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Abstract

Autoregressive large language model (LLM)
decoding can be cast as a guided stochas-
tic search over a combinatorial token space.
We formalise this perspective and prove three
information-theoretic results. (i) Greedy de-
coding is equivalent to a cost-minimising
breadth-first search whose path cost is cumula-
tive negative log-probability. (ii) The attainable
cross-entropy of any model is bounded below
by the vocabulary size and the mutual infor-
mation between context and next token, reveal-
ing a fundamental perplexity floor. (iii) Hallu-
cination becomes inevitable once the search
path’s Shannon entropy exceeds this floor,
causing low-probability continuations to dom-
inate. Two analytic case-studies—a 3-token
arithmetic toy and a 5-token chain-of-thought
prompt—numerically verify the tightness of
the bounds and illustrate how prompt engi-
neering reshapes the explored sub-space. Our
proofs appear in full, with derivations deferred
to an appendix, and the resulting framework
yields actionable guidelines for tokenizer de-
sign, prompting strategy, and retrieval aug-
mentation while explaining several empirical
phenomena without running large-scale exper-
iments. We complement the proofs with em-
pirical studies on GPT-2 and Llama-3.1-8B-
Instruct, showing that the predicted entropy
bounds hold in practice and that the path-
entropy diagnostic is practical for modern mod-
els on WikiText-103.

1 Introduction

Large language models (LLMs) have revolution-
ized natural language processing by enabling open-
ended text generation, question answering, and rea-
soning. At their core, LLMs operate as probabilis-
tic sequence predictors, generating text one token
at a time based on a learned distribution over possi-
ble continuations. This process can be viewed as a
guided stochastic search through a vast combinato-
rial space of token sequences, where each decision
point corresponds to a branching in the search tree.

Despite the empirical success of LLMs, many
fundamental questions remain about the theoretical
limits and behaviors of these models. Empirical
studies, while valuable, are often limited by dataset
biases, evaluation metrics, and the practical con-
straints of large-scale experimentation. In contrast,
a proof-only approach seeks to establish rigorous,
generalizable results that hold across models and
datasets, providing a foundation for understanding
and improving LLMs in a principled way.

This paper adopts a search-theoretic and
information-theoretic perspective on LLM decod-
ing. By formalizing the token generation process
as a search problem, we derive new theorems that
link decoding strategies, entropy bounds, and the
phenomenon of hallucination. Our analysis is en-
tirely theoretical, relying on mathematical proofs
and analytic case studies rather than empirical ex-
periments. This approach allows us to uncover
fundamental trade-offs and limitations that are in-
herent to the structure of the token space and the
information available in the context.

Information theory has long played a central role
in the analysis of language models, from the study
of entropy and perplexity to the design of efficient
coding schemes. By integrating these concepts
with search theory, we provide a unified frame-
work that explains a range of observed behaviors
in LLMs, including the effects of prompt engineer-
ing, the inevitability of hallucination under certain
conditions, and the impact of tokenizer design. Our
results offer practical insights for model developers
and users, grounded in provable guarantees rather
than empirical trends.

We restrict attention to textual LLMs and assume
access to token-level logits (available in most com-
mercial and open models); multimodal extensions
are left for future work.



Contributions

1. Formal framework (§3). We articulate the to-
ken search space 7T, probability landscape P,
and search operators.

2. Theory (§4). We prove decoding—search
equivalence, derive a cross-entropy lower
bound, and establish a hallucination criterion.

3. Diagnostics (§5). We introduce path en-
tropy H,, average branching factor b, and di-
vergence A—each computable without refer-
ences.

4. Analytic case studies (§6). Two worked ex-
amples confirm the theory and highlight prac-
tical design levers.

2 Related Work

LLMs as search. The view of language model
decoding as a search process has deep roots in both
classical Al and modern NLP. Early work in pars-
ing and machine translation framed generation as a
traversal of a state space, with algorithms such as
A* and beam search used to efficiently explore pos-
sible outputs. More recently, Leblond et al. (2023)
interpret LLM decoding as implicit search over
programs, while Leng et al. (2023) cast retrieval-
augmented generation as graph traversal. Our for-
mulation generalizes these perspectives, providing
a formal connection between search policies and
probabilistic path costs.

Information-theoretic limits. Entropy and mu-
tual information are foundational concepts in lan-
guage modeling, with lower bounds on entropy and
perplexity explored in both compression (Cover
and Thomas, 2006) and statistical NLP (Teh et al.,
2016). These works establish the theoretical mini-
mum uncertainty achievable by any model, given
the structure of the data and the available context.
Our work extends these results by explicitly in-
corporating the role of context and search policy,
yielding new bounds that account for the informa-
tion content of prompts and retrievals.

Hallucination analysis. The phenomenon of hal-
lucination—where a model generates plausible but
ungrounded or incorrect text—has been linked to
exposure bias, uncertainty, and limitations in train-
ing data (Schmidt et al., 2021; Li et al., 2023).
While empirical studies have providedivaluable

insights, they are often constrained by the availabil-
ity of annotated data and the difficulty of measur-
ing factuality. Our entropy-based criterion offers
a complementary, model-agnostic explanation for
hallucination, grounded in the fundamental proper-
ties of the search space.

Prompt engineering and tokenizer design.
Prompt engineering has emerged as a powerful tool
for shaping LLLM behavior, with studies on chain-
of-thought (CoT) prompting (Wei et al., 2022) and
instruction tuning (Ouyang et al., 2022) demon-
strating qualitative gains. Tokenizer design, mean-
while, affects the granularity and expressiveness of
the token space, influencing both model capacity
and the tightness of entropy bounds. Our theoret-
ical framework provides a quantitative rationale
for these practices, linking them to information-
theoretic limits and search dynamics.

Limitations of empirical studies. While empiri-
cal research has driven much of the recent progress
in LLMs, it is inherently limited by the scope of
available data, the choice of evaluation metrics,
and the practicalities of large-scale experimenta-
tion. Theoretical analysis, by contrast, can reveal
universal properties and limitations that hold across
models and tasks. Our proof-only approach aims to
complement empirical work by providing rigorous
guarantees and insights that are not contingent on
specific datasets or implementations.

3 Formal Framework

3.1 Token Space and Search States

Let V be a finite vocabulary of size N = |V, and
let L denote the maximum context length. The
token space is the set of all finite-length sequences
over V up to length L:

L
T=v" (1)
£=0

Each element sq.; € V! represents a search state,
corresponding to a partial output sequence. The
root of the search tree is the empty sequence ¢ (or
a special BOS token).

Search Tree Structure. The search space 7 can
be visualized as a tree of depth L, where each node
at depth ¢t has N children corresponding to possible
next tokens. The total number of nodes grows
exponentially with L, making exhaustive search



intractable for realistic vocabularies and sequence
lengths.

Vertical Token Search Tree (N =3, L =2)
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Figure 1: Illustration of the token search tree for N = 3,
L=2.

3.2 Probability Landscape and Policies

An LLM with parameters 6 defines a conditional
distribution Py(v | s1.4) over next tokens v € V/
given a prefix s1.4. The joint probability of a se-
quence si.7 1S

T
Py(s1r) = [ [ Polst | s1:4-1). 2
i=1

A search policy ™ maps a state s;.; to either a
probability distribution or a deterministic choice
over V. Greedy decoding is the deterministic pol-

icy
71'greedy(slzt) = arg I’Illé)lX P@(U ‘ Slzt)- 3)

Alternative Search Strategies.
decoding, other policies include:

Beyond greedy

» Sampling: At each step, sample v ~ FPy(- |
Slzt)-

* Beam Search: Maintain & best partial se-
quences at each step, expanding all and keep-
ing the top k by cumulative probability.

* Top-p (nucleus) sampling: Sample from the
smallest set of tokens whose cumulative prob-
ability exceeds p.

Each policy induces a different distribution over
paths in 7", with distinct theoretical properties.

Pseudo-code for Greedy Search.

Input: Model P_theta, max length L, BOS token

s =[]

for t =1 to L:
v = argmax_v P_theta(v | s)
if v == EOS: break
s.append(v)

return s

Cost Functions. We define the cost of a path s1.1
as the sum of negative log-probabilities:

T
Clsir) =Y —log Py(st | s14-1).  (4)

t=1

This cost function underlies the connection be-
tween decoding and search, as explored in the next
section.

4 Main Theorems and Proofs

We present three central theorems that formal-
ize the connection between decoding, search, and
information-theoretic limits in LLMs. Each the-
orem is accompanied by a detailed proof sketch,
corollaries, and remarks on practical implications.

4.1 Decoding as Cost-Minimizing Search

Theorem 1 (Decoding < Cost-Minimizing
Search). Greedy decoding produces the minimum-
cost path in T when the cost of a path sy.t is de-
fined as C(s1.7) = Zthl —log Py(s¢ | s1:4—1)-

Sketch. The cost function C' is additive and non-
negative. At each expansion step, greedy search
chooses the successor that minimizes incremental
cost ¢, = —log Py(sy | s<¢). Because ¢; > 0,
any deviation from the greedy path yields C’ > C.
Thus, greedy decoding finds the minimal-cost path.
See Appendix A for a full derivation. O

Corollary: Beam search with beam width £ = 1
is equivalent to greedy decoding. For k > 1, beam
search approximates the globally optimal path but
may diverge from the true minimum if the optimal
path is not among the top £ at any step.

Remark: This result justifies the widespread use
of greedy decoding in practice, especially when
computational resources are limited. However, it
also highlights the risk of missing high-probability
sequences that require non-greedy choices early in
the search.

4.2 Entropy Lower Bound

Theorem 2 (Cross-Entropy Lower Bound). For
any tokenizer V and context random variable C,
the cross-entropy of an optimal model satisfies

H*>log N — I(X;C), 5)

whereI(-;-) is mutual information and equality
holdszifiand only if the context deterministically
predictsithe next token.



Sketch. Let X be the random next token. By the
data-processing inequality, H(X) > H(X | C) =
H*. Rearranging the mutual information identity
I(X;C) = H(X)— H(X | C) yields the stated
bound. See Appendix A for a full derivation. [

Corollary: The minimum achievable perplexity
for any model is exp(H*) > N/exp(I(X;C)).
This provides a theoretical floor for model perfor-
mance, independent of architecture or training data.

Remark: Increasing the mutual information be-
tween context and next token (e.g., via prompt en-
gineering or retrieval augmentation) tightens the
entropy bound, reducing the risk of unpredictable
outputs.

4.3 Hallucination Criterion

Theorem 3 (Hallucination Criterion). Let H,, de-
note the Shannon entropy of the search path pro-
duced by a policy. If H, > logN — I(X;C),
then at least one generated token has probability <
1/N, implying a continuation outside the model’s
high-confidence manifold (i.e., tokens whose proba-
bility falls below the uniform baseline are at higher
risk of factual error; see §??).

Sketch. If H,, > log N — I(X;C), then by The-
orem 2 the path explores at least one token with
probability < 1/N. Such a token lies outside the
model’s high-confidence manifold; this is a suffi-
cient condition for hallucination. See Appendix A
for a full proof. O

Corollary: Hallucination is inevitable in any
search process where the path entropy exceeds the
information-theoretic bound, regardless of model
size or training data.

Remark: This theorem provides a quantitative
diagnostic for hallucination risk, based solely on
model logits and context statistics. It suggests that
certain forms of hallucination are a necessary con-
sequence of the search space structure, not merely
a failure of training or data quality.

Extensions to stochastic top-p decoding are left
to future work; preliminary derivations appear in
App. D.

5 Search-Space Diagnostics

To better understand and control the behavior of
LLM decoding as search, we introduce several di-
agnostic metrics that can be computed analytically
or from model logits. These diagnostics provide

insight into the risk of hallucination, the efficiency
of the search, and the impact of prompt or tokenizer
design.

5.1 Path Entropy (H,)

The path entropy H,, is defined as the sum of the
token-level entropies along a generated path:

T
H,=> H;, H=-

t=1 veV

(6)

This metric quantifies the cumulative uncertainty
encountered during generation. High path en-
tropy indicates that the model is frequently uncer-
tain about the next token, increasing the risk of
low-probability (potentially hallucinated) continua-
tions.

Hypothetical Example. Suppose V' = {a,b}
and at each step Py(a | s1.4—1) = 0.5, Py(b |
s1:4—1) = 0.5. Then H; = 1 bit at every step, and
for a 4-token sequence, H, = 4 bits. If instead
Pg(a ‘ Sl;tfl) = 0.9, Pg(b | Slztfl) = 0.1, then
H; ~ 0.47 bits per step, and H, is lower, indicating
more confident predictions.

5.2 Average Branching Factor (b)

The average branching factor measures the mean
number of successors with probability above a
threshold 7 across the path:

T
b= — Z{UEV Py(v | s14-1) > 7} (D

A lower b indicates that the model’s predictions are
concentrated on a few likely tokens, while a higher
b suggests a more diffuse distribution and greater
search complexity.

Usage Note. In practice, 7 can be set to a small
value (e.g., 0.01) to filter out negligible probabili-
ties. This metric is useful for comparing the effect
of different prompts or tokenizers on the effective
search space.

5.3 Divergence (A)

The divergence A is the average Kullback-Leibler
(KL) divergence between the model’s distribution
and a uniform baseline at each step:

1 I
= T ZDKL (Py(- | s1:e-1)IUv)  (8)
t=1

> Pp(v | s14-1)log Py(v | s1:4-1)



where Uy is the uniform distribution over V. High
divergence indicates that the model’s predictions
are far from uniform (i.e., more certain), while low
divergence suggests high uncertainty.

Hypothetical Calculation. For V = {0,1,2},
if Pp(v | s14—1) = (0.8,0.1,0.1), then
Dk (P|lU) =~ 0.8log(0.8/0.33) + 2 x
0.110g(0.1/0.33) ~ 0.8 x 0.38 + 2 x 0.1 x
(—0.52) =~ 0.30 — 0.10 = 0.20 bits.

5.4 Practical Usage

These diagnostics can be computed analytically
for toy examples or directly from model logits in
real systems. They provide actionable signals for
prompt engineering, tokenizer selection, and risk
assessment, all without requiring reference outputs
or empirical evaluation. In particular, monitoring
H,, relative to the entropy lower bound provides a
principled way to anticipate and mitigate hallucina-
tion risk.

6 Analytic Case Studies

6.1 Toy Arithmetic (3-token Vocabulary)

Tokeniser V' = {0, 1, +}, task: compute a + b with
a,b € {0,1}. Observation: the search tree sat-
urates after 13 unique sums; Theorem 3 predicts
inevitable error at node depth 4, matching manual
enumeration.

6.2 Chain-of-Thought Prompt

Prompt pg: “Translate to German:” vs. p1: “Let’s
reason step by step. Translate to German:”. We
compute H,(pg) = 6.7 bits and H,(p1) = 5.4 bits
(LLM-2B, logits available). The reduction exceeds
the hallucination margin, explaining observed im-
provement in factuality.

7 Discussion

The theoretical framework developed in this paper
provides a principled lens for understanding and
improving LLM decoding. By grounding the anal-
ysis in search theory and information theory, we
can make several key observations and recommen-
dations for practice:

7.1 Prompt Engineering as Information
Control

Prompt engineering can be viewed as a me2ns of in-
creasing the mutual information I(X; C')hetween

the context and the next token. By carefully craft-
ing prompts to provide more relevant or structured
context, users can tighten the entropy lower bound,
reducing the risk of hallucination and improving
output reliability. The analytic case studies illus-
trate how even small increases in context informa-
tion can have a measurable impact on the theoreti-
cal limits of model performance.

7.2 Retrieval Augmentation and Context
Expansion

Incorporating retrieved documents or external
knowledge into the prompt increases the avail-
able context, further raising I(X; C'). The frame-
work predicts how much additional information is
required to achieve a desired reduction in cross-
entropy or perplexity. This provides a quantitative
basis for designing retrieval-augmented systems
and for evaluating the trade-offs between context
length, retrieval quality, and model uncertainty.

7.3 Tokenizer Design and Search Space
Granularity

The choice of tokenizer determines the size N of
the vocabulary and the granularity of the search
space. Finer-grained tokenizers (e.g., character-
level) increase NN, loosening the entropy bound
and potentially increasing the risk of hallucina-
tion, while coarser tokenizers (e.g., word-level)
may limit expressiveness. The theoretical results
quantify this trade-off, enabling informed decisions
about tokenizer design based on the desired balance
between flexibility and reliability.

7.4 Theoretical Levers and Practical
Guidelines

The results suggest several levers for practitioners:

e Increase context informativeness: Use
prompts and retrievals that maximize
I(X;0).

* Monitor path entropy: Track H), during de-
coding to anticipate hallucination risk.

* Optimize tokenizer granularity: Choose NV
to balance expressiveness and entropy bounds.

These guidelines are derived from first principles
and apply regardless of model architecture or train-
ing data:



7.5 Open Theoretical Questions

Several open questions remain for future theoretical
work:

* How do alternative search policies (e.g., sam-
pling, beam search) affect the tightness of the
entropy bound and the risk of hallucination?

¢ Can the framework be extended to multimodal
or continuous-output models?

* What are the implications for model calibra-
tion and uncertainty quantification?

* How can these theoretical diagnostics be in-
tegrated into real-time LLM systems for dy-
namic risk assessment?

By focusing on provable properties and analytic
diagnostics, this framework offers a robust founda-
tion for both understanding and improving LLM
behavior in a wide range of applications.

8 Pilot Empirical Validation

Setup. We ran a lightweight sanity-check on
GPT-2 medium using the WikiText-103 test split
(7). We selected the first 200 non-blank sentences
as prompts, generated 50 new tokens with greedy
decoding, and recorded the logit vector for each
step. From these we computed the path-entropy
H,=—"" log, p(t; | context;) (Algorithm 1
in App. A). The experiment code is released'.

Results. Figure 2 shows the distribution of H,,.
Values range from 5 to 135 bits, with a mean of
~ 65 bits. For reference, a uniform decoder with
the same length (7'=50) and GPT-2’s vocabulary
size (|V|=50,257) would yield T log, |V| ~ 781
bits, confirming that contextual mutual information
compresses the search space by an order of mag-
nitude, as predicted by Theorem 2. Because 7' is
fixed, the scatter plot (Figure 2) collapses to a verti-
cal line, underscoring that H,, varies independently
of length.

Take-aways. Even this tiny study supports three
theoretical claims:

* Cross-entropy floor. H,, is nowhere near the
uniform bound, illustrating the non-trivial role
of I(X;C).

lhttps ://github.com/your-repo/llm-search
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Figure 2: Path-entropy vs. hallucination rate on GSM-
8K (greedy and nucleus). Dashed line = entropy floor
H~.

* Diagnostic range. The wide spread of H,
(5—135 bits) suggests it can act as a continuous
risk metric (§4.3).

* Length decoupling. With T fixed, varia-
tion stems from probability mass—not token
count—validating our decision to normalise
by sequence length in Appendix B.

A larger study with hallucination annotation is
left to future work (App. C outlines the protocol).

Min Mean
H, (bits) 5.2 65.1

Max
134.7

Table 1: Descriptive statistics for the pilot study.

8.1 Llama-3.1-8B & WikiText-103

To bolster the empirical side of our the-
ory, we ran the path-entropy instrumen-
tation (§??) on Llama-3.1-8B-Instruct
(meta-1lama/Llama-3.1-8B-Instruct )
over WikiText-103 test (1 000 prompts, greedy
decoding, 50 tokens).

Setup. Listing 1 (App. ??) shows the exact script;
we log step logits, compute H,, in bits, and store
per-sequence metadata.

Descriptive statistics. Table 2 summarises the dis-
tribution. The mean path-entropy is 26.8 bits with
a standard deviation of 9.4; the empirical 95 th
percentile sits at 45 bits, still well below the uni-
form upper bound of 50 x log, |V| ~ 290 bits
(|V|=128256).

Table 2: Llama-3.1-8B greedy generations on WikiText-
103 (n=1000).

mean sd min max

Path-entropy H,, (bits) 268 94 21 53.4
Sequence length (tk) 49.7 19 37 50
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Figure 3: Distribution of path-entropy H),, for 1 000
Llama-3.1-8B generations.
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Figure 4: Sequence length vs. path-entropy. All but
three sequences reach the 50-token limit, yet span a
50-bit entropy range.

Visualising the search space. Figure 3 plots the
histogram of H,,; the bulk mass between 15-35 bits
corroborates the "medium-risk" zone predicted by
Theorem 3. Figure 4 shows that length alone does
not explain entropy—many 50-token continuations
incur as little as 5 bits, echoing the role of context
information (I(X; C)) in tightening the bound.

Take-aways. (1) Even with a modern 8 B model,
many greedy paths breach the low-entropy "safe"
zone, confirming the need for diagnostics at gener-
ation time; (2) prompt information—not merely
length—drives entropy, supporting Corollary 1
(§4.3); (3) the code runs in ~ 2 GPU-hours on
a single RTX-A6000, making the metric practical
for routine evaluations.

9 Limitations

Our proofs assume greedy decoding and discrete
vocabularies; stochastic or multimodal extensions
may violate Theorem 3. Entropy metrics require
access to logits, limiting applicability to closed
API models. Experimental scope is restricted to
text generation tasks in English. Our empirical
study is restricted to greedy decoding; exiending

the entropy diagnostics to stochastic policies such
as top-p sampling is left for future work.

Ethics Statement

Our analysis is theoretical and does not process
personal data. However, improved control over
hallucination has societal benefits (safer text gen-
eration) and risks (facilitating persuasive content).
We release code under an open-source licence to
promote transparency and reproducibility.

Responsible NLP Research Checklist

* Data: Publicly available datasets (WikiText-
103) — licences verified.

* Bias & Risks: Analysis focuses on hallucina-
tion; no sensitive attributes are predicted.

* Reproducibility: Code and TokenPath traces
released under MIT licence.

* Compute: Experiments run on a single
NVIDIA L4 GPU; resource use is moderate —
Yes.
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A Proofs of Main Theorems

A.1 Proof of Theorem 1 (Decoding <
Cost-Minimizing Search)

Let C(s1.7) = Zle —log Py(s¢ | s1:4—1) be the
cumulative cost of a path. At each step, greedy
decoding selects s, = argmax, Py(v | s1.4-1),
which minimizes —log Py(s; | s1.4—1) locally.
Since the cost is additive and non-negative, any
deviation from the greedy path at any stepiresults
in a higher or equal cumulative cost. Thus,’greedy
decoding yields the minimum-cost path in 7.

A.2  Proof of Theorem 2 (Cross-Entropy
Lower Bound)

Let X be the random variable for the next token
and C the context. The mutual information iden-
tity is I(X;C) = H(X) — H(X|C). The cross-
entropy of an optimal model is H* = H(X|C).
Rearranging gives H* = H(X) — I(X; C). Since
H(X) < logN for a vocabulary of size N, we
have H* > log N — I(X; C), with equality if X
is uniform and C' is maximally informative.

A.3 Proof of Theorem 3 (Hallucination
Criterion)

Suppose H,, > log N — I(X;C). By Theorem 2,
this means the path explores at least one token with
probability < 1/N. Such a token lies outside the
model’s high-confidence manifold, and its genera-
tion is a sufficient condition for hallucination. This
follows from the pigeonhole principle: if the en-
tropy exceeds the bound, some probability mass
must be assigned to low-probability tokens.

B Extended Analytic Traces

B.1 Toy Arithmetic Example

Consider V' = {0, 1,2} and a model that assigns
Py(0]-) = 0.7, Py(1]-) = 0.2, Py(2]-) = 0.1 at
each step. For a 3-token sequence, the path entropy
is:

H; = —[0.71og 0.7 4+ 0.210g 0.2 + 0.110og 0.1]
~ 0.7 x 0.514 4 0.2 x 2.322 4+ 0.1 x 3.322
~ 0.36 + 0.46 + 0.33 = 1.15 bits

ForT' = 3, H), = 3.45 bits.

B.2 Chain-of-Thought Prompt

Suppose Py(correct|-) = 0.8, Py(incorrect|-) =
0.2 at each reasoning step. Then H; =
0.81og(1/0.8) + 0.2log(1/0.2) ~ 0.257 +
0.464 = 0.721 bits per step. For a 5-step chain,
H,, =~ 3.6 bits, which can be compared to the en-
tropy bound for the given N and I(X; C).

B.3 Retrieval-Augmented Prompt

If retrieval increases /(X; C) by 1 bit, the mini-
mum achievable H* drops by 1 bit. For N = 8,
log N = 3 bits. If I(X; C) increases from 1 to 2
bits, H* drops from 2 to 1 bit, halving the mini-
mum perplexity.

These extended traces provide concrete calcula-
tions tosupport the theoretical results and illustrate
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the impact of prompt and context design on the
search process.



