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ABSTRACT

Bayesian Optimal Experimental Design (BOED) is a powerful tool to reduce
the cost of running a sequence of experiments. When based on the Expected
Information Gain (EIG), design optimization corresponds to the maximization
of some intractable expected contrast between prior and posterior distributions.
Scaling this maximization to high dimensional and complex settings has been
an issue due to BOED inherent computational complexity. In this work, we
introduce a pooled posterior distribution with cost-effective sampling properties
and provide a tractable access to the EIG contrast maximization via a new EIG
gradient expression. Diffusion-based samplers are used to compute the dynamics
of the pooled posterior and ideas from bi-level optimization are leveraged to derive
an efficient joint sampling-optimization loop. The resulting efficiency gain allows
to extend BOED to the well-tested generative capabilities of diffusion models. By
incorporating generative models into the BOED framework, we expand its scope
and its use in scenarios that were previously impractical. Numerical experiments
and comparison with state-of-the-art methods show the potential of the approach.

1 INTRODUCTION

Designing optimal experiments can be critical in numerous applied contexts where experiments
are constrained in terms of resources or more generally costly and limited. In this work, design is
assumed to be characterized by some continuous parameters ξ ∈ E ⊂ Rd, which refers to the
experimental part, such as the choice of a measurement location, that can be controlled to optimize
the experimental outcome. We consider a Bayesian setting in which the parameters of interest is
θ ∈ Θ ⊂ Rm and design is optimized to maximize the information gain on θ. Bayesian optimal
experimental design (BOED) is not a new topic in statistics, see e.g. Chaloner and Verdinelli (1995);
Sebastiani and Wynn (2000); Amzal et al. (2006) but has recently gained new interest with the use
of machine learning techniques, see Rainforth et al. (2024); Huan et al. (2024) for recent reviews.
The most common approach consists of maximizing the so-called expected information gain (EIG),
which is a mutual information criterion that accounts for information via the Shannon’s entropy.
Let p(θ) denote a prior probability distribution and p(y|θ, ξ) a likelihood defining the observation
y ∈ Y generating process. The prior is assumed to be independent on ξ and p(y|θ, ξ) available in
closed-form. To our knowledge, all previous BOED approaches also assume that the prior is available
in closed-form, a setting that we refer to as density-based BOED. In this work, by making BOED
more computationally efficient, we open the first access to diffusion-based generative models and
introduce data-based BOED when the prior is only available through samples. This broadens the
scope of problems that can be tackled to a wide range of inverse problems (Daras et al., 2024).

The EIG, denoted below by I , admits several equivalent expressions, see e.g. Foster et al. (2019). It
can be written as the expected loss in entropy when accounting for an observation y at ξ (eq. (1))
or as a mutual information (MI) or expected Kullback-Leibler (KL) divergence (eq. (2)). Denoting
pξ(θ,y) = p(θ,y|ξ) the joint distribution of (θ,Y ) and using p(θ,y|ξ) = p(θ|y, ξ)p(y|ξ) =
p(y|θ, ξ)p(θ), it comes,

I(ξ) = Ep(y|ξ)[H(p(θ))− H(p(θ|Y , ξ)] (1)

= Ep(y|ξ) [KL(p(θ|Y , ξ), p(θ))] = MI(pξ) , (2)
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where random variables are indicated with uppercase letters, Ep(·)[·] or Ep[·] denotes the expectation
with respect to p and H(p(θ)) = −Ep(θ)[log p(θ)] is the entropy of p. The joint distribution pξ
completely determines all other distributions, marginal (prior) and conditional (posterior) distributions,
so that the mutual information, which is the KL between the joint and the product of its marginal
distributions, can be written as a function of pξ ∈ P(Θ×Y) only. In the following P(Θ×Y), resp.
P(Θ), resp. P(Y), denotes the set of probability measures on Θ× Y , resp. Θ, resp. Y .

In BOED, we look for ξ∗ satisfying

ξ∗ ∈ argmax
ξ∈Rd

I(ξ) = argmax
ξ∈Rd

MI(pξ) . (3)

The above optimization is usually referred to as static design optimization. The main challenge in
EIG-based BOED is that both the EIG and its gradient with respect to ξ are doubly intractable. Their
respective expressions involve an expectation of an intractable integrand over a posterior distribution
which is itself not straightforward to sample from. The posterior distribution is generally only
accessible through an iterative algorithm providing approximate samples. In practice, the inference
problem is further complicated as design optimization is considered in a sequential context, in which
a series of experiments is planned sequentially and each successive design has to be accounted for.
In order to remove the integrand intractability issue, solutions have been proposed which optimize
an EIG lower bound (Foster et al., 2019). This lower bound can be expressed as an expectation of a
tractable integrand and becomes tight with increased simulation budgets. The remaining posterior
sampling issue has then been solved in different ways. A set of approaches consists of approximating
the problematic posterior distribution, either with variational techniques (Foster et al., 2019) or with
efficient sequential Monte Carlo (SMC) sampling (Iollo et al., 2024; Drovandi et al., 2013). Other
approaches avoid posterior estimation, using reinforcement learning (RL) and off-line policy learning
to bypass the need for sampling (Foster et al., 2021; Ivanova et al., 2021; Blau et al., 2022). However,
some studies have shown that estimating the posterior was beneficial, e.g. Iollo et al. (2024) and
Ivanova et al. (2024), which improves on Foster et al. (2021) by introducing posterior estimation steps
in order to refine the learned policy. In addition, one should keep in mind that posterior inference is
central in BOED as the ultimate goal is not design per se but to gain information on the parameter of
interest. This is challenging especially in a sequential context. Previous attempts that provide both
candidate design and estimates of the posterior distribution, such as Foster et al. (2019); Iollo et al.
(2024), are thus essentially in 2 alternating stages, approximate design optimization being dependent
on approximate posterior sampling and vice-versa.

In this work, we propose a novel 1-stage approach which leverages a sampling-as-optimization
setting (Korba and Salim, 2022; Marion et al., 2025) where sampling is seen as an optimization task
over the space of probability distributions. We introduce a new EIG gradient expression (Section
3), which highlights the EIG gradient as a function of both the design and some sampling outcome.
This fits into a bi-level optimization framework adapted to BOED in Section 4. So doing, at each
step, both an estimation of the optimal design and samples from the current posterior distribution
can be provided in a single loop described in Section 5. It results an efficient procedure that can
handle both traditional density-based samplers and data-based samplers such as provided by the
highly successful diffusion-based generative models. The resulting efficiency gain enables BOED
applications at significantly larger scales than previously feasible, including inpainting problems
ranging from computer vision to protein engineering and MRI (Quan et al., 2024; Yang et al., 2019;
Aali et al., 2023). Figure 1 is an illustration on a 28× 28 image θ reconstruction problem from 7× 7
sub-images centered at locations ξ to be selected, details in Section 6. For simpler notation, we
first present our approach in the static design case. Adaptation to the sequential case is specified in
Section 6 and all numerical examples are in the sequential setting.

Figure 1: 28× 28 Image θ (1st column) reconstruction from seven 7× 7 sub-images y = Aξθ+η centered at
seven central pixels ξ (designs) selected sequentially. Optimized vs. random designs: measured outcome y (2nd
vs. 3rd column) and parameter θ estimates (reconstruction) with highest weights (upper vs. lower sub-row).
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2 RELATED WORK

We focus on gradient-based BOED for continuous problems. Applying a first-order method to
solve (3) requires computing gradients of the EIG I , which are no more tractable than I itself.
Gradient-based BOED is generally based on stochastic gradient-type algorithms (see Section 4.3.2.
in Huan et al. (2024)). This requires in principle unbiased gradient estimators, although stochastic
approximation solutions using biased oracles have also been investigated, see e.g. Demidovich
et al. (2023); Liu and Tajbakhsh (2024). To meet this requirement, most stochastic gradient-based
approaches start from an EIG lower bound that yields tractable unbiased gradient estimators. More
specifically, EIG lower bounds have usually the advantage to remove the nested expectation issue, see
e.g. Foster et al. (2019). In contrast, very few approaches focus on direct EIG gradient estimators. To
our knowledge, this is only the case in Goda et al. (2022) and Ao and Li (2024). Goda et al. (2022)
propose an unbiased estimator of the EIG gradient using a randomized version of a multilevel nested
Monte Carlo (MLMC) estimator from Rhee and Glynn (2015). A different estimator is proposed by
Ao and Li (2024), who use MCMC samplers leading to biased estimators, for which the authors show
empirically that the bias could be made negligible. In this work, we first show, in Section 3, that their
two apparently different solutions actually only differ in the way the intractable posterior distribution
is approximated. We then propose a third way to compute EIG gradients that is more computationally
efficient and scales better to larger data volumes and sequential design contexts. This new expression
makes use of a distribution that we introduce and name the pooled posterior distribution. This
latter distribution has interesting sampling features that allow us to leverage score-based sampling
techniques and connect to the so-called implicit diffusion framework of Marion et al. (2025). Our
single loop procedure in Section 5 is inspired by Marion et al. (2025) and other recent developments
in bi-level optimization (Yang et al., 2021; Dagréou et al., 2022; Hong et al., 2023). However,
these latter settings do not cover doubly intractable objectives such as the EIG, which requires both
appropriate gradient estimators and sampling operators, see our Sections 3 and 4. In BOED, efficient
single loop procedures have been proposed by Foster et al. (2020) but they rely heavily on variational
approximations, which may limit accuracy in scenarios with complex posterior distributions.

3 POOLED-POSTERIOR ESTIMATION OF THE EIG GRADIENT

Efficient EIG gradient estimators are central for accurate scalable BOED. Gradients derived from the
reparameterization trick are often preferred, over the ones obtained with score-based techniques, as
they have been reported to exhibit lower variance (Xu et al., 2019).

EIG gradient via a reparametrization trick. Assuming p(y|θ, ξ) is such that Y can be rewritten
as Y = Tξ,θ(U) with Tξ,θ invertible so that U = T−1

ξ,θ(Y ) and U is a random variable independent
on θ and ξ with a tractable distribution pU (U). The existence of Tξ,θ is straightforward if the direct
model corresponds to an additive Gaussian noise as the transformation is then linear in U . Results
exist to guarantee the existence of such a transformation in more general situations (Papamakarios
et al., 2021). Using this change of variable, two expressions of the EIG gradient, (5) and (6) below,
can be derived. Detailed steps are given in Appendix A. With pξ denoting the joint distribution
p(θ,y|ξ), g a quantity related to the score g(ξ,y,θ,θ′) = ∇ξ log p(Tξ,θ(u)|θ′, ξ)|u=T−1

ξ,θ(y)
and

denoting h(ξ,y,θ,θ′) = ∇ξp(Tξ,θ(u)|θ′, ξ)|u=T−1
ξ,θ(y)

, a first expression is

∇ξI(ξ) =Epξ

[
g(ξ,Y ,θ,θ)−

Ep(θ′)

[
h(ξ,Y ,θ,θ′)

]
Ep(θ′)

[
p(Y |θ′, ξ)

] ]
. (4)

Considering importance sampling formulations for the second term of (4), with an importance
distribution q ∈ P(Θ), potentially depending on y, θ and ξ, further leads to

∇ξI(ξ) = Epξ

g(ξ,Y ,θ,θ)−
Eq(θ′|Y ,θ,ξ)

[
p(θ′)

q(θ′|Y ,θ,ξ) h(ξ,Y ,θ,θ′)
]

Eq(θ′|Y ,θ,ξ)

[
p(θ′)

q(θ′|Y ,θ,ξ) p(Y |θ
′, ξ)

]
 . (5)

In Goda et al. (2022), this latter expression is used in a randomized MLMC procedure with q set to a
Laplace approximation of the posterior distribution, without justification for this specific choice of q.

3



Published as a conference paper at ICLR 2025

It results an estimator which is not unbiased but can be de-biased following Rhee and Glynn (2015).
Alternatively, a second expression of the EIG gradient is the starting point of Ao and Li (2024),

∇ξI(ξ) =Epξ

[
g(ξ,Y ,θ,θ)− Ep(θ′|Y ,ξ)

[
g(ξ,Y ,θ,θ′)

]]
. (6)

It follows a nested Monte Carlo estimator (30) given in Appendix A, using samples {(yi,θi)}i=1:N

from the joint pξ and for each yi, samples {θ′
i,j}j=1:M from an MCMC procedure approximating

the intractable posterior p(θ′|yi, ξ). Interestingly, expression (6) can also be recovered by setting the
importance proposal q(θ′|y,θ, ξ) to p(θ′|y, ξ) in (5), which provides a clear justification of why the
choice of q made in Goda et al. (2022) is relevant. Approaches by Goda et al. (2022) and Ao and Li
(2024) thus mainly differ in their choice of approximations for the posterior distribution. Using a
Laplace approximation as in Goda et al. (2022) is relevant only if the posterior is unimodal, which
may not be the case in practice. The MCMC version of Ao and Li (2024) is then potentially more
general but also more costly as it requires running N times a MCMC sampler, targeting each time a
different posterior p(θ|yi, ξ). In the next paragraph, we introduce the pooled posterior distribution
and derive another, more computationally efficient, gradient expression.

Importance sampling EIG gradient estimator with a pooled posterior proposal. In their work,
Ao and Li (2024) consider only static design, which hides the fact that for more realistic sequential
design contexts, their solution is not tractable due to its computational complexity. Their solution
faces the standard issue of nested estimation (Rainforth et al., 2018). To avoid this issue we propose
to use an importance sampling expression for the second term in (6), which has the advantage to move
the dependence on y (and θ) from the sampling part to the integrand part. We consider a proposal
distribution q ∈ P(θ) that does not depend on Y nor θ. It comes,

∇ξI(ξ) = Epξ

[
g(ξ,Y ,θ,θ)− Eq(θ′|ξ)

[
p(θ′|Y , ξ)

q(θ′|ξ)
g(ξ,Y ,θ,θ′)

]]
, (7)

and an approximate gradient can be obtained as

1

N

N∑
i=1

[
g(ξ,yi,θi,θi)− Eq(θ′|ξ)

[
p(θ′|yi, ξ)

q(θ′|ξ)
g(ξ,yi,θi,θ

′)

]]
. (8)

The second term in (8) still requires N importance sampling approximations whose quality depends
on the choice of the proposal distribution q. The ideal proposal q is easy to simulate, with computable
weights at least up to a constant, and so that q and the multiple target distributions p(·|yi, ξ) are not
too far apart. Given N samples {(θi,yi)}i=1:N from pξ, we propose thus to take q = qξ,N where
qξ,N is the following logarithmic pooling or geometric mixture, with

∑N
i=1 νi = 1,

qξ,N (θ) ∝
N∏
i=1

p(θ|yi, ξ)
νi ∝ p(θ)

N∏
i=1

p(yi|θ, ξ)νi . (9)

We refer to qξ,N as the pooled posterior distribution, defined in a more general way in (13). It allows
to assess the effect of a candidate design ξ on samples from the prior. It differs from a standard
posterior as no real data y obtained by running the experiment ξ is available during the optimization.
We only have access to samples {(θi,yi)}i=1:N from the joint pξ. The pooled posterior can be seen
as a distribution that takes into account all possible outcomes of a candidate experiment ξ given the
samples {θi}i=1:N from the prior. This choice of qξ,N is justified in Appendix B, using Lemma 2,
proved therein. Lemma 2 shows that, for

∑N
i=1νi = 1, qξ,N is the distribution q that minimizes the

weighted sum of the KLs against each posterior p(θ|yi, ξ), i.e.
∑N

i=1νiKL(q, p(θ|yi, ξ)), leading to
an efficient importance sampling proposal. It follows our new gradient estimator,

∇ξI(ξ) ≈
1

N

N∑
i=1

g(ξ,yi,θi,θi)−
1

M

M∑
j=1

wi,j g(ξ,yi,θi,θ
′
j)

 , (10)

where {(θi,yi)}i=1:N follow pξ, {θ′
i}j=1:M follow qξ,N and wi,j =

p(θ′
j |yi,ξ)

qξ,N (θ′
j)

denotes the
importance sampling weight. When this fraction can only be evaluated up to a constant, we consider
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self normalized importance sampling (SNIS) using p̃, q̃ξ,N the unnormalized versions of p and qξ,N ,

w̃i,j =
p̃(θ′

j |yi, ξ)

q̃ξ,N (θ′
j)

=
p(yi|θ′

j , ξ)∏N
ℓ=1 p(yℓ|θ′

j , ξ)
νℓ

and wi,j =
w̃i,j∑M
j=1 w̃i,j

. (11)

Although with a reduced computational cost, computing gradients with (10) still requires an iterative
sampling algorithm ideally run for a large number of iterations to reach satisfying approximations of
the joint pξ and the pooled posterior qξ,N . In static design, sampling from the joint is not generally
difficult as the prior and the likelihood are assumed available but this becomes problematic in
sequential design, as further detailed in Section 6.1. Sequential design is the setting to be kept in
mind in this paper and in practice, the exact distributions are rarely reached. To assess the impact on
gradient approximations, it is convenient to introduce, as in Marion et al. (2025), gradient operators.
In the next section, we show how to adapt the formalism of Marion et al. (2025) to our BOED task.

4 EIG OPTIMIZATION THROUGH SAMPLING

To maximize the EIG using its gradient estimator (10), samples are needed from both the joint
distribution pξ and the pooled posterior proposal qξ,N . If handled naively, it results a computationally
expensive nested sampling-optimization loop where new samples from both distributions need to be
generated at every update of the design parameter ξ. To derive more efficient procedures, we propose
to adapt to BOED the framework of Marion et al. (2025) that integrates sampling and optimization
into a single bi-level optimization loop. To do so, the EIG gradient ∇ξI(ξ) has first to be expressed
as a function Γ of three key components: the joint distribution pξ, the proposal distribution q, and
the design parameter ξ itself. Our choice of the pooled posterior as proposal distribution q is then
justified for its interesting sampling properties and the concept of sampling operator of Marion et al.
(2025) is generalized to efficiently generate the samples needed to estimate our EIG gradient via Γ.

Estimation of gradients through sampling. Denote by Γ a function from P(Θ×Y)×P(Θ)×Rd

to Rd, defined as,

Γ(p, q, ξ) = Ep

[
g(ξ,Y ,θ,θ)− Eq

[
p(θ′|Y )

q(θ′)
g(ξ,Y ,θ,θ′)

]]
. (12)

Expression (7) shows that ∇ξI(ξ) = Γ(pξ, q, ξ), where q is a distribution q(θ′|ξ) on θ′ possibly
depending on ξ. The gradient estimator (10) corresponds then to ∇ξI(ξ) ≈ Γ(p̂ξ, q̂ξ,N , ξ), where
p̂ξ =

∑N
i=1 δ(θi,yi) and q̂ξ,N =

∑M
j=1 δθ′

j
. In general, sampling from pξ, or its sequential

counterpart, and qξ,N is challenging and only possible through an iterative procedure. However, an
interesting feature of our pooled posterior is that it does not add additional sampling difficulties.

Pooled posterior distribution. More generally (details in Appendix B), we define,

qξ,ρ(θ) ∝ exp (Eρ[log p(θ|Y , ξ)]) (13)

where ρ is a measure on Y . When ρ(y) =
∑N

i=1νiδyi(y) with
∑N

i=1νi =1, we recover qξ,ρ(θ) =
qξ,N (θ) in (9). The special structure of the pooled posterior allows to sample from it using the same
algorithmic structure to sample from a single posterior p(θ|y, ξ). Indeed, the score of qξ,ρ(θ) is
linked to the posterior score,

∇θ log qξ,ρ(θ) = Eρ[∇θ log p(θ|Y , ξ)] , (14)

which for qξ,N simplifies into
∑N

i=1 νi∇θ log p(θ|yi, ξ). In practice, we consider the operation of
sampling as the output of a stochastic process iterating a so-called sampling operator.

Iterative sampling operators. Iterative sampling operators, as introduced in Marion et al. (2025),
are mappings to a space of probabilities. In our BOED setting, we consider two such operators. The
first one is defined, for each ξ, through a sequence over s of functions from P(Θ×Y) to P(Θ×Y)
and denoted by ΣY ,θ

s (p, ξ). Sampling is defined as the outcome in the limit s → ∞ or for some
finite s = S of the following process starting from p(0) ∈ P(Θ× Y) and iterating

p(s+1) = ΣY ,θ
s (p(s), ξ) , (15)
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Figure 2: Source localisation example. Prior (left) and pooled posterior (right) samples at experiment k. Final
ξ∗
k (orange cross) at the end of the optimization sequence ξ0, ·, ξT (blue crosses). This optimization "contrasts"

the two distributions by making the pooled posterior "as different as possible" from the prior.

where p(s) can be explicit, e.g. p(s) is a Gaussian distribution with parameters depending on
s, or represented by a random variable Xs ∼ p(s). For example, in density-based BOED, for
Xs = (Ys,θs), we consider the Euler discretization of the Langevin diffusion converging to pξ

y(s+1) = y(s) − γs∇yV (y(s),θ(s), ξ) +
√

2γsBy,s,

θ(s+1) = θ(s) − γs∇θV (y(s),θ(s), ξ) +
√

2γsBθ,s.
(16)

where By,s and Bθ,s are realizations of independent standard Gaussian variables, γs is a step-size
and V (y,θ, ξ) = − log p(θ)− log p(y|θ, ξ) is the pξ potential, pξ(y,θ) ∝ exp (−V (y,θ, ξ)). The
dynamics induced lead to samples from pξ for s→∞. In the following, we will thus use the notation
ΣY ,θ

s to mean that we have access to samples from p(s+1), which is equivalent to apply ΣY ,θ
s to an

empirical version of p(s) built from samples {(y(s)
i ,θ

(s)
i )}i=1:N . Similarly, we can produce samples

{θ′(s+1)
j }j=1:M from the pooled posterior qξ,N , using its score expression, via the updating,

θ′(s+1) = θ′(s) − γ′
s

N∑
i=1

νi∇θV (yi,θ
′(s), ξ) +

√
2γ′

sBθ′,s . (17)

For a sampling operator of the pooled posterior general form (13), we need to extend the definition in
Marion et al. (2025) by adding a dependence on some distribution ρ ∈ P(Y) for the conditioning
part. The second sampling operator is defined, for some given ξ and ρ, through a sequence over s of
parameterized functions from P(Θ) to P(Θ) and denoted by Σθ′

s (q, ξ, ρ). The sampling operator is
defined as the outcome of the following process starting from q(0) ∈ P(Θ) and iterating

q(s+1) = Σθ′

s (q(s), ξ, ρ) . (18)

For instance, when ρ =
∑N

i=1 νiδyi
, q(s+1) = Σθ′

s (q(s), ξ, ρ) can then be a shorthand for (17).

5 SINGLE LOOP CONTRASTIVE EIG OPTIMIZATION

The perspective of optimization through sampling leads naturally to a nested loop procedure. An inner
loop is performed to reach good approximations of pξ and qξ,N using two samplers as specified in
Section 4 and summarized in the nested loop Algorithm 1. Considering sampling as an optimization
over the space of distributions (Marion et al., 2025), a more efficient single loop procedure can be
derived. As illustrated in the single loop Algorithm 2, at each optimization step over ξ, the sampling
operators are applied only once using the current ξ, which is updated in turn, etc. Sampling operators
can be derived from traditional density-based sampling, like in (16) and (17), where an expression of
the target distribution is required to compute the score, and also from data-based sampling where
only training samples are available. In the latter case, conditional score-based generative models have
emerged as a very active field of research. We explicit below how a recent such framework proposed
by Dou and Song (2024) can be used in our setting.
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Data-based samplers. In BOED, we are interested in sampling from a conditional distribution
p(θ|y, ξ) with the following objectives. First we need to sample from the pooled posterior qξ,N (θ)
which requires conditioning on the observation y. Second, in sequential design problems (see
section 6.1 and Appendix D), we need to condition on the history of observations Dk−1 and produce
samples from p(θ|Dk−1). Both these issues can be tackled in the framework of diffusion models
for inverse problems (Daras et al., 2024). When the likelihood corresponds to a linear measurement
Y with Y = Aξθ + η and η∼N (0,Σ), inspiring recent attempts, such as (Corenflos et al., 2025;
Cardoso et al., 2024), have addressed the problem of sampling efficiently from p(θ|y, ξ) using
only the pre-trained score sϕ(θ, t) of a diffusion model, without the need for any kind of retraining
(see Appendix C for details). For conditional sampling, this would mean running an SDE with
a conditional score ∇θ log pt(θ

(t)|y, ξ), which is intractable. See (43) and Appendix C.2. As a
solution, Dou and Song (2024) propose a method named FPS that approximates pt(θ

(t)|y, ξ) by
pt(θ

(t)|y(t), ξ) with y(t) the noised observation at time t. As the score∇θlog pt(θ
(t)|y(t), ξ) can be

written as ∇θlog pt(θ
(t))+∇θlog pt(y

(t)|θ(t), ξ), we can leverage the learned score sϕ(θ
(t), t) and

the closed form of ∇θ log pt(y
(t)|θ(t), ξ) to sample approximately from p(θ|y, ξ) using a backward

SDE with the approximate score, see (45) in Appendix C.2. This allows to sample efficiently from
p(θ|Dk−1) and, using∇θ log qξ,N (θ′)=

∑N
i=1νi∇θ log p(θ

′|yi, ξ), from the pooled posterior with
the extension of (45) below, where y

(t)
i is the noised yi at time t of the forward SDE,

dθ
′(t) =

[
−β(t)

2
θ

′(t) − β(t)

N∑
i=1

νi∇θ log pt(θ
′(t)|y(t)

i , ξ)

]
dt+

√
β(t)dBt , (19)

where t above is now flowing backwards from infinity to t=0. In practice, (19) is solved approximately
using a numerical discretization and an initialization of the process with θ

′(T ) ∼ N (0, I) for some
large finite T . An additional resampling SMC-like step can also be added as explained in Appendix
E. The approach allows to handle new sequential data-based BOED tasks as illustrated in Section 6.3.

Algorithm 1:Nested-loop optimization
Result: Optimal design ξ∗

Initialisation: ξ0∈Rd

for t=0:T-1 (outer ξ optimization loop) do
p
(0)
t ← p0 and q

(0)
t ← q0

for s=0:S-1 (pξ inner sampling) do
p
(s+1)
t = ΣY ,θ

s (p
(s)
t , ξt)

end
p̂ξt
← p

(S)
t

ρ̂t ← p̂ξt
(y) (p̂ξt

marginal over y)
for s’=1:S’-1 (qξ,ρ inner sampling) do

q
(s′+1)
t = Σθ′

s′ (q
(s′)
t , ξt, ρ̂t)

end
q̂ξt
← q

(S′)
t

Compute∇ξI(ξt)=Γ(p̂ξt
, q̂ξt

, ξt) in (12)
Update ξt with SGD or another optimizer

end
return ξT ;

Algorithm 2: Single loop optimization
Result: Optimal design ξ∗

Initialisation: ξ0∈Rd, p(0)← p0, q(0)← q0
for t=0:T-1(sampling-optimization loop) do

p(t+1) = ΣY ,θ
t (p(t), ξt)

ρ̂t+1 ← p
(t+1)
y (p(t+1) marginal over y)

q(t+1) = Σθ′

t (q(t), ξt, ρ̂t+1)
Compute
∇ξI(ξt)=Γ(p(t+1), q(t+1), ξt) in (12)

Update ξt with SGD or another optimizer
end
return ξT ;

Measure 1 2 3 4 5 6

CoDiff .227 .338 .528 .673 .789 .826
Random .168 .275 .350 .391 .421 .463

Table 1: CoDiff and random reconstruction quality
comparison with SSIM, in [-1,1], the higher the better.

Density-based samplers. Among density-based samplers, we can mention score-based MCMC
samplers, including Langevin dynamics via the Unadjusted Langevin Algorithm (ULA) and
Metropolis Adjusted Langevin Algorithm (MALA) (Roberts and Tweedie, 1996), Hamiltonian
Monte Carlo (HMC) samplers (Hoffman and Gelman, 2014). In Section 6.2, an illustration is given
with Langevin and sequential Monte Carlo (SMC) to handle a sequential density-based BOED task.

Contrastive Optimization. Optimizing ξ using the gradient expression (10) encourages to select
a ξ that gives either high probability p(yi|θi, ξ) to samples (θi,yi) from pξ or low probability
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p(yj |θ′
j , ξ) to samples θ′

j from qξ,N . This contrastive behaviour is also visible in (2) where the
EIG is defined as the mean over the experiment outcomes of the KL between posterior and prior
distributions. The pooled posterior qξ,N is then used as a proxy to the intractable posterior, to perform
this contrastive optimization. Figure 2 provides a visualization of this contrastive behavior in the
source localization example of Section 6.2. It corresponds to set the next design ξ to a value that
eliminates the most parameter θ values (right plot) among the possible ones a priori (left plot). This is
analogous to Noise Constrastive Estimation (Gutmann and Hyvärinen, 2010) methods where model
parameters are computed so that the data samples are as different as possible from the noise samples.
Additional illustrations are given in Appendix Figure 6.

6 NUMERICAL EXPERIMENTS

Two sequential density-based (Section 6.2) and data-based (Section 6.3) BOED examples are
considered to illustrate that our method extends to the sequential case in both settings.

6.1 SEQUENTIAL BAYESIAN EXPERIMENTAL DESIGN

In the sequential setting, a sequence of K experiments is planned while gradually accounting for the
successively collected data. At step k, we wish to pick the best design ξk given previous outcomes
Dk−1 = {(y1, ξ1), . . . , (yk−1, ξk−1)}. The expected information gain in this scenario is given by:

Ik(ξ,Dk−1) = Ep(y|ξ,Dk−1) [KL(p(θ|Y , ξ,Dk−1), p(θ|Dk−1))] ,

where p(θ|Dk−1) and p(θ|y, ξ,Dk−1) act respectively as prior and posterior analogues to the
static case (2). See Appendix D for more detailed explanations. The main difference is that
we no longer have direct access to samples from the step k prior p(θ|Dk−1). However, as
p(θ|Dk−1) ∝ p(θ)

∏k−1
n=1 p(yn|θ, ξn) and p(θ|y, ξ,Dk−1) ∝ p(θ)p(y|θ, ξ)

∏k−1
n=1 p(yn|θ, ξn)

we can still compute the score of these distributions and run sampling operators similar to (15)
and (18). To emphasize their dependence on Dk−1, they are denoted by Σ

Y ,θ|Dk−1
s (p(s), ξ) and

Σ
θ′|Dk−1
s (q(s), ξ, ρ). Examples of these operators are provided in (20) and (21) in Section 6.2.

Evaluation metrics and comparison. We refer to our method as CoDiff. In Section 6.2, comparison
is provided with other recent approaches, namely a reinforcement learning-based approach RL-BOED
from Blau et al. (2022), the variational prior contrastive estimation VPCE of Foster et al. (2020)
and a recent approach named PASOA (Iollo et al., 2024) based on tempered sequential Monte Carlo
samplers. We also compare with a non tempered version of this latter approach (SMC) and with a
random baseline, where the observations {y1, ·,yK} are simulated with designs generated randomly.
More details about these methods are given in Appendix F.2. To compare methods in terms of
information gains, we use the sequential prior contrastive estimation (SPCE) and sequential nested
Monte Carlo (SNMC) bounds introduced in Foster et al. (2021) and used in Blau et al. (2022). These
quantities allow to compare methods on the produced design sequences only, via their [SPCE, SNMC]
intervals which contain the total EIG. Their expressions are given in Appendix F.1. We also provide
the L2 Wasserstein distance between the produced samples and the true parameter θ. For methods that
do not provide posterior estimations or poor quality ones (RL-BOED, VPCE, Random), we compute
Wasserstein distances on posterior samples obtained by using tempered SMC on their design and
observation sequences. In contrast, SMC Wasserstein distances are computed on the SMC posterior
samples. In Section 6.3, our evaluation is mainly qualitative. The previous methods do not apply and
we are not aware of existing attempts that could handle such a generative setting.

6.2 SOURCES LOCATION FINDING

We present a source localization example inspired by Foster et al. (2021); Blau et al. (2022). The setup
involves C sources in R2, with unknown positions θ = {θ1, . . . ,θC}. The challenge is to determine
optimal measurement locations to accurately infer the sources positions. When a measurement is
taken at location ξ ∈ R2, the signal strength is defined as µ(θ, ξ) = b +

∑C
c=1

αc

m+∥θc−ξ∥2
2

where
αc, b, and m are predefined constants. We assume a standard Gaussian prior for each source location,
θc ∼ N (0, I2), and model the likelihood as log-normal: (log y | θ, ξ) ∼ N (logµ(θ, ξ), σ), with σ
representing the standard deviation. For this experiment, we set C = 2, α1 = α2 = 1, m = 10−4,
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b = 10−1, σ = 0.5, and plan K = 30 sequential design optimizations. In the notation of the
single loop Algorithm 2, we consider ΣY ,θ|Dk−1

t (p(t), ξt) and Σ
θ′|Dk−1

t (q(t), ξt, ρ̂t+1) operators
that correspond respectively to the update of batch samples of size N = 200 and M = 200

{(y(t)
i ,θ

(t)
i )}i=1:N and {θ

′(t)
j }j=1:M with ρ̂t+1 =

∑N
i=1 νiδy(t+1)

i
using Langevin diffusions.

Making use of the availability of the likelihood in this example, sampling from it, is straightforward
and sampling operator iterations simplify into, for i = 1 : N and j = 1 : M

θ
(t+1)
i = θ

(t)
i + γt∇θ log p(θ

(t)
i |Dk−1) +

√
2γtBθ,t and y

(t+1)
i ∼ p(y|θ(t+1)

i , ξt) (20)

θ′(t+1)
j = θ′(t)

j + γ′
t

N∑
i=1

νi∇θ log p(θ
′(t)
j |y

(t+1)
i , ξt,Dk−1) +

√
2γ′

tBθ′,t . (21)

In practice, Langevin diffusion can get trapped in local minima and causes the sampling to be too
slow to keep pace with the optimization process. To address this, we augment the Langevin diffusion
with the Diffusive Gibbs (DiGS) MCMC kernel proposed by Chen et al. (2024). DiGS is an auxiliary
variable MCMC method where the auxiliary variable X̃ is a noisy version of the original variable X .
DiGS enhances mixing and helps escape local modes by alternately sampling from the distributions
p(x̃|x), which introduces noise via Gaussian convolution, and p(x|x̃), which denoises the sample
back to the original space using a score-based update (here a Langevin diffusion). With 400 total
samples, each measurement step takes 2.9 s. This number of samples is insightful as it is usually the
amount of samples one can afford to compute in the diffusion models of Section 6.3. The whole
experiment is repeated 100 times with random source locations each time. Figure 3 shows, with
respect to k, the median for SPCE, the L2 Wasserstein distances between weighted samples and the
true source locations and SNMC. CoDiff clearly outperforms all other methods, with significant
improvement, both in terms of information gain and posterior estimation. It improves by 30% the
non-myopic RL-BOED results on SPCE and provides much higher SNMC. The L2 Wasserstein
distance is two order of magnitude lower, suggesting the higher quality of our measurements.

Figure 3: Source location. Median and standard error over 100 rollouts for SPCE, L2 Wasserstein
distance (log-scale), SNMC with respect to number of experiments k. Number of samples N+M=400.

6.3 IMAGE RECONSTRUCTION WITH DIFFUSION MODELS

We build an artificial experimental design task to illustrate the ability of our method to handle design
parameters related to inverse problems with a high dimensional parameter θ. We consider the task of
recovering an hidden image from only partial observations of its pixels. The image to be recovered is
denoted by θ. An experiment corresponds to the choice of a pixel ξ around which an observation mask
is centered and the image becomes visible. The measured observation y is then a masked version
of θ. The likelihood derives from the model Y = Aξθ + η where Aξ is a square mask centered
at ξ and η some Gaussian variable. For the image prior, we consider a diffusion model trained for
generation of the MNIST dataset (LeCun et al., 1998). The goal is thus to select sequentially the best
central pixel locations for 7× 7 masks so as to reconstruct an entire 28× 28 MNIST image in the
smallest number of experiments. The smaller the mask the more interesting it becomes to optimally
select the mask centers. Algorithm 2 is used with diffusion-based sampling operators specified in
Appendix F.2.2. The gain in optimizing the mask placements is illustrated in Figure 1 and Appendix
Figure 9. It is confirmed quantitatively in Table 1, which reports reconstruction quality as measured
by the structural similarity index measure (SSIM) (Wang et al., 2004), details in Appendix F.2.2.
Progressive reconstructions are shown in Figures 4, 7 and 8. The digit to be recovered is shown in the
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1st column. The successively selected masks are shown (red line squares) in the 2nd column with the
resulting gradually discovered part of the image. The reconstruction per se can be estimated from the
posterior samples shown in the last 16 columns. At each experiment, the upper sub-row shows the 16
most-likely reconstructed images, while the lower sub-row shows the 16 less probable ones. As the
number of experiments increases the posterior samples gradually concentrate on the right digit.

Figure 4: Image reconstruction. First 6 experiments (rows): image ground truth, measurement at experiment k,
samples from current prior p(θ|Dk−1), with best (resp. worst) weights in upper (resp. lower) sub-row. The
samples incorporate past measurement information as the procedure advances. Each design steps takes ∼ 7.3s

7 CONCLUSION

We presented a new approach, CoDiff, to gradient-based BOED that allows very efficient
implementations. The performance was illustrated in a traditional density-based setting with superior
accuracy and lower computational cost compared to state-of-the-art methods. In addition, the
possibility of our method to also handle data-based sampling represents, to our knowledge, the
first extension of BOED to diffusion-based generative models. By integrating the highly successful
framework of diffusion models for our sampling operators, we were able to optimize a design
parameter ξ concurrently with the diffusion process. This was illustrated in a new application for
BOED involving high dimensional image parameters. The foundation of our approach lies on a new
EIG gradient estimator, bi-level optimization, conditional diffusion models and their application
to inverse problems. Thanks to this advancement, there are as many new potential applications of
BOED as there are trained diffusion models for specific inverse problem tasks. Current limitations
include that CoDiff remains a greedy approach, that it requires an explicit expression of the likelihood
and that when using diffusions to address inverse problems only linear forward models are currently
handled. However, the non-linear setting is an active field of research, and advancements in this area
could be directly applied to our framework. The applicability of our method could also be extended by
considering settings with no explicit expression of the likelihood and investigating simulation-based
inference such as developed by Ivanova et al. (2021); Kleinegesse and Gutmann (2021); Kleinegesse
et al. (2020). In addition, although in density-based BOED, we have shown that greedy approaches
could outperform long-sighted reinforcement learning procedures, in a data-based setting, it would
be interesting to investigate an extension to non myopic approaches such as Iqbal et al. (2024).
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A TWO EXPRESSIONS FOR THE EIG GRADIENT

Both approaches presented below, that of Goda et al. (2022) and Ao and Li (2024), start from
EIG gradient expressions derived using a reparameterization trick. Using the change of variable
Y = Tξ,θ(U), we can derive the following expression for the EIG gradient,

∇ξI(ξ) =EpU (u)p(θ) [∇ξ log p(Tξ,θ(U)|θ; ξ)]− EpU (u)p(θ) [∇ξ log p(Tξ,θ(U)|ξ)] . (22)

The first term in (22) involves only the known likelihood and is generally not problematic. For the
second term, we can use,

∇ξ log p(Tξ,θ(U)|ξ) = ∇ξp(Tξ,θ(U)|ξ)
p(Tξ,θ(U)|ξ)

(23)

with p(Tξ,θ(U)|ξ) = Ep(θ′)

[
p(Tξ,θ(U)|θ′, ξ)

]
and

∇ξp(Tξ,θ(U)|ξ) = ∇ξEp(θ′)

[
p(Tξ,θ(U)|θ′, ξ)

]
= Ep(θ′)

[
∇ξ p(Tξ,θ(U)|θ′, ξ)

]
(24)

= Ep(θ′)

[
p(Tξ,θ(U)|θ′, ξ) ∇ξ log p(Tξ,θ(U)|θ′, ξ)

]
. (25)

Subsequently, two expressions of the EIG gradient can be derived depending on which of (24) or (25)
is used. Using (24) and p(Tξ,θ(U)|ξ) = Ep(θ′)

[
p(Tξ,θ(U)|θ′, ξ)

]
, it comes

∇ξI(ξ) =EpU (u)p(θ)

[
∇ξ log p(Tξ,θ(U)|θ; ξ)−

Ep(θ′)

[
∇ξ p(Tξ,θ(U)|θ′, ξ)

]
Ep(θ′)

[
p(Tξ,θ(U)|θ′, ξ)

] ]

= Epξ

[
g(ξ,Y ,θ,θ)−

Ep(θ′)

[
h(ξ,Y ,θ,θ′)

]
Ep(θ′)

[
p(Y |θ′, ξ)

] ]
. (26)

with
g(ξ,y,θ,θ′)=∇ξlog p(Tξ,θ(u)|θ′,ξ)|u=T−1

ξ,θ(y)

and
h(ξ,y,θ,θ′)=∇ξp(Tξ,θ(u)|θ′, ξ)|u=T−1

ξ,θ(y)
.

Considering, in the second term, an additional importance distribution q(θ′|y,θ, ξ) leads to the
expression used in Goda et al. (2022),

∇ξI(ξ) = Epξ

g(ξ,Y ,θ,θ)−
Eq(θ′|Y ,θ,ξ)

[
p(θ′)

q(θ′|Y ,θ,ξ)h(ξ,Y ,θ,θ′)
]

Eq(θ′|Y ,θ,ξ)

[
p(θ′)

q(θ′|Y ,θ,ξ)p(Y |θ
′, ξ)

]
 . (27)

It can be used to derive estimators of the form,

∇ξI(ξ) ≈
1

N

N∑
i=1

g(ξ,yi,θi,θi)−
1
M

∑M
j=1

p(θ′
i,j)

q(θ′
i,j |yi,θi,ξ)

h(ξ,yi,θi,θ
′
i,j)

1
M

∑M
j=1

p(θ′
i,j)

q(θ′
i,j |yi,θi,ξ)

p(yi|θ′
i,j , ξ)

 , (28)

where {(yi,θi)}i=1:N are simulated from the joint distribution pξ and for each i = 1 : N ,
{θ′

i,j}j=1:M is a sample from q(·|yi,θi, ξ). Goda et al. (2022) use (28) with N = 1. Even
with perfect sampling, this estimator is not unbiased due to the ratio in the second term but can be
de-biased following Rhee and Glynn (2015). The randomized MLMC procedure of Rhee and Glynn
(2015) is a post-hoc general procedure that can be more generally applied to de-bias a sequence of
possibly biased estimators, provided the estimators are consistent.

Alternatively, using (25) instead, another expression of the EIG gradient can be derived. Replacing
(25) in (23), it comes,

∇ξ log p(Tξ,θ(U)|ξ) = Ep(θ′)

[
p(Tξ,θ(U)|θ′, ξ) ∇ξ log p(Tξ,θ(U)|θ′, ξ)

p(Tξ,θ(U)|ξ)

]
= Ep(θ′|Tξ,θ(U),ξ)

[
∇ξ log p(Tξ,θ(U)|θ′, ξ)

]
,
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which, with the definition of g above, leads to

∇ξI(ξ) =Epξ

[
g(ξ,Y ,θ,θ)− Ep(θ′|Y ,ξ)

[
g(ξ,Y ,θ,θ′)

]]
. (29)

This alternative expression (29) is the starting point of Ao and Li (2024), who subsequently use the
following estimator,

∇ξI(ξ) ≈
1

N

N∑
i=1

[
g(ξ,yi,θi,θi)− Eq(θ′|yi,ξ)

[
g(ξ,yi,θi,θ

′)
]]

,

where {(yi,θi)}i=1:N is as before a sample from the joint distribution pξ and where for each yi,
q(θ′|yi, ξ) is a tractable approximation of the intractable posterior p(θ′|yi, ξ). More specifically, Ao
and Li (2024) propose to approximate each posterior distribution by q(θ′|yi, ξ) =

1
M

∑M
j=1 δθ′

i,j
,

using a sample {θ′
i,j}j=1:M from an MCMC procedure. It follows the nested Monte Carlo estimator

below,

∇ξI(ξ) ≈
1

N

N∑
i=1

g(ξ,yi,θi,θi)−
1

M

M∑
j=1

g(ξ,yi,θi,θi,j)

 . (30)

B LOGARITHMIC POOLING AS A GOOD IMPORTANCE SAMPLING PROPOSAL

When considering importance sampling with a proposal distribution q and a target distribution p,
Chatterjee and Diaconis (2018) proved that under certain conditions, the number of simulation draws
required for both importance sampling and self normalized importance sampling (SNIS) estimators to
have small L1 error with high probability was roughly exp(KL(p, q)), see Theorem 1.2 in Chatterjee
and Diaconis (2018) for SNIS. Similarly, selecting a proposal distribution which minimizes the
importance sampling estimator variance is equivalent to finding a distribution with small χ2-distance
to p, see e.g. Appendix E of Minka (2005). More generally, finding a good proposal q is linked to the
problem of minimizing α-divergences or f -divergence between p and q, which are jointly convex in
p and q, see Minka (2005). In this work, we consider KL(q, p) as a measure of proximity between p
and q. This choice is ultimately arbitrary but has the advantage of leading to an interpretable proposal
with interesting sampling properties. To justify the pooled posterior qξ,N in (9) and its use in (10),
we then use Lemma 2 below to show that for

∑N
i=1 νi = 1, the distribution q∗ that minimizes the

weighted sum of the KL against each posterior p(θ|yi, ξ), i.e.
∑N

i=1 νiKL(q, p(θ|yi, ξ)) is

q∗(θ) ∝ p(θ)

N∏
i=1

p(yi|θ, ξ)νi (31)

∝
N∏
i=1

p(θ|yi, ξ)
νi , (32)

which is the logarithmic pooling (or geometric mixture) of the respective posterior distributions
p(θ|yi, ξ). Lemma 2 results from an application of a lemma mentioned by Alquier (2024) (Lemma
2.2 therein), and recalled below in Lemma 1. This Lemma 1 has been known since Kullback
(Kullback, 1959) in the case of a finite parameter space Θ, but the general case is due to Donsker and
Varadhan (Donsker and Varadhan, 1976). Recall that P(Θ) denotes the set of probability measures
on Θ and p a given probability measure in P(Θ).

Lemma 1 (Donsker and Varadhan’s variational formula) For any measurable, bounded function
f : Θ→ R, the supremum with respect to q ∈ P(Θ) of

Eq [f(θ)]− KL(q, p)

is the following Gibbs measure pf defined by its density with respect to p,

dpf =
exp(f(θ))

Ep [exp(f(θ))]
dp .

The following Lemma 2 is an application of Lemma 1.
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Lemma 2 For a given probability measure p ∈ P(Θ) and a measure ρ on Y (not necessarily a
probability measure), define for any probability measure q ∈ P(Θ)

ℓ(q) = Eq [EY ∼ρ [log p(Y |θ)]]− KL(q, p) . (33)

It results from the Donsker and Varadhan’s variational formula Lemma 1 that the supremum of ℓ(q)
with respect to q is reached for the Gibbs measure q∗ defined by its density with respect to p,

q∗(θ) ∝ p(θ) exp(EY∼ρ[log p(Y |θ)]) .
In addition maximizing ℓ is equivalent to minimising

EY ∼ρ [KL(q(θ), p(θ|Y ))]

which means that q∗ is the measure that minimizes the KL to each p(θ|y) on average with respect to
y.

Proof of Lemma 2 The expression of q∗ results from a direct application of Lemma 1 to f(θ) =
EY ∼ρ [log p(Y |θ)] assuming it is measurable and bounded as a function of θ (to be checked in
practice). The second part results from rewriting ℓ as

ℓ(q) = EY ∼ρ

[
Eθ∼q

[
log(p(Y |θ)p(θ))

log q(θ)

]]
= −EY ∼ρ [KL(q, p(θ|Y )] + EY ∼ρ [log p(Y )] .

Example: as already mentioned our pooled posterior qξ,N corresponds to the application of this result
to ρ =

∑N
i=1 νiδyi

with
∑N

i=1 νi = 1. This latter result with
∑N

i=1 νi = 1 can also be recovered
from a more general result by Amari (2007), which is stated for any α-divergence (see Theorem 2
of Amari (2007) with α = 1). The continuous weight version is also mentioned by Amari (2007)
(Theorem 4), referring to other papers for the proof. We provided here a simple proof for the KL
(α = 1) case.

Remark 1: If ρ = δy, or ρ =
∑N

i=1 δyi
, we recover the standard variational formulation of the

posterior distribution (see e.g. Table 1 in (Knoblauch et al., 2022)). The posterior distribution
p(θ|y1, . . . ,yN ) differs from the logarithmic pooling (for which the weights νi sum to 1) in the
relative weight given to the prior. The result is valid for very general ℓ not necessarily expressed as
an expectation.

Remark 2: Regarding logarithmic pooling, the result is similar to a result in Carvalho et al. (2022)
(Remark 3.1 therein) by showing that, in the case of the sum of the KL,

∑N
i=1 KL(q, p(θ|yi)), the

optimal pooling weights are equal, νi = 1
N .

Remark 3: The pooled posterior distribution can also be recovered as a constrained mean field
solution. Indeed, it is easy to show that q∗ is also the measure that minimizes the KL between the
joint distribution and a product form approximation where one of the factor is fixed to ρ(y),

q∗ = arg min
q∈P(Θ)

KL(q(θ)ρ(y), p(θ,Y )) .

C DIFFUSION-BASED GENERATIVE MODELS

C.1 DENOISING DIFFUSION MODELS

Given a distribution p0 ∈ P(Θ) only available through a set of samples of θ, diffusion models are
based on the addition of noise to the available samples in such a manner that allows to learn the
reverse process that "denoises" the samples. This learned process can then be exploited to generate
new samples by denoising random noise samples until we get back to the original data distribution.
As an appropriate noising process, in our experiments we ran the Variance Preserving SDE from
Dhariwal and Nichol (2021):

dθ̃
(t)

= −β(t)

2
θ̃
(t)
dt+

√
β(t)dB̃t (34)
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where β(t) > 0 is a linear noise schedule that controls the amount of noise added at time t. Solving
SDE (34) leads to

(θ̃
(t)
|θ̃

(0)
) ∼ N

(
θ̃
(0)

exp(−1

2

∫ t

0

β(s)ds), (1− exp(−
∫ t

0

β(s)ds))I

)
, (35)

which can be written as

θ̃
(t)

=
√
ᾱtθ̃

(0)
+
√
1− ᾱtϵ with ᾱt = exp(−

∫ t

0

β(s)ds) and (36)

where ϵ ∼ N (0, I) is a standard Gaussian random variable. Samples from p0 are transformed to
samples approximately from a standard Gaussian distribution after some large time T .

The reverse denoising process can then be written as the reverse of the diffusion process (34), which
as stated by Anderson (1982) is:

dθ(t) =

[
−β(t)

2
θ(t) − β(t)∇θ log pt(θ

(t))

]
dt+

√
β(t)dBt , (37)

where t flows backwards from infinity to t=0 and pt is the distribution of θ̃
(t)

from (34). In practice,
the process is started at some large finite T assuming that θ(T ) ∼ N (0, I). In this Appendix, we
rather consider increasing time t from 0 to T , using that (37) can be equivalenty written as,

dθ(t) =

[
β(T − t)

2
θ(t) + β(T − t)∇θ log pT−t(θ

(t))

]
dt+

√
β(T − t)dBt , (38)

which is now initialized with θ(0) ∼ N (0, I). Solving this reverse SDE, the distribution of θ(T ) is
closed to p0 for large T , which allows approximate sampling from p0.

The score function ∇θ log pt(θ) of the noisy data distribution at time t is intractable and is then
estimated by learning a neural network sϕ(θ, t) with parameters ϕ. Score matching (Hyvärinen,
2005) is a method to train sϕ by minimizing the following loss:

Ept(θ)

[
||sϕ(θ, t)−∇θ log pt(θ)||2

]
. (39)

As pt(θ) is still unknown and only samples from pt(θ|θ̃
(0)

) in (35) are available, Song et al. (2021)
rewrite this loss function as:

Et∼U [0,T ]Ep0(θ(0))Ept(θ|θ(0))

[
λ(t)||sϕ(θ, t)−∇θ log pt(θ|θ(0))||2

]
(40)

where λ(t) > 0 is a weighting function that allows to focus more on certain timesteps than others. It
is common to take λ(t) inversely proportional to the variance of (35) at time t.

Once the neural network sϕ has been trained by minimizing (40), it can be used to generate new
samples approximately distributed as the target distribution p0 by running a numerical scheme on the
reverse SDE (38). By running for example the Euler-Maruyama scheme on (38), we get the following
update step for the reverse process:

θ(t+∆t) = θ(t) +
β(T − t)

2
θ(t)∆t+ β(T − t)sϕ(θ

(t), T − t)∆t+
√
β(T − t)∆tϵ . (41)

We can then generate samples approximately from p0 by running the reverse process (41) with a
small enough ∆t.

C.2 CONDITIONAL DIFFUSION MODELS

Conditional diffusion models arise when, for some measurement y, we want to produce samples from
some conditional distribution p0(θ|y). Sampling from conditional distributions is a problem that
arises in inverse problems. When using diffusion models, numerous solutions have been investigated
as mentioned in a very recent review (Daras et al., 2024). We specify in this section the approach
adopted for our applications. With the application to experimental design in mind, we assume here
that

Y = Aξθ + η (42)
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where η ∼ N (0, σ2I) is the measurement noise, Aξ is the operator that represents the experiment at
ξ.

Sampling from the conditional distribution p(θ|y, ξ) can be done by running the reverse diffusion
process on the conditional SDE:

dθ(t) =

[
β(T − t)

2
θ(t) + β(T − t)∇θ log pT−t(θ

(t)|y, ξ)
]
dt+

√
β(T − t)dBt, (43)

with the usual score ∇θ log pT−t(θ
(t)) replaced by the conditionnal score ∇θ log pT−t(θ

(t)|y, ξ).
The main objective of conditional SDE is to generate samples from the conditional distribution
p(θ|y, ξ) without retraining a new neural network sϕ for the new conditional score. Writing in terms
of the forward process, the conditional score can be written using:

∇θ̃ log pt(θ̃
(t)
|y, ξ) = ∇θ̃ log pt(y|θ̃

(t)
, ξ) +∇θ̃ log pt(θ̃

(t)
) (44)

and we can leverage a pre-computed neural network sϕ that was trained to estimate the

score ∇θ̃ log pt(θ̃
(t)
) in the unconditional case. If we know how to evaluate the first term

∇θ̃ log pt(y|θ̃
(t)
, ξ), we can then run the reverse process (43) to generate samples from the

conditional distribution p(θ|y, ξ). Unfortunately, this term does not have a closed form expression.

As a solution, Dou and Song (2024) propose to approximate the intractable∇θ̃ log pt(y|θ̃
(t)
, ξ) by

the tractable ∇θ̃ log pt(y
(t)|θ̃

(t)
, ξ) where y(t) is a noisy version of y at time t. Then, the following

backward SDE can be run to generate samples from the conditional distribution p(θ|y, ξ):

dθ(t) =

[
β(T−t)

2
θ(t) + β(T−t)∇θ log pT−t(y

(T−t)|θ(t), ξ) + β(T−t)∇θ log pT−t(θ
(t))

]
dt

+
√
β(T−t)dBt (45)

The sequence of noisy y(t) can be generated with a noising process like (36),

y(t) =
√
ᾱty +

√
1− ᾱtAξϵ with ᾱt = exp(−

∫ t

0

β(s)ds) , (46)

which using the forward model (42) can be written as:

y(t) = Aξθ̃
(t)

+
√
ᾱtη . (47)

We can then evaluate∇θ̃ log pt(y
(t)|θ̃

(t)
, ξ) as :

∇θ̃ log pt(y
(t)|θ̃

(t)
, ξ) =

1

σ2ᾱt
AT

ξ (y
(t) −Aξθ̃

(t)
) . (48)

C.3 GRADIENT ESTIMATION

When sampling is performed with a finite time horizon diffusion model, the first iterations of the
corresponding sampling operator may provide too noisy samples which would result in gradient
estimations with little information. One solution proposed by Marion et al. (2025) is to use a queuing
trick which requires to store in memory a queue of samples. The memory burden is high and only
acceptable for a limited number of particles. We propose a simpler solution, which consists in using
Tweedie’s formula (Efron, 2011) to perform a one-shot backward step, replacing a potentially too

noisy θ(t) by the conditional mean E[θ̃
(0)
|θ̃

(T−t)
= θ(t)], which can be interpreted as its prediction

at time 0. The Tweedie’s formula provides this prediction in close-form,

θ̂
(t)

= E[θ̃
(0)
|θ̃

(T−t)
= θ(t)] =

θ(t) + (1− ᾱT−t)∇θ log pT−t(θ
(t))

√
ᾱT−t

. (49)

Gradients are then computed using the θ̂
(t)

’s values, while θ(t) is updated into θ(t+1) from the

backward SDE, as mentioned above. This is only really impactful for small t as for large t, θ̂
(t)

and
θ(t) get closer. This extra computation does not add cost as (49) uses a score value that is already
computed for (45).

19



Published as a conference paper at ICLR 2025

D SEQUENTIAL BAYESIAN EXPERIMENTAL DESIGN

In this framework, experimental conditions are determined sequentially, making use of measurements
that are gradually made. This sequential view is referred to as sequential or iterated design.
In a sequential setting, we assume that we plan a sequence of K experiments. For each
experiment, we wish to pick the best ξk using the data that has already been observed Dk−1 =
{(y1, ξ1), . . . , (yk−1, ξk−1)}. Given this design, we conduct an experiment using ξk and obtain
outcome yk. Both ξk and yk are then added to Dk−1 for a new set Dk = Dk−1 ∪ (yk, ξk). After
each step, our belief about θ is updated and summarised by the current posterior p(θ|Dk), which
acts as the next prior at step k + 1. When the observations are assumed conditionally independent, it
comes,

p(θ|Dk) ∝ p(θ)

k∏
n=1

p(yn|θ, ξn) (50)

and

p(y,θ|ξ,Dk−1) ∝ p(θ) p(y|θ, ξ)
k−1∏
n=1

p(yn|θ, ξn) . (51)

A greedy design can be seen as choosing each design ξk as if it was the last one. This means that ξk
is chosen as ξ∗k the value that maximizes

ξ∗k = argmax
ξ

Ik(ξ,Dk−1)

where

Ik(ξ,Dk−1) = Epk
ξ

[
log

pkξ(θ,Y )

p(Y |ξ,Dk−1) p(θ|Dk−1)

]
= MI(pkξ) (52)

with pkξ denoting the joint distribution p(y,θ|ξ,Dk−1) = p(y|θ, ξ) p(θ|Dk−1). Distribution pkξ
involves the current prior p(θ|Dk−1), which is not available in closed-form and is not straightforward
to sample from. Distribution pkξ can be written as a Gibbs distribution by defining the potential Vk as

pkξ(y,θ) ∝ exp (−Vk(y,θ, ξ))

with Vk(y,θ, ξ) = − log p(θ)− log p(y|θ, ξ)−
k−1∑
n=1

log p(yn|θ, ξn)

= V (y,θ, ξ) + Ṽk(θ) ,

where V (y,θ, ξ) has been already defined in Section 4. Note that the marginal in θ of pkξ is the
posterior at step k − 1 or equivalently the current prior p(θ|Dk−1) and the marginal in y is

p(y|ξ,Dk−1) = Ep(θ|Dk−1) [p(y|θ,Dk−1)] .

Once a new ξk is computed and a new observation yk is performed, the posterior at step k is
p(θ|yk, ξk,Dk−1) which is the conditional distribution of p(yk,θ|ξk,Dk−1).

E SEQUENTIAL MONTE CARLO (SMC)-STYLE RESAMPLING

SMC is an essential addition when dealing with sequential BOED. In density-based BOED, it has
been already exploited in the sequential context showing a real improvement in the quality of the
generated samples (Iollo et al., 2024). SMC is also useful in simpler static cases as it can improve
the quality of the generated θ and contrastive θ′ samples, that in turn improves the accuracy of the
gradient estimator (30). A particularly central step in SMC is the resampling step, first recalled below
in the density-based case. Using our framework, is it also possible to derive a SMC-style resampling
scheme in the data-based case. This is becoming a popular strategy in the context of generative
models (Dou and Song, 2024; Cardoso et al., 2024).
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Density-based BOED. In static density-based BOED, the prior p(θ) and the likelihood p(y|θ, ξ)
are available in closed-form. In the sequential experiment context, we want to generate N samples
θ1, . . . ,θN from the current prior p(θ|Dk−1) and M samples θ′

1, . . . ,θ
′
M from the pooled posterior

qξ,N (θ′). As both p(θ|Dk−1) and qξ,N (θ′) ∝
∏N

i=1 p(θ
′|yi, ξ,Dk−1)

νi can be evaluated up to a
normalizing constant, it is straightforward to extend the sampling operators of Section 4 and add a
resampling step to the samples θ1, . . . ,θN and θ′

1, . . . ,θ
′
M with weights wi and w′

j :

wi =
w̃i∑N
i=1 w̃i

with w̃i = p̃(θi)

w′
j =

w̃′
j∑M

j=1 w̃
′
j

with w̃′
j = q̃(θ′

j)

where p̃ and q̃ are the unnormalized versions of p(θ|Dk−1) and qξ,N (θ′) respectively.

Data-based BOED. In the setting of data-based BOED, we assume access to a conditional
diffusion model that allows to generate samples from p(θ|Dk−1) and qξ,N (θ′). The resampling
scheme proposed in (Dou and Song, 2024) can be used as is, to improve the quality of the
samples from p(θ|Dk−1) as this is a usual conditional distribution. The resampling scheme is
based on the FPS update: θ

(t)
j is first moved using the backward SDE into θ

(t+1)
j according to

p(θ(t+1)|θ(t),y(T−t−1), ξ,Dk−1), which satisfies

p(θ(t+1)|θ(t),y(T−t−1), ξ,Dk−1) ∝ pt(θ
(t+1)|θ(t),Dk−1) p(y

(T−t−1)|θ(t+1), ξ) (53)

where pt(θ
(t+1)|θ(t),Dk−1) is given in closed form by the unconditional diffusion model

and p(y(T−t−1)|θ(t+1), ξ) is given by (47). As both these distributions are Gaussian,
p(θ(t+1)|θ(t),y(T−t−1), ξ,Dk−1) can be written in closed form and resampling weights can be
written as:

wi =
w̃i∑N
i=1 w̃i

with w̃i = p(y(T−t−1)|θ(t)
i , ξ) (54)

where p(y(T−t−1)|θ(t)
i , ξ) is tractable (see Dou and Song (2024) for more details).

For the pooled posterior qξ,N (θ′) ∝
∏N

i=1 p(θ
′|yi, ξ,Dk−1)

νi , update (53) takes the form:
N∏
i=1

p(θ(t+1)|θ(t),y
(T−t−1)
i , ξ,Dk−1)

νi ∝ pt(θ
(t+1)|θ(t),Dk−1)

N∏
i=1

p(y
(T−t−1)
i |θ(t+1), ξ)νi

∝
N∏
i=1

(
p(θ(t+1)|θ(t),Dk−1) p(y

(T−t−1)
i |θ(t+1), ξ)

)νi

(55)

which leads to the following resampling weights:

w′
j =

w̃′
j∑M

j=1 w̃
′
j

with w̃′
j =

N∏
i=1

p(y
(T−t−1)
i |θ′(t)

j , ξ)νi .

F NUMERICAL EXPERIMENTS

F.1 SEQUENTIAL PRIOR CONTRASTIVE ESTIMATION (SPCE) AND SEQUENTIAL NESTED
MONTE CARLO (SNMC) CRITERIA

The SPCE introduced by Foster et al. (2021) is a tractable quantity to assess the design sequence
quality. For a number K of experiments, DK = {(y1, ξ1), ·, (yK , ξK)} and L contrastive variables,
SPCE is defined as

SPCE(ξ1, ·, ξK) = E K∏
k=1

p(yk|ξk,θ0)
L∏

ℓ=0

p(θℓ)

log
K∏

k=1

p(Yk|θ0, ξk)

1
L+1

L∑
ℓ=0

K∏
k=1

p(Yk|θℓ, ξk)

 . (56)
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SPCE is a lower bound of the total EIG which is the expected information gained from the entire
sequence of design parameters ξ1, . . . , ξK and it becomes tight when L tends to∞. In addition,
SPCE has the advantage to use only samples from the prior p(θ) and not from the successive
posterior distributions. It makes it a fair criterion to compare methods on design sequences only.
Considering a true parameter value denoted by θ∗, given a sequence of design values {ξk}k=1:K ,
observations {yk}k=1:K are simulated using p(y|θ∗, ξk) respectively. Therefore, for a given Dk,
the corresponding SPCE is estimated numerically by sampling θ1, ·,θL from the prior,

SPCE(DK) =
1

N

N∑
i=1

log

K∏
k=1

p(yk|θ∗, ξk)

1
L+1

(
K∏

k=1

p(yk|θ∗, ξk) +
L∑

ℓ=1

K∏
k=1

p(yk|θi
ℓ, ξk)

)
 .

Similarly, an upper bound on the total EIG has also been introduced by Foster et al. (2021) and named
the Sequential nested Monte Carlo (SNMC) criterion,

SNMC(ξ1, ·, ξK) = E K∏
k=1

p(yk|ξk,θ0)
L∏

ℓ=0

p(θℓ)

log
K∏

k=1

p(Yk|θ0, ξk)

1
L

L∑
ℓ=1

K∏
k=1

p(Yk|θℓ, ξk)

 .

As shown in Foster et al. (2021) (Appendix A), SPCE increases with L to reach the total EIG when
L→∞ at a rate O(L−1) of convergence. It is also shown in Foster et al. (2021) that for a given L,
SPCE is bounded by log(L+1) while the upper bound SNMC below is potentially unbounded. As in
Blau et al. (2022), if we use L = 107 to compute SPCE and SNMC, the bound is log(L+1) = 16.12
for SPCE. In practice this does not impact the numerical methods comparison as the intervals [SPCE,
SNMC] containing the total EIG remain clearly distinct.

F.2 IMPLEMENTATION DETAILS

F.2.1 SOURCE EXAMPLE

For VPCE (Foster et al., 2020) and RL-BOED (Blau et al., 2022), we used the code available at
github.com/csiro-mlai/RL-BOED, using the settings recommended therein to reproduce the results in
the respective papers. VPCE optimizes an EIG lower bound in a myopic manner estimating posterior
distributions with variational approximations. RL-BOED is a non-myopic approach which does not
provide posterior distributions. From the obtained sequences of observations and design values, we
computed SPCE and SNMC as explained above and retrieved the same results as in their respective
papers. For PASOA and SMC procedures, we used the code available at github.com/iolloj/pasoa.
PASOA is a myopic approach, optimizing an EIG lower bound using sequential Monte Carlo (SMC)
samplers and tempering to also provide posterior estimations. The method refered to as SMC is a
variant without tempering.

For CoDiff, the νi’s in the pooled posterior distribution were set to νi = 1
N . The current prior

and posterior distributions at experimental step k were initialized using respectively the prior and
posterior samples at step k − 1. Design optimization was performed using the Adam optimizer
with an exponential learning rate decay schedule with initial learning rate 10−2 and decay rate
0.98. The Langevin step-size in the DiGS method Chen et al. (2024) was set to 10−2. The joint
optimization-sampling loop was run for 5000 steps. Figure 5 shows samples from the current prior
p(θ|Dk−1), which gradually concentrate around the true sources as k increases. The additional
Figure 6 shows, at some intermediate step k, samples from the current prior p(θ|Dk−1) and from the
pooled posterior distribution in comparison, to illustrate its contrastive nature.

F.2.2 MNIST EXAMPLE

In this example, the likelihood easily derives from Y = Aξθ + η, where Y ,θ and η are familiarly
seen as arrays of pixels. The transformation Tξ,θ is simply Tξ,θ(U) = Aξθ + U with U = η
a Gaussian variable. However, to fit in our theoretical framework, images need to be treated as
mappings over a continuous spatial domain, so that ξ can be seen as a continuous parameter and
Aξθ be differentiable with respect to ξ. This is common in image processing and analysis, where
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Figure 5: Source localization example. Experiments 0 (prior samples), 4, 8 and 12. As new design
locations are selected (orange crosses), samples concentrate to the true sources (red crosses). Samples
with lower weights in blue, higher weights in yellow.

2D images are often regarded as mappings over a continuous 2D domain (see e.g. Rein van den
Boomgaard and Leo Dorst, 2021 Lecture Notes) with x1 and x2 axes. That is, for (x1, x2) ∈ R2,
ξ = (ξ1, ξ2) ∈ R2, we consider that an array of pixels θ is a discrete sampled representation of a 2D
function θ(x1, x2) and more generally define, using abusively the same notation for continuous and
sampled representations,

Y (x1, x2) = Aξ(θ(x1, x2)) + η(x1, x2)

where Aξ(·) is a masking operator depending on some length h and defined by

Aξ(θ(x1, x2)) = θ(x1, x2) if (x1, x2) ∈ Sξ,h

= 0 otherwise

with Sξ,h = {(x1, x2) ∈ R2, ξ1 − h∆1 ≤ x1 ≤ ξ1 + h∆1, ξ2 − h∆2 ≤ x2 ≤ ξ2 + h∆2, denoting
by ∆1 and ∆2 the sampling distances along the x1 and x2 axes.

To be able to derive with respect to ξ, we then need to consider a smooth version µξ,s of Aξ. This is
classically done by convoluting with a 2D Gaussian kernel Gs, e.g. the product of two 1D Gaussian
kernels with positive scales s = (s1, s2). In practice, this consists in smoothing the sharp borders of
the mask, noting that µξ,s → Aξ when s→ 0,

µξ,s(x1, x2) = (Aξ(θ) ∗Gs)(x1, x2)

= (A0(θ) ∗Gs)(x1 − ξ1, x2 − ξ2)

= µ0,s(x1 − ξ1, x2 − ξ2)

where the second equality uses that Aξ(θ(x1, x2)) = A0(θ(x1 − ξ1, x2 − ξ2)). It follows that, no
matter what A0(θ) is, such a convolution with Gs makes µ0,s into a function that is continuous and
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Figure 6: Several source localisation examples. Prior (left) and pooled posterior (right) samples at
experiment k. Final ξ∗k value (orange cross) at the end of the optimization sequence ξ0, ·, ξT (blue
crosses). This optimization "contrasts" the two distributions by making the pooled posterior "as
different as possible" from the prior.
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infinitely differentiable in its arguments. Then, it comes, for i = 1, 2,

∂µξ,s

∂ξi
(x1, x2) =

∂µ0,s

∂ξi
(x1 − ξ1, x2 − ξ2)

= −
∂µ0,s

∂xi
(x1 − ξ1, x2 − ξ2)

= −
(
A0(θ) ∗

∂Gs

∂xi

)
(x1 − ξ1, x2 − ξ2) .

These latter derivatives are all that is needed to define the gradients in our developments. If A0 is a
Heaviside step function, its convolution with a distribution leads to the cumulative density function
(cdf) of this distribution. The same developments are valid by replacing the Gaussian kernel by
a bivariate logistic distribution L with mean 0 and scales s = (s1, s2). The multivariate logistic
distribution (Gumbel, 1961; Malik and Abraham, 1973) generalizes the univariate logistic distribution.
Its pdf is L2(x1, x2; s) = 2! exp(−x1/s1−x2/s2)

s1s2(1+exp(−x1/s1)+exp(−x2/s2))
3 . Its cdf is closed-form and is

1
1+exp(−x1/s1)+exp(−x2/s2)

. In practice, we simply consider a product of two independent univariate

logistic distributions with mean 0 and scale si, i = 1, 2, L1(xi; si) =
exp(−xi/si)

si(1+exp(−xi/si))2
. The cdf of

a 1D logistic distribution is the sigmoid function S(xi; si) =
1

1+exp(−xi/si)
. The convolution of a

Heaviside step function with such a logistic distribution is thus a smooth sigmoid. In the MNIST
example, the mask length is set to h = 7, with sampling distances ∆1 = ∆2 = 1 and we use a 2D
product logistic kernel with s1 = s2 = 0.1. Using that the 2D mask Aξ can be written as the following
product (H(x1−ξ1+h) +H(ξ1+h−x1)− 1) (H(x2−ξ2+h) +H(ξ2+h−x2)− 1), where H is
the 1D Heaviside step function, it follows that the smooth µξ,s is

µξ,s(x1, x2)=(S(x1−ξ1+h; s1) + S(ξ1+h−x1; s1)− 1) (S(x2−ξ2+h; s2) + S(ξ2+h−x2; s2)− 1) .

For the numerical example of Section 6.3, we used the MNIST dataset (LeCun et al., 1998), the
time varying SDE (34) with a noise schedule β(t) = bmin + (bmin − bmax)(t− t0)/(T − t0) (with
bmax = 5, bmin = 0.2, t0 = 0, T = 2). The training of the usual score matching was done for 3000
epochs with a batch size of 256 and using Adam optimizer Kingma and Ba (2015). We used gradient
clipping and the training was done on a single A100 GPU.

Update equations for the sampling operators were derived from SDE (19) for the contrastive samples
of the pooled posterior qξ,N (θ′) and (45) for samples from the current prior p(θ|Dk−1), where Dk−1

can be added in the conditioning part without difficulty. Those updates are equivalent to (55) and (53)
respectively. The resampling weights were computed as in Section E.

Figures 7 and 8 show additional image reconstruction processes. The digit to be recovered is shown in
the first column. The successively selected masks are shown (red line squares) in the second column
with the resulting gradually discovered part of the image. The reconstruction per se can be estimated
from the posterior samples shown in the last 16 columns. At each experiment, the upper sub-row
shows the 16 most-likely reconstructed images, while the lower sub-row shows the 16 less-probable
ones. As the number of experiments increases the posterior samples gradually concentrate on the
right digit.

Figure 9 then shows that design optimization is effective by showing better outcomes when masks
locations are optimized (second column) than when masks are selected at random centers (third
column). The highest posterior weight samples in the last 14 columns also clearly show more
resemblance with the true digit in the optimized case. The superior performance of design optimization
is confirmed quantitatively in Table 1, which reports the reconstruction quality as measured by the
structural similarity index measure (SSIM) (Wang et al., 2004), for both CoDiff and random design.
20 ground truth digit images are randomly selected and the SSIM is computed for the CoDiff and
random reconstructions, after each successive experiment out of 6. Table 1 reports the median SSIM
over the 20 selected digits. The SSIM is a decimal value between -1 and 1, where 1 indicates perfect
similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation.
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Figure 7: Image reconstruction. First 7 experiments (rows): image ground truth, measurement at
experiment k, samples from current prior p(θ|Dk−1), with best (resp. worst) weights in upper (resp.
lower) sub-row. The samples incorporate past measurement information as the procedure advances.

F.3 HARDWARE DETAILS

The source example 6.2 can be run locally. It was tested on an Apple M1 Pro 16Gb chip but faster
running times can be achieved on GPU. The MNIST example 6.3 was run on a single A100 80Gb
GPU.

F.4 SOFTWARE DETAILS

Our code is implemented in Jax Bradbury et al. (2020) and uses Flax as a Neural Network
library and Optax as optimization one Babuschkin et al. (2020). The code is available at
https://github.com/jcopo/ContrastiveDiffusions.
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Figure 8: Image reconstruction. First 7 experiments (rows): image ground truth, measurement at
experiment k, samples from current prior p(θ|Dk−1), with best (resp. worst) weights in upper (resp.
lower) sub-row. The samples incorporate past measurement information as the procedure advances.

Figure 9: Image θ (1st column) reconstruction from 7 sub-images y = Aξθ+η selected sequentially
at 7 central pixel ξ. Optimized vs. random designs: measured outcome y (2nd vs. 3rd column) and
parameter θ estimates (reconstruction) with highest weights (upper vs. lower sub-row).
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