causal
inference in the presence of latent variables and selection
bias. arXiv preprint arXiv:1302.4983, 2013.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. Advances in Neural Infor-
mation Processing Systems, 37:108439–108467, 2024a.

Thomas, V., Ma, J., Hosseinzadeh, R., Golestan, K., Yu, G.,
Volkovs, M., and Caterini, A. L. Retrieval & fine-tuning
for in-context tabular models. Advances in Neural Infor-
mation Processing Systems, 37:108439–108467, 2024b.

Xu, D., Cirit, O., Asadi, R., Sun, Y., and Wang, W. Mixture
of in-context prompters for tabular pfns. arXiv preprint
arXiv:2405.16156, 2024.

Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. Modeling tabular data using conditional
gan. arxiv 2019. arXiv preprint arXiv:1907.00503, 1,
2019.

Zhao, Z., Kunar, A., Birke, R., Van der Scheer, H., and
Chen, L. Y. Ctab-gan+: Enhancing tabular data synthesis.
Frontiers in big Data, 6:1296508, 2024.

5

https://openreview.net/forum?id=DSl9sSuUhp
https://openreview.net/forum?id=DSl9sSuUhp
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1038/s41586-024-08328-6

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

A. fine-tuning
The context and prediction limits of all base models used—TabPFNv2, TabDPT, and TabICL—exceed 1,000 samples,
enabling the full dataset to be passed as input during both fine-tuning and evaluation. Since the data-generating methods
generate datasets with the same structure as the original, this compatibility is maintained throughout. During training,
model performance is evaluated on the validation set using the training set as context. For evaluation and testing the
sklearn compatible model wrappers, providing fit, predict and predict proba functions are used with the fine-tuned weights,
mimicing the later inference proceedure. At inference, both training and validation sets are used as context to predict on the
test set.

B. Data-Generating Methods
This section provides detailed descriptions of the synthetic dataset construction processes. For efficiency, each synthetic
dataset generation involves sampling four distinct datasets, each with different context and query subsets. This strategy
reduces the frequency of refitting the internal models within the data-generating method.

B.1. TableAugmentation

For each sampling instance, we first select a subset of rows from the dataset. A subset of features is then uniformly sampled,
with the number of retained features drawn from a uniform distribution between 50% and 100% of the total feature count.
By default, the target feature is treated identically to all other features during selection. Alternative configurations allow for
the target to be either always excluded or always included in the selected feature subset.

Subsequently, a new target feature is selected from among the available features, treating the original target as any other
feature. Optional configurations include always reusing or never reusing the original target as the new target. The number
of target classes is sampled uniformly from the range [2,10], with the effective class count constrained by the number of
unique values in the selected feature. If a discrete feature is chosen as the target, the k − 1 most frequent values are retained
as individual class labels, while all remaining values are grouped as the k-th class label.

B.2. MixedModel

To generate synthetic data using the MixedModel method, we first sample a classification model, which is selected from those
listed in Table 3, along with corresponding hyperparameters from a predefined distribution, including a BGM hyperparameter
sample. The BGM is fitted to the training data features, while the classifier is trained on both features and labels. Once both
estimators are fitted, synthetic features matching the shape of the training set are sampled from the BGM and passed through
the classifier to obtain synthetic labels. As the classifier models require imputed inputs, we perform mean imputation for
continuous features and mode imputation for categorical ones prior to model fitting. The hyperparamters of the BGM are
shown in table 2 and the classifier models used in 3.

Table 2. Density Estimator Configuration Space of Hyperparameters for the Bayesian Gaussian Mixture Model

Model Hyperparameter Type Range/Choices

BGM n components UniformInteger 1–30
BGM covariance type Categorical [full, tied, diag, spherical]
BGM tol UniformFloat (log) 10−5–10−1

BGM reg covar UniformFloat (log) 10−7–10−4

BGM max iter UniformInteger 100–1000
BGM n init UniformInteger 1–10
BGM init params Categorical [kmeans, random, random from data, k-means++]
BGM w. c. prior type Categorical [dirichlet process, dirichlet distribution]
BGM mean precision prior UniformFloat 0.1–10
BGM warm start Categorical [True, False]
BGM verbose Categorical [False]

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Table 3. Classifier Configuration Space of Hyperparameters

Model Hyperparameter Type Range/Choices

RandomForestClassifier rf n estimators UniformInteger (log) 10–500
RandomForestClassifier rf criterion Categorical [gini, log loss, entropy]
RandomForestClassifier rf max depth UniformInteger (log) 10-100
RandomForestClassifier rf min samples split UniformInteger 2–20
RandomForestClassifier rf min samples leaf UniformInteger 1–10
RandomForestClassifier rf max leaf nodes UniformInteger 10–100
RandomForestClassifier rf bootstrap Categorical [True, False]
DecisionTreeClassifier dt criterion Categorical [gini, entropy, log loss]
DecisionTreeClassifier dt splitter Categorical [best, random]
DecisionTreeClassifier dt max depth UniformInteger (log) 5–100
DecisionTreeClassifier dt min samples split UniformInteger 2–20
DecisionTreeClassifier dt min samples leaf UniformInteger 1–10
DecisionTreeClassifier dt max features Categorical [0.1, 0.25, 0.5, 0.75, 1.0, sqrt, log2, None]
MLPClassifier mlp hidden layer sizes UniformInteger 1–100
MLPClassifier mlp activation Categorical [relu, logistic, tanh]
MLPClassifier mlp solver Categorical [adam, sgd, lbfgs]
MLPClassifier mlp alpha UniformFloat 0.0001–0.1
MLPClassifier mlp batch size Categorical [auto, 32, 64, 128]
MLPClassifier mlp learning rate Categorical [constant, invscaling, adaptive]
MLPClassifier mlp learning rate init UniformFloat 0.0001–0.01
MLPClassifier mlp max iter UniformInteger 100–1000
MLPClassifier mlp momentum UniformFloat 0.5–0.95
MLPClassifier mlp nesterovs momentum Categorical [True, False]
MLPClassifier mlp early stopping Categorical [True, False]
SVC svc kernel Categorical [linear, rbf, poly, sigmoid]
SVC svc C UniformFloat (log) 1e-6–1e6
SVC svc degree UniformInteger 1–5
SVC svc gamma Categorical [scale, auto]
SVC svc coef0 UniformFloat -1–1
SVC svc shrinking Categorical [True, False]
SVC svc probability Categorical [True, False]
SVC svc tol UniformFloat (log) 1e-5–1e-2
SVC svc cache size UniformFloat 200–1000
SVC svc class weight Categorical [None, balanced]
SVC svc max iter UniformInteger 100–1000
SVC svc break ties Categorical [True, False]
HistGradientBoostingClassifier hgb loss Categorical [log loss]
HistGradientBoostingClassifier hgb learning rate UniformFloat 0.01–1.0
HistGradientBoostingClassifier hgb max iter UniformInteger 50–1000
HistGradientBoostingClassifier hgb max leaf nodes UniformInteger 5–100
HistGradientBoostingClassifier hgb max depth UniformInteger 3–15
HistGradientBoostingClassifier hgb min samples leaf UniformInteger 5–100
HistGradientBoostingClassifier hgb l2 regularization UniformFloat 0.0–1.0
HistGradientBoostingClassifier hgb max bins UniformInteger 10–255

B.3. SCM

For directed acyclic graph (DAG) discovery, we employ the implementations provided by the causal-learn Python library.
To introduce variability across runs, we sample the significance level α uniformly within the interval [0.01,0.1]. Each run is
constrained to a maximum of 1000 samples and at most 50 features. When the number of available features exceeds this

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

threshold, we restrict the analysis to a randomly selected subset of 50 features, computing the adjacency matrix solely for
this subset. No connections are inferred between selected and non-selected features.

For conditional independence testing, one of the following methods is uniformly selected for each run: fisherz, chisq, or gsq.
To ensure computational efficiency, each run is limited to a maximum runtime of 10 minutes, after which it is terminated
and excluded from further analysis. All DAG discovery processes are parallelized across 32 CPUs to speed up computation.

While these methods are commonly referred to as ”causal discovery” algorithms, their ability to uncover genuine causal
relationships is contingent on strong assumptions, such as the causal markov condition and causal sufficiency. These
assumptions are inherently untestable. However, in our context, their practical utility remains intact, as our objective is
limited to identifying measurable associational structures that approximate the predictive distribution, rather than establishing
definitive causal claims.

To construct the probabilistic adjacency matrix, we compute the empirical frequency of each directed edge across all DAG
discovery runs. Specifically, the probability of an edge pedge is defined as the ratio of the number of runs in which the edge
appears to the total number of runs, i.e.,

pedge =
of runs in which edge appears

of total runs
.

During each fine-tuning iteration, a single DAG is sampled from this probabilistic adjacency matrix by retaining directed
edges probabilistically and subsequently eliminating bidirectional edges and cycles to ensure acyclicity. The resulting DAG
is then provided to the DoWhy4 framework’s StructuralCausalModel class. Structural causal models (SCMs) are
instantiated using the assign causal mechanisms function, where the quality parameter is randomly selected
from the set {"GOOD", "Better", "BEST"}. This process fits an additive noise model to the inferred causal graph. In
3(a) we visualized the resulting probabilistic adjacency matrix from the houses dataset, as well as the resulting graph in 3(b).
This is used to sample DAG structure and fit the SCM with.

(a) Probabilistic Adjacency (b) Resulting Graph

Figure 3. Visual representation of the probabilistic adjacency matrix.

C. Results TabDPT and TabICL
C.1. TabDPT

The table 4 shows that the TabDPT foundation model seems to be generally less finetunable, compared to TabPFNv2.
notably the MixedModel method seams to perform best from all fine-tuning variants. This underlines the challenges of
fine-tuning with limited data.

4DoWhy Documentation

8

https://www.pywhy.org/dowhy/v0.12/

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Towards Synthetic Data for Fine-tuning Tabular Foundation Models

Table 4. Performance Across Different Data-Generating Methods for Fine-tuning.
Average test log-loss of TabDPT, with lower values indicate better performance. A dash (“–”) denotes a crashed fine-tuning run. Raw
represents fine-tuning with the training dataset (baseline). Green marks improvement over the pre-trained model (ICL), red highlights
cases where fine-tuning degraded performance and bold indicates the best result per dataset. Values are rounded to five decimal places.

Dataset ICL Raw MixedModel SCM TableAugmentation

blood. 0.47938 0.66893 - 0.50810 0.49175
churn 0.19633 0.26275 0.23065 0.22606 0.23572

credit-g 0.50336 0.65663 0.50218 0.54437 0.50422
diabetes 0.48536 0.67438 0.52959 0.61478 0.49799
splice 0.28422 0.25887 0.23713 0.24625 0.24405

Table 5. Performance Across Different Data-Generating Methods for Fine-tuning.
Average test log-loss of TabICL, with lower values indicate better performance. A dash (“–”) denotes a crashed fine-tuning run. Raw
represents fine-tuning with the training dataset (baseline). Green marks improvement over the pre-trained model (ICL), red highlights
cases where fine-tuning degraded performance and bold indicates the best result per dataset. Values are rounded to five decimal places.

Dataset ICL Raw MixedModel SCM TableAugmentation

blood. 0.47673 0.47733 - 0.45935 0.47831
churn 0.16524 0.23588 0.23588 0.23420 0.22772

credit-g 0.49084 0.45653 0.47919 0.47919 0.45653
diabetes 0.48057 0.49693 0.49693 0.48454 0.48977
splice 0.18245 0.13800 0.13800 0.13966 0.14066

The fine-tuning results of TabICL, shown in 5, also shows the finetunability of the foundation model, as it seems to be very
dataset and data method dependent for achieving good performance.

9

