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ABSTRACT

Recently, offline reinforcement learning (Offline RL) has emerged as a promising
paradigm for solving real-world decision-making problems using pre-collected
datasets. However, its application in game theory remains largely unexplored.
To bridge this gap, we introduce offline equilibrium finding (Offline EF) in
extensive-form games (EFGs), which aims to compute equilibrium strategies from
offline datasets. Offline EF faces three key challenges: the lack of benchmark
datasets, the difficulty of deriving equilibrium strategies without access to all ac-
tion profiles, and the impact of dataset quality on effectiveness. To tackle these
challenges, we first construct diverse offline datasets covering a wide range of
games to support algorithm evaluation. Then, we propose BOMB, a novel frame-
work that integrates behavior cloning within a model-based method, enabling
seamless adaptation of online equilibrium-finding algorithms to the offline setting.
Furthermore, we provide a comprehensive theoretical analysis of BOMB, offering
performance guarantees across various offline datasets. Extensive experimental
results show that BOMB not only outperforms traditional offline RL methods but
also achieves highly efficient equilibrium computation in offline settings.

1 INTRODUCTION

Extensive-form games (EFGs) offer a powerful framework for modeling interactions among mul-
tiple players in stochastic and imperfect information settings (Nisan et al., 2007). The canonical
solution concept is the Nash Equilibrium (NE), where no player can unilaterally deviate to increase
their own utility. There are various methods designed for solving EFGs, including linear program-
ming (Shoham & Leyton-Brown, 2008), double-oracle algorithms (McMahan et al., 2003), coun-
terfactual regret minimization (CFR) (Zinkevich et al., 2007), and policy-space response oracles
(PSRO) (Lanctot et al., 2017). These techniques have been successfully applied to real-world large-
scale EFGs, such as pursuit-evasion games (Xue et al., 2021; Li et al., 2023), poker games (Brown
& Sandholm, 2018; 2019; Zha et al., 2021), and Stratego (Perolat et al., 2022). Despite their suc-
cesses, existing algorithms for equilibrium finding rely on interactions with the game environment
or access to an accurate simulator. For example, CFR-based algorithms require traversing the game
tree to compute regret values, while PSRO and its variants depend on simulations to compute the
best response oracle and estimate entries in the meta-game. We refer to this paradigm as “online
equilibrium finding”. However, in many real-world applications, including sports games (Liu et al.,
2022), network intrusion detection (Khraisat et al., 2019), and automated negotiations (Kiruthika
et al., 2020), interacting with the environment in real time is often prohibitively costly or inefficient,
while constructing an accurate simulator is typically infeasible. In such cases, offline learning offers
a practical and sample-efficient alternative for equilibrium finding.

Recent efforts have been made to formalize the offline learning paradigm within game settings.
For example, StarCraft II Unplugged (Mathieu et al., 2021) offers a dataset of human gameplays
for a two-player zero-sum symmetric game. Some works (Cui & Du, 2022; Zhong et al., 2022)
investigate the properties of offline datasets necessary for successfully inferring NEs in two-player
zero-sum Markov games. However, existing work on offline learning in games has focused primarily
on Markov games, leaving extensive-form games largely unexplored. Moreover, to the best of our
knowledge, there has been no dedicated study addressing the offline setting in multi-player games.
More fundamentally, the offline learning paradigm itself remains underdefined and insufficiently
studied within the broader context of game-theoretic learning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between online and offline equilibrium finding
To bridge this gap, we propose the novel offline equilibrium finding (Offline EF) paradigm, which
computes equilibrium strategies using offline datasets. Offline EF faces several key challenges. First,
the lack of comprehensive benchmarking standards complicates the evaluation and comparison of
algorithms, making it difficult to objectively measure progress in the field. Second, accurately com-
puting or approximating equilibrium strategies solely from offline datasets is inherently challenging.
Specifically, data from only a subset of action profiles often cannot determine proximity to an equi-
librium strategy, as identifying equilibria requires referencing all other potential action profiles (Cui
& Du, 2022). Third, the quality and completeness of offline datasets significantly affect the effec-
tiveness of derived strategies. Offline datasets rarely cover all possible game states, and this limited
coverage hampers the algorithm’s ability to generalize effectively from the available data.

This work provides a comprehensive investigation of offline EF with four key contributions: i)
We curate a diverse collection of offline datasets, including random, expert, learning, and hybrid
datasets across various extensive-form games; ii) we propose the BOMB framework, which com-
bines behavior cloning with a model-based method, featuring a novel parameter estimation approach
and the ability to incorporate any online EF algorithm (e.g., CFR) into the offline context; iii) we
offer a thorough theoretical analysis for BOMB, providing performance guarantees across different
datasets; and iv) we validate the effectiveness of BOMB through extensive experiments, demonstrat-
ing its capability to compute equilibrium strategies from offline datasets.

2 PRELIMINARIES

Imperfect-Information Extensive-Form Games(IIEFGs). An IIEFG can be represented as a tu-
ple, formally, G = (N,H,A, P, I, u) (Shoham & Leyton-Brown, 2008). N = {1, ..., n} is the set
of players, and H is the set of histories, representing all possible action sequences, including the root
node of the game tree (empty sequence ∅) and all prefixes of sequences in H . The set of terminal
histories, represented by Z, represents the set of game outcomes, Z ⊆ H . A(h) = {a : (h, a) ∈ H}
is the set of available actions at any non-terminal history h ∈ H \ Z. P is the player function
mapping non-terminal histories to players, i.e., P (h) 7→ N ∪ {c}, ∀h ∈ H \ Z, where c represents
the “chance player” for stochastic events outside players’ control. I is the set of information sets,
forming a partition over histories where player i takes actions, such that player i cannot distinguish
these histories within the same information set Ii. Each information set Ii ∈ Ii represents one
decision point which means that P (h1) = P (h2) and A(h1) = A(h2) for any h1, h2 ∈ Ii. For
convenience, A(Ii) and P (Ii) denote the action set A(h) and player P (h) for any h ∈ Ii. For
each player i, a utility function ui : Z → R defines the payoff for every terminal history. The
behavior strategy of player i, σi, maps each information set of i to a probability distribution over
A(Ii), with Σi denoting the set of all strategies for player i. A strategy σi is pure if it always se-
lects a single action (i.e., σi(Ii, a) ∈ {0, 1}), mixed if it assigns probabilities in [0, 1], and fully
mixed if all probabilities are strictly positive. A strategy profile σ = (σ1, σ2, ..., σn) is a tuple of
strategies for all players, with σ−i referring to all strategies except σi. The reaching probability
of a history h under σ is πσ(h) =

∏
i∈N∪{c} π

σ
i (h). Given σ, the expected payoff for player i is

ui(σ) =
∑

z∈Z πσ(z)ui(z), summing over the terminal nodes.

Solution Concepts. The common solution concept for IIEFGs is Nash equilibrium (NE) (Nash,
1950), where no player can increase their utility by unilaterally deviating. Formally, a strategy profile
σ∗ forms an NE if it satisfies ∀i ∈ N , ui(σ

∗) = maxσ′
i∈Σi

ui(σ
′
i, σ

∗
−i). To measure the distance

from NE, we use NASHCONV(σ) as the metric, where NASHCONV(σ) =
∑

i∈N NASHCONVi(σ),
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and NASHCONVi(σ) = maxσ′
i
ui(σ

′
i, σ−i)−ui(σ). When NASHCONV(σ) = 0, then σ is an NE. In

n-player general-sum games, (Coarse) Correlated Equilibrium ((C)CE) is also a common solution
concept (Aumann, 1987). A CE is a joint mixed strategy in which no player has an incentive to
deviate. Let Si be the strategy space for player i. A strategy profile σ∗ forms a CCE if ∀i ∈ N, si ∈
Si,ui(σ

∗) ≥ ui(si, σ
∗
−i) where σ∗

−i is the marginal distribution of σ∗ on strategy space S−i. The
(C)CE Gap Sum is adopted to measure the distance from (C)CE (Marris et al., 2021).

Methods Work w/o Converge to
env equilibrium

Offline RL ! %

OM % %

Online EF % !

Table 1: Issues of Existing Methods.

Why Existing Methods Fail? Offline reinforce-
ment learning (RL) primarily targets single-agent
settings (Levine et al., 2020) and is inherently inca-
pable of computing equilibrium strategies in games.
Opponent modeling (OM) focuses on predicting the
behavioral strategies of opponents (He et al., 2016),
but it is also designed to compute the best response
strategy for one player rather than equilibrium strate-
gies. Furthermore, OM requires access to the game
environment, making it unsuitable for offline EF.
Widely used equilibrium-finding algorithms, such as no-regret methods (e.g., CFR (Zinkevich et al.,
2007)) and empirical game-theoretic analysis methods(e.g., PSRO (Lanctot et al., 2017)), fundamen-
tally rely on repeated interactions with the game environments or access to an accurate simulator.
These methods, referred to as “Online EF”, are therefore not directly applicable to the offline setting.
A comparison of existing methods is provided in Tab. 1, with further discussion in App. B.

Problem Statement.To facilitate the widespread application of game theory, we extend the offline
learning framework to extensive-form games and introduce the offline equilibrium finding paradigm.

Definition 2.1 (Offline EF). Let D be an offline dataset of an IIEFG G, generated by an un-
known behavior strategy σ. The objective of the offline equilibrium finding paradigm is to derive
a strategy profile σ̂ from D that minimizes the gap from the equilibrium strategy σ∗. Formally,
σ̂ = argminσ′∈Σ GAP(σ′, σ∗), where GAP(·) is a metric function quantifying the gap between σ′

and the equilibrium strategy. If GAP(σ′, σ∗) ≤ ϵ, then σ′ is said to be an ϵ-equilibrium strategy.

Building on the definition of the offline EF paradigm, we can instantiate it by defining a metric for the
gap from the equilibrium strategy, such as the NASHCONV for NE (Nash, 1950) and (C)CE Gap Sum
for (C)CE (Aumann, 1987). While offline EF shares some similarities with offline RL, it introduces
unique challenges. First, unlike offline RL, which aims to compute an optimal strategy (Levine et al.,
2020), offline EF seeks to achieve an equilibrium strategy. This requires iterative processes for best
response calculations, adding significant complexities. Second, offline EF inherently involves at
least two players, making the game dynamics highly sensitive to distribution shifts and uncertainties
– a stark contrast to offline RL. Third, in offline RL, the data from two actions may suffice to
determine which action is better. However, in offline EF, simply comparing data from two action
tuples is insufficient to identify which action tuple is closer to an equilibrium strategy, as equilibrium
identification requires additional action tuples for references (Cui & Du, 2022).

3 DATASETS

Datasets play a pivotal role in offline learning, however, there are no publicly available datasets
specifically tailored for the offline EF paradigm. Consequently, we outline our methods to collect
datasets at different expert levels that will serve as a basis for advancing offline EF research.

Formats. Before discussing data collection methods, it is essential to first define the data formats of
an offline EF dataset for IIEFGs. The dataset is represented as D = (st, at, st+1, ut+1, dt+1).
st and st+1 represent the game states at time step t and t + 1 from a game-level perspective.
Specifically, st encapsulates all relevant information at time t, including the information sets for
each player (It1, I

t
2, ..., I

t
n), additional game-level information outside the players’ control (GI),

the acting player at t (pt), and the available action set for the acting player (A(Itpt)). Formally,
st = (It1, I

t
2, ..., I

t
n, GI, pt, A(Itpt)). Note that pt may also represent a chance player c to account

for stochastic events outside players’ control. at is the action taken by the acting player pt at t.
ut+1 = (ut+1

1 , ut+1
2 , ..., ut+1

n ) represents the utilities for all players at time step t+ 1. Finally, dt+1

indicates whether the game ends at state st+1, with a value of 1 if the game ends and 0 otherwise.
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Collecting Methods. Similar to offline RL, offline EF datasets must be diverse to support ro-
bust development and evaluation. Prior offline RL benchmarks (Fujimoto et al., 2019; Gulcehre
et al., 2020) often use data from online RL runs, while D4RL (Fu et al., 2020) incorporates hu-
man demonstrations, exploratory agents, and hand-coded controllers. Inspired by these, we propose
three data collection methods for offline EF at varying expertise levels. The first one, referred to
as the random method, involves players adopting uniform strategies, generating data that mimics
novice exploratory behavior. The second method, the learning-based method, collects intermedi-
ate game interactions using equilibrium finding algorithms, such as CFR (Zinkevich et al., 2007)
or PSRO (Lanctot et al., 2017), reflecting the process of skill improvement. The final method, the
expert method, generates data by having players follow equilibrium strategies, capturing expert-
level gameplay. Additionally, a hybrid approach combines random and expert datasets in varying
proportions, enhancing realism and diversity to create more comprehensive benchmarks.

Figure 2: Dataset of Offline EF.

Statistics of Datasets. We developed a
benchmark dataset for offline EF using
these outlined collection methods across
eight commonly used IIEFGs, as de-
picted in Fig. 2. The dataset contains ap-
proximately 3.8 million data points, oc-
cupying about 11GB of memory. For
each game, we generated three distinct
types of datasets: Expert, random, and
learning. The proportions of each dataset
are visually detailed and comprehensive
statistics on the distribution of these
datasets are detailed further in App. C.2.

4 BOMB

Inspiring by offline RL algorithms, there are two main directions to develop the algorithmic frame-
work for offline EF: i) behavior cloning (BC) (Fujimoto & Gu, 2021), which imitates the strategies
used to generate the offline data with additional exploration, and ii) model-based methods (Yu et al.,
2020; Kidambi et al., 2020), which learns a world model from the offline dataset and then derive
strategies from the world model. However, BC may fail in offline EF when the dataset is gener-
ated by random policies, as such strategies are often far from equilibrium. Similarly, model-based
methods struggle in offline EF when the dataset originates from equilibrium strategies, which often
cover only a limited portion of the game states. To mitigate these issues, we propose BOMB, which
combines Behavior clOning and Model-Based method for the offline EF paradigm.

4.1 BOMB FRAMEWORK

Algorithm 1 BOMB Framework
1: Input: an offline dataset D
2: Train policy σθ based on D using BC technique;
3: Train an environment model Eθe based on D;
4: Learn σmb policy using any EF algorithm on Eθe ;
5: Select α using parameter estimation method;
6: σ = α · σθ + (1− α) · σmb;
7: Output: Policy σ

BOMB. Alg. 1 outlines the BOMB
framework. Given an offline dataset
D, BOMB starts by training a
policy σθ using behavior cloning
(BC) (Line 2). The dataset D =
(st, at, st+1, ut+1, dt+1) contains game
sate st = (It1, I

t
2, ..., I

t
n, GI, pt, A(Itpt)).

Since σθ mimics the behavior strategy,
only Itpt and the corresponding action
at are used for training. The training
loss is the cross-entropy loss: Lbc = −E(It

pt
,at)∼D[at · log(σ(Itpt ; θ))]. Additionally, inspired by

model-based offline RL algorithms (Kidambi et al., 2020; Yu et al., 2020), a dynamic environment
model Eθe is trained based on dataset D (Lines 3). The model simulates the real environment
and is used to derive the model-based (MB) policy σmb using any online EF algorithm, such as
PSRO (Lanctot et al., 2017) and CFR Zinkevich et al. (2007) (Line 4). Specifically, we use the
game state st and action at as inputs, with the subsequent game state st+1, reward ut+1 and
termination variable dt+1 serving as labels. The model is trained using stochastic gradient descent

4
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(SGD) with the mean squared error loss: Lenv = ED[MSE((st+1, ut+1, dt+1), E(st, at; θe))].
The final policy combines the BC policy σθ and MB policy σmb using a weighted combination:
σ = ασθ + (1 − α)σmb, where α is the weight of the BC policy (Lines 5-6). The method for
estimating α is described in the following.

Figure 3: Learning-based estimation method.

Estimation of Parameter α. We propose three
methods of estimating the parameter α. The simplest
is the random selection method, where a value is ran-
domly chosen from the interval [0, 1]. This method
is fully offline and easy to implement, but lacks guar-
antees for finding the most effective combined strat-
egy. The second method is the grid search method,
where we define a set of 11 candidate values for α,
i.e., {0, 0.1, ..., 1}. These values are used to config-
ure combined policies, which are then tested in a real
environment. The value of α that results in the small-
est gap from the equilibrium strategy is selected as
optimal. This method achieves the best performance
by systematically exploring possible values and is
commonly used in offline RL for fine-tuning param-
eters through online interactions (Kalashnikov et al., 2018; Lee et al., 2022). However, it requires
online evaluations, making it less practical in fully offline settings. To enable fully offline while re-
taining good performance, we propose a learning-based method, as depicted in Fig. 3. This method
involves training a predictor to estimate α based on the relationship between the BC and the MB
policies. We first use the grid search method to get optimal α values as labels. The predictor takes
a similarity vector derived from the centered kernel alignment (CKA) (Kornblith et al., 2019) be-
tween the BC and the MB policies and outputs the estimated α. The predictor is trained in one
game where online interactions are feasible and can then be reused in similar games. Although the
predictor provides only an approximate optimal parameter value, it eliminates the need for further
online interactions once trained, offering a practical and efficient solution for fully offline settings.

Advantages of BOMB. First, by combining BC and MB methods, BOMB can work on the
datasets collected by any strategies, whether random or equilibrium strategies. This versatility
ensures that BOMB can adapt to diverse offline data sources. Second, with the learned environ-
ment model for games, BOMB seamlessly integrates online EF algorithms, enabling it to generalize
across different equilibrium types. For example, we adapt PSRO (Lanctot et al., 2017) and Deep
CFR (Brown et al., 2019) methods to compute NE, referred to as MB-PSRO and MB-CFR, respec-
tively. Additionally, we adapt JPSRO method (Marris et al., 2021) (MB-JPSRO) for computing
(C)CE. This flexibility allows BOMB to address a wide range of equilibrium-finding tasks. Third,
BOMB is game-agnostic, meaning it can learn game rules directly from offline datasets without
requiring prior knowledge of the game itself. This characteristic is similar to the advantage of
MuZero (Schrittwieser et al., 2020). This makes BOMB applicable to a broad array of games.

4.2 THEORETICAL ANALYSIS

Figure 4: Game example.

In the offline RL area, dataset coverage over the optimal policy is
typically sufficient for offline learning (Rashidinejad et al., 2021;
Xie et al., 2021). However, in the offline EF paradigm, the as-
sumption that the equilibrium strategy generates the dataset is not
sufficient for computing equilibrium strategies offline. This insuf-
ficiency is illustrated by the counter-example in Fig. 4. In this ex-
ample, we can easily get NE strategy, σ∗ = (σ∗

1 , σ
∗
2) = ({I1 :

a1}, {I2 : b2}). If this equilibrium strategy is used to generate the
offline dataset D, the dataset D would only contain the single data
point ((It11 = I1, I

t1
2 = ∅, ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 =

∅, ∅,−1, ∅), (0, 0), 1). Clearly, the dataset D lacks any information
about Player 2, making it insufficient for computing the NE strat-
egy. Similarly, the assumption that the offline dataset covers the
equilibrium strategy is also insufficient for the offline EF paradigm, as we prove in App. D.1. In
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this section, we outline the necessary and sufficient conditions for dataset coverage to guarantee the
convergence of our methods in IIEFGs with perfect recall. To achieve this, we introduce two key
concepts of dataset coverage: uniform coverage and equilibrium coverage.
Definition 4.1. An offline dataset D is said to be a uniform coverage of an IIEFG G
if and only if it covers all possible state-action pairs in the game. Formally, it covers
(st, at, st+1, ut+1, dt+1), ∀st, at ∈ A(st) and st+1 ∈ T (st, at) where T is the transition function.
Definition 4.2. An offline dataset D is said to be an ϵ-equilibrium coverage of an IIEFG G if and
only if its underlying behavior strategy σD satisfies: GAP(σD, σ

∗) < ϵ, where σD is defined as:
σD(st, at) = C(st,at)

C(st)
and σD(st, at) > 0 for all st and at ∈ A(st), with C(st, at) and C(st)

denoting the counts of occurrences of state-acion pair (st, at) and the state st in D, respectively.

Building on these two dataset coverage definitions, we now discuss the conditions required for
our method to achieve convergence. To facilitate this analysis, we introduce an assumption on the
approximation error incurred when training neural networks.
Assumption 4.3. The training error of neural networks in BOMB is assumed to be bounded by an
arbitrarily small ϵ given a sufficiently large and diverse dataset.

To support this assumption, we provided a general generalization bound for the training error under
a dataset with size m in App. D.2. Then we present our result as follows.
Theorem 4.4. Let σMB(D) be the strategy profile learned by our model-based algorithm using the
offline dataset D with sufficient data under Assumption 4.3. Then, σMB(D) is guaranteed to be an
ϵ-equilibrium strategy of the IIEFG G if and only if D is a uniform coverage of G and σMB(D) is an
ϵ-equilibrium strategy for the trained environment model used in the model-based algorithm.

Sketch Proof. Under Assumption 4.3, the error incurred during training of the environment game
model from D is negligible. As a result, the trained environment game model is identical to the
original game G, provided that the dataset D offers full coverage of all state transitions. Conse-
quently, if σMB(D) is an ϵ-equilibrium strategy for the trained environment game model, it is also
an ϵ-equilibrium strategy for the original game G. Any slight deviation from these conditions would
invalidate the convergence guarantee. A complete proof of this result is detailed in App. D.1.

Theorem 4.5. Let σBC(D) be the strategy profile learned by behavior cloning algorithm using the
offline dataset D with sufficient data under Assumption 4.3. Then σBC(D) is guaranteed to be an
ϵ-equilibrium strategy of IIEFG G if and only if D provides ϵ-equilibrium coverage of IIEFG G.

Sketch Proof. According to Assumption 4.3, the error in training the behavior cloning strategy
σBC(D) from the dataset D is negligible. As a result, the behavior cloning process ensures that
σBC(D) is identical to the behavior strategy underlying D, i.e., σBC(D) = σD. Consequently, if D
provides ϵ-equilibrium coverage of G, then σBC(D) is guaranteed to be an ϵ-equilibrium strategy for
the IIEFG G, since GAP(σD, σ

∗) < ϵ implies GAP(σBC(D), σ
∗) < ϵ. Any deviation from these

conditions would invalidate the convergence guarantee. The full proof is provided in App. D.1.

Building on the insights provided by the preceding two theorems, we propose the following theorem
to characterize the performance of BOMB in a general case where the offline dataset is generated by
an unknown strategy profile. The full proof and detailed derivation are provided in App. D.1.
Theorem 4.6. Let σBOMB(D) represent the strategy profile learned by BOMB algorithm based
on the offline dataset D with sufficient data under Assumption 4.3, σD represent the underlying
behavior strategy of D and σ∗ represent the equilibrium strategy of IIEFG G. Then the gap between
σBOMB(D) and σ∗ is guaranteed to be at most equal to, or smaller than, the gap between σD and
σ∗. Formally, GAP(σBOMB(D), σ

∗) ≤ GAP(σD, σ
∗).

To analyze the performance of our algorithm in real-world scenarios, we first examine the offline
datasets generated for the offline EF paradigm. Based on dataset collection procedures, we observe
that the random dataset can be considered as a uniform coverage of the game G when the dataset
size is sufficiently large. This is because the random dataset is collected using a uniform strategy,
ensuring that every action is adequately sampled as the dataset grows. On the other hand, the expert
dataset can be considered as an ϵ-equilibrium coverage of IIEFG G, where ϵ decreases as the dataset
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size increases. Since the expert dataset is generated by an equilibrium strategy, a larger dataset size
allows the underlying behavior strategy of the dataset to approximate the equilibrium strategy more
closely, thereby reducing ϵ. These dataset properties ensure that the theoretical guarantees of our
algorithm hold for both random and expert datasets, as shown in the following experimental results.

5 EXPERIMENTAL RESULTS

To evaluate the performance of BOMB, we conduct the following experiments: i) we compare
BOMB with two offline RL algorithms; ii) we evaluate the performance of different estimation
methods for parameter α; and iii) we run BOMB on various offline datasets to assess its capability in
computing different equilibrium strategies, including NE and CCE, across different game scenarios.

We use OpenSpiel1 (Lanctot et al., 2019) as our experimental platform, which provides a well-
established collection of environments and algorithms for game research, thereby facilitating future
replicability. For our experiments, we select several widely used games, including poker games,
Liar’s Dice, and Phantom Tic-Tac-Toe (Lisý et al., 2015; Brown et al., 2019). The experiments are
conducted on a workstation equipped with a ten-core 3.3GHz Intel i9-9820X CPU and NVIDIA
RTX 2080Ti GPU. All results are averaged over three seeds, and error bars are also reported.
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Figure 5: Comparison with offline RL.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.00

0.25

0.50

0.75

1.00

1.25

1.50

N
as

hC
on

v

Random
Grid Search
Learning-based

(a) Kuhn poker (3p)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

3

4

5

6

7

8

N
as

hC
on

v

Random
Grid Search
Learning-based

(b) Leduc poker (2p)

Figure 6: Results of different estimation methods.

RQ1: Can BOMB outperform offline RL methods?

To support this claim that offline RL algorithms are insufficient for the offline EF paradigm, we
select two representative algorithms: the model-free algorithm–Best-Action Imitation Learning
(BAIL) (Chen et al., 2020) and the model-based algorithm–Model-based Offline Policy Optimation
(MOPO) (Yu et al., 2020). The comparison results, shown in Fig. 5, are conducted on two-player
Kuhn poker and Leduc poker games under hybrid datasets. The x-axis represents the proportion of
data from the random datasets within the hybrid dataset. When the proportion is zero, the hybrid
dataset is equivalent to the expert dataset; when the ratio is one, it reduces to the random dataset.
The results show that BOMB consistently outperforms both offline RL algorithms across all cases,
regardless of the dataset composition. This highlights the limitations of traditional offline RL algo-
rithms in addressing the offline EF paradigm and underscores the effectiveness of BOMB.

RQ2: How do different methods for estimating the parameter α perform?

We evaluate the three proposed parameter estimation methods through experiments on poker games.
For the learning-based method, the parameter predictor was trained on the two-player Kuhn poker
game and tested on other poker games. The performance results, shown in Fig. 6, include three-
player Kuhn poker and two-player Leduc poker games. These results show that the grid search
method consistently achieves the best performance across games, and the learning-based method
performs comparably to the grid search method on the three-player Kuhn poker but slightly worse
on the two-player Leduc poker game, suggesting that its performance depends on the similarity
between the test game and the game used for training. Interestingly, the random method performs
surprisingly well in many cases, indicating that even simple combinations can work effectively. For
the remaining experiments, we use the grid search method as the parameter estimation method.

RQ3: Can the BOMB framework compute NE?
To answer this question, we conduct extensive experiments covering two-player games, multi-player
games, and real-world scenarios simulated using learning datasets. This comprehensive evaluation
ensures a thorough assessment of our method’s performance in computing the NE strategy.

1https://github.com/deepmind/open_spiel
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Figure 7: Experimental results on computing NE in two-player games.

Two-Player Cases. We first move to evaluate the performance of our algorithm, BOMB, in com-
puting the NE strategy. In addition to performing BOMB, we also assess the individual perfor-
mance of its components: the behavior cloning (BC) technique and the model-based (MB) algo-
rithm. This evaluation highlights the strengths and weaknesses of each component while offering a
comprehensive understanding of the efficacy of BOMB in computing equilibrium strategies offline.
Figs. 7(a)-7(c) present results on two-player games under offline datasets with different sizes. For
NE computation, we use either MB-CFR or MB-PSRO, and the MB framework’s performance is
shown to be independent of the specific algorithm used (details in App. F). As the proportion of the
random dataset increases, the performance of BC decreases, whereas MB shows a slight improve-
ment. Additionally, we observe that as the size of offline data increases, the improvement of the
BC’s performance is not significant and the MB’s performance improves. It means that the perfor-
mance of BC mainly depends on the quality of the behavior policy generating the dataset, and the
performance of MB relies on the accuracy of the environment model relative to the actual environ-
ment. Across all cases, BOMB outperforms both BC and MB methods, demonstrating its ability
to compute NE strategies for two-player games. This underscores the effectiveness of combining
BC and MB methods in the offline EF paradigm. To further analyze the performance of the BOMB
method in two-player games, we plot the parameter α for these combined policies, as shown in
Fig. 7(d). The results reveal that as the proportion of the random dataset increases, the weight of the
BC policy decreases. This indicates that the BC policy performs better with expert datasets, while
the MB policy excels with random datasets. These findings highlight the complementary strengths
of BC and MB, further validating the effectiveness of the BOMB framework.
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Figure 8: Experimental results on computing NE in multi-player games.
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Figure 9: Proper weight of BC policy in multi-player games.

Multi-Player Cases. We conduct experiments on multi-player games to evaluate the performance
of BOMB in computing NE strategies across several multi-player games, as illustrated in Fig. 8
and App. F. These results show that BOMB consistently performs as well as or better than both
BC and MB algorithms, similar to the findings in two-player cases. However, as the proportion of
the random dataset increases, the performance of BC decreases, while MB exhibits instability with
a slight downward trend. Notably, we use MB-CFR as the MB algorithm, and since CFR-based
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Figure 10: Results on learning dataset.
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Figure 11: Results on computing CCE.

algorithms do not guarantee convergence to NE in multi-player games, the performance of MB may
be influenced. The performance of MB also depends on the accuracy of the trained environment
game model. Consequently, the underperformance of the MB algorithm may stem from either an
inadequately trained environment game model or inherent limitations of CFR-based algorithms in
multi-player settings. These observations highlight critical challenges for offline EF in multi-player
games, particularly the need to develop more effective equilibrium-finding algorithms and train an
accurate environment game model. Addressing these challenges is essential for advancing offline EF
in multi-player games. The appropriate weights of the BC policy (α) within BOMB across different
hybrid datasets are shown in Fig. 9 and App. F. In the three-player Kuhn poker game, the weight of
the BC policy quickly drops to zero as the proportion of the random dataset increases, indicating that
the MB method generally outperforms the BC method except when the random dataset proportion
is low. Conversely, in the three-player Leduc poker game, the BC policy retains a high weight
in most cases, except when the proportion of the random dataset is high. This suggests the MB
method struggles in these games due to challenges in learning an approximate equilibrium strategy.
The difficulty stems from the inherent complexity of multi-player games, where the development of
effective equilibrium-finding algorithms and the training of accurate game models are challenging.

Simulating Real-World Cases. We also conduct experiments on the learning dataset, which closely
approximates real-world conditions. Fig. 10(a) shows the results of Kuhn poker games with different
numbers of players and Fig. 10(b) shows the results of Phantom Tic-Tac-Toe under datasets with
different sizes. It indicates that given an offline dataset generated by an unknown strategy, BOMB
can also perform better than BC and MB in approximating the NE strategy.

RQ4: Can the BOMB framework compute CCE?

We evaluate the performance of the model-based method in computing the CCE strategy. The BC
technique and the BOMB framework are not used for CCE computation since the offline dataset
is collected using independent strategies for each player rather than a joint strategy. The results of
applying the MB-JPSRO algorithm on three-player Kuhn poker and Leduc poker games are pre-
sented in Fig. 11. The results show that as the size of the offline data increases, the performance of
MB-JPSRO improves. It emphasizes that the effectiveness of the model-based method relies on the
quality of the trained environment model and also highlights the importance of accurate environment
modeling in achieving robust offline equilibrium strategy computation.

6 CONCLUSION

We investigated the paradigm of offline equilibrium finding (Offline EF) in extensive-form games,
aiming to compute equilibrium strategies from offline datasets. To address the lack of comprehensive
datasets for evaluation, we first created offline EF datasets using established data collection methods.
Next, we proposed a novel algorithm, BOMB, which combines behavior cloning with a model-based
approach, enabling the adaptation of online equilibrium finding algorithms to the offline setting
by a game model. To provide a deeper understanding, we conducted comprehensive theoretical
and empirical analysis, offering performance guarantees of BOMB across different offline datasets.
Finally, extensive experimental results validated the superiority of BOMB over existing offline RL
algorithms, affirming its efficacy for computing equilibrium strategies in an offline manner. While
this paper marks an important step toward offline learning in game theory, there remain limitations.
Detailed discussions on limitations and future directions can be found in App. A. We hope our efforts
inspire new avenues in equilibrium finding and accelerate research in large-scale game theory.
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mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, pp. 4909–4926, 2022.

Usha Kiruthika, Thamarai Selvi Somasundaram, and S Kanaga Suba Raja. Lifecycle model of a ne-
gotiation agent: A survey of automated negotiation techniques. Group Decision and Negotiation,
29:1239–1262, 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In ICML, pp. 3519–3529, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In NeurIPS, pp. 1179–1191, 2020.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sampling for
regret minimization in extensive games. In NeurIPS, pp. 1078–1086, 2009.
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A FREQUENTLY ASKED QUESTIONS (FAQS)

Q1: What are the potential impacts of this work?

This work addresses a critical gap in offline learning within the domain of game theory. By intro-
ducing the offline learning framework, we demonstrate its potential to advance the application of
game-theoretic methods to real-world problems and to stimulate new research directions in equi-
librium computation. Notably, equilibrium strategies offer greater robustness than purely optimal
strategies, particularly in security-sensitive and adversarial contexts. Consequently, the offline EF
paradigm provides a valuable foundation for deriving robust strategies capable of effectively man-
aging competitive and adversarial real-world challenges.

Q2: Why is offline EF important and needed?

Offline EF algorithms designed for adversarial environments is crucial in strictly competitive games,
such as security games. This setting fundamentally differs from offline multi-agent reinforcement
learning, which often emphasizes cooperation among agents rather than strict competition. Consider,
for example, pursuit-evasion games, where the pursuer (defender) attempts to capture the evader (at-
tacker). In such contexts, it is unrealistic to assume that the attacker follows a fixed strategy, since
attackers are strategic and capable of adapting their behavior. If one were to apply a standard of-
fline RL algorithm to learn the defender’s optimal strategy solely from historical data, the resulting
strategy could suffer significant utility loss, as it may be highly exploitable. Specifically, the at-
tacker could deviate from past behaviors and instead adopt a best response to the defender’s learned
strategy. By contrast, computing a Nash Equilibrium (NE) provides a more robust solution, since
equilibrium strategies are, by definition, non-exploitable.

Q3: Is offline EF more difficult than offline RL or offline cooperative MARL?

Traditional offline RL focuses on learning an optimal strategy for a single agent, with the goal
of maximizing utility in a dynamic environment modeled as a Markov Decision Process (MDP).
In this setting, the environment dynamics are independent of the actions of other agents. Offline
cooperative multi-agent RL (MARL) extends this paradigm to multiple agents, but typically assumes
that the agents work together toward a shared objective. Although the dynamics depend on the joint
actions of all agents, the cooperative setting aligns their incentives, making it possible to optimize
for collective performance without the concern of strategic exploitation.

By contrast, offline EF arises in strictly competitive games, where each player faces a strategic
opponent. The effective dynamics for one player are determined jointly by the game structure and
the opponent’s strategy, and any change in the opponent’s behavior alters the induced MDP. This
makes the problem significantly more challenging than both offline RL and cooperative MARL,
since a strategy learned from historical data may be highly exploitable if the opponent adapts. The
offline EF framework addresses this difficulty by enabling the computation of Nash equilibrium
(NE) strategies, which provide robustness against fully strategic and adversarial opponents.

Q4: What are the differences between offline EF and Empirical Game-Theoretic Analysis?

1) As described in (Wellman, 2006), Empirical Game-Theoretic Analysis (EGTA) requires access
to a game simulator and conducts strategic reasoning through an iterative process of simulation and
game-theoretic analysis. In this sense, the availability of a simulator is essential for EGTA. By
contrast, the offline EF paradigm does not rely on a simulator. Instead, it operates under the offline
learning setting, where only a fixed dataset of past interactions is available.

2) In EGTA, the empirical game is constructed from simulation outcomes obtained by executing a
set of known strategies on the simulator. In contrast, in the offline EF paradigm, the offline dataset
is generated using unknown strategy. While we use various behavior strategies to create multiple
offline datasets, these strategies are not utilized directly within the offline EF paradigm. These
distinctions highlight the fundamental differences between EGTA and offline EF.

Q5: What are the novelties of the proposed offline EF algorithm – BOMB?

To the best of our knowledge, we are the first to propose an empirical algorithm for computing equi-
librium strategies from offline datasets, i.e., the offline EF paradigm. Unlike traditional offline RL
algorithms, which are typically categorized as either model-based or model-free, our algorithm com-
bines the advantages of both to efficiently compute equilibrium strategies in the offline setting. The
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proposed BOMB framework integrates behavior cloning (BC) with a model-based (MB) compo-
nent, supported by novel parameter estimation techniques. By incorporating an environment model
into the MB component, we enable the adaptation of existing online equilibrium finding algorithms
for use in offline settings. Furthermore, we design multiple methods for selecting the combination
parameter, providing flexibility to accommodate different scenarios depending on whether limited
online interaction is available. Experimental results show that neither the BC nor the MB approach
consistently achieves strong performance in isolation, whereas BOMB outperforms both across all
tested cases. These results demonstrate that the BOMB framework successfully unifies the strengths
of BC and MB, yielding a highly effective solution for offline equilibrium computation.

Q6: What are the limitations and future works for this paper?

This work has several limitations that we aim to address in the future. First, the games considered
in this study are relatively small-scale. Expanding to large-scale games, such as Texas Hold’em
poker (Brown & Sandholm, 2018) and football games (Liu et al., 2022), will be a focus of fu-
ture work. Second, this work primarily targets NE and CCE as solution conceptions. In future
research, we plan to incorporate additional solution concepts, such as quantal response equilibrium
(QRE) (McKelvey & Palfrey, 1995) and α-rank (Omidshafiei et al., 2019). Investigating the gen-
eralizability of both the datasets and the BOMB framework to these novel solution concepts will
further broaden the scope of offline EF. Third, the relationships between the datasets and offline
EF algorithms require further exploration. Instead of relying on datasets curated by researchers, we
aim to apply offline EF to human-play datasets, moving toward real-world deployment (Wang et al.,
2024). This will help bridge the gap between theoretical research and practical applications.

B RELATED WORK

B.1 EQUILIBRIUM FINDING ALGORITHMS.

Contemporary state-of-the-art algorithms for solving IIEFGs can be broadly categorized into two
groups: no-regret methods derived from CFR (Zinkevich et al., 2007), and incremental strategy-
space generation methods of the PSRO framework (Lanctot et al., 2017).

For the first group, CFR is a family of iterative methods for approximately solving IIEFGs. Let σt
i

be the strategy used by player i in iteration t. We use ui(σ, h) to define the expected utility of player
i given that the history h is reached and all players act according to strategy σ from that point on.
Accordingly, ui(σ, h · a) is used to define the expected utility of player i given that the history h
is reached and all players play according to strategy σ except player i selects action a in history
h. Formally, ui(σ, h) =

∑
z∈Z πσ(h, z)ui(z) and ui(σ, h · a) =

∑
z∈Z πσ(h · a, z)ui(z). The

counterfactual value of the information set I , vσi (I), is the expected value of information set I given
that player i attempts to reach it. This value is the weighted average of the expected utility of each
history in the information set. The weight is proportional to the contribution of all players except
player i to reach each history. Thus, vσi (I) =

∑
h∈I π

σ
−i(h)ui(σ, h). For any action a ∈ A(I),

the counterfactual value of action a is vσi (I, a) =
∑

h∈I π
σ
−i(h)ui(σ, h · a). The instantaneous

conterfactual regret for an action a in information set I during iteration t is rt(I, a) = vσ
t

P (I)(I, a)−
vσ

t

P (I)(I). Therefore, the conterfactual regret for an action a in inforamtion set I on iteration T

is RT (I, a) =
∑T

t=1 r
t(I, a). In vanilla CFR, players use Regret Matching to pick a distribution

over available actions in an information set proportional to the cumulative regret of those actions.
Formally, in iteration T + 1, player i selects action a ∈ A(I) according to probabilities

σT+1(I, a) =


RT

+(I,a)∑
b∈A(I) R

T
+(I,b)

if
∑

b∈A(I)

RT
+(I, b) > 0,

1
|A(I)| otherwise,

where RT
+(I, a) = max{RT (I, a), 0} is the position portion of the regret value since we often are

most concerned about the cumulative regret when it is positive. If a player acts according to regret
matching in the information set I on every iteration, then in iteration T , RT (I) ≤ ∆i

√
|Ai|
√
T

where ∆i = maxz ui(z) − minz ui(z) is the range of utilities of player i. Moreover, RT
i ≤∑

I∈Ii
RT (I) ≤ |Ii|∆i

√
|Ai|
√
T . Therefore, limT→∞

RT
i

T = 0. In two-player zero-sum games,
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if both players’ average regret RT
i

T ≤ ϵ, their average strategies (σT
1 , σ

T
2 ) over all iterations form

a 2ϵ-equilibrium (Waugh et al., 2009). Some CFR-based variants are proposed to solve large-scale
imperfect-information extensive-form games. Some sampling-based CFR variants (Lanctot et al.,
2009; Gibson et al., 2012; Schmid et al., 2019) are proposed to effectively solve large-scale games
by traversing a subset of the game tree instead of the whole game tree. With the development of deep
learning techniques, neural network function approximation can be applied to the CFR algorithm.
Deep CFR (Brown et al., 2019), Single Deep CFR (Steinberger, 2019), and Double Neural CFR (Li
et al., 2019) are algorithms using deep neural networks to replace the tabular representation.

For the second group, PSRO is a general framework that scales Double Oracle (DO) (McMahan
et al., 2003) to large extensive-form games via using RL to compute the best response approximately.
To make PSRO more effective in solving large-scale games, Pipeline PSRO (P2SRO) (McAleer
et al., 2020) is proposed by parallelizing PSRO with convergence guarantees. Extensive-Form Dou-
ble Oracle (XDO) (McAleer et al., 2021) is a version of PSRO where the restricted game allows
mixing population strategies not only at the root of the game but every information set. It can guar-
antee to converge to an approximate NE in a number of iterations that are linear in the number of
information sets, while PSRO may require a number of iterations exponential in the number of infor-
mation sets. Neural XDO (NXDO), as a neural version of XDO, learns approximate best response
strategies through any deep RL algorithm. Recently, Anytime Double Oracle (ADO) (McAleer et al.,
2022), a tabular double oracle algorithm for two-player zero-sum games, was proposed to converge
to an NE while decreasing exploitability from one iteration to the next. Anytime PSRO (APSRO)
as a version of ADO calculates best responses via RL algorithms. Except for NEs, we also consider
(Coarse) Correlated equilibrium ((C)CE). Joint Policy Space Response Oracles (JPSRO) (Marris
et al., 2021) is proposed for training agents in n-player, general-sum extensive-form games, which
provably converges to (C)CEs. The excellent performance of these equilibrium-finding algorithms
depends on the interactions with the actual game environment or a precise simulator. Therefore,
these algorithms cannot directly be applied to the offline EF paradigm.

B.2 OPPONENT MODELING.

Opponent modeling algorithm is necessary for multi-agent settings where secondary agents with
competing goals also adapt their strategies, yet it remains challenging because policies interact with
each other and change (He et al., 2016). One simple idea of opponent modeling is to build a model
each time a new opponent or group of opponents is encountered (Zheng et al., 2018). However,
it is infeasible to learn a model every time. A better approach is to represent an opponent’s pol-
icy with an embedding vector. Grover et al. (2018) use a neural network as an encoder, taking the
trajectory of one agent as input. Imitation learning and contrastive learning are also used to train
the encoder. Then, the learned encoder can be combined with reinforcement learning algorithms
by feeding the generated representation into the policy and/or value network. DRON (He et al.,
2016) and DPIQN (Hong et al., 2017) are two algorithms based on DQN, which use a secondary
network that takes observations as input and predicts opponents’ actions. However, if the oppo-
nents can also learn, these methods become unstable. Therefore, it is necessary to take the learning
process of opponents into account. Foerster et al. (2017) propose a method named Learning with
Opponent-Learning Awareness (LOLA), in which each agent shapes the anticipated learning of the
other agents in the environment. Further, the opponents may still be learning continuously during
execution. Therefore, Al-Shedivat et al. (2017) propose a method based on a meta-policy gradient
named Mata-MPG. It uses trajectories from current opponents to perform multiple meta-gradient
steps and constructs a policy that favors updating the opponents. Meta-MAPG (Kim et al., 2021)
extends Mate-MPG by including an additional term that accounts for the impact of the agent’s cur-
rent policy on the future policies of opponents, similar to LOLA. Yu et al. (2021b) propose model-
based opponent modeling (MBOM), which employs the environment model to adapt to various
opponents. In our offline EF paradigm, our goal is to compute the equilibrium strategy based on the
offline dataset. Applying opponent modeling is not enough for the offline EF paradigm since it only
aims at computing the best response strategy instead of the equilibrium strategy.

B.3 EMPIRICAL GAME THEORETIC ANALYSIS.

Empirical game theoretic analysis (EGTA) is an empirical methodology that bridges the gap between
game theory and simulation for practical strategic reasoning (Wellman, 2006). In EGTA, game mod-
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els are iteratively extended through a process of generating new strategies based on learning from
experience with prior strategies. The strategy exploration problem (Jordan et al., 2010) that how
to efficiently assemble an efficient portfolio of policies for EGTA is the most challenging problem.
Schvartzman & Wellman (2009b) deploy tabular RL as a best-response oracle in EGTA for strategy
generation. They also build the general problem of strategy exploration in EGTA and investigate
whether better options exist beyond best-responding to an equilibrium (Schvartzman & Wellman,
2009a). Investigation of strategy exploration was advanced significantly by the introduction of the
Policy Space Response Oracle (PSRO) framework (Lanctot et al., 2017) which is a flexible frame-
work for iterative EGTA, where at each iteration, new strategies are generated through reinforcement
learning. Note that when employing NE as the meta-strategy solver, PSRO reduces to the double
oracle (DO) algorithm (McMahan et al., 2003). In EGTA, a space of strategies is examined through
simulation, which means that it needs a simulator, and the policies are known in advance. How-
ever, in the offline EF paradigm, only an offline dataset is provided. Therefore, techniques in EGTA
cannot be directly applied to the offline EF paradigm.

B.4 OFFLINE REINFORCEMENT LEARNING.

Offline reinforcement learning (offline RL) is a data-driven paradigm that learns exclusively from
static datasets of previously collected interactions, making it feasible to extract policies from large
and diverse training datasets (Levine et al., 2020). This paradigm can be extremely valuable in
settings where online interaction is impractical, either because data collection is expensive or dan-
gerous (e.g., in robotics (Singh et al., 2021), education (Singla et al., 2021), healthcare (Liu et al.,
2020), and autonomous driving (Kiran et al., 2022)). Therefore, efficient offline RL algorithms have
a much broader range of applications than online RL and are particularly appealing for real-world
applications (Prudencio et al., 2022). Due to its attractive characteristics, there have been a lot of
recent studies. Here, we can divide the research of offline RL into two categories: model-based
algorithm and model-free algorithm.

Model-free offline RL algorithms learn a good policy directly from the offline dataset. To do this,
there are two types of algorithms: actor-critic and imitation learning methods. Those actor-critic
algorithms focus on implementing policy regularization and value regularization based on existing
reinforcement learning algorithms. Haarnoja et al. (2018) propose soft actor-critic (SAC) by adding
an entropy regularization term to the policy gradient objective. This work mainly focuses on policy
regularization. For the research of value regularization, an offline RL method named Constrained
Q-Learning (CQL) (Kumar et al., 2020) learns a lower bound of the true Q-function by adding value
regularization terms to its objective. Another line of model-free offline RL research is imitation
learning which mimics the behavior policy based on the offline dataset. Chen et al. (2020) propose
a method named Best-Action Imitation Learning (BAIL), which fits a value function, then uses it to
select the best actions. Meanwhile, Siegel et al. (2020) propose a method that learns an Advantage-
weighted Behavior Model (ABM) and uses it as a prior in performing Maximum a-posteriori Policy
Optimization (MPO) (Abdolmaleki et al., 2018). It consists of multiple iterations of policy evalua-
tion and prior learning until they finally perform a policy improvement step using their learned prior
to extracting the best possible policy.

Model-based algorithms rely on the offline dataset to learn a dynamics model or a trajectory dis-
tribution used for planning. The trajectory distribution induced by models is used to determine the
best set of actions to take at each given time step. Kidambi et al. (2020) propose a method named
Model-based Offline Reinforcement Learning (MOReL), which measures their model’s epistemic
uncertainty through an ensemble of dynamics models. Meanwhile, Yu et al. (2020) propose an-
other method named Model-based Offline Policy Optimization (MOPO), which uses the maximum
prediction uncertainty from an ensemble of models. Concurrently, Matsushima et al. (2020) pro-
pose the BehaviorREgularized Model-ENsemble (BREMEN) method, which learns an ensemble of
models of the behavior MDP, as opposed to a pessimistic MDP. In addition, it implicitly constrains
the policy to be close to the behavior policy through trust-region policy updates. More recently,
Yu et al. (2021a) proposed a method named Conservative Offline Model-Based policy Optimization
(COMBO), a model-based version of CQL. The main advantage of COMBO concerning MOReL
and MOPO is that it removes the need for uncertainty quantification in model-based offline RL
approaches, which is challenging and often unreliable. However, the above offline RL algorithms
cannot be directly applied to the offline EF paradigm, which we have described in Section 2 and
experimental results also empirically verify this claim.
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C DATASETS

C.1 DATASET FORMAT

Figure 12: An example game.

To clarify the structure of the offline EF dataset,
we provide an illustrative example. As intro-
duced in the main paper, each data point is
represented as (st, at, st+1, ut+1, dt+1), where
st = (It1, I

t
2, ..., I

t
n, GI, pt, A(Itpt)). Here, It1

denotes the information set of player i at time
step t, GI denotes the game information, pt is
the player acting at time step t, and A(Itpt) is
the set of available actions at information set
It1. Notably, if st+1 is a terminal state, i.e.,
dt+1 = 1, we set pt+1 = −1 to indicate that
no player is required to make a decision at this
state. Fig. 12 presents an example of a two-
player IIEFG G, where I1 and I2 denote the in-
formation sets for Player 1 and Player 2, respectively. If the offline dataset D provides full coverage
of all state-action pairs, it would contain the following data points:

((It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 = I2, ∅, 2, {b1, b2}), (0, 0), 0),

((It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, ∅, 2, {b1, b2}), (0, 0), 0),

((It21 = I1a1, I
t2
2 = I2, ∅, 2, {b1, b2}), b1, (It31 = I1a1, I

t3
2 = I2b1, ∅,−1, ∅), (1,−1), 1),

((It21 = I1a1, I
t2
2 = I2, ∅, 2, {b1, b2}), b2, (It31 = I1a1, I

t3
2 = I2b2, ∅,−1, ∅), (2,−2), 1),

((It21 = I1a2, I
t2
2 = I2, ∅, 2, {b1, b2}), b1, (It31 = I1a2, I

t3
2 = I2b1, ∅,−1, ∅), (0, 0), 1),

((It21 = I1a2, I
t2
2 = I2, ∅, 2, {b1, b2}), b2, (It31 = I1a2, I

t3
2 = I2b2, ∅,−1, ∅), (3,−3), 1).

Note that in states (It21 = I1a1, I
t2
2 = I2, ∅, 2, {b1, b2}) and (It21 = I1a2, I

t2
2 = I2, ∅, 2, {b1, b2}),

the information set for Player 2, It22 , is identical, as shown in Fig. 12. However, because our dataset
is constructed from the perspective of the entire game, these states can still be distinguished by
incorporating the game information of other players together with the game information GI . In this
specific example, there is no chance node, so GI is empty. If the game were to include a chance
node, its outcomes would be recorded in GI . This additional information allow us to differentiate
game states that may otherwise appear indistinguishable from the perspective of a single player. In
this way, dataset ensures sufficient granularity to uniquely identify all relevant states in the game.

C.2 VISUALIZATION

Figure 13: Visualization of the offline EF dataset

Fig. 13 provides a comprehensive view of our offline EF dataset, which includes data collected for
eight games: two-player Kuhn poker, three-player Kuhn poker, four-player Kuhn poker, five-player
Kuhn poker, two-player Leduc poker, three-player Leduc poker, Phantom Tic-Tac-Toe, and Liar’s
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Dice. For each game, we generated three types of datasets, a random dataset, an expert datset, and a
learning dataset, following our data collection methods. To validate the diversity of these collected
offline datasets and gain insights into them, we developed a visualization method for comparison.
First, we generate the game tree for each game. Subsequently, we traverse the game tree using depth-
first search (DFS) (Tarjan, 1972) and assign an index to each leaf node based on the DFS results.
Then, we count the frequency of each leaf node within the dataset. The reason why we do this is that
each leaf node represents a unique sampled trajectory originating from the root node of the game
tree. As a result, the frequency of leaf nodes can effectively capture the distribution of the dataset.
Finally, these frequency data can be plotted to visualize. Fig. 14 shows the visualized distributions
for some datasets. From these figures, we can find that in the random dataset, the frequency of leaf
nodes is nearly uniform, whereas, in the expert dataset, the frequency of leaf nodes is uneven. The
distribution of the learning dataset and the hybrid dataset falls between that of the expert dataset and
the random dataset. These observations confirm that the distribution of these datasets differs, thus
validating the diversity of our proposed offline datasets.

(a) Kuhn poker (2p) (b) Kuhn poker (3p) (c) Leduc poker (2p) (d) Leduc poker (3p)

Figure 14: Frequency of leaf node in different offline datasets.

D THEORETICAL ANALYSIS

In this section, we provide a comprehensive theoretical analysis of the offline EF paradigm and our
BOMB framework to facilitate the understanding of the offline EF paradigm and BOMB framework.
We first provide the minimal dataset assumption that is sufficient to compute the equilibrium strategy
in the offline setting. Then we provide a general generalization bound for training neural network
models. Finally, we give the performance guarantee for our algorithm. In the following sections, we
assume that all extensive-form games discussed here are perfect recall and timetable.

D.1 MINIMAL DATASET ASSUMPTION FOR OFFLINE EF

As demonstrated in offline RL papers (Rashidinejad et al., 2021; Xie et al., 2021), a dataset coverage
condition over the optimal policy is sufficient for offline learning. Therefore, it is straightforward
to extend this dataset coverage assumption to the offline EF paradigm. In the main paper, we have
proved that the dataset generated by the equilibrium strategy is not sufficient for computing the equi-
librium strategy in an offline manner by providing a counter-example. Furthermore, we also provide
another dataset assumption related to the equilibrium strategy, shown in the following assumption.
Assumption D.1. (Single Strategy Coverage) The offline dataset D is said to be a single strategy
coverage if the equilibrium strategy profile σ∗ is covered by the offline datasetD, i.e., for each player
i, each information set Ii, and action ai with σ∗

i (Ii, ai) > 0, there is a corresponding state-action
pair (st, ai) in D.

Subsequently, a question arises: is the single strategy coverage assumption also sufficient for com-
puting equilibrium strategy in the offline setting? We employ the following theorem to answer this
question and elucidate the rationale behind this.
Theorem D.2. Single strategy coverage assumption over offline dataset D is not sufficient for com-
puting computing an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

Proof. We prove this theorem by providing a counterexample. First, we consider two two-player
IIEFGs G1 and G2, represented in Fig. 15. We can easily find that the NE of the game G1 is
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(a) G1 game. (b) G2 game.

Figure 15: Counterexample for proving Theorem D.2.

strategy profile σ1 = (σ1
1 , σ

1
2) = ({I1 : a1}, {I2 : b1}), i.e., Player 1 plays a1 at information

set I1 and Player 2 plays b1 at information set I2. The NE of the game G2 is strategy profile
σ2 = (σ2

1 , σ
2
2) = ({I1 : a2}, {I2 : b2}). Next, we consider an offline dataset D which is generated

using a strategy profile σD. The σD is set to be the uniform distribution over the strategy profiles
σ1 and σ2, which means that the dataset D covers both σ1 and σ2. Therefore, the offline dataset
D satisfies the single strategy coverage assumption for these two games G1 and G2. However, no
algorithm can distinguish these two games only based on the dataset D since these two games are
both consistent on the dataset D. In conclusion, the single strategy coverage assumption is not
sufficient for computing an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

From the above proof, we understand that the single strategy coverage assumption is sufficient for
computing the optimal strategy in the offline RL setting, but is inadequate for computing an NE
strategy in the offline EF setting. The intuition behind this difference lies in the nature of the two
problems: in offline RL, data from only two actions is sufficient to determine which action is better;
however, in offline EF, data from only two action pairs cannot determine which action pair is closer
to NE. Identifying an NE strategy requires referencing additional action pairs for comparison and
inference. Based on this analysis, Cui & Du (2022) provided a minimal coverage assumption that is
sufficient for computing NE in two-player zero-sum Markov games, which is defined as follows,
Assumption D.3. (Deterministic Unilateral Coverage) For all deterministic strategy σi for player i,
(σi, σ

∗
−i) are covered by the dataset, where (σ∗

1 , ..., σ
∗
n) is one NE strategy.

Assumption D.4. (Unilateral Coverage) For all (possible stochastic) strategy σi for all player i,
(σi, σ

∗
−i) are covered by the dataset, where (σ∗

1 , ..., σ
∗
n) is one NE strategy.

Note that the deterministic unilateral coverage assumption is equivalent to the unilateral coverage
assumption. The intuition behind this is that any mixed strategy can be represented by a combination
of deterministic strategies. Therefore, if all deterministic strategies are covered by the dataset, then
all mixed strategies are also covered. Based on this finding, in the following proof, we only consider
all deterministic strategies. Previously, Cui & Du (2022) established that the unilateral coverage
assumption is the minimal sufficient condition for computing an NE strategy in the two-player zero-
sum Markov games. However, this unilateral coverage assumption over the offline dataset is not
sufficient for our model-based method to compute the equilibrium strategy in the offline setting. We
formally proved this limitation through the following theorem.
Theorem D.5. The unilateral coverage assumption over the offline datasetD is not sufficient for our
model-based method to converge to an ϵ-equilibrium for an arbitrarily small ϵ in the offline setting.

Proof. We prove this theorem by providing a counterexample. First, we consider an IIEFG M3,
represented in Fig. 16(a). We can easily find that the NE strategy of game G3 is strategy profile
σ∗ = (σ1, σ2) = ({I1 : a1}, {I2 : b1}). To build a dataset D satisfying the unilateral coverage
assumption, the dataset needs to cover (σ∗

1 , σ2) for all deterministic strategies σ2 and (σ1, σ
∗
2) for

all deterministic strategies σ1. We show the state-action pairs covered by these strategy profiles in
Figs. 16(b)-16(c). It means that if the dataset D satisfies the unilateral coverage assumption, then
the dataset D would cover these state-action pairs marked by these orange lines. When applying
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(a) (b)

(c) (d)

Figure 16: Counter-example for proving Theorem D.5.

our model-based method to the dataset D, the first step is to train an environment model using
the dataset D. Assume that the environment model can be trained well (i.e., Assumption 4.3 holds),
which means that the environment model can precisely represent all game information in the dataset.
Therefore, the game represented by the trained environment model would be G∗

3 in Fig. 16(d). Note
that there is some missing data in the game. Although our trained environment model can give
approximate results for these missing data, it may result in a different equilibrium strategy. For
example, if the missing value in G∗

3 is (0, 0) or (−1, 1), then the strategy profile σ = (σ1, σ
′
2) =

({I1 : a1}, {I2 : b2}) would be the NE strategy of game G∗
3. However, the strategy profile σ is

not the NE strategy for the original game G3. Therefore, the unilateral coverage assumption is not
sufficient for our model-based method to converge to an ϵ-equilibrium for an arbitrarily small ϵ.

To ensure the convergence of our model-based method, we provide a minimal dataset coverage
assumption that guarantees our model-based method converges to the equilibrium strategy of the
original game under the offline setting.
Definition D.6 (Definition 4.1). An offline dataset D is said to be a uniform coverage of an
IIEFG G if and only if it covers all possible state-action pairs in the game. Formally, it covers
(st, at, st+1, ut+1, dt+1), ∀st, at ∈ A(st) and st+1 ∈ T (st, at) where T is the transition function.
Theorem D.7 (Theorem 4.4). Let σMB(D) be the strategy profile learned by our model-based al-
gorithm using the offline dataset D with sufficient data under Assumption 4.3. Then, σMB(D) is
guaranteed to be an ϵ-equilibrium strategy of the IIEFG G if and only if D is a uniform cover-
age of G and σMB(D) is an ϵ-equilibrium strategy for the trained environment model used in the
model-based algorithm.

Proof. From the example in the proof of Theorem D.5, we find that a slight violation of the uniform
coverage assumption, i.e., only one state-action pair is missing, will impede the computation of the
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Figure 17: G′ Game.

equilibrium strategy using our model-based method. In other words, any state-action pair that is not
covered by the dataset may cause failure in computing the equilibrium strategy of the original game
using our model-based method.

Next, we need to prove that the dataset satisfying the uniform coverage assumption can guarantee
the convergence to the equilibrium strategy of the original game using our model-based method.
In our model-based method, we need to train an environment model based on the offline dataset.
Therefore, to prove the convergence guarantee under the uniform coverage dataset assumption, we
need to verify whether the game reconstructed from the dataset satisfying the uniform coverage
assumption is the same as the original game. Here, we reuse the example in the App. C.1. In that
example, the offline datset D of the IIEFG G covers all state-action pairs. Therefore, the offline
dataset D satisfies the uniform coverage dataset assumption. From the offline dataset D, we can
easily rebuild the game G′, as shown in Fig. 17. In the game G′,

S1 = (It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), S2 = (It21 = I1a1, I

t2
2 = I2, ∅, 2, {b1, b2}),

S3 = (It21 = I1a2, I
t2
2 = I2, ∅, 2, {b1, b2}), S4 = (It31 = I1a1, I

t3
2 = I2b1, ∅,−1, ∅),

S5 = (It31 = I1a1, I
t3
2 = I2b2, ∅,−1, ∅), S6 = (It31 = I1a2, I

t3
2 = I2b1, ∅,−1, ∅),

S7 = (It31 = I1a2, I
t3
2 = I2b2, ∅,−1, ∅).

Especially, for game states S2 and S3, the player acting is both Player 2, and the information set for
Player 2 is the same. Therefore, these two game states correspond to different game nodes under
the same information set. Although Player 2 cannot distinguish these two game states, from the
perspective of the game, we can still distinguish them by the information set of Player 1. Particularly,
if there is a chance node in the game, the result of the chance node would be recorded in GI within
the game state S. Therefore, we can still distinguish these game states by game information GI .
Since the dataset satisfying the uniform coverage assumption covers all state-action pairs, the links
between game states can be built following these data points in the dataset. According to Assumption
4.3, the error in training the environment game model based on D can be considered negligible.
Consequently, the trained environment game model is identical to the original game G, as the dataset
D provides full coverage of all state transitions. Therefore, we can find that the reconstructed game
tree has the same game states and the same transition function as the original game, thereby the same
equilibrium strategy. Therefore, our reconstructed game model can provide the same information
as the underlying game of the offline dataset. Then applying our model-based equilibrium finding
algorithm to the reconstructed game model definitely can converge to the equilibrium strategy of
the underlying game in the offline setting. Formally, if σMB(D) is an ϵ-equilibrium strategy for the
trained environment game model, it is also an ϵ-equilibrium strategy for the original game G.

So far, we have proved that the uniform dataset coverage assumption is sufficient for our model-
based method to converge to the equilibrium strategy under the offline setting. For our behavior
cloning method, these dataset coverage assumptions may not be sufficient to converge to the equi-
librium strategy since its performance mainly depends on the underlying behavior strategy of the
dataset. In the following theorem, we provide a minimal dataset coverage assumption for our be-
havior cloning method to converge to the equilibrium strategy in the offline setting.
Definition D.8 (Definition 4.2). An offline dataset D is said to be an ϵ-equilibrium coverage over
an IIEFG G if and only if its underlying behavior strategy σD satisfies: GAP(σD, σ

∗) < ϵ, where σD
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is defined as: σD(st, at) = C(st,at)
C(st)

and σD(st, at) > 0 for all st and at ∈ A(st), with C(st, at)

and C(st) denoting the counts of occurrences of state-action pair (st, at) and the state st in D,
respectively.

This definition ensures that the unique correspondence relationship between the equilibrium-covered
dataset and the equilibrium strategy. Specifically, the dataset is generated by the equilibrium strategy
and the strategy represented by the dataset would be the same as the equilibrium strategy.
Theorem D.9 (Theorem 4.5). Let σBC(D) be the strategy profile learned by behavior cloning al-
gorithm using the offline dataset D with sufficient data under Assumption 4.3. Then σBC(D) is
guaranteed to be an ϵ-equilibrium strategy of IIEFG G if and only if D provides ϵ-equilibrium cov-
erage of IIEFG G.

Figure 18: Game example.

Proof. According to Assumption 4.3, the error in training the behavior cloning strategy σBC(D)

from the dataset D is negligible. Therefore, by the behavior cloning process, σBC(D) is iden-
tical to the behavior strategy underlying D, i.e., σBC(D) = σD. Consequently, if D is an ϵ-
equilibrium coverage of G, then σBC(D) is an ϵ-equilibrium strategy for the IIEFG G, and vice
visa, as GAP(σD, σ

∗) < ϵ if and only if GAP(σBC(D), σ
∗) < ϵ. Next, we prove that any slight

violation of these conditions would invalidate the convergence result.

Here, we reuse the example in Section 4.2, as shown in Fig. 18. Note that the NE strategy
of the game is a pure strategy, i.e, σ∗ = (σ∗

1 , σ
∗
2) = ({I1 : a1}, {I2 : b2}). If we use this

equilibrium strategy to generate the offline dataset D, then D would only include the data point
((It11 = I1, I

t1
2 = ∅, ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 = ∅, ∅,−1, ∅), (0, 0), 1). We cannot get

the equilibrium strategy only from D. In this example game, the offline dataset D is generated by
a pure equilibrium strategy instead of a fully mixed equilibrium strategy, and the behavior cloning
method cannot get the equilibrium strategy from the offline dataset D since there is no information
about Player 2. Another example is the dataset D′ covering the equilibrium strategy σ∗, i.e., the
offline dataset D′ includes the following data points:

((It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), a1, (It21 = I1a1, I

t2
2 = ∅, ∅,−1, ∅), (0, 0), 1),

((It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, ∅, 2, {b1, b2}), (0, 0), 0),

((It21 = I1a2, I
t2
2 = I2, ∅, 2, {b1, b2}), b2, (It21 = I1a2, I

t2
2 = I2b2, ∅,−1, ∅), (−2, 2), 1).

Data point ((It11 = I1, I
t1
2 = ∅, ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, ∅, 2, {b1, b2}), (0, 0), 0)

should also be visited to cover the equilibrium strategy of Player 2. Although D′ covers the equi-
librium strategy, D′ does not satisfy the ϵ-equilibrium coverage assumption since D′ is not created
by the ϵ-equilibrium strategy. Then the behavior cloning method cannot converge to the equilibrium
strategy σ∗ based on D′ since BC cannot get the pure strategy for Player 1 under the influence of the
data point ((It11 = I1, I

t1
2 = ∅, ∅, 1, {a1, a2}), a2, (It21 = I1a2, I

t2
2 = I2, ∅, 2, {b1, b2}), (0, 0), 0).

Therefore, a slight violation of the equilibrium coverage assumption would cause failure in com-
puting the ϵ-equilibrium strategy of the original game using our behavior cloning method. In con-
clusion, the equilibrium coverage assumption is the minimal dataset coverage assumption that guar-
antees the convergence to the equilibrium strategy of the original game using our behavior cloning
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method. Formally, σBC(D) is guaranteed to be an ϵ-equilibrium strategy of IIEFG G if and only if
the offline dataset D is an ϵ-equilibrium coverage of the IIEFG G.

Theorem D.10 (Theorem 4.6). Let σBOMB(D) represent the strategy profile learned by BOMB
algorithm based on the offline dataset D with sufficient data under Assumption 4.3, σD represent
the underlying behavior strategy of D and σ∗ represent the equilibrium strategy of IIEFG G. Then
the gap between σBOMB(D) and σ∗ is guaranteed to be at most equal to, or smaller than, the gap
between σD and σ∗. Formally, GAP(σBOMB(D), σ

∗) ≤ GAP(σD, σ
∗).

Proof. According to Assumption 4.3, the error in training the behavior cloning strategy σBC(D)

from the dataset D is negligible. Therefore, by the behavior cloning process, σBC(D) is identi-
cal to the behavior strategy underlying D, i.e., σBC(D) = σD. Then GAP(σBOMB(D), σ

∗) =
GAP(σD, σ

∗) if α = 1 in our BOMB algorithm. If the dataset satisfies the uniform coverage, by
Theorem 4.4, GAP(σBOMB(D), σ

∗) ≤ GAP(σD, σ
∗) if α = 0 in our BOMB algorithm. There-

fore, in general case, GAP(σBOMB(D), σ
∗) ≤ GAP(σD, σ

∗).

D.2 GENERALIZATION BOUND FOR TRAINING MODEL

As described in the main paper, to conduct the BOMB framework, we need to train one behavior
cloning policy and an environment model, which are both neural network models. Furthermore,
these two models are trained in a supervised learning manner with different loss functions based on
the offline EF dataset. Here, we provide a generalization bound for training such neural network
models, facilitating the following analysis of the BOMB framework.

As we know, the supervised learning framework includes a data-generation distribution σ, a hypoth-
esis class H of the neural network approximator, a training dataset D, and evaluation metrics to
evaluate the performance of any approximator. Here, we can use the loss function l to evaluate the
performance of any approximation. The learning framework aims to minimize the true risk function
Lσ(h) which is the expected loss function of h ∈ H under the distribution σ,

Lσ(h) = Ed∼σ[l(h(d), d)].

Accordingly, the empirical risk function LD(h) on the training dataset D can be defined as:

LD =
1

|D|
∑
d∼D

[l(h(d), d)].

To get a generalization bound, we use an auxiliary lemma from (Shalev-Shwartz & Ben-David,
2014). Therefore, we can measure the capacity of the composition function class l ◦ H using the
empirical Rademacher complexity on the training set D with size m, which is defined as:

RD(l ◦ H) =
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · l(h(di), di)]

where x is distributed i.i.d. according to uniform distribution in {+1,−1}. Before providing the
generalization bound, we first provide the distance between two different approximators and a com-
mon theorem to facilitate the proof of the generalization bound.
Definition D.11. (r-cover) We say function class Hr r-cover H under ℓ∞,1-distance if ∀h, h ∈ H,
there exists hr inHr such that ||h− hr||∞,1 = maxx∈D ||h(x)− hr(x)||1 ≤ r.
Definition D.12. (r-covering number) The r-covering number ofH, N∞,1(H, r), is the cardinality
of the smallest function class Hr that r-coversH under ℓ∞,1-distance.
Theorem D.13. (Shalev-Shwartz & Ben-David, 2014) LetD be a training set of size m drawn i.i.d.
from distribution σ. Then with probability of at least 1− δ over draw of D from σ, for all h ∈ H,

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
.

We provide a bound to measure the generalizability of the trained approximator in a training dataset
of size m using the following theorem.
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Theorem D.14 (Generalization bound). Assume that the loss function l is T -Lipschitz continuous,
then for hypothesis classH of approximator and distribution σ, with probability at least 1− δ over
draw of the training set D with size m from σ, for all h ∈ H, we have

Lσ(h)− LD(h) ≤ 2 · inf
r>0

[

√
2 logN∞,1(H, r)

m
+ Tr] + 4

√
2 ln (4/δ)

m
.

Proof. According to Theorem D.13, we have

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
.

According to the assumption, the loss function l(x, y) is T -Lipschitz continuous under ℓk-distance,
i.e., |l(x, y)− l(x′, y)| ≤ T ||x− x′||k, where || · ||k is the k-norm. LetHr be the function class that
r-coverH for some r > 0 and |Hr| = N∞,1(H, r) be the r-covering number ofHr. For all h ∈ H,
hr ∈ Hr is denoted to be the function approximator that r-covers h. Based on above equations, we
have

|l(h(x), y)− l(hr(x), y)| ≤ T ||h(x)− hr(x)||k ≤ Tr.

Then we have

RD(l ◦ H) =
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · l(h(di), di)] (1)

=
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

xi · (l(hr(di), di) + l(h(di), di)− l(hr(di), di))] (2)

≤ 1

m
Ex∼{+1,−1}m [ sup

hr∈Hr

m∑
i=1

xi · l(hr(di), di)] +
1

m
Ex∼{+1,−1}m [sup

h∈H

m∑
i=1

|xi · Tr|]

(3)

≤ sup
hr∈Hr

√√√√ m∑
i=1

(ℓ(hr, di))2 ·
√

2 logN∞,1(H, r)
m

+
Tr

m
Ex||x||1 (4)

≤
√

2 logN∞,1(H, r)
m

+ Tr (5)

The reduction from Eq. 3 to Eq. 4 is based on Massart’s lemma (Shalev-Shwartz & Ben-David,
2014). Finally,

Lσ(h)− LD(h) ≤ 2RD(l ◦ H) + 4

√
2 ln (4/δ)

m
(6)

≤ 2 · inf
r>0

[

√
2 logN∞,1(H, r)

m
+ Tr] + 4

√
2 ln (4/δ)

m

Therefore, given a training dataset of size m, we have a generalization bound for the error depending
on the characteristics of the loss function. In this paper, we follow the supervised learning framework
to train the behavior cloning policy and environment model. Therefore, we can provide the following
assumptions for the trained policy and environment models based on the above theorem.
Assumption D.15. Suppose the error for training the behavior cloning policy is less than an ex-
tremely small ϵ on the dataset with enough data (the size of data can be computed according to the
above theorem). In that case, we consider that the trained behavior cloning policy is the same as the
underlying behavior strategy of the dataset.
Assumption D.16. Suppose the error for training the environment model is less than an extremely
small ϵ on the dataset with enough data. In that case, we consider that the trained environment model
can provide the full information for the underlying game of the dataset.
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E IMPLEMENTATION DETAILS

Here, we provide the details for the model-based method by introducing our instantiable algorithms:
MB-PSRO and MB-CFR, which are adaptations from two widely-used online equilibrium finding
algorithms, PSRO and Deep CFR.

E.1 MB-PSRO

Algorithm 2 MB-PSRO
1: Input: Trained environment model Eθe
2: Initial policy sets Π for all players;
3: Compute expected rewards UΠ for each strategy π ∈ Π based on the environment model Eθe ;
4: Initialize mate-strategies σi = UNIFORM(Πi), ∀i;
5: repeat
6: for each player i ∈ [1, .., n] do
7: for best response episodes t ∈ [1, ..., T ] do
8: Sample π−i ∼ σ−i;
9: Train best response policy π′

i over ρ ∼ (π′
i, π−i), which samples on the environment

model Eθe ;
10: end for
11: add the best response policy π′

i to policy set Πi;
12: end for
13: Compute missing entries in UΠ based on the environment model Eθe ;
14: Compute the meta-strategy σ using any meta-solver;
15: until Meet the convergence condition
16: Output: Policy set Π and meta-strategy σ

We present the whole framework in Alg. 2. In the beginning, we need a well-trained environment
model Eθe as input to replace the function of the actual environment. Firstly, we initialize policy
sets Π for all players using random strategies. Then, we estimate the expected utilities for each
strategy profile based on the model Eθe to form the meta-game matrix. In vanilla PSRO, this process
needs to interact with the actual game environment. However, in the offline setting, the actual game
environment is not available. Therefore, we use the well-trained environment model Eθe to replace
the actual game environment to provide the information needed in the algorithm. After building
the meta-game matrix, the meta-strategy is initialized by a uniform strategy. Next, we compute the
best response policy for every player and add these trained best response policies to their policy
sets. When training the best response policy oracle using DQN or other RL algorithms, we sample
the training data based on the environment model Eθe . After adding trained best response policies,
we compute missing entries in the meta-game matrix based on the trained environment model Eθe .
Then, the meta-strategy σ of the meta-game matrix can be computed using any meta-solver, such as
the Nash solver or α-rank algorithm. For games with more than two players, the α-rank algorithm
is taken as the meta-solver. Finally, we repeat the above processes until meeting the convergence
condition and output the policy set and meta-strategy as the approximate equilibrium strategy.

To compute the CCE strategy, we also instantiate one algorithm: MB-JPSRO, an adaptation from
the JPSRO algorithm. The process of JPSRO is similar to PSRO except for the best response com-
putation and meta solver. Therefore, MB-JPSRO is also similar to MB-PSRO. For this reason, we
do not cover MB-JPSRO in detail here.

E.2 MB-CFR

Alg. 3 shows the process of MB-CFR, which is adapted from the Deep CFR algorithm. It also needs
the well-trained environment model Eθe as input for the MB-CFR algorithm. We first initialize
regret and strategy networks for each player and then initialize regret and strategy memories for
each player (Lines 2-4). Then we need to update the regret network for every player. To do this,
we perform a traverse function to collect corresponding training data. The traverse function can be
any sampling-based CFR algorithm. Here, we use the external sampling algorithm as the traverse
method to collect training data, and the process of external sampling is shown in Alg. 4. In this
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Algorithm 3 MB-CFR
1: Input: Trained environment model Eθe
2: Initialize regret network R(I, a|θr,p) for all players;
3: Initialize strategy network S(I|θπ,p) for all players;
4: Initialize regret memory Mr,p and strategy memory Mπ,p for every player p;
5: for iteration t = 1 to T do
6: for player p ∈ [1, ..., n] do
7: for traverse episodes k ∈ [1, ...,K] do
8: TRVERSE(ϕ, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe );

# Use sample algorithm to traverse game tree, record regret and strategy training data
9: end for

10: Train θr,p from scratch based on regret memory Mr,p for every player p;
11: end for
12: end for
13: Train θπ,p based on strategy memory Mπ,p for every player p;
14: Output:θπ,p for every player p

Algorithm 4 TRVERSE(s, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe )-External Sampling Algorithm
1: if s is terminal state then
2: Get the utility up(s) from the environment model Eθe ;
3: Output: up(s)
4: else if s is a chance state then
5: Sample an action a from the available actions, which is obtained from model Eθe ;
6: s′ = Eθe(s, a);
7: Output:TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe )
8: else if P (s) = p then
9: I ← s[p]; # Get the corresponding information set from the game state

10: σ(I)← strategy of I computed using regret values R(I, a|θr,p) based on regret matching;
11: for a ∈ A(s) do
12: s′ = Eθe(s, a);
13: u(a)← TRAVERSE(s′, p, θr,p,θπ,−p,Mr,p, Mπ,−p, Eθe );
14: end for
15: uσ ←

∑
a∈A(s) σ(I, a)u(a);

16: for a ∈ A(s) do
17: r(I, a)← u(a)− uσ;
18: end for
19: Insert the infoset and its action regret values (I, r(I)) into regret memory Mr,p;
20: Output: uσ

21: else
22: I ← s[p];
23: σ(s)← strategy of I computed using regret value R(I, a|θr,−p) based on regret matching;
24: Insert the infoset and its strategy (I, σ(s)) into strategy memory Mπ,−p;
25: Sample an action a from distribution σ(s);
26: s′ = Eθe(s, a);
27: Output: TRAVERSE(s′, p, θr,p, θπ,−p,Mr,p, Mπ,−p, Eθe );
28: end if

traverse function, we collect the regret training data of the traveler, and the strategy training data
of other players is also gathered. After performing the traverse function several times, the regret
network can be updated based on the regret memory using a supervised learning algorithm. The
above processes are repeated for T times. Then, the average strategy network for every player is
trained based on its corresponding strategy memory. Finally, the trained average strategy networks
are output as the approximate equilibrium strategy.
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F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more experimental results and an ablation study. Finally, we provide the
main parameters we used in our experiments.

F.1 EXPERIMENTAL RESULTS
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Figure 19: Results of different MB methods

Here, we first verify that the performance of the
model-based approach is independent of the algo-
rithm used for computing equilibrium strategy. To
this end, we perform both MB-CFR and MB-PSRO
algorithms in the two-player Kuhn poker game un-
der different sizes of offline datasets. Fig. 19 shows
the results. We can find that under the same size of
an offline dataset, MB-PSRO and MB-CFR achieve
nearly identical results. When the size of the of-
fline dataset increases, the performance of both algo-
rithms becomes better. It may be caused by the en-
vironment model being well-trained with more data.
These observations indicate that the performance of the model-based algorithm is independent of
the algorithm used to compute the equilibrium strategy and mainly relies on the similarity between
the trained environment model and the actual environment.

Then, we provide experimental results for the BOMB framework on multi-player games, including
four-player and five-player Kuhn poker games, to compute NE strategies. The results, shown in
Fig. 20, are consistent with those in the main paper. Across all cases, our BOMB framework out-
performs or matches the performance of both BC and MB algorithms, aligning with the theoretical
analysis. As the proportion of the random dataset increases, the performance of BC decreases, while
the performance of MB is unstable and shows a slight downward trend. Here, we use OEF-CFR
as the model-based algorithm, noting that CFR-based algorithms do not guarantee convergence to
NE strategies in multi-player games. Additionally, the performance of the MB framework relies on
the quality of the trained environment model. Poor performance in the MB algorithm may stem
from either an inadequately trained environment model or the limitations of CFR-based algorithms
in multi-player settings. This underscores the challenges of learning a robust strategy and training
an accurate environment model in these complex games. Fig. 20 also illustrates the weights of BC in
the BOMB algorithm under different datasets. In the four-player Kuhn poker game, the BC weight
quickly drops to zero as the proportion of the random dataset increases, indicating that MB outper-
forms BC in most scenarios except when the random dataset proportion is low. Conversely, in the
five-player Kuhn poker game, the BC weight remains high in most cases unless the random dataset
proportion is very high. This is because the MB framework performs poorly in these highly dynamic
multi-player games, making it a significant challenge to approximate equilibrium strategies with the
MB method. These findings highlight the importance of improving both the strategy-learning pro-
cess and the environment model in multi-player settings.
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Figure 20: Performance of BOMB on multi-player games.
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Figure 21: Abalation results for different hidden layer sizes.
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Figure 22: Abalation results for different train epochs.

F.2 ABLATION STUDY

To investigate the influence of hyperparameters, we conduct several ablation experiments on two-
player Kuhn poker and Leduc poker games. We consider different model structures with various
numbers of hidden layers. Specifically, for the 2-Player Kuhn poker game, we use different envi-
ronment models with 16, 32, and 64 hidden layers. For the 2-Player Leduc poker game, which is
a more complicated game, the numbers of hidden layers for different models are 32, 64, and 128.
In addition, we train the environment models for different epochs to evaluate the robustness of our
approach. Figs. 21-22 show these ablation results. We find that the number of hidden layers and
the number of training epochs have little effect on the performance of the BC algorithm. These
results further verify that the performance of the BC algorithm primarily depends on the quality of
the dataset. As we know, the performance of the model-based method mainly depends on the trained
environment model. Since the number of the hidden layer and the number of training epochs influ-
ence the training phase of the environment model, the number of the hidden layer and the number
of train epochs have a slight impact on the performance of the model-based method. As long as the
size of the hidden layer and the number of training epochs can guarantee that the environment model
is trained accurately, the performance of the model-based method will not be affected.
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F.3 PARAMETER SETTING

We list the parameters used to train the behavior cloning policy and environment model for all games
used in our experiments in Tab. 2.

Methods Behavior Cloning Algorithm Environment Model Training

Games Kuhn Poker (2p) Kuhn Poker (3p) Kuhn Poker (2p) Kuhn Poker (3p)

Data size 500 1000 1000 5000 500 1000 1000 5000
Hidden layer 32 32 32 32 32 32 32 32

Batch size 32 32 32 32 32 32 32 32
Train epoch 1000 2000 5000 5000 1000 2000 2000 5000

Games Kuhn Poker (4p) Kuhn Poker (5p) Kuhn Poker (4p) Kuhn Poker (5p)

Data size 5000 20000 10000 20000 5000 20000 10000 20000
Hidden layer 64 64 64 64 64 64 64 64

Batch size 64 128 128 128 64 128 128 128
Train epoch 5000 5000 5000 5000 5000 5000 5000 5000

Games Leduc Poker (2p) Leduc Poker (3p) Leduc Poker (2p) Leduc Poker (3p)

Data size 10000 20000 10000 20000 10000 20000 10000 20000
Hidden layer 128 128 128 128 64 128 128 128

Batch size 128 128 128 128 64 128 128 128
Train epoch 10000 10000 10000 5000 10000 10000 10000 10000

Games Liar’s Dice Phantom TTT Liar’s Dice Phantom TTT

Data size 10000 20000 10000 20000 10000 20000 10000 20000
Hidden layer 64 64 128 128 64 64 128 128

Batch size 128 128 128 128 64 128 128 128
Train epoch 5000 5000 5000 5000 5000 5000 5000 5000

Table 2: Parameters for Behavior Cloning algorithm and Environment Model Training
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