
Improved Marginal Unbiased Score Expansion
(MUSE) via Implicit Differentiation

Anonymous Author(s)
Affiliation
Address
email

Abstract

We apply the technique of implicit differentiation to boost performance, reduce1

numerical error, and remove required user-tuning in the Marginal Unbiased Score2

Expansion (MUSE) algorithm for hierarchical Bayesian inference. We demon-3

strate these improvements on three representative inference problems: 1) an ex-4

tended Neal’s funnel 2) Bayesian neural networks, and 3) probabilistic principal5

component analysis. On our particular test cases, MUSE with implicit differen-6

tiation is faster than Hamiltonian Monte Carlo by factors of 155, 397, and 5, re-7

spectively, or factors of 65, 278, and 1 without implicit differentiation, and yields8

good approximate marginal posteriors. The Julia and Python MUSE packages9

have been updated to use implicit differentiation, and can solve problems defined10

by hand or with any of a number of popular probabilistic programming languages11

and automatic differentiation backends.12

1 Introduction13

MUSE is an algorithm for fast approximate hierarchical Bayesian inference, recently proposed by14

[1, 2]. The user denotes some subset of model parameters as the “parameters of interest," and the15

algorithm will approximate their marginal posterior while integrating out remaining “latent” param-16

eters. MUSE is efficient for very high-dimensional latent spaces and can often provide near-exact17

inference at orders of magnitude lower computational cost than other methods such as Hamiltonian18

Monte Carlo (HMC) or variational inference (VI) [2].19

The requirements for using MUSE on a given problem are that 1) samples can be generated from20

the prior and 2) gradients of the joint posterior probability distribution can be calculated. The latter21

requirement is the same as for HMC, VI, and many other tools. The former requirement is not22

strictly a requirement for some of these, but is generally even easier. All problems defined via a23

probabilistic programming language satisfy the requirements automatically. Owing to its reliance24

on prior samples, MUSE can be considered a form of simulation-based inference, extended to use25

readily available joint posterior gradients, similar to the proposal by [3].26

At its core, MUSE is based on an approximation to the marginal score formed from solutions to a27

series of optimization problems. As part of the algorithm, we must compute derivatives of these28

solutions, and, in this work, we improve MUSE by making use of implicit differentiation (ID) to29

perform this calculation. While ID is not a new development, it has recently been shown to be30

particularly powerful in conjunction with automatic differentiation (AD) [4, 5]. We follow this31

approach, and demonstrate that it leads to significant improvements in both speed and usability for32

MUSE, strengthening its case as a generic inference tool.33

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.



2 Summary of the MUSE method34

Here we give a brief and practical summary of MUSE to help understand where ID fits in (for a35

comprehensive introduction, see [2]). MUSE is applicable to inference problems where the posterior36

probability of some parameters of interest, θ, given data, x, requires marginalization over a high-37

dimensional latent space parameterized by z,38

P(θ |x) =
∫

dnz P(x, z | θ)P(θ). (1)

The algorithm provides a fast estimate of the marginal posterior mean and covariance, which is39

computed under an approximation to the integral over z. This approximation involves solving a40

series of optimization problems wherein we maximize the joint likelihood, P(x, z | θ), over the41

latent parameters z, given fixed x and θ,42

ẑ(θ, x) ≡ argmax
z

logP(x, z | θ). (2)

These correspond to maximum a posteriori (MAP) estimates of z, and they are used to define the43

score at the MAP,44

sMAP
i (θ, x) ≡ d

dθi
logP(x, ẑ(θ, x) | θ). (3)

The MUSE estimate of the posterior mean, θ̄, is then implicitly defined as the solution to45

sMAP
i (θ̄, x) =

〈
sMAP
i (θ̄, x)

〉
x∼P(x | θ̄)

, (4)

and the posterior covariance is Σ=H−1JH−†, with46

Jij =
〈
sMAP

i (θ̄, x) sMAP

j (θ̄, x)
〉
x∼P(x | θ̄)

−
〈
sMAP

i (θ̄, x)
〉〈

sMAP

j (θ̄, x)
〉
x∼P(x | θ̄)

(5)

Hij =
d

dθj

[〈
sMAP

i (θ̄, x)
〉
x∼P(x | θ)

]∣∣∣∣
θ=θ̄

. (6)

This definition gives MUSE a number of useful properties (see [2] for proofs): 1) it is an asymptot-47

ically unbiased estimate of θ irregardless of any non-Gaussianity in the likelihood, 2) it is asymp-48

totically optimal for a Gaussian likelihood, where it becomes equivalent to the marginal maximum49

likelihood estimate and the covariance becomes the inverse Fisher information matrix, 3) no dense50

operators of the dimensionality of z ever need to be computed, meaning it is well-suited for high-51

dimensional problems and 4) it requires few tuning parameters, setting it apart from HMC, VI, or52

many other simulation-based inference methods, which need user-provided mass matrices, surrogate53

distributions, or neural network architectures to work or to achieve optimal performance on compli-54

cated latent spaces. MUSE is approximate, so it does not aim to generically replace exact algorithms55

like HMC, but in many cases, its speed and aforementioned properties make it a very advantageous56

alternative.57

In practice, the optimization problem in Eq. (2) is performed with LBFGS using user-provided58

or AD gradients. An existing challenge for MUSE is that naively computing Eq. (6) with AD59

would require propagating second-order derivatives through the optimizer, since a chain rule term60

involving dẑ/dθ arises. With few or no AD libraries robustly supporting second-order AD through61

an optimizer, we have previously resorted to computing this term with finite differences (FD). This62

has not been completely prohibitive as FD are needed only over the low-dimensional θ and not over63

the high-dimensional z, so the solution remains tractable despite a linear computational scaling with64

the dimensionality of θ. However, it requires tuning the FD step size for each dimension of θ, and65

can at times incur large numerical errors. The main development of this paper is to demonstrate that66

this term can instead be computed more simply and exactly with ID.67

3 Using implicit differentiation68

To compute H with ID, first note that Eq. (6) can be written as Hij =
1
N

∑N
α=1 hij(Ωα), where Ωα69

are some independent random states, and70

hij(Ω) =
d

dθ′j

d

dθi
logP

(
x
(
Ω, θ′

)
, ẑ
(
x(Ω, θ′), θ̄

) ∣∣∣ θ)∣∣∣∣∣
θ=θ′=θ̄

. (7)

2



Here, we consider a single realization of x as dependent on θ in the sense that any simulated x can71

be written as a deterministic function of θ and a random state (think of Ω as the machine’s pseudo72

random number generator). Expanding the chain rule once and omitting Ω and the final evaluation73

at θ̄ for brevity yields74

d

dθ′j

d

dθi
logP

(
x
(
θ′
)
, ẑ
(
x(θ̄), θ̄

) ∣∣∣ θ) +
d

dzn

d

dθi
logP

(
x
(
θ̄
)
, z

∣∣∣ θ)∣∣∣∣
z=ẑ

dẑn
(
x(θ′), θ̄

)
dθ′j

. (8)

The first term can be computed with second-order AD through the likelihood and through the prior75

samples of x. In practice, this means simply using the same random state on the forwards and/or76

backwards AD passes and otherwise considering random number generation constant (this is the77

default in most AD libraries). The second term, where we will use ID, involves a derivative of the78

MAP solution, dẑ/dθ. The MAP solution by definition obeys79

d

dz
logP

(
x
(
θ′
)
, z

∣∣∣ θ̄)∣∣∣∣
z=ẑ(x(θ′),θ̄)

= 0. (9)

Taking a θ′ derivative of this equation and solving the resulting equation for dẑ/dθ′ yields80

dẑn
dθ′j

=

[
d2

dzmdzn
logP

(
x
(
θ̄
)
, z

∣∣∣ θ̄)]−1
d

dθ′j

d

dzm
logP

(
x
(
θ′
)
, z

∣∣∣ θ̄)∣∣∣∣∣
z=ẑ

. (10)

This quantity now only requires derivatives through the likelihood rather than through an optimizer;81

in fact, it is independent of the particular optimizer used to obtain ẑ. Computing it involves solving82

a linear problem with the same dimensionality as z. Because z is assumed high-dimensional where83

forming an explicit matrix is impossible, we solve the system iteratively, with the action of the quan-84

tity in brackets above given by a jacobian-vector product. Note, however, that the linear operator85

is symmetric since it is a Hessian, and, by definition if the MAP exists (which is a requirement for86

MUSE anyway), it is positive definite. Thus, we can use an efficient conjugate gradient solver which87

exploits this structure, as opposed to generic linear solvers which must be used in more general ID88

problems.89

4 Results90

We compare HMC and MUSE with or without ID on three representative inference problems:91

Funnel problem We consider an embedding of several Neal’s funnels into a toy hierarchical92

problem [6, 2]. The model is:93

θi ∼ Normal(0, 3) zij ∼ Normal(0, exp(θi/2)) xij ∼ Normal(tanh(zij), 1) (11)

with i∈ 1:10 parameters and j ∈ 1:500 latent dimensions per parameter. Although the embedded94

funnels are independent, for demonstration, we solve the entire problem as one large system when95

running either NUTS or MUSE.96

Bayesian Neural Network Following the example given in [7], we consider a Bayesian neural97

network (BNN) analysis, where we interpolate some noisy one-dimensional data with a three-layer98

neural network. The model is:99

σi ∼ LogNormal(0, 1)

τ ∼ Gamma(3, 1)

Wi ∼ Normal(0, σi)

Yj ∼ Normal(NN(Wi), 1/τ)
(12)

where i∈ 1:3 layers, the layer weights, Wi, which parameterize the network, NN, contain 45 latent100

dimensions and map the data coordinates to 5 hidden units and finally to the data space, and the data101

Yj consists of j ∈ 1:500 data points. The goal is to infer the σi and τ . We note that each internal102

optimization solution in Eq. (2) involves training the network given some prior on the weights. For103

this simple example we use our standard LBFGS solver, but other more machine learning oriented104

solvers can readily be used for the internal MUSE optimization step as well.105

Probabilistic Principal Component Analysis Finally, we consider a probabilistic principal com-106

ponent analysis (PPCA) with automatic relevance determination [8]. The model is:107

αi ∼ InverseGamma(1, 1)

Zij ∼ Normal(0, 1)

Wki ∼ Normal(0,
√
αi)

Xkjl ∼ Normal(WkiZij , 1)
(13)

3



Funnel BNN PPCA
(right axis)

0

100

200

300

400

sp
ee

du
p 

re
la

tiv
e 

to
 H

M
C HMC

MUSE (FD)
MUSE (ID)

0

1

2

3

4

5

6

sp
ee

du
p 

re
la

tiv
e 

to
 H

M
C

2.5 0.0 2.5
θ

0.0 2.5
log[σ, τ]

2.5 0.0 2.5
logα

101 102 103

Nθ

10-3

10-2

10-1

100

101

tim
e 

[s
ec

]

MUSE (FD)
MUSE (ID)

Figure 1: (Top left) Speedups which are possible with MUSE both with or without ID as compared
to HMC on a variety of hierarchical Bayesian inference problems (described in Sec. 4). (Bottom left)
HMC posteriors as violin plots, compared to MUSE results as error bars. (Right) Empirical check
of the asymptotical scaling of the H computation with FD or ID.

with i∈ 1:10 principal components, j, k∈ 1:100 observations, and l∈ 5 batches. The goal is to find108

the largest principal component amplitudes, α, given observations of X , while marginalizing over109

the entries in the Z and W matrices.110

Our benchmarks compare the number of posterior gradient evaluations needed such that for all111

parameters of interest, we reach 1) a 10% error on the mean relative to the standard deviation and112

2) a 10% relative error on the standard deviation. Given a Gaussian sampling distribution, these113

criteria impose the same constraint. For HMC, this corresponds to achieving an effective sample114

size of 100 for all parameters. We use NumPyro to implement each model [9, 10], and sample with115

NumPyro’s NUTS implementation with default parameters. For MUSE this corresponds to running116

MUSE with 100 simulations and setting the θ tolerance to 10%. We use the existing Jax [11] MUSE117

implementation to run MUSE on the same NumPyro model.118

The results are summarized in the left panels in Fig. 1. We see that for each of the three problems,119

ID outperforms the previous FD approach by as much as a factor of 5. In all cases, MUSE with ID120

significantly outperforms HMC, including by a factor of 391 in the most dramatic case (the BNN).121

The bottom panel shows a comparison of the inferred values of the parameters of interest, confirming122

the quality of the MUSE approximation.123

We also expect a more favorable computational scaling for ID over FD as we increase the dimen-124

sionality of θ. This is because computing hij with FD requires perturbing each element of θ and125

recomputing a MAP each time, whereas ID requires just one MAP that is then used evaluating all126

terms in Eqn. (8), with the tradeoff of also needing to solve a linear problem. To confirm this trade-127

off is beneficial, we modify our funnel problem to increase the dimensionality of θ (while keeping128

the latent dimensionality the same), and plot resulting timings for the H computation in the right129

panel of Fig. 1. We find that FD scales linearly with the dimensionality of θ as expected, but that130

ID is nearly constant, meaning the cost of the linear solver is subdominant. For the configurations131

considered, we reach multiple orders of magnitude speedups over FD.132

5 Conclusions133

In this work, we have shown that ID makes the MUSE algorithm faster and removes reliance on134

numerically-noisy FD. It requires second-order derivatives through the joint likelihood, but not135

through any optimizer, and never fully with respect to the latent space, meaning MUSE with ID136

is still well-suited for very high-dimensional problems. We have also provided examples of MUSE137

applied to BNNs and PPCA, demonstrating the extended applicability of the algorithm, which had138

previously been tested only on simpler toy problems or more complex but less general problems in139

cosmology [12, 2]. Beyond speed and accuracy improvements, removing the need to verify or tweak140

FD step-sizes represents a significant usability advancement for the algorithm.141

4



References142

[1] Uros Seljak, Grigor Aslanyan, Yu Feng, and Chirag Modi. Towards optimal extraction of cos-143

mological information from nonlinear data. Journal of Cosmology and Astroparticle Physics,144

2017(12):009–009, December 2017.145

[2] Marius Millea and Uroš Seljak. Marginal unbiased score expansion and application to CMB146

lensing. Physical Review D, 105:103531, May 2022.147

[3] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based infer-148

ence. Proceedings of the National Academy of Sciences, 117(48):30055–30062, December149

2020.150

[4] D Duvenaud, J. Z. Kolter, and M. Johnson. Deep Implicit Layers: Neural ODEs, Equilibrium151

Models, and Differentiable Optimization. https://implicit-layers-tutorial.org.152

[5] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-153

López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and Modular Implicit Differentia-154

tion, May 2022.155

[6] Radford M. Neal. Slice sampling. The Annals of Statistics, 31(3):705–767, June 2003.156

[7] NumPyro Documentation: Bayesian Neural Network.157

https://num.pyro.ai/en/stable/examples/bnn.html.158

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and159

Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.160

[9] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable Effects for Flexible and Accel-161

erated Probabilistic Programming in NumPyro, December 2019.162

[10] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofa-163

nis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep164

Universal Probabilistic Programming. Journal of Machine Learning Research, 20(28):1–6,165

2019.166

[11] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal167

Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao168

Zhang. JAX: Composable transformations of Python+NumPy programs, 2018.169

[12] Benjamin Horowitz, Uros Seljak, and Grigor Aslanyan. Efficient Optimal Reconstruction of170

Linear Fields and Band-powers from Cosmological Data. Journal of Cosmology and Astropar-171

ticle Physics, 2019(10):035–035, October 2019.172

5


	Introduction
	Summary of the MUSE method
	Using implicit differentiation
	Results
	Conclusions

