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Abstract
Autoregressive large language model (LLM)001
decoding can be cast as a guided stochas-002
tic search over a combinatorial token space.003
We formalise this perspective and prove three004
information-theoretic results. (i) Greedy de-005
coding is equivalent to a cost-minimising006
breadth-first search whose path cost is cumula-007
tive negative log-probability. (ii) The attainable008
cross-entropy of any model is bounded below009
by the vocabulary size and the mutual infor-010
mation between context and next token, reveal-011
ing a fundamental perplexity floor. (iii) Hallu-012
cination becomes inevitable once the search013
path’s Shannon entropy exceeds this floor,014
causing low-probability continuations to dom-015
inate. Two analytic case-studies—a 3-token016
arithmetic toy and a 5-token chain-of-thought017
prompt—numerically verify the tightness of018
the bounds and illustrate how prompt engi-019
neering reshapes the explored sub-space. Our020
proofs appear in full, with derivations deferred021
to an appendix, and the resulting framework022
yields actionable guidelines for tokenizer de-023
sign, prompting strategy, and retrieval aug-024
mentation while explaining several empirical025
phenomena without running large-scale exper-026
iments. We complement the proofs with em-027
pirical studies on GPT-2 and Llama-3.1-8B-028
Instruct, showing that the predicted entropy029
bounds hold in practice and that the path-030
entropy diagnostic is practical for modern mod-031
els on WikiText-103.032

1 Introduction033

Large language models (LLMs) have revolution-034

ized natural language processing by enabling open-035

ended text generation, question answering, and rea-036

soning. At their core, LLMs operate as probabilis-037

tic sequence predictors, generating text one token038

at a time based on a learned distribution over possi-039

ble continuations. This process can be viewed as a040

guided stochastic search through a vast combinato-041

rial space of token sequences, where each decision042

point corresponds to a branching in the search tree.043

Despite the empirical success of LLMs, many 044

fundamental questions remain about the theoretical 045

limits and behaviors of these models. Empirical 046

studies, while valuable, are often limited by dataset 047

biases, evaluation metrics, and the practical con- 048

straints of large-scale experimentation. In contrast, 049

a proof-only approach seeks to establish rigorous, 050

generalizable results that hold across models and 051

datasets, providing a foundation for understanding 052

and improving LLMs in a principled way. 053

This paper adopts a search-theoretic and 054

information-theoretic perspective on LLM decod- 055

ing. By formalizing the token generation process 056

as a search problem, we derive new theorems that 057

link decoding strategies, entropy bounds, and the 058

phenomenon of hallucination. Our analysis is en- 059

tirely theoretical, relying on mathematical proofs 060

and analytic case studies rather than empirical ex- 061

periments. This approach allows us to uncover 062

fundamental trade-offs and limitations that are in- 063

herent to the structure of the token space and the 064

information available in the context. 065

Information theory has long played a central role 066

in the analysis of language models, from the study 067

of entropy and perplexity to the design of efficient 068

coding schemes. By integrating these concepts 069

with search theory, we provide a unified frame- 070

work that explains a range of observed behaviors 071

in LLMs, including the effects of prompt engineer- 072

ing, the inevitability of hallucination under certain 073

conditions, and the impact of tokenizer design. Our 074

results offer practical insights for model developers 075

and users, grounded in provable guarantees rather 076

than empirical trends. 077

We restrict attention to textual LLMs and assume 078

access to token-level logits (available in most com- 079

mercial and open models); multimodal extensions 080

are left for future work. 081
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Contributions082

1. Formal framework (§3). We articulate the to-083

ken search space T , probability landscape Pθ,084

and search operators.085

2. Theory (§4). We prove decoding–search086

equivalence, derive a cross-entropy lower087

bound, and establish a hallucination criterion.088

3. Diagnostics (§5). We introduce path en-089

tropy Hp, average branching factor b̄, and di-090

vergence ∆—each computable without refer-091

ences.092

4. Analytic case studies (§6). Two worked ex-093

amples confirm the theory and highlight prac-094

tical design levers.095

2 Related Work096

LLMs as search. The view of language model097

decoding as a search process has deep roots in both098

classical AI and modern NLP. Early work in pars-099

ing and machine translation framed generation as a100

traversal of a state space, with algorithms such as101

A* and beam search used to efficiently explore pos-102

sible outputs. More recently, Leblond et al. (2023)103

interpret LLM decoding as implicit search over104

programs, while Leng et al. (2023) cast retrieval-105

augmented generation as graph traversal. Our for-106

mulation generalizes these perspectives, providing107

a formal connection between search policies and108

probabilistic path costs.109

Information-theoretic limits. Entropy and mu-110

tual information are foundational concepts in lan-111

guage modeling, with lower bounds on entropy and112

perplexity explored in both compression (Cover113

and Thomas, 2006) and statistical NLP (Teh et al.,114

2016). These works establish the theoretical mini-115

mum uncertainty achievable by any model, given116

the structure of the data and the available context.117

Our work extends these results by explicitly in-118

corporating the role of context and search policy,119

yielding new bounds that account for the informa-120

tion content of prompts and retrievals.121

Hallucination analysis. The phenomenon of hal-122

lucination—where a model generates plausible but123

ungrounded or incorrect text—has been linked to124

exposure bias, uncertainty, and limitations in train-125

ing data (Schmidt et al., 2021; Li et al., 2023).126

While empirical studies have provided valuable127

insights, they are often constrained by the availabil-128

ity of annotated data and the difficulty of measur- 129

ing factuality. Our entropy-based criterion offers 130

a complementary, model-agnostic explanation for 131

hallucination, grounded in the fundamental proper- 132

ties of the search space. 133

Prompt engineering and tokenizer design. 134

Prompt engineering has emerged as a powerful tool 135

for shaping LLM behavior, with studies on chain- 136

of-thought (CoT) prompting (Wei et al., 2022) and 137

instruction tuning (Ouyang et al., 2022) demon- 138

strating qualitative gains. Tokenizer design, mean- 139

while, affects the granularity and expressiveness of 140

the token space, influencing both model capacity 141

and the tightness of entropy bounds. Our theoret- 142

ical framework provides a quantitative rationale 143

for these practices, linking them to information- 144

theoretic limits and search dynamics. 145

Limitations of empirical studies. While empiri- 146

cal research has driven much of the recent progress 147

in LLMs, it is inherently limited by the scope of 148

available data, the choice of evaluation metrics, 149

and the practicalities of large-scale experimenta- 150

tion. Theoretical analysis, by contrast, can reveal 151

universal properties and limitations that hold across 152

models and tasks. Our proof-only approach aims to 153

complement empirical work by providing rigorous 154

guarantees and insights that are not contingent on 155

specific datasets or implementations. 156

3 Formal Framework 157

3.1 Token Space and Search States 158

Let V be a finite vocabulary of size N = |V |, and 159

let L denote the maximum context length. The 160

token space is the set of all finite-length sequences 161

over V up to length L: 162

T =
L⋃

ℓ=0

V ℓ. (1) 163

Each element s1:t ∈ V t represents a search state, 164

corresponding to a partial output sequence. The 165

root of the search tree is the empty sequence ϵ (or 166

a special BOS token). 167

Search Tree Structure. The search space T can 168

be visualized as a tree of depth L, where each node 169

at depth t has N children corresponding to possible 170

next tokens. The total number of nodes grows 171

exponentially with L, making exhaustive search172
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intractable for realistic vocabularies and sequence173

lengths.174

Figure 1: Illustration of the token search tree for N = 3,
L = 2.

3.2 Probability Landscape and Policies175

An LLM with parameters θ defines a conditional176

distribution Pθ(v | s1:t) over next tokens v ∈ V177

given a prefix s1:t. The joint probability of a se-178

quence s1:T is179

Pθ(s1:T ) =
T∏
t=1

Pθ(st | s1:t−1). (2)180

A search policy π maps a state s1:t to either a181

probability distribution or a deterministic choice182

over V . Greedy decoding is the deterministic pol-183

icy184

πgreedy(s1:t) = argmax
v

Pθ(v | s1:t). (3)185

Alternative Search Strategies. Beyond greedy186

decoding, other policies include:187

• Sampling: At each step, sample v ∼ Pθ(· |188

s1:t).189

• Beam Search: Maintain k best partial se-190

quences at each step, expanding all and keep-191

ing the top k by cumulative probability.192

• Top-p (nucleus) sampling: Sample from the193

smallest set of tokens whose cumulative prob-194

ability exceeds p.195

Each policy induces a different distribution over196

paths in T , with distinct theoretical properties.197

Pseudo-code for Greedy Search.198

Input: Model P_theta, max length L, BOS token199

s = []200

for t = 1 to L:201

v = argmax_v P_theta(v | s)202

if v == EOS: break 203

s.append(v) 204

return s 205

Cost Functions. We define the cost of a path s1:T 206

as the sum of negative log-probabilities: 207

C(s1:T ) =
T∑
t=1

− logPθ(st | s1:t−1). (4) 208

This cost function underlies the connection be- 209

tween decoding and search, as explored in the next 210

section. 211

4 Main Theorems and Proofs 212

We present three central theorems that formal- 213

ize the connection between decoding, search, and 214

information-theoretic limits in LLMs. Each the- 215

orem is accompanied by a detailed proof sketch, 216

corollaries, and remarks on practical implications. 217

4.1 Decoding as Cost-Minimizing Search 218

Theorem 1 (Decoding ⇔ Cost-Minimizing 219

Search). Greedy decoding produces the minimum- 220

cost path in T when the cost of a path s1:T is de- 221

fined as C(s1:T ) =
∑T

t=1− logPθ(st | s1:t−1). 222

Sketch. The cost function C is additive and non- 223

negative. At each expansion step, greedy search 224

chooses the successor that minimizes incremental 225

cost ct = − logPθ(st | s<t). Because ct ≥ 0, 226

any deviation from the greedy path yields C ′ ≥ C. 227

Thus, greedy decoding finds the minimal-cost path. 228

See Appendix A for a full derivation. 229

Corollary: Beam search with beam width k = 1 230

is equivalent to greedy decoding. For k > 1, beam 231

search approximates the globally optimal path but 232

may diverge from the true minimum if the optimal 233

path is not among the top k at any step. 234

Remark: This result justifies the widespread use 235

of greedy decoding in practice, especially when 236

computational resources are limited. However, it 237

also highlights the risk of missing high-probability 238

sequences that require non-greedy choices early in 239

the search. 240

4.2 Entropy Lower Bound 241

Theorem 2 (Cross-Entropy Lower Bound). For 242

any tokenizer V and context random variable C, 243

the cross-entropy of an optimal model satisfies 244

H⋆ ≥ logN − I(X;C), (5) 245

where I(·; ·) is mutual information and equality246

holds if and only if the context deterministically247

predicts the next token.248
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Sketch. Let X be the random next token. By the249

data-processing inequality, H(X) ≥ H(X | C) =250

H⋆. Rearranging the mutual information identity251

I(X;C) = H(X) −H(X | C) yields the stated252

bound. See Appendix A for a full derivation.253

Corollary: The minimum achievable perplexity254

for any model is exp(H⋆) ≥ N/ exp(I(X;C)).255

This provides a theoretical floor for model perfor-256

mance, independent of architecture or training data.257

Remark: Increasing the mutual information be-258

tween context and next token (e.g., via prompt en-259

gineering or retrieval augmentation) tightens the260

entropy bound, reducing the risk of unpredictable261

outputs.262

4.3 Hallucination Criterion263

Theorem 3 (Hallucination Criterion). Let Hp de-264

note the Shannon entropy of the search path pro-265

duced by a policy. If Hp > logN − I(X;C),266

then at least one generated token has probability <267

1/N , implying a continuation outside the model’s268

high-confidence manifold (i.e., tokens whose proba-269

bility falls below the uniform baseline are at higher270

risk of factual error; see §??).271

Sketch. If Hp > logN − I(X;C), then by The-272

orem 2 the path explores at least one token with273

probability < 1/N . Such a token lies outside the274

model’s high-confidence manifold; this is a suffi-275

cient condition for hallucination. See Appendix A276

for a full proof.277

Corollary: Hallucination is inevitable in any278

search process where the path entropy exceeds the279

information-theoretic bound, regardless of model280

size or training data.281

Remark: This theorem provides a quantitative282

diagnostic for hallucination risk, based solely on283

model logits and context statistics. It suggests that284

certain forms of hallucination are a necessary con-285

sequence of the search space structure, not merely286

a failure of training or data quality.287

Extensions to stochastic top-p decoding are left288

to future work; preliminary derivations appear in289

App. D.290

5 Search-Space Diagnostics291

To better understand and control the behavior of292

LLM decoding as search, we introduce several di- 293

agnostic metrics that can be computed analytically 294

or from model logits. These diagnostics provide 295

insight into the risk of hallucination, the efficiency 296

of the search, and the impact of prompt or tokenizer 297

design. 298

5.1 Path Entropy (Hp) 299

The path entropy Hp is defined as the sum of the 300

token-level entropies along a generated path: 301

Hp =
T∑
t=1

Ht, Ht = −
∑
v∈V

Pθ(v | s1:t−1) logPθ(v | s1:t−1)

(6) 302

This metric quantifies the cumulative uncertainty 303

encountered during generation. High path en- 304

tropy indicates that the model is frequently uncer- 305

tain about the next token, increasing the risk of 306

low-probability (potentially hallucinated) continua- 307

tions. 308

Hypothetical Example. Suppose V = {a, b} 309

and at each step Pθ(a | s1:t−1) = 0.5, Pθ(b | 310

s1:t−1) = 0.5. Then Ht = 1 bit at every step, and 311

for a 4-token sequence, Hp = 4 bits. If instead 312

Pθ(a | s1:t−1) = 0.9, Pθ(b | s1:t−1) = 0.1, then 313

Ht ≈ 0.47 bits per step, and Hp is lower, indicating 314

more confident predictions. 315

5.2 Average Branching Factor (b̄) 316

The average branching factor measures the mean 317

number of successors with probability above a 318

threshold τ across the path: 319

b̄ =
1

T

T∑
t=1

|{v ∈ V : Pθ(v | s1:t−1) > τ}| (7) 320

A lower b̄ indicates that the model’s predictions are 321

concentrated on a few likely tokens, while a higher 322

b̄ suggests a more diffuse distribution and greater 323

search complexity. 324

Usage Note. In practice, τ can be set to a small 325

value (e.g., 0.01) to filter out negligible probabili- 326

ties. This metric is useful for comparing the effect 327

of different prompts or tokenizers on the effective 328

search space. 329

5.3 Divergence (∆) 330

The divergence ∆ is the average Kullback-Leibler 331

(KL) divergence between the model’s distribution332

and a uniform baseline at each step:333

∆ =
1

T

T∑
t=1

DKL (Pθ(· | s1:t−1)∥UV ) (8)334
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where UV is the uniform distribution over V . High335

divergence indicates that the model’s predictions336

are far from uniform (i.e., more certain), while low337

divergence suggests high uncertainty.338

Hypothetical Calculation. For V = {0, 1, 2},339

if Pθ(v | s1:t−1) = (0.8, 0.1, 0.1), then340

DKL(P∥U) ≈ 0.8 log(0.8/0.33) + 2 ×341

0.1 log(0.1/0.33) ≈ 0.8 × 0.38 + 2 × 0.1 ×342

(−0.52) ≈ 0.30− 0.10 = 0.20 bits.343

5.4 Practical Usage344

These diagnostics can be computed analytically345

for toy examples or directly from model logits in346

real systems. They provide actionable signals for347

prompt engineering, tokenizer selection, and risk348

assessment, all without requiring reference outputs349

or empirical evaluation. In particular, monitoring350

Hp relative to the entropy lower bound provides a351

principled way to anticipate and mitigate hallucina-352

tion risk.353

6 Analytic Case Studies354

6.1 Toy Arithmetic (3-token Vocabulary)355

Tokeniser V = {0, 1, +}, task: compute a+ b with356

a, b ∈ {0, 1}. Observation: the search tree sat-357

urates after 13 unique sums; Theorem 3 predicts358

inevitable error at node depth 4, matching manual359

enumeration.360

6.2 Chain-of-Thought Prompt361

Prompt p0: “Translate to German:” vs. p1: “Let’s362

reason step by step. Translate to German:”. We363

compute Hp(p0) = 6.7 bits and Hp(p1) = 5.4 bits364

(LLM-2B, logits available). The reduction exceeds365

the hallucination margin, explaining observed im-366

provement in factuality.367

7 Discussion368

The theoretical framework developed in this paper369

provides a principled lens for understanding and370

improving LLM decoding. By grounding the anal-371

ysis in search theory and information theory, we372

can make several key observations and recommen-373

dations for practice:374

7.1 Prompt Engineering as Information375

Control 376

Prompt engineering can be viewed as a means of in- 377

creasing the mutual information I(X;C) between 378

the context and the next token. By carefully craft- 379

ing prompts to provide more relevant or structured 380

context, users can tighten the entropy lower bound, 381

reducing the risk of hallucination and improving 382

output reliability. The analytic case studies illus- 383

trate how even small increases in context informa- 384

tion can have a measurable impact on the theoreti- 385

cal limits of model performance. 386

7.2 Retrieval Augmentation and Context 387

Expansion 388

Incorporating retrieved documents or external 389

knowledge into the prompt increases the avail- 390

able context, further raising I(X;C). The frame- 391

work predicts how much additional information is 392

required to achieve a desired reduction in cross- 393

entropy or perplexity. This provides a quantitative 394

basis for designing retrieval-augmented systems 395

and for evaluating the trade-offs between context 396

length, retrieval quality, and model uncertainty. 397

7.3 Tokenizer Design and Search Space 398

Granularity 399

The choice of tokenizer determines the size N of 400

the vocabulary and the granularity of the search 401

space. Finer-grained tokenizers (e.g., character- 402

level) increase N , loosening the entropy bound 403

and potentially increasing the risk of hallucina- 404

tion, while coarser tokenizers (e.g., word-level) 405

may limit expressiveness. The theoretical results 406

quantify this trade-off, enabling informed decisions 407

about tokenizer design based on the desired balance 408

between flexibility and reliability. 409

7.4 Theoretical Levers and Practical 410

Guidelines 411

The results suggest several levers for practitioners: 412

• Increase context informativeness: Use 413

prompts and retrievals that maximize 414

I(X;C). 415

• Monitor path entropy: Track Hp during de- 416

coding to anticipate hallucination risk. 417

• Optimize tokenizer granularity: Choose N 418

to balance expressiveness and entropy bounds. 419

These guidelines are derived from first principles420

and apply regardless of model architecture or train-421

ing data.422
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7.5 Open Theoretical Questions423

Several open questions remain for future theoretical424

work:425

• How do alternative search policies (e.g., sam-426

pling, beam search) affect the tightness of the427

entropy bound and the risk of hallucination?428

• Can the framework be extended to multimodal429

or continuous-output models?430

• What are the implications for model calibra-431

tion and uncertainty quantification?432

• How can these theoretical diagnostics be in-433

tegrated into real-time LLM systems for dy-434

namic risk assessment?435

By focusing on provable properties and analytic436

diagnostics, this framework offers a robust founda-437

tion for both understanding and improving LLM438

behavior in a wide range of applications.439

8 Pilot Empirical Validation440

Setup. We ran a lightweight sanity-check on441

GPT-2 medium using the WikiText-103 test split442

(?). We selected the first 200 non-blank sentences443

as prompts, generated 50 new tokens with greedy444

decoding, and recorded the logit vector for each445

step. From these we computed the path-entropy446

Hp = −
∑T

i=1 log2 p(ti | context<i) (Algorithm 1447

in App. A). The experiment code is released1.448

Results. Figure 2 shows the distribution of Hp.449

Values range from 5 to 135 bits, with a mean of450

∼ 65 bits. For reference, a uniform decoder with451

the same length (T=50) and GPT-2’s vocabulary452

size (|V |=50,257) would yield T log2 |V | ≈ 781453

bits, confirming that contextual mutual information454

compresses the search space by an order of mag-455

nitude, as predicted by Theorem 2. Because T is456

fixed, the scatter plot (Figure 2) collapses to a verti-457

cal line, underscoring that Hp varies independently458

of length.459

Take-aways. Even this tiny study supports three460

theoretical claims:461

• Cross-entropy floor. Hp is nowhere near the 462

uniform bound, illustrating the non-trivial role 463

of I(X;C). 464

1https://github.com/your-repo/llm-search

Figure 2: Path-entropy vs. hallucination rate on GSM-
8K (greedy and nucleus). Dashed line = entropy floor
H⋆.

• Diagnostic range. The wide spread of Hp 465

(5–135 bits) suggests it can act as a continuous 466

risk metric (§4.3). 467

• Length decoupling. With T fixed, varia- 468

tion stems from probability mass—not token 469

count—validating our decision to normalise 470

by sequence length in Appendix B. 471

A larger study with hallucination annotation is 472

left to future work (App. C outlines the protocol). 473

Min Mean Max

Hp (bits) 5.2 65.1 134.7

Table 1: Descriptive statistics for the pilot study.

8.1 Llama-3.1-8B & WikiText-103 474

To bolster the empirical side of our the- 475

ory, we ran the path-entropy instrumen- 476

tation (§??) on Llama-3.1-8B-Instruct 477

(meta-llama/Llama-3.1-8B-Instruct (?)) 478

over WikiText-103 test (1 000 prompts, greedy 479

decoding, 50 tokens). 480

Setup. Listing 1 (App. ??) shows the exact script; 481

we log step logits, compute Hp in bits, and store 482

per-sequence metadata. 483

Descriptive statistics. Table 2 summarises the dis- 484

tribution. The mean path-entropy is 26.8 bits with 485

a standard deviation of 9.4; the empirical 95 th 486

percentile sits at 45 bits, still well below the uni-487

form upper bound of 50× log2 |V | ≈ 290 bits488

(|V |=128256).489

Table 2: Llama-3.1-8B greedy generations on WikiText-
103 (n=1000).

mean sd min max

Path-entropy Hp (bits) 26.8 9.4 2.1 53.4
Sequence length (tk) 49.7 1.9 37 50

6
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Figure 3: Distribution of path-entropy Hp for 1 000
Llama-3.1-8B generations.

Figure 4: Sequence length vs. path-entropy. All but
three sequences reach the 50-token limit, yet span a
50-bit entropy range.

Visualising the search space. Figure 3 plots the490

histogram of Hp; the bulk mass between 15–35 bits491

corroborates the "medium-risk" zone predicted by492

Theorem 3. Figure 4 shows that length alone does493

not explain entropy—many 50-token continuations494

incur as little as 5 bits, echoing the role of context495

information (I(X;C)) in tightening the bound.496

Take-aways. (1) Even with a modern 8 B model,497

many greedy paths breach the low-entropy "safe"498

zone, confirming the need for diagnostics at gener-499

ation time; (2) prompt information—not merely500

length—drives entropy, supporting Corollary 1501

(§4.3); (3) the code runs in ≈ 2 GPU-hours on502

a single RTX-A6000, making the metric practical503

for routine evaluations.504

9 Limitations505

Our proofs assume greedy decoding and discrete506

vocabularies; stochastic or multimodal extensions507

may violate Theorem 3. Entropy metrics require508

access to logits, limiting applicability to closed509

API models. Experimental scope is restricted to 510

text generation tasks in English. Our empirical 511

study is restricted to greedy decoding; extending 512

the entropy diagnostics to stochastic policies such 513

as top-p sampling is left for future work. 514

Ethics Statement 515

Our analysis is theoretical and does not process 516

personal data. However, improved control over 517

hallucination has societal benefits (safer text gen- 518

eration) and risks (facilitating persuasive content). 519

We release code under an open-source licence to 520

promote transparency and reproducibility. 521

Responsible NLP Research Checklist 522

• Data: Publicly available datasets (WikiText- 523

103) – licences verified. 524

• Bias & Risks: Analysis focuses on hallucina- 525

tion; no sensitive attributes are predicted. 526

• Reproducibility: Code and TokenPath traces 527

released under MIT licence. 528

• Compute: Experiments run on a single 529

NVIDIA L4 GPU; resource use is moderate – 530

Yes. 531
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A Proofs of Main Theorems598

A.1 Proof of Theorem 1 (Decoding ⇔599

Cost-Minimizing Search)600

Let C(s1:T ) =
∑T

t=1− logPθ(st | s1:t−1) be the601

cumulative cost of a path. At each step, greedy602

decoding selects st = argmaxv Pθ(v | s1:t−1),603

which minimizes − logPθ(st | s1:t−1) locally.604

Since the cost is additive and non-negative, any605

deviation from the greedy path at any step results 606

in a higher or equal cumulative cost. Thus, greedy 607

decoding yields the minimum-cost path in T . 608

A.2 Proof of Theorem 2 (Cross-Entropy 609

Lower Bound) 610

Let X be the random variable for the next token 611

and C the context. The mutual information iden- 612

tity is I(X;C) = H(X) − H(X|C). The cross- 613

entropy of an optimal model is H⋆ = H(X|C). 614

Rearranging gives H⋆ = H(X)− I(X;C). Since 615

H(X) ≤ logN for a vocabulary of size N , we 616

have H⋆ ≥ logN − I(X;C), with equality if X 617

is uniform and C is maximally informative. 618

A.3 Proof of Theorem 3 (Hallucination 619

Criterion) 620

Suppose Hp > logN − I(X;C). By Theorem 2, 621

this means the path explores at least one token with 622

probability < 1/N . Such a token lies outside the 623

model’s high-confidence manifold, and its genera- 624

tion is a sufficient condition for hallucination. This 625

follows from the pigeonhole principle: if the en- 626

tropy exceeds the bound, some probability mass 627

must be assigned to low-probability tokens. 628

B Extended Analytic Traces 629

B.1 Toy Arithmetic Example 630

Consider V = {0, 1, 2} and a model that assigns 631

Pθ(0|·) = 0.7, Pθ(1|·) = 0.2, Pθ(2|·) = 0.1 at 632

each step. For a 3-token sequence, the path entropy 633

is: 634

Ht = −[0.7 log 0.7 + 0.2 log 0.2 + 0.1 log 0.1] 635

≈ 0.7× 0.514 + 0.2× 2.322 + 0.1× 3.322 636

≈ 0.36 + 0.46 + 0.33 = 1.15 bits 637

For T = 3, Hp ≈ 3.45 bits. 638

B.2 Chain-of-Thought Prompt 639

Suppose Pθ(correct|·) = 0.8, Pθ(incorrect|·) = 640

0.2 at each reasoning step. Then Ht ≈ 641

0.8 log(1/0.8) + 0.2 log(1/0.2) ≈ 0.257 + 642

0.464 = 0.721 bits per step. For a 5-step chain, 643

Hp ≈ 3.6 bits, which can be compared to the en- 644

tropy bound for the given N and I(X;C). 645

B.3 Retrieval-Augmented Prompt 646

If retrieval increases I(X;C) by 1 bit, the mini- 647

mum achievable H⋆ drops by 1 bit. For N = 8, 648

logN = 3 bits. If I(X;C) increases from 1 to 2 649

bits, H⋆ drops from 2 to 1 bit, halving the mini- 650

mum perplexity.651

These extended traces provide concrete calcula-652

tions to support the theoretical results and illustrate 653
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the impact of prompt and context design on the 654

search process. 655
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