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Abstract

Biological agents have meaningful interactions
with their environment despite the absence of
immediate reward signals. In such instances,
the agent can learn preferred modes of be-
haviour that lead to predictable states – nec-
essary for survival. In this paper, we pursue
the notion that this learnt behaviour can be a
consequence of reward-free preference learning
that ensures an appropriate trade-off between
exploration and preference satisfaction. For
this, we introduce a model-based Bayesian
agent equipped with a preference learning
mechanism (pepper) using conjugate priors.
These conjugate priors are used to augment
the expected free energy planner for learning
preferences over states (or outcomes) across
time. Importantly, Pepper enables the agent
to learn preferences that encourage adaptive
behaviour at test time. We illustrate this
in the OpenAI Gym FrozenLake and the 3D
mini-world environments – with and with-
out volatility. Given a constant environment,
these agents learn confident (i.e., precise) pref-
erences and act to satisfy them. Conversely, in
a volatile setting, perpetual preference uncer-
tainty maintains exploratory behaviour. Our
experiments suggest that learnable (reward-
free) preferences entail a trade-off between ex-
ploration and preference satisfaction. Pepper
offers a straightforward framework suitable
for designing adaptive agents, when reward
functions cannot be predefined as in real en-
vironments.
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1. Introduction
Extrinsic rewards are not necessary to characterise
an agent’s interaction with its environment. For ex-
ample, humans have been shown to rely on intrinsic
motivation [47, 43, 6, 72], that can adequately regulate
behaviour1. Consequently, in the absence of immedi-
ate rewards, there is a preferred exchange with the
environment [2, 53, 15], that can be updated under
changing circumstances. Interestingly, this can result
in accruing preferences – and habits – that may be at
odds with objective goals, e.g., kleptomania. In this
paper, we demonstrate that this kind of behaviour can
be a consequence of reward-free preference learning
that encourages self-evidencing[29] and maintains an
appropriate arbitration between exploration and prefer-
ence satisfaction. In brief, we will see that agents learn
to explore or exploit, depending upon the predictability
of environmental contingencies.

Preference satisfaction subsumes homeostatic (extrin-
sic) motivations that encourage individuals to maintain
some ’preferred’ behaviour [43] and resist effects of per-
turbations (external or otherwise). Generally, these
refer to base needs that can be satisfied, e.g., going to
sleep or eating food. Conversely, exploration involves
heterostatic (intrinsic) motivations that distract the
agent from its homeostatic imperatives, e.g., novelty-
seeking behaviour. Exploratory behaviours would in-
clude trying a new hobby or taking a different route to
work. This kind of exploration is distinct from random
behaviour because it depends upon what the agent
does not know. Interestingly, over time, exploration
can become the primary mode of behaviour if explo-
ration satisfies the agent’s (learnt) preferences when
dealing with an uncertain environment.

Our work is based on the notion that an adaptive agent
learns the preferences that best reflect its environment.
To this end, we present pepper; a preference learning
mechanism that can accumulate preferences over states
(or outcomes) using conjugate priors – given a model-

1Explicitly, this prescribes Bayes-optimal behaviour in
the sense of Bayesian design and active learning.
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based Bayesian agent. Here, we instantiate Pepper
as a deep active inference agent [17, 69, 10, 68, 14],
maximising the evidence lower bound (or minimising
the free energy) during training, and optimising the ex-
pected free energy (or free energy of future trajectories)
for planning [44, 40]. However, it would be straightfor-
ward to add Pepper to other Bayesian reinforcement
learning (RL) agents instead e.g., MaxEnt[20], Max[57]
or Dreamer[25], etc. Active inference was chosen de-
liberately to leverage the expected free energy (EFE)
as a planning objective that captures the imperative
to maximise: a) intrinsic value – from interactions
with the environment – about latent states, and b)
extrinsic value, namely, realising prior preferences over
outcomes. Moreover, active inference’s Bayesian formu-
lation provides a natural way to introduce conjugate
priors necessary for amortised learning of preferences
over states (or outcomes) – as previously shown in a
simplified setting for outcome preference learning[49].

Briefly, Pepper comprises a two-step procedure which
occurs after the (generative) model of the agent is
optimised for the environment (i.e., training time – see
Fig. 1). The first step consists of short episodes of
direct exchange with the environment, where a history
of observations and latent state representations are
retained. Once each episode finishes, the second step
involves updating prior preferences based on the history
using simple update rules (see Section 4). Importantly,
this means that agent can learn (different) preferences
that encourage adaptive behaviour at test.

The key contributions of this work are:

• We present a simple, and flexible, preference learn-
ing mechanism (Pepper) to augment the planning
objective (i.e., EFE) for learning (state or outcome)
preferences using deep learning.

• Pepper is reward-free at train and test time. This
is achieved by casting rewards as a random variable
in our generative model; equivalent to any other
observation.

• Adaptive behaviour is conceptualised as a trade-off
between exploration and preference satisfaction.

In what follows, we review the related literature. Next,
we introduce the problem setting and pepper (the pref-
erence learning mechanism). We then evaluate the
different types of preferences learnt during test time,
and how they engender an appropriate trade-off be-
tween exploration and preference satisfaction. Finally,
we discuss the potential implications of this work.

2. Related work
RL is regarded as a suitable framework for building
artificial agents. However, by definition, it relies on
a reward signal to reinforce agent behaviour [66]. In
reality, agents do not operate in a problem-solving
setting, where a “critic” may not be readily available to
provide immediate rewards [5, 59, 60]. Without task-
specific reward signal (also called extrinsic reward), the
agent is driven by intrinsic motivations that promote
exploration, play and curiosity [47, 58, 59]. Over the
years, a variety of intrinsic motivation methods have
been proposed, largely focusing on exploration, based
on information gain [30, 64], prediction error [1, 45,
61], novelty search [39, 56], curiosity [50, 51], entropy
[21, 38], or empowerment [36, 42].

Lately, through the popularisation of self-supervised
learning (SSL) methods [22, 41], the deep RL commu-
nity has turned its attention to self-supervised rein-
forcement learning. Auxiliary tasks or rewards [31] are
used – in the absence of any extrinsic rewards during
train time – to train intrinsically motivated agents for
representation learning [70, 19, 35, 65] or generative
model learning [57, 55, 3]. Recent work [32, 71] has
focused on theoretical properties of reward-free Rein-
forcement Learning. However, the ultimate goal of such
methods is to yield easily transferable representations
to be exploited upon introduction of a task.

Our approach differs in several ways. First, we for-
mulate intrinsic motivation using the Expected Free
Energy [17, 33] and focus on investigating the be-
haviour of intrinsically motivated agents. Now explo-
ration is simply an emergent behaviour of the planning
objective and not a mechanism for improving future
task performance. Second, Pepper can be used to
learn preferences over both states and outcomes in a
deep learning setting – extending previous formulations
to high-dimensional spaces [49]. Conceptually, open-
ended learning [52, 62, 63], where agents are responsible
for never-ending learning opportunities, is closest to our
formulation. However, Pepper extends this scenario to
show how agents can trade-off between actively looking
for opportunities to learn but also enjoy moments of
preference satisfaction.

3. Problem setting
We consider a world that can be represented as a
discrete-time Markov decision process (MDP), formally
defined as a tuple of finite sets (S,Π,Ω,P,R), such
that: s ∈ S is a particular latent state, o ∈ Ω is a
particular image observation, r ∈ R is a particular
reward observation, and P is a set of transition proba-
bilities. Notice, we cast the reward function as another
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random variable – no different to an image observation.
Further, π ∈ Π where π = {a1, a2, ..., aT } is a policy
(i.e., action trajectory) and Π a finite set of all possi-
ble policies up to a given time horizon T ∈ N+ and
T = {0, .., t, .., τ, T} a finite set which stands for dis-
crete time; t the current time and τ some future time.
In short, we do not assume an optimal state-action pol-
icy but consider sequential policy optimisation inherent
in active inference. Accordingly, the agent’s generative
model is defined as a probability density, Pθ(o, r, s, π),
parameterised by θ (Fig. 1).

Figure 1. Model architecture and 2-step training procedure.
Circles and squares denote random and deterministic vari-
ables respectively. Coloured lines denote connections where
learning is employed. Shaded circles represent outcomes
that have already been observed by the agent. The first fig-
ure shows the generative model used during learning. The
second panel is for Pepper (the preference learning phase) –
comprising two steps in each episode: 1) interaction with
the environment, & 2) accumulation of preferences once
interaction ends. There is a bi-directional flow between the
2 steps: step 1 influences preference learning and step 2 in
turn influences environment interaction in the next episode.

The generative model is instantiated as a Recurrent
State-Space Model (RSSM) [24, 23, 25]2 where a history
of observations (o0, o1, .., ot) and actions (a0, a1, .., at)
are mapped to a sequence of deterministic states ht.
Using these, distributions over the latent states – both

2https://github.com/danijar/dreamerv2 (MIT Li-
cense)

prior and posterior – can be attained. Formally, this
consists of the following: 1) a GRU [12] based deter-
ministic recurrent model, ht = fθ(h<t, s<t, π<t); 2)
latent state posterior, Qφ(st|ht, ot) ∼ Cat, and prior,
P (s) ∼ Cat(D); 3) transition model, Pθ(st|ht) ∼ Cat;
3) image predictor (or emission model), Qφ(ot|ht, st) ∼
Bernoulli; and 4) reward model, Qφ(rt|ht, st), and
prior, P (r) ∼ Cat(C); where Qφ(·) denotes the approx-
imate distribution, parameterised by φ.

3.1. Learning the generative model

To learn the generative model the evidence lower bound
(ELBO) of the likelihood p(o1:T , r1:T | π) [24] or equiv-
alently, the variational free energy [16, 14, 49] was
optimised:

L(θ) =
T∑
t=1

[
−EQφ [lnPθ(ot | st, π) + lnPθ(rt | st, π)]︸ ︷︷ ︸

reconstruction
(1)

+ EQφ [DKL(Qφ ‖ Pθ(st | st−1, π)]︸ ︷︷ ︸
dynamics

]
(2)

where, DKL denotes the Kullback–Leibler divergence.
Practically, this entails using trajectories generated
under a random policy. See Appendix A for ELBO
implementation details.

4. Pepper: preference learning
mechanism

After learning the generative model, we substitute the
planning objective with the expected free energy. At
time-step t and for a time horizon up to time T , the
expected free energy (EFE) is [17, 14]:

G(π) =
T∑
τ=t

EQ̃
[
logQφ(sτ |π)− log P̃θ(oτ , sτ |π)

]
(3)

where Q̃ = Qφ(oτ , sτ , θ|π) =
Q(θ|π)Q(sτ |, π)Qφ(oτ |sτ , π) and P̃θ(oτ , sτ |π) =
P (oτ )Q(sτ |oτ )P (θ|sτ , oτ , π). This is an appropriate
planning objective because it: 1) is analogous to the
expectation of the ELBO (Eq.1) under the predictive
posterior Pθ(ot|st, π) and 2) can be decomposed into
extrinsic and intrinsic value without any additional
terms [13, 40]. Accordingly, in the absence of learnt
preferences – or whilst learning them – intrinsic
motivation contextualises agent’s interactions with
the environment environment in a way that depends
upon its posterior beliefs about latent environmental
states [4, 47]. Actions are selected by sampling from

https://github.com/danijar/dreamerv2
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distribution P (π) = arg max(−G(π)). We Pepper this
planning objective with conjugate priors to allow for
preference learning over time.

4.1. Learning preferences using conjugate
priors

A natural way to learn preferences is to extend the
agent’s generative model with conjugate priors over
prior beliefs (i.e., hyper-priors) for each appropriate
probability distributions, that are learnt over time
[17, 49, 13]. Generally, for closed-form updates any
exponential family would be appropriate [46]. Since our
distributions of interest, latent state and rewards are
Categorical, we used the Dirichlet distribution as the
conjugate prior. For the latent state, P (s) ∼ Cat(D),
this is defined as:

P (Di|di) = Dir(di)⇒ EP (Di|di)
[
Di
ij

]
=

diij∑
k d

i
kj

(4)

where, z is the digamma function, d ∼ R+ and same
parameterisation holds for P (r) ∼ Cat(C). The pos-
teriors for the Dirichlet hyper–parameters are evalu-
ated by updating the prior using the following rule
di,j + α ∗ si,j where si,j are the observations for that
particular category and α the learning rate. These
estimates can be treated as pseudo–counts, and the
ensuing learning procedure is reminiscent of Hebbian
plasticity – see [17, 48] for discussion. In effect, this
allows the agent to accumulate contingencies and learn
about what it prefers – either via outcomes or states.

4.1.1. Augmented expected free energy

To incorporate preference over both states and reward
outcomes, we use two distinct EFE decompositions.
The first one instantiates preference learning over re-
ward outcomes, as presented below for a single time
instance τ [54, 14]:

G(π, τ) =− EQ̃
[

logP (r|C)
]

(5a)
+ EQ̃

[
logQ(sτ |π)− logP (sτ |oτ , π)

]
(5b)

+ EQ̃
[

logQ(θ|sτ , π)− logP (θ|sτ , oτ , π)
]

(5c)

where, P (r|C) is the probability of a particular reward
outcome given (learnt) prior preferences (C). The
second decomposition incorporates preferences over
latent states:

G(π, τ) =− EQ̃
[

logP (oτ |sτ , π)
]

(6a)
+ EQ̃

[
logQ(sτ |π)− logP (s|D)

]
(6b)

+ EQ̃
[

logQ(θ|sτ , π)− logP (θ|sτ , oτ , π)
]

(6c)

where, P (s|D) is the probability of a particular state
given (learnt) prior preferences (D). These prior distri-
butions are read as ‘preferences’ in active inference [49]
– in the sense they are the outcomes the agent expects
its plans to secure. For both formulations, we drop the
conditioning on policy when learning of preferences and
the requisite probability is calculated using Thompson
sampling. This entails sampling from the prior Dirichlet
distribution and estimating the likelihood. Addition-
ally, two of the three terms that constitute the expected
free energy cannot be easily computed as written in
Eq.5 & Eq.6. To finesse their computation, we re-
arrange these expressions and use deep ensembles [37]
to render these expressions tractable. See Appendix A
for implementation details.

Algorithm 1 Pepper
Input :
ht := fθ(h<t, s<t, π<t) Recurrent model
Qφ(st|ht, ot) Posterior model
Qφ(st|ht) Prior model
Pθ(ot|ht, st) Observation model
Pθ(rt|ht, st) Reward model
Initialise uniform Dirichlet prior over P (r) or P (s)
/* prior preference being learnt */
learning rate α for each episode e do

reset environment and collect initial observations
(o0 or r0) for each time step t do

compute spo ∼ Qφ(st|ht, ot) or spr ∼ Qφ(st|ht)
compute G (Eq.5 or Eq.6) using (learnt) pri-
ors, observed and predicted posteriors at ←
arg max(−G(π)) execute at and receive o
or r ot+1 ← o and rt+1 ← r

end
if reward preference learning then

ci,t ← ci,t−1 + α ∗ ri,t /* Update rule for
dir(c) */

else if state preference learning then
dij,t ← dij,t−1 + α ∗ sprij,t /* Update rule
for dir(d) */

end

4.1.2. Pepper

Pepper comprises a double loop during preference learn-
ing. The first loop is across time-steps when the agent
interacts with the environment. This loop stores infor-
mation about what happened (including observations,
rewards, posterior, prior, etc). The second loop, evolv-
ing at a slower timescale, is across episodes and entails
preference learning. Specifically, once the interaction
with the environment ends, the agent updates the prior
Dirichlet distribution (over preferences) using the data
gathered during the episode. In the subsequent time-
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steps the updated preferences are used to select the
next action (via their influence on expected free en-
ergy). The data gathered during this episode are used
to update preferences. In turn, these preferences are
used to select actions during the next episode, and so
on. This demonstrates a bi-directional flow between
the two loops: information from environment inter-
actions influences preference learning and the learnt
preferences influence environment interaction in the
subsequent episode. The Pepper preference learning
procedure is summarised in Algorithm.4.1.1.

5. Results
Here, we present two sets of numerical experiments
that underwrite the face validity of pepper in two and
three-dimensional environments, respectively.

Figure 2. A: The graphics show examples of the different
OpenAI Gym FrozenLake 16x16 environments used. B: The
line plots shows the marginal likelihood (y-axis), across 50
preference learning episodes (x-axis), for P (s) (i.e., states)
and P (r) (i.e., reward) during test time. Here, the dark lines
represent the mean (across 10 seeds), and shaded area the
95% confidence interval. Different shades of green denote
levels of environment volatility. C: The graphics show
a particular agent trajectory across the 3D− TileWorld
environment – with a 10−step interval between each image.

5.1. FrozenLake

We used a variation of the OpenAI Gym [8]3 Frozen-
Lake environment to: 1) evaluate different behaviours
acquired (at test time) when either P (s) or P (r) was
learnt, 2) qualify how preferences can evolve as a re-
sult of environmental volatility, and 3) quantify the
trade-off between exploration and preference satisfac-
tion. The agent in the original FrozenLake formulation
is tasked with navigating a grid world comprised of
frozen, hole and goal tiles, using 4 actions (left, right,
down or up). The agent receives a reward of 10 upon
reaching the goal and a penalty −0.25 upon moving
to the hole. To test preference learning, we included a
sub-goal tile and removed the reward signal (Fig.2A).
In other words, although the preference learning agent
can differentiate between tile categories – given its gen-
erative model – it receives no extrinsic signal from the
environment. Here, we simulated a volatile environ-
ment by switching the FrozenLake tile configuration
every K steps and initialising the agent in a different
location at the start of each episode. This furnished an
appropriate test-bed to assess how much volatility was
necessary to induce exploratory behaviour and shifts
in learnt prior preference.

5.2. TileWorld

We extended the FrozenLake environment in the mini-
world framework [11]4 to three dimensions to test the
generalisation and scalability of preference learning,
when operating in a 3D visual world (Fig.2C). In this
task, the agent moves around in a small room with
grey walls, frozen and goal tiles on the floor. The agent
spawns in a random location and receives pixel obser-
vations (32x32 pixels with RGB channels) and a scalar
value (reward) containing some information regarding
the tile its currently on (1 for red tiles, 2 for green tiles).
Additionally, we introduce environmental volatility by
changing the floor tiles to a random map and back
to the original map every K steps. Alternating be-
tween the original and a random map every K step
is important to promote exploratory, novelty-seeking
behaviour.

In the experiments that follow, we test agent behaviour
in the two environments, with and without volatility.
The Dirichlet distribution for either prior preference
distribution, P (s) or P (r), was initialised as 1 (i.e.,
uniform preferences). Trained network weights, opti-
mised Eq.1 using ADAM [34], were frozen during these
experiments. Therefore, behavioural differences are a

3https://github.com/openai/gym/ (MIT license)
4https://github.com/maximecb/gym-miniworld/

(Apache 2.0 License)

https://github.com/openai/gym/
https://github.com/maximecb/gym-miniworld/
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direct consequence of pepper that induces differences in
estimation of the EFE. See Appendix B for architecture
and training details for each environment.

Figure 3. Visualisation of the posterior latent states (esti-
mated using Qφ(st|ht, ot)) during preference learning of
(P (s) A and P (r) B) episodes. The states have been pro-
jected onto the first two principle components, and the
black circles represent their k-mean centroid. Here, the
accompanying graphics present a representative agent tra-
jectory (A with visited tiles highlighted) and reward profile
(B) from that particular cluster.

5.3. Learnt preferences

State preferences Unsurprisingly, preference learn-
ing over latent states in the FrozenLake environment
revealed two types of behaviours: exploration and pref-
erence satisfaction (Fig.3A & 4A)). Here, preference
satisfaction entailed restricted movement within a small
section of the grid with gradual accumulation of prior
preferences (see examples in the Appendix C.1). This
speaks to the self-evidencing nature of Pepper. That
is as the Pepper agent sees similar observations across
episodes it grows increasingly confident (via increased
precision over the prior preference) that these are the
outcomes it prefers. Conversely, exploratory behaviour
is evident in a volatile setting (Fig.3A & 4A)), as grad-
ual preference accumulation entails encoding of previ-

ously unseen states (see examples in Appendix C.1).

Reward preferences Reward preference learning re-
vealed subtle differences in preferences (Fig.3B), where
certain agents preferred sub-goal tiles more than neu-
tral tiles. All pepper agents were able to immediately
maximise their marginal likelihood5 over the reward
(Fig.3B). However, we did not observe clear differ-
ences in preference learning as the environment context
shifted from non-volatile (i.e., map change) to increas-
ingly volatile (map changed every time step). We
consider this to be consequence of the sparse categories
over the reward distribution, and the large percentage
of map being taken up by the neutral tiles. This meant
preference accumulation was biased in favour of the
neutral tile (see examples in Appendix C.1).

5.4. Exploration and preference satisfaction
trade-off

We evaluated the exploration and preference satisfac-
tion trade-off using Hausdorff distance (Fig.4) [7]. This
is an appropriate metric, which calculates the maxi-
mum distance of the agents position in a particular
trajectory to the nearest position taken in another tra-
jectory. Accordingly, a high Hausdorff distance denotes
increased exploration, since trajectories observed across
episodes differ from one other. Whereas, a low distance
entails prior preference satisfaction as agents repeat tra-
jectories across episodes. Using this metric, an inverted
u-shaped association (Fig.4A), between volatility in the
environment and preference satisfaction, is observed for
preference learning over the states. Here, 50% volatility
in the environment, shifts the pepper agents behaviour
from satisfying preferences to becoming exploratory,
when faced with an uncertain environment (and inabil-
ity to predict the future). Agents in this setting (with
the highest Hausdorff distance) tend to pursue long
paths from the initial location. (Fig.3A).

Interestingly, at 100% environmental volatility, the Pep-
per agents behaviour shifts back to satisfying its prefer-
ences. These agents learn bi-modal preferences over the
latent states. Irregardless of how the map changes they
move directly to either location given the initial posi-
tion (see trajectories in Appendix C.2). This ability to
disregard random, noisy information with continuous
map changes (analogous to the noisy-TV setting intro-
duced in [9]) highlights a motivation beyond random
exploration under state preference learning. For reward
learning, exploration is also instantiated with increased

5Marginal likelihood is simply the likelihood function
of the parameter of interest (here state or reward) where
some parameter variables have been marginalised out.
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Figure 4. A: The violin plot presents the preference satis-
faction and exploration trade-off measured using Hausdorff
distance [7] at different levels of volatility in the environ-
ment. The x-axis denotes environment volatility at constant
map (0%), change in map every 40 steps (25%), 20 steps
(50%), 10 steps (75%) and every step (100%). The y-axis
denotes the Hausdorff distance. Here, red is for the agent
optimising the standard expected free energy (EFE) Eq.3,
blue for reward preference learning Eq.5 and green for state
preference learning Eq.6. B: The line plot depicts the en-
tropy over P (s) across varying levels of volatility in the
environment. The x-axis represents the episodes, and the
y-axis entropy (in natural units). Here, the dark lines rep-
resent the mean (across 10 seeds), and shaded area the 95%
confidence interval. The pink line is for 0%, blue for 25%,
green for 50%, black for 75% and red for 100% volatility in
the environment.

volatility in the environment. Yet, complete volatility
does not trigger a definitive shift back to preference sat-
isfaction. Additionally, the expected free energy agent,

without preference learning capacity, also exhibits a
shift in behaviour as the environment becomes volatile.
The exploratory behaviour here is driven exclusively
by an imperative to resolve state uncertainty, (Eq.5b):
i.e., the mutual information between the agent’s be-
liefs about its latent state representation of the world,
before and after making a new observation.

5.5. Preference learning in the volatile
TileWorld

Preference learning agents evinced a strong preference
for looking at grey walls in the volatile TileWorld envi-
ronment (Fig.5A). This was consistently observed for
both preference learning over latent states and rewards.
Importantly, when spawned in a location right next
to the wall, these agents were happy to satisfy their
preferences and not move (Fig.5B). This is driven by
three factors: fast preference accumulation over grey
walls, a small number of state configurations and a
generative model that is able to appropriately predict
future trajectories (see example reconstructions and
imagined roll-outs in the Appendix B.2). However,
volatility in the environment does influence the encod-
ing of prior preferences – as evident from the observed
state entropy fluctuations across the episodes (Fig.5).

6. Concluding remarks
Summary: Pepper – the reward-free preference
learning mechanism presented – provides a simple way
to influence agent behaviour. Although, unlike the RL
formulation, we cast what is preferred to the agent in-
stead of the environment ’designer’. That is, the agent
is responsible for interacting with the environment and
over time developing preferences that it acts to satisfy
without an extrinsic signal. Our experiments revealed
that rich category spaces are necessary for learning pref-
erences that can establish distinct behavioural strate-
gies – specifically, within a volatile setting. Thus, future
experiments looking to leverage pepper should provide
a suitable category space to learn over.

Conjugate priors and Hebbian plasticity: We
employed a simple learning strategy for accruing pref-
erences, using conjugate priors. This type of learning
usually calls on associative or Hebbian plasticity [26],
where synaptic efficacy is reinforced by the simulta-
neous firing of pre-and post-synaptic neurons. For
example, as more neutral tiles are observed, more evi-
dence is accumulated in the synaptic connection to sup-
port the hypothesis that neutral tiles are preferentially
observed. Implicitly, pepper rests upon experience-
dependent plasticity, i.e., strengthening of synaptic
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Figure 5. A: The bar chart plots the percentage of time
the agents spent observing the 3 colours in the TileWorld.
The x-axis presents the colours: red (floor tile), green (floor
tile) and grey (wall colour), and y-axis the percentage of
observations calculated using the 32x32x3 pixel image the
agent received at each time step. Red is for the agent
optimising the standard expected free energy (EFE) Eq.3,
blue for reward preference learning Eq.5 and green for state
preference learning Eq.6. B: Sample trajectories for a single
agent are presented for agents acquiring a preference for
observing grey walls during state preference learning. Here,
an orange circle denotes starting position, a blue triangle
represents the agents location until the final position, and
a green cross is the final position. C: The line plot depicts
the entropy over P (s) (in orange) and P (r) (in blue) across
varying levels of volatility in the environment. The x-axis
represents the episodes, and the y-axis entropy (in natural
units). Here, the dark lines represent the mean (across 10
seeds), and shaded area the 95% confidence interval.

connections during inference. These updates can have
different times scales, and experiential levels (please
see Appendix D).

Additionally, our learning process is driven by synaptic
plasticity that allows certain random variables (s, r) to
expand in light of new experiences [18]. They are only
updated after an exchange with the environment. This
separation of ’experiencing’ the world, and then ’updat-
ing’ model parameters is reminiscent of sleep; in which
synaptic homeostasis resets model parameterisation,
by encoding new synapses or removing redundant ones
[27, 67, 28]. Removal of redundant model parameters
is evaluated in experiments presented in Appendix D,
where removal of accumulated Dirichlet parameters
reveals consistently exploratory agents.

Limitations: Notably, having a reward-free formu-
lation is both an advantage and limitation of our ap-
proach. By not specifying an extrinsic reward function
we forego control over the agent’s behaviour. In other
words, by removing the ability to manipulate agent
preferences regarding what is considered rewarding
leads to the removal of the only clear communication
channel that can be used by a designer to control agent
behaviour and/or define task goals. Therefore, it would
not be appropriate to use pepper in a setting where
control of the agent’s behaviour is required e.g., for au-
tonomous vehicles. And, if it were, precise preferences
would have to be established under supervision.
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A. Pepper implementation
Pepper was implemented as an extension to Dreamer
V2 [25] public implementation6. Specifically, Dreamer’s
generative model training loop was used, alongside a
model predictive control (MPC) planner. Therefore,
the actor learning part of Dreamer was not incorpo-
rated, and the generative model was trained using
Plan2Explore [55]. Like Plan2Explore, an ensemble of
image encoders were learnt and the “disagreement” of
the encoders was used as an intrinsic reward during
training. This guides the agent to explore areas of the
map that have high novelty and potentially high infor-
mation gain, when acquiring a generative (i.e., world)
model. Unfortunately, replacing the amortised policy
with this planner made the environment interaction
(i.e., the acting loop) relatively slow. We implemented
the planner as described in Algorithm A.

Algorithm 2 Planner
Input :
st current state
N Number of random action sequences to evaluate
Initialise for i=1. . .N do

πi ∼ U /* Random action */
scorei ← 0 for τ = t . . .H do

scorei ← scorei −G(πi, τ) /* Updated
according Eq.5 or Eq.6 */

end
end
k ← arg max score Return πk

Upon training completion, we froze the generative
model learnt weights and only allowed learning of
prior preferences. These (state or reward) preferences
were updated after each episode, as described in Algo-
rithm 4.1.1.

A.1. Evidence lower bound

The generative model was optimised using the ELBO
formulation introduced in [23]:

L(θ) =
T∑
t=1

[
−E [logPθ(ot | st, π)]

Qφ(st|o≤t,a≤t)
− E [logPθ(rt | st, π)]

Qφ(st|o≤t,a≤t)︸ ︷︷ ︸
reconstruction

(7)
+ E [DKL(Qφ(st | ot, st−1, π)) ‖ Pθ(st | st−1, π)]

Qφ(st|o≤t,a≤t)︸ ︷︷ ︸
dynamics

]
.

6https://github.com/danijar/dreamerv2

A.2. Expected free energy for pepper

We implemented EFE using the parameterisations in-
troduced in [14] and adapted for [25]:

• Term 5a was modelled as a categorical likelihood
model (using normalised Dirichlet counts).

• Term 5b was computed as the KL divergence
between the prior (s ∼ Q(sτ |π)) and the posterior
(s ∼ P (sτ |oτ , π)) states. This could be computed
analytically because the prior and posterior state
distributions were modelled as Categorical distri-
butions. Here, the dependency on the policy π
was accounted for by using the RNN hidden state
ht summarising past actions and roll-outs.

• Term 6a was computed as the entropy of the ob-
servation model P (oτ |sτ , π). Happily, the factori-
sation of the observation model – as independent
Gaussian distributions – allowed us to calculate
the entropy term in closed form.

• Term 6b was computed as the difference between
logQ(sτ |π) and logP (sτ |D), where logQ(sτ |π)
was approximated using a single sample from the
prior model Q(sτ |θ, π). Again, the dependency on
π was substituted by ht.

• Terms 5c and 6c were more challenging to com-
pute. Like [14], we rearranged the expression to
H(oτ |sτ , θ, π) − H(oτ |sτ , π). This translates to
I(oτ ; θ|sτ , π), and can be approximated using Deep
Ensembles [37, 55] and calculating their variance
Varθ[EQ(oτ |sτ , θ, π)]. Here, each ensemble compo-
nent can be seen as a sample from the posterior
Q(θ|sτ , π). Our experiments showed that using 5
components was sufficient.

B. Experiments
FrozenLake For these experiments, we simulated
the agent in five distinct situations ranging from a
non-volatile, static environment to a highly volatile one
i.e., a different FrozenLake map every step. For all
episodes in the static setting, the agent was initialised
at a fixed location with no changes to the FrozenLake
map throughout that particular episode. Conversely,
agents operating in the volatile setting were initialised
at a different location each time. Moreover, the Frozen-
Lake map was also changed every N steps – given the
desired volatility level. For 100% volatility the map
changed every step, 75% volatility corresponded to map
changes every 10 steps, 50% volatility corresponded to
map changes every 20 steps and 25% volatility corre-
sponded to map changes every 40 steps. Additionally,

https://github.com/danijar/dreamerv2


Exploration & preference satisfaction in reward-free learning

the generative model used for these experiments was
trained in a volatile setting where the map changed
every 5 steps (Table 1).

TileWorld For these experiments, we simulated the
agent under two conditions (non-volatile and volatile).
For the non-volatile setting, the agent was initialised
at a fixed location with no changes to the TileWorld
map throughout training and testing. In the volatile
setting, for every K step, we toggle alternate between
a randomly sampled map and the original map. This
allowed us to simulate uncertain states that trigger
exploratory behaviour. The generative model used
for these experiments was trained in a volatile setting
where the map changed every 10 steps (Table 1).

Table 1. Training parameters
Parameter FrozenLake TileWorld
Planning Horizon 15 steps 15 steps
Episode Length 50 steps 200 steps
Reset Every 5 steps 10 steps
No. Episodes 50 episodes 50 episodes
No. State Categories 64 categories 32 categories
No. State Dimensions 50 dimensions 50 dimensions
No. Reward Categories 4 categories 3 categories

Table 2. Preference learning parameters for long-term learn-
ing
Parameter FrozenLake TileWorld
Planning Horizon 15 steps 15 steps
Episode Length 50 steps 200 steps
No. Episodes 50 episodes 50 episodes
Reset Map Every 1, 10, 20, 40, 50 steps 10 steps
No. Agents 10 agents 3 agents

B.1. Computational requirements

Overall, our experiments required 1344 GPU hours.
Each GPU was a GeForce RTX 3090.

B.2. Image reconstruction and imagined
roll-outs

For apt learning of preferences, the agent’s generative
model must be able to accurately infer the current (and
future) states of affairs. To evaluate this for our learnt
generative models, we illustrate representative exam-
ples of reconstructions encoded by the pepper agents
for a particular episode. Fig.6 shows the reconstruc-
tions for FrozenLake, and Fig.7 for TileWorld. The
imagined roll-outs for the TileWorld environment are
shown in Fig.8.

Figure 6. An example of the FrozenLake reconstruction for
the first 10 steps of an episode, with map changes at T =
4 & 9.

Figure 7. An example of TileWorld reconstruction for the
first 10 steps of an episode.

C. Behaviour under long-term
preference learning

C.1. Learnt preferences

We expected differences in learnt preferences to induce
shifts in agent behaviour. For example, agents who re-
peatedly accrued Dirichlet pseudo-counts for the same
category would exhibit preference satisfying behaviour.
This would be due to high precision (or confidence)
over that particular category. In contrast, an agent
who accrued Dirichlet pseudo-counts for different cat-
egories would exhibit exploratory behaviour given an
imprecise (or low confidence) distribution over the cate-
gories. To illustrate how different environment settings
shaped preference learning we looked at the static and
volatile setting where the FrozenLake map changed
every step. Fig.9 shows a representative example of
state preference learning under these conditions, and
Fig.10 an example of reward preference learning. We
observed that state preferences learnt under a static
setting were precise – denoted by the repeated pseudo-
count accumulation over category 25. Conversely, for
the volatile setting an imprecise state preference distri-
bution was learnt (Fig.9). Separately, we observed that
the learnt reward preferences were precise – regardless
of the setting. We posit that this is a consequence of
differences in the reward and state category space. In
other words, having a large number of state categories
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Figure 8. An example the observations from an imagined
roll-out in the latent state space. These roll-outs are con-
structed using a random action trajectory that is propagated
forward to get a latent state sequence. For each of the latent
states the observations were sampled from the observation
model P (ot|st).

allowed distinct preferences to be learnt under static
and volatile settings. This is reflected in the qualitative
differences seen between the two (Fig.9).

Figure 9. An example of learnt state preferences for a single
agent in a static and highly volatile setting. Here, 64
state categories are presented on the x-axis and episodes
on the y-axis. The first panel is for preferences learnt
under a static setting, and the second for preferences learnt
under a volatile setting. The scale goes from white (i.e.,
high Dirichlet concentration) to black (i.e., low Dirichlet
concentration), and grey indicates gradations between these.

Figure 10. An example of learnt reward preferences for a
single agent in a static and highly volatile setting. The
first row is for preferences learnt under a static setting,
and the second row for preferences learnt in a volatile
setting. Each figure illustrates the Dirichlet distribution
in a 3-dimensional coordinate space, i.e., 2-simplex – for
a particular episode (T ). Here, the concentration of dots
in one corner reflect precise beliefs; and scattered dots
denote imprecise beliefs. Each dot represents a single sample
from the Dirichlet distribution (determined by the alpha
parameters denoted at the bottom of each figure), and
each plot displays 500 samples. For clarity, we collapsed
Goal and Sub-goals into one category. Preferences for both
static and volatile setting are initialised as uniform (i.e.,
(1, 1, 1, 1) = (1, 1, 2)) denoted by the dots scattered across
the simplex.

C.2. Agent trajectories

Next, we evaluated how disparate the agent trajectories
were given the observed differences in preference accu-
mulation (Figure 9 and 10). For the static setting, we
observed agents satisfying their preferences by restrict-
ing movement to a small patch in the FrozenLake. This
behaviour was observed consistently across all agents
(i.e., different seeds) and episodes. We present a repre-
sentative example in Fig.11. Separately, agents simu-
lated in the volatile setting (where the map changed
every step) learnt a bi-modal preference set (i.e., pre-
ferred to go to one of two locations in the FrozenLake).
Here, the location preference depended on the initial
location i.e., if the agent was initialised in a tile close
to the first preferred location then it choose to go there.
However, the second location was preferred if the agent
was initialised close to it. We present a representa-
tive example in Fig.12. Interestingly, this behaviour
was observed in agents where the environment was
100% volatile, whereas agents operating in slightly less
volatile settings continued exploring (Fig.4A).

Importantly, these agents were able to disregard, noisy
information about the states from the environment. To
qualify this, we looked at how the variance between the
posterior (s ∼ Qφ(st|ht, ot)) and prior (s ∼ Qφ(st|ht))
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Figure 11. Representative example of the agent trajectories
observed during state preference learning under a static
setting.

Figure 12. Representative example of the agent trajectories
observed during state preference learning under the volatile
setting. Each figure is an illustration of the agents trajectory
for a particular episode. Here, purple is the agents starting
position, pink the trajectory, cyan square denotes the first
learnt preference and dark blue denotes the second learnt
preference.

estimates differed across the 50 episodes for these agents
(Fig.13). We observed that the posterior estimates had
a greater variance across the 50 dimensions relative
to the prior variance. Given how these estimates are
calculated, we postulate that differences in the variance
were due to the change in the FrozenLake map that
the agent finds itself in after it moved one step. These
high variances in the posterior estimate, under a highly
volatile setting, induced a change in behaviour from
exploratory to preference satisfaction.

D. Behaviour under short-term
preference learning

We expected reduced preference learning timescales to
influence the agent’s preferred behaviour. To evaluate
this, we consider a setting where the agent was equipped
with a sliding preference window i.e., after k steps the
previous preferences were removed in favour of new
ones. To evaluate short-term preference learning, we
considered state preferences with a sliding window of 5
episodes (Table 3).
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Figure 13. Variance over the estimated posterior (s ∼
Qφ(st|ht, ot)) and priors (s ∼ Qφ(st|ht)) under the volatile
setting. The scale goes from brown (low variance) to
turquoise (high variance), and light shades indicate gra-
dations between these.

Table 3. Preference learning parameters for short-term
learning

Parameter FrozenLake
Planning Horizon 15 steps
Episode Length 50 steps
No. Episodes 50 episodes
Reset Map Every 1, 10, 20, 40, 50 steps
Reset Preference Every 5 episodes
No. Agents 5 agents

For this, we looked at the preferences learnt in the
static and volatile (map changes every 10 steps) set-
ting (Fig.14). Predictably, we observed differences in
the preference accumulation when the agents learnt
short-term preferences regardless of the setting. Explic-
itly, in the static setting the accrued preferences were
flexibly learnt and unlearnt over time e.g., category 24
was slowly unlearnt in favour of 11 category. Volatile
conditions fostered perpetual preference uncertainty
as accumulated Dirichlet pseudo-counts were repeat-
edly updated. Therefore, we would expect these agents
to exhibit exploratory behaviour compared to agents
equipped with long-term preferences due to imprecise
preference learning. To quantify this behaviour, we pro-
jected the latent states onto the first two components
(fitted using long-term state preferences simulation
data). The short-term simulation data only mapped
onto a small space in Fig.3 latent space. Furthermore,
there was no clear separation between projected latent
states across the the volatile and static settings. This
is reflected in the increased state entropy (∼ 0.5 nats),
under both settings, as previously learnt preferences
were removed (Fig.16).

Next, we considered how the exploration and prefer-
ence satisfaction trade-off might vary when preferences
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were learnt over a short time horizon. Using the Haus-
dorff distance, we evaluated how the volatility in the
environment changed the agent’s behaviour to either
exploratory or satisfying preferences (Fig.16). In con-
trast to the long-term state preference learning setting,
we see a (slight) linear association between environ-
ment volatility and preference satisfaction. This is
consistent with our expectation that a slow removal
of accumulated Dirichlet parameters engenders consis-
tently exploratory agents.

Figure 14. An example of short term state preference learn-
ing for an agent in a static and highly volatile (map change
every step) environment. Here, 64 state categories are
presented on the x-axis and episodes on the y-axis. The
first panel is for preferences learnt under a static setting,
and the second for preferences learnt in a volatile setting.
The scale goes from white (high Dirichlet concentration)
to black (low Dirichlet concentration), and grey indicates
gradations between these.

Figure 15. Visualisation of the posterior latent states (esti-
mated using Qφ(st|ht, ot)) during state preference learning.
The states have been projected onto the first two principle
components (fitted using long-term state preferences simu-
lation data), and the black circles represent their k-mean
centroid. Here, the accompanying graphics present a rep-
resentative agent trajectory with visited tiles highlighted
from that particular cluster.

Figure 16. A: The violin plot illustrates the preference sat-
isfaction and exploration trade-off measured using the Haus-
dorff distance [7] at different levels of volatility in the envi-
ronment, when the agent had short term preferences. The
x-axis denotes environment volatility: with a constant map
(0%), change in map every 40 steps (25%), 20 steps (50%),
10 steps (75%) and every step (100%). The y-axis denotes
the Hausdorff distance. Here, red is for the agent optimising
state preference learning Eq.6. B: The line plot depicts the
entropy over P (s) across varying levels of volatility in the
environment. The x-axis represents the episodes, and the
y-axis entropy (in natural units). Here, the dark lines rep-
resent the mean (across 5 seeds), and shaded area the 95%
confidence interval. The pink line is for 0%, blue for 25%,
green for 50%, black for 75% and red for 100% volatility
in the environment. The spikes in entropy correspond to
overwriting of learnt preferences.


