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ABSTRACT

In this work we tackle the problem of out-of-distribution generalization through
conditional computation. Real-world applications often exhibit a larger distribu-
tional shift between training and test data than most datasets used in research. On
the other hand, training data in such applications often comes with additional an-
notation. We propose a method for leveraging this extra information by using an
auxiliary network that modulates activations of the main network. We show that
this approach improves performance over a strong baseline on the Inria Aerial Im-
age Labeling and the Tumor Infiltrating Lymphocytes (TIL) Datasets, which by
design evaluate out-of-distribution generalization in both semantic segmentation
and image classification.

1 INTRODUCTION

Deep learning has achieved great success in many core artificial intelligence (AI) tasks (Hinton et al.,
2012; Krizhevsky et al.| 2012} |Brown et al., |2020) over the past decade. This is often attributed to
better computational resources (Brock et al.,[2018) and large-scale datasets (Deng et al.,[2009).

Collecting and annotating datasets which represent a sufficient diversity of real-world test scenarios
for every task or domain is extremely expensive and time-consuming. Hence, sufficient training
data may not always be available. Due to many factors of variation (e.g., weather, season, day-
time, illumination, view angle, sensor, and image quality), there is often a distributional change or
domain shift that can degrade performance in real-world applications (Shimodairal [2000; Wang &
Schneider, 2014} |Chung et al., 2018). Applications in remote sensing, medical imaging, and Earth
observation commonly suffer from distributional shifts resulting from atmospheric changes, sea-
sonality, weather, use of different scanning sensors, different calibration and other variations which
translate to unexpected behavior at test time (Zhu et al., |2017; |Robinson et al., 2019; Ortiz et al.,
2018).

In this work, we present a novel neural network architecture to increase robustness to distributional
changes (See Figure[I). Our framework combines conditional computation (Dumoulin et al.| 2018}
20165 |De Vries et al.l 2017; [Perez et al., |2018)) with a task specific neural architecture for better
domain shift generalization.

One key feature of this architecture is the ability to exploit extra information, often available but
seldom used by current models, through a conditioning network. This results in models with bet-
ter generalization, better performance in both independent and identically distributed (i.i.d.) and
non- i.i.d. settings, and in some cases faster convergence. We demonstrate these methodological in-
novations on an aerial building segmentation task, where test images are from different geographic
areas than the ones seen during training (Maggiori et al.l 2017) and on the task of Tumor Infiltrating
Lymphocytes (TIL) classification (Saltz et al.,[2018).

We summarize our main contributions as follows:
e We propose a novel architecture to effectively incorporate conditioning information, such
as metadata.

e We show empirically that our conditional network improves performance in the task of
semantic segmentation and image classification.

e We study how conditional networks improve generalization in the presence of distributional
shift.



Under review as a conference paper at ICLR 2021

Input Imagery
n

. Conditioning -
Conditioning feature MLP predicting for Conditional (main
(auxiliary task) ~ ——> representation CBN/CGN params > task) network
Network (Zn(Xn)) (v", 8"
i Loss = Lmain_task + Lambda * L¢onditioning
Y
Conditioning info (t,)
(not required at Main task prediction
inference)

Figure 1: Conditional Networks

2 BACKGROUND AND RELATED WORK

Self-supervised learning. Self-supervised learning extracts and uses available relevant context
and embedded metadata as supervisory signals. It is a representation learning approach that exploits
a variety of labels that come with the data for free. To leverage large amounts of unlabeled data, it is
possible to set the learning objectives such that supervision is generated from the data itself. The self-
supervised task, also known as pretext task, guides us to a supervised loss function (Gidaris et al.,
2018} Oord et al., [2018}; |[He et al., |2019; |Chen et al., [2020). However, in self-supervised learning
we usually do not emphasize performance on this auxiliary task. Rather we focus on the learned
intermediate representation with the expectation that this representation can carry good semantic or
structural meanings and can be beneficial to a variety of practical downstream tasks. Conditional
networks can be seen as a self-supervision approach in which the pretext task is jointly learned with
the downstream task.

Our proposed modulation of a network architecture based on an auxiliary network’s intermediate
representation can also be seen as an instance of knowledge transfer (Hinton et al., |2015; [Urban
et al., 2016} [Bucilua et al., 2006). Because the auxiliary network has an additional task signal —
metadata prediction — information about this task can be transferred to the main task network.

Conditional Computation. Ioffe and Szegedy designed Batch Normalization (BN) as a technique
to accelerate the training of deep neural networks (loffe & Szegedyl 2015). BN normalizes a given
mini-batch B = { E ... }g=1 of N feature maps F;, . as described by the following Equation:

Fnenw —Ep[Fe, ]

BN (Fn c,hwlVe, Be) = e
(FnehwlYes Be) =7 Varg[F . | +€

+ Be, ey

where ¢, h and w are indexing the channel, height and width axis, respectively, 7. and f3. are train-
able scale and shift parameters, introduced to keep the representational power of the original net-
work, and € is a constant factor for numerical stability. For convolutional layers the mean and
variance are computed over both the batch and spatial dimensions, implying that each location in
the feature map is normalized in the same way.

De Vries et al.[(2017); [Perez et al.|(2018) introduced Conditional Batch Normalization (CBN) as a
method for language-vision tasks. Instead of setting ~y. and S, in Equation [I|directly, CBN defines
them as learned functions 3,, . = S.(¢y) and 7y, . = 7.(¢n) of a conditioning input ¢,,. Note that
this results in a different scale and shift for each sample in a mini-batch. Scale (v, ) and shift (5, )
parameters for each convolutional feature are generated and applied to each feature via an affine
transformation. Feature-wise transformations frequently have enough capacity to model complex
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(d) Input (e) AMLL U-Net (f) Fully Cond. U-Net
Figure 2: Qualitative Results. (a) Input from East Tyrol city, (b) AMLL U-Net segmentation results
for (a), (c) Fully Cond. U-Net CGN segmentation results for (a), (d) Input from Bellingham city, (e)
AMLL U-Net segmentation results for (d), (f) Fully Cond. U-Net CGN segmentation results for (d).

phenomena in various settings (Dumoulin et al.| [2018]). For instance, they have been successfully
applied to neural style transfer (Dumoulin et al.l 2016)) and visual question answering (Perez et al.,
2018). This kind of conditional computation scheme is not tied to the type of normalization used.
Wu & Hel|(2018)) recently proposed Group Normalization (GN). GN divides feature maps into groups
and normalizes the features within each group. GN only uses the layer dimension, hence its compu-
tation is independent of batch size. |Ortiz et al.| (2020) proposed Local Context Normalization (LCN)
to encourage local contrast enhancement by normalizing features based on a spatial window around
it and the filters in its group. Recently, [Michalski et al.| (2019) showed that Conditional Group Nor-
malization (CGN) offer performance similar to CBN. In this work, we show results using CBN and
CGN. Conditional normalization methods have been applied to tasks related to generalization, such
as few-shot learning (Jiang et al.|[2018; Tseng et al., 2020) and domain adaption (Su et al.,[2020). |Su
et al.| propose to use conditional normalization and an adversarial loss for domain adaption in object
detection. In contrast to this work, we propose a method for implicit conditioning on an auxiliary
task to leverage available metadata.

3 FORMULATION AND NETWORK ARCHITECTURE

3.1 PROBLEM ABSTRACTION

We first establish notation. Let x be an image input, associated with a ground-truth target y for
the main task (e.g. a segmentation mask). Let available extra annotation for x be denoted by .
The main network is trained to predict y given = and contextual information from an auxiliary
network. The auxiliary network learns to predict ¢, also given x. Features z of an intermediate
layer of the auxiliary network are used to transform the main task network’s layers using conditional
normalization parameterized by a learned function of z.

The motivation for this method of implicit conditioning is the following:

1. Since t’s are only used as training targets, auxiliary annotation is not required at test time.

2. During training, the auxiliary network learns (via backpropagation) to visually capture in-
formation predictive of £. At test time, the auxiliary network reasons about the unavailable
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Figure 3: Conditional Network Architecture for U-Net

t in terms of visual patterns that correlate with auxiliary annotations of training data. Note
that this allows the distribution of auxiliary information at test time to differ from the train-
ing data (see for example our experiments on out-of-distribution generalization in remote
sensing in Section [4.1).

While the first statement is true for any multi-task architecture, the second statement describes the
flexibility of the proposed method in leveraging auxiliary information of varying degrees of rele-
vance. Obviously, the modulation will help most, if the auxiliary information is maximally relevant
for the main task. Since the mapping from z to the modulation parameters is trained with the main
task’s training signal, the network can learn to discard components of z that are not useful for the
main task. It is also possible for the network to learn a constant identity transformation of the main
network’s features in case no correlation is found. This reduces the potential of negative transfer
learning between unrelated tasks common in multi-task learning (Ruder, |[2017).

To provide an example of how this method can help to exploit inexpensive metadata. Consider the
task of segmenting satellite imagery of different regions on the globe. We can use the prediction of
geographic coordinates, which are often logged by default when building satellite imagery datasets,
as the auxiliary task. In this case, the auxiliary network may learn to capture visual characteristics
that are distinctive for each region in the training set, such as a predominance for smaller buildings.
This would provide a useful inductive bias for the segmentation network, even for regions with
very different coordinates. By using feature modulation to integrate this contextual information, we
hypothesize that the main network can learn more general purpose features, which can be attended
to based on the context.

3.2 NETWORK ARCHITECTURE

Our proposed architecture modification transforms any standard neural network with normalization
layers into one that incorporates conditioning information ¢. In each convolutional block of the
neural network we substitute the normalization layer by it’s conditional counterpart. We refer to this
family of networks as Conditional Networks. Figure [3|shows this extension applied to the popular
U-Net Ronneberger et al.| (2015) architecture. U-Net is an encoder-decoder network architecture
with skip connections. Figure [3| shows the auxiliary network on the left modulating the modified
U-Net on the right. The conditioning network is a convolutional architecture (LeCun et al., [1998)
followed by a fully-connected layer that predicts metadata ¢,, as a function of the input image x,,.
The pre-activation features before the output layer are used as z (z,,). The functions 8, .(z (z,,))
and 7y, o(z (z,,)) mapping z (x,) to the scale and shift parameters are implemented with a multi-
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Figure 4: Heatmap of activations for (a) AMLL U-Net and (b) conditional U-Net. Cell 7j in row 4
and column j gives the activation of features j on patch i. Rows and columns are sorted so that those
that are more similar to one another appear side-by-side. Note that the color legends have different
scales.

layer perceptron (MLP). Using the latent representations instead of directly using ¢,, allows us to
leverage combinations of features that were useful in localizing images from previously seen data,
potentially improving generalization.

Because all its parts are differentiable, conditional networks can be trained end-to-end using
gradient-based optimization. Our full objective is described in Equation 2] where « is a hyper-
parameter balancing the main and auxiliary losses. Luyin_ask represents a standard main task loss.
Limaintask depends on the task, such as Jaccard, cross-entropy, and dice for semantic segmentation.
L conditioning €nsures the conditioning networks correctly predicts .

Lcond.,nel = Lmain,task +a- Lconditioning (2)

4 EXPERIMENTS
We study the following hypotheses:

H1: Generalization through context. Explicit incorporation of conditioning information im-
proves generalization in semantic segmentation and image classification tasks.

H2: Interpretability. The features learned by the conditioning and the main task network reflect
context-specific and context-invariant information, respectively.

4.1 CONDITIONAL NETWORKS FOR SEMANTIC SEGMENTATION OF AERIAL IMAGES

To study hypotheses H1 and H2 we focus on the Inria Aerial Image Labeling Dataset. This
dataset was introduced to test out-of-distribution generalization of remote-sensing segmentation
models (Maggiori et al., 2017). It includes imagery from 10 dissimilar urban areas in North America
and Europe. Instead of splitting adjacent portions of the same images into training and test sets, the
splitting was done city wise. All tiles of five cities were included in the training set and the remain-
ing cities are used as test set. The test set also has variation in illumination, landscape, and time,
making it well-suited to evaluate out-of-distribution generalization. The provided imagery comes
orthorectified and has a spatial resolution of 0.3m per pixel covering 810km? (405km? for training
and 405km? for the test set) on an evenly spaced grid. Images were labeled for the semantic classes
of building and not building. We use geographical coordinates of the images as target data for the
auxiliary network (see Section [3).
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Table 1: Inria Test Set Performance.

Method Bellingham | Bloomington| Innsbruck |San Francisco| East Tyrol Overall
IoU [ Acc. [ ToU [ Acc. | ToU [ Acc. [ ToU [ Acc. | IoU [ Acc. [ ToU [ Acc.
AMLL U-Net 65.37[96.53]55.07| 95.83 |67.62/96.0872.80| 91.00 |67.00(/96.91|67.98|95.27
U-Net + GN 55.48(93.3855.47|94.41 |58.93193.77|72.12| 89.56 |62.27|95.73]63.71|93.45
U-Net + LCN 63.61[96.26|60.47|96.22 |68.99|96.28 | 75.01 | 91.46 |68.90(97.19|69.90 | 95.48
Cond. U-Net CBN  [60.3895.91(48.84|95.20 |65.99(95.97|72.74| 90.88 [69.70]97.24|66.54 | 95.04
Cond. U-Net CGN  [63.10]96.15]56.43| 95.84 |68.70(96.23|74.31| 91.28 |66.71]97.03 |68.66|95.31
Fully Cond. U-Net CBN |65.91]96.49|57.24|95.95 |63.14|95.71|73.89| 90.83 |69.24|97.21{68.50|95.24
Fully Cond. U-Net CGN |66.98 |96.52|63.27 | 96.33 [ 69.80 | 96.24 | 73.88 | 90.75 |70.77|97.35|70.55|95.44

nont,, Cond. U-Net | 62.97]96.10]53.08] 95.03 | 65.61]95.73] 71.87] 90.32 |65.66]97.75] 66.33] 94.78

Table 2: Distribution Shift Generalization Gap.
Method Val. set | Test set | Gen. Gap
IoU (%) |1oU (%) | IoU (%)
AMLL U-Net 71.87 | 67.98 3.89
U-Net + GN 7138 | 63.71 7.67
Cond. U-Net CBN || 72.15 | 68.50 3.65
Cond. U-Net CGN|| 72.77 | 70.55 2.22

For H1, we compare model performances using the standard benchmark training-test split. For H2,
we perform an exploratory visualization of the feature-activation maps for the different models.

Generalization via conditioning. We used the Inria standard train-test split to see whether condi-
tioning information helps out-of-distribution generalization. From the training set we reserved five
images of each city for the validation set as suggested by Maggiori et al.[(2017).

For this set of experiments we trained our conditional U-Net presented in Figure [3|end-to-end from
scratch. We used as segmentation network the AMLL U-Net as described by [Huang et al.| (2018)),
which is a version of U-Net with fewer filters. The AMLL U-Net was the winning entry and top of
the Inria leaderboard and we use it as baseline for comparison in this section.

The Conditional U-Net was trained exactly as AMLL U-Net, but without any data augmentation
technique. We used the standardized latitude and longitude of the center pixel of each patch as the
conditioning information to be predicted by the conditioning network and the mean-squared error
(MSE) as the conditioning 10sS Lconditioning and cross-entropy as segmentation 108S Liain_task- All
training details and a figure showing histograms of final Intersection-over-Union (IoU) scores of the
different models can be found in the Appendix sections[A.T|and [A.2]

Table [1| shows the performance of the AMLL U-Net baselines and different variations of our pro-
posed architecture on the test set. Conditioning uniformly improved segmentation performance over
the corresponding conditioning-free models. This empirically validates our hypothesis H1 about
generalization through context. We identify as Cond. U-Net those models in which both the encoder
and decoder are modulated, which yielded a small gain in performance over just modulating the en-
coder or decoder alone. We recommend conditioning all blocks since the extra computational cost
is very small. Modulating using CGN consistently outperforms CBN.

t, Matters. An experiment using the conditioning network without the auxiliary task of predicting
t, shows a deterioration of performance relative to the baseline U-Net as shown in Table [I, We
see this as evidence for the importance of guiding the learning process of the latent conditioning
representation z (z,, ).

Table [2| shows the generalization gap as the difference between the validation set (i.i.d.) and the
test set performance. Notice how the models’ performances consistently degrade when we evaluate
them on cities not seen during training. Conditioning substantially reduces the generalization gap
induced by the distribution-shift between the training and test sets, yielding evidence for hypothesis
HI.

Figure 2] shows a qualitative comparison in the performance of the proposed network. The baseline
labels a beach and power lines as buildings while the Conditional U-Net does not.
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4.2 INTERPRETATION OF CONDITIONING FEATURES.

To evaluate hypothesis H2, we analyze patterns of activations across these experiments. This hy-
pothesis is interesting for several reasons,

e It serves as a sanity check for the proposed architecture, ensuring that supervision from
conditioning information leads to features that do indeed distinguish between cities.

e It sheds light on the potential of using conditioning information to facilitate learning of
generalizable features by intentionally learning context-dependent features.

e We can begin to characterize how generalization occurs, by identifying which training cities
a test patch “looks” like.

As our first approach towards characterizing feature context-dependence, we associate activations
with underlying conditioning information. We apply the following procedure for a few models,

e Compute all activations at a pre-specified layer in the network for all patches within an
epoch.

e Compute the norm of activations for each feature map in that layer.

e Arrange these values into a patch x feature matrix, and visualize using a heatmap.

For U-Net models, we focus on the “bottom” of the U, which has a large number of filters with small
spatial extent. In the conditional U-Net, we additionally compute the activations from the last layer
before prediction of patch coordinate{] If we notice separation of patch activations according to con-
ditioning information, we deduce that the learned feature maps are not invariant to that conditioning
context.

The learned activations are displayed in Figure ﬂ We find, that individual features that activate
for a patch in one city tend to activate in a large fraction of patches across all cities. Further, across
similar cities, patterns of activation are similar, for both conditioned and unconditioned models.
Consider relative similarity between Chicago and San Francisco, for example E}

For the conditioned model, the large majority of features are zero, across all patches. However,
when they are nonzero, their values tend to be larger than the typical activation in unconditioned
models. From these observations, we conclude that the improved generalization ability of the con-
ditional U-Net is not due to any ability to learn features that are more invariant to the identity of
the corresponding city. Instead, it appears that the conditional U-Net learns a smaller collection of
features that are ultimately more useful in the downstream segmentation task. We speculate that
having fewer active features for any prediction allows for sharper predictions, preventing “blurring”
that could result from averaging across feature maps. More details around H2 are presented in
the analysis of feature variance and Figure [I0]in the Appendix section[A.3] In summary, Figure [4]
gives evidence against H2, suggesting that conditional network architectures do not neatly segre-
gate context-specific and context-dependent features. Figure [] and [T0]both suggest that the learned
features are qualitatively different between the architectures.

4.3 CONDITIONAL NETWORKS FOR TUMOR INFILTRATING LYMPHOCYTES CLASSIFICATION

We also test Conditional Networks for the task of tumor infiltrating lymphocytes (TIL) Classifi-
cation. During the cancer diagnosis and treatment process, a patient may have a biopsy, which
produces a diagnostic tissue sample. Using this sample, a slide is prepared and examined under a
microscope by a pathologist to understand both how to treat the disease and to provide a prognosis
for the patient’s future. Virtually all cancer patients undergo these biopsies, producing large volumes
of these pathology slides.

A significant feature in these images is tumor infiltrating lymphocytes (TILs), which are types of
immune cells that move into a tumor to try to attack the cancer. The quantification of TILs is

ISince these features have no spatial extent, we do not take any norms.

*Tyrol/train refers to West Tyrol city, Tyrol/Validation refers to East Tyrol city as established in the Inria
dataset

3We also present the associated t-SNE projection in section
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Flgure 5: Example of negatlve and p051t1ve TIL patches for dlfferent cancer types The de51red task
is to properly classify a patch as TIL negative or TIL positive independently of the cancer type.

well known to have prognostic value in many contexts (Fridman et all, 2012} [Angell & Galon),

because understanding patient immune response to tumors is becoming increasingly important
with the growth of cancer immunotherapy. Features such as TILs can be quantified through image
analysis and deep learning algorithms (Saltz et al. 2018} [Klauschen et all, [2018). In|[Saltz et al.
(2018)), a convolutional neural network (CNN) architecture is systematically optimized to carry out
classification of nuclei from pathology images. This led to the release of a dataset consisting of TIL
maps corresponding to roughly 5,000 whole slide images from The Cancer Genome Atlas (TCGA).
Individual slide images were split into 100 x 100 patches and the tasks is to classify TIL patches as
positive or negative in the exact same dataset setup as (2018). The training set consists
of 86,154 patches that were manually annotated with TIL classification (2018)). There
are 64,381 TIL negative patches and 21,773 TIL positive patches. All patches are in 100 x 100 pixel
resolution, 20 times magnification, and are annotated as TIL positive or TIL negative. Examples of
the images and their labels are given in Figure 3]

These training images represent seven different cancer types: invasive carcinoma of the breast
(BRCA), colon adenocarcinoma (COAD), lung adenocarcinoma (LUAD), pancreatic adenocarci-
noma (PAAD), prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), and endome-
trial carcinoma of the uterine corpua (UCEC). The cancer type is the conditioning informations or
metadata (t,,) used to train the conditioning network. We use another 652 patches as our validation
set, and 900 manually annotated patches from twelve cancer types in total as the testing set. The
twelve cancer types are the seven listed above, as well as five novel ones never seen during training
(urothelial carcinoma of the bladder (BLCA), cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC), rectal adenocarcinoma (READ),
and stomach adenocarcinoma (STAD)).

Methods tested. We train the VGG 16-layers network as baseline (Simonyan & Zisserman
(2014)). VGG networks have been shown to work well for pathology image classification (Xu
et al.| (2015)); [Hou et al| (2016)). We then build the conditional version of VGG16 which we refer
to as Conditional VGG16. Conditional VGG16 is created in a similar way as conditional U-Net
and share a similar conditioning network. In this experiments the conditioning network is trained to
perform image classification for the type of cancer (t,,) using a seven-dimensional softmax layer. As
with conditional U-Net, we predict 5, .(z (z,,)) and vy, (2 (2,,)) from features in the conditioning
network. 3, .(z (x,)) and 7y,,.(2 (x,)) are then used to modulate VGG16 architecture. We use
binary cross-entropy as Lmain_task and multiclass cross-entropy as Leonditioning- 1raining details are
provided in the supplemental material.

Results. Table 3] shows the results for the Tumor infiltrating Lymphocyte classification task using
different approaches. Augmenting VGG16 using conditional networks improves its performance by
a large margin allowing us to obtain state-of-the-art performance in the task, even improving over
previous top performing approaches. It is also important to remember that ¢,, (cancer type) is only
required during training. Inference only requires the input image, as in competing methods.

To show the importance of the conditioning network we trained a version of conditional VGG16
where conditioning parameters are predicted directly from the cancer type softmax prediction from
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Table 3: TIL Classification Test (generalization set) Results

Model AUC (%)
Spatial (Saltz et al.[(2018); Hou et al.|(2019))) 86.16
Inception (Szegedy et al. (2016)); Patton et al.| (2019)) 89.9
MENNDL (Patton et al.[(2019)) 86.16
Conditional VGG16 (ours) 92.91
Direct Cond. VGG16 50.16
Cond. VGG16 alpha 0 77.18

the conditioning/auxiliary network and we refer to it as “direct cond. VGG16” on Table [3] As
expected, doing so does not work well. Properly predicting for the conditioning task is also very
important for conditional networks to work well. When we only optimize for Lyin task performance
degrades as it is shown on Table[3|under “Cond. VGG16 alpha 0.

5 DISCUSSION AND CONCLUSIONS

We have presented conditional networks, a family of neural networks that leverages conditional in-
formation for improved performance and better generalization. Conditional networks can be applied
to any network architecture that uses normalization layers. We showed how the performance of two
widely adopted network architectures (U-Net and VGG16) can be greatly improved by applying
conditional networks for both semantic segmentation and image classification. We have shown that
conditional networks consistently reduce the generalization gap observed when there is a shift of
the underlying distribution at test time. After carefully studying the network feature activations, we
found that the improved generalization ability of the proposed network is not due to the ability of
learning more invariant features. It appears, instead, that the conditional network learns a smaller
collection of features more relevant to the task. Conditional networks exploits available extra anno-
tation ¢,, while training, however ¢,, is not required during inference. It is not always obvious which
choice of t,, helps the most to better estimate z,,. Future work involves studying how the choice of
t,, influences performance in a larger set of tasks.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Details Aerial Image labeling Experiments and Conditional U-Net We trained all
networks for the task of aerial image labeling using 572x572 randomly sampled patches from all
training image tiles. We used the Adam optimizer (Kingma & Bal, [2014)) with a batch size of 12.
All networks were trained from scratch with a learning rate of 0.001. Every network was trained
for 100 epochs. We keep the same learning rate for the first 60 epochs and decay the rate to 0.0001
over the next 40 epochs. In every epoch 8,000 patches are seen. Binary Cross-Entropy was used
as the segmentation loss function. For the conditioning part of the conditional network we used the
latitude and longitude of every patch center pixel as ¢. Latitude and longitude were standardised to
be from -1 to +1. The dimension of z is 4374 (9x9x54). z is the input of the MLP predicting for
and 5. We used 1024 hidden units in the MLP.

model loss model loss

— train — train
Validation ax10-! Validation

\ 3x107!
2x107t
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3 3

3 3

3x1071

(a) Train loss AMLL U-Net (b) Train loss Cond. U-Net
Figure 6: (a) Training loss AMLL U-Net (b)Training loss AMLL U-Net Cond. U-Net

Figure [6] shows the learning curves of the baseline U-Net and the fully conditional U-Net (CGN).
The AMLL U-Net seems more prone to overfitting than our conditional U-Net.

Training Details Conditional VGG16. We trained all training 100 x 100 TIL patches from the
training set. We used the Adam optimizer (Kingma & Ba,[2014) with a batch size of 16. All networks
were trained from scratch for 20 epochs with a learning rate of 0.001. Binary Cross-Entropy loss was
used for the Liuqin tast (TIL classification) and multiclass cross-entropy for the Leonditioning task
(cancer type classification) loss function. For the conditioning part of the conditional network we
used the cancer type as metadata ¢. « for the conditional loss was 0.8. No data augmentation was
performed.

A.2 DETAILED PERFORMANCE CONDITIONAL U-NET

Figure [/| shows the overall and per-city performance of the models. The fully-conditional U-Net
variant using CGN consistently outperforms the other models on every city in the test set. The
CGN variant where only the encoder is conditioned has a stronger overall performance and gener-
alizes significantly better than the conditional U-Net variants using BN. This is consistent with the
observation of Wu & He|(2018)) that (regular) GN outperforms BN in segmentation tasks.

A.3 NETWORK FEATURE ACTIVATIONS

Figures [§]and [0 are the t-SNE figures obtained from inspecting the activations of the bottom of the
U in the U-Net for both the AMLL U-Net and Conditional U-Net CGN. Figure [§| shows the t-SNE
associated to sample images from the same cities in the training set ﬂ Figure 8] shows the t-SNE
associated to sample images from both training and test set

“Tyrol legend refers to West Tyrol as it refers to the training set
>Tyrol+Train refers to West Tyrol and Tyrol when train is false refers to East Tyrol
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Performance per City in Transfer Set
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Figure 7: (a) Histogram of overall performance for both validation and test set (b) Histogram of per
city performance
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Figure 8: t-SNE based on activations obtained using image tiles from the cities in the training set.
(a) AMLL U-Net train set (b) Cond. U-Net CGN train set

In light of the differences in scale and sparsity of feature activations in the conditional and AMLL
U-Nets in Figurelé—_ll we zoom into individual features of interest in Figure ﬁ It is not surprising
that the overall y-axis scale differs between the two networks — this is clear from the legend of
Figure [d However, for both rows of Figure [T0} we observe that there are more instances of high
variation in activation across patches in the conditional U-Net, compared to the AMLL U-Net. In
the conditional U-Net, there seem to be features that, while typically active, are often exactly or near
zero, and similarly, features that are typically inactive, but occasionally spike. This type of variation
is even observed within individual cities. This suggests a type of specificity in the learned features.
Rather than activating slightly more or slightly less across all patches, features seem sensitive to
particular features within the patches that they activate. While conditional U-Net features are not
invariant to conditioning data, they do appear to be more specialized.

%We refer to this figure while discussing hypothesis 2 in the section
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Figure 9: t-SNE based on activations obtained using image tiles from cities in both training and test
sets. (a) AMLL U-Net train and test sets (b) Cond. U-Net CGN train and test sets
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Figure 10: The (top) least and (bottom) most variable features, according to interquartile range, in
the AMLL and conditional U-Nets, after filtering to those features that are active in at least 10%
of patches. Columns 1-10 give the 10 most and least variable features, for least and most variable
features, respectively. The y-axis is the activation for each feature. Patches are split into individual
cities, and a boxplot of each city’s activation values is given.
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