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ABSTRACT

In this work, we define a diffusion-based generative model capable of both music
synthesis and source separation by learning the score of the joint probability density
of sources sharing a context. Alongside the classic total inference tasks (i.e.,
generating a mixture, separating the sources), we also introduce and experiment on
the partial generation task of source imputation, where we generate a subset of the
sources given the others (e.g., play a piano track that goes well with the drums).
Additionally, we introduce a novel inference method for the separation task based
on Dirac likelihood functions. We train our model on Slakh2100, a standard dataset
for musical source separation, provide qualitative results in the generation settings,
and showcase competitive quantitative results in the source separation setting. Our
method is the first example of a single model that can handle both generation and
separation tasks, thus representing a step toward general audio models.

1 INTRODUCTION

Generative models have recently gained much attention thanks to their successful application in
many fields, such as NLP (OpenAI, 2023; Touvron et al., 2023; Santilli et al., 2023), image synthesis
(Ramesh et al., 2022; Rombach et al., 2022) or protein design (Shin et al., 2021; Weiss et al., 2023;
Minello et al., 2024). Audio is no exception to this trend (Agostinelli et al., 2023; Liu et al., 2023).

A peculiarity of the audio domain is that an audio sample y can be seen as the sum of multiple
individual sources {x1, . . . ,xN}, resulting in a mixture y =

∑N
n=1 xn. Unlike in other sub-fields of

the audio domain (e.g., speech), sources present in musical mixtures (stems) share a context given
their strong interdependence. For example, the bass line of a song follows the drum’s rhythm and

∗Equal contribution. Listing order is random. G.M. wrote most of the code, performed most objective
experiments, and contributed to the development of the Dirac separator. I.T. proposed and developed the idea
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using the source-joint model for music (and accompaniment) generation, proposed using the correction steps,
and contributed to the objective experiments.

†Shared last authorship.
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Figure 1: Proposed method. We leverage a forward Gaussian process (right-to-left) to learn the score over
contextual sets (the large boxes) of instrumental sources (the waveforms) across different time steps t. During
inference, the process is reversed (left-to-right), letting us perform the tasks of total generation, partial generation,
or source separation (Figure 2).

harmonizes with the melody of the guitar. Mathematically, this fact can be expressed by saying that
the joint distribution of the sources p(x1, . . . ,xN ) does not factorize into the product of individual
source distributions {pn(xn)}n=1,...,N . Knowing the joint p(x1, . . . ,xN ) implies knowing the
distribution over the mixtures p(y) since the latter can be obtained through the sum. The converse is
more difficult mathematically, being an inverse problem.

Nevertheless, humans have developed the ability to process multiple sound sources simultaneously
in terms of synthesis (i.e., musical composition or generation) and analysis (i.e., source separation).
More specifically, composers can invent multiple sources {x1, . . . ,xN} that sum to a consistent
mixture y and, extract information about the individual sources {x1, . . . ,xN} from a mixture y.

This ability to compose and decompose sound is crucial for a generative music model. A model
designed to assist in music composition should be capable of isolating individual sources within
a mixture and allow for independent operation on each source. Such a capability would give the
composer maximum control over what to modify and retain in a composition. Therefore, we argue
that compositional (waveform) music generation is highly connected to music source separation.

To our knowledge, no model in deep learning literature can perform both tasks simultaneously.
Models designed for the generation task directly learn the distribution p(y) over mixtures, collapsing
the information needed for the separation task. In this case, we have accurate mixture modeling
but no information about the individual sources. It is worth noting that approaches that model
the distribution of mixtures conditioning on textual data (Schneider et al., 2023; Agostinelli et al.,
2023) face the same limitations. Conversely, models for source separation (Défossez et al., 2019)
either target p(x1, . . . ,xN | y), conditioning on the mixture, or learn a single model pn(xn) for
each source distribution (e.g., in a weakly-supervised manner) and condition on the mixture during
inference (Jayaram & Thickstun, 2020; Postolache et al., 2023a). In both cases, generating mixtures is
impossible. In the first case, the model inputs a mixture, which hinders the possibility of unconditional
modeling, not having direct access to p(x1, . . . ,xN ) (or equivalently to p(y)). In the second case,
while we can accurately model each source independently, all essential information about their
interdependence is lost, preventing the possibility of generating coherent mixtures.

Contribution. Our contribution is three-fold. (i) First, we bridge the gap between source separation
and music generation by learning p(x1, . . . ,xN ), the joint (prior) distribution of contextual sources
(i.e., those belonging to the same song). For this purpose, we use the denoising score-matching
framework to train a Multi-Source Diffusion Model (MSDM). We can perform both source separation
and music generation during inference by training this single model. Specifically, generation is
achieved by sampling from the prior, while separation is carried out by conditioning the prior on
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the mixture and then sampling from the resulting posterior distribution. (ii) This new formulation
opens the doors to novel tasks in the generative domain, such as source imputation, where we create
accompaniments by generating a subset of the sources given the others (e.g., play a piano track that
goes well with the drums). (iii) Lastly, to obtain competitive results on source separation with respect
to state-of-the-art regressor models (Manilow et al., 2022) on the Slakh2100 (Manilow et al., 2019)
dataset, we propose a new procedure for computing the posterior score based on Dirac delta functions,
exploiting the functional relationship between the sources and the mixture.

2 RELATED WORK

2.1 GENERATIVE MODELS FOR AUDIO

Deep generative models for audio learn, directly or implicitly, the distribution of mixtures, represented
in our notation by p(y), possibly conditioning on additional data such as text. Various general-purpose
generative models, such as autoregressive models, GANs (Donahue et al., 2019), and diffusion models,
have been adapted for use in the audio field.

Autoregressive models are well-established in audio modeling (van den Oord et al., 2016). Jukebox
(Dhariwal et al., 2020) proposed to model musical tracks with Scalable Transformers (Vaswani
et al., 2017) on hierarchical discrete representations obtained through VQ-VAEs (van den Oord et al.,
2017). Furthermore, using a lyrics conditioner, this method generated tracks with vocals following
the text. However, while Jukebox could model longer sequences in latent space, the audio output
suffered from quantization artifacts. Newer latent autoregressive models (Borsos et al., 2023; Kreuk
et al., 2023) can handle extended contexts, more coherent generations and, by incorporating residual
quantization (Zeghidour et al., 2021), output more naturally sounding samples. State-of-the-art latent
autoregressive models for music, such as MusicLM (Agostinelli et al., 2023), can guide generation
by conditioning on textual embeddings obtained via large-scale contrastive pre-training (Manco et al.,
2022; Huang et al., 2022). MusicLM can also input a melody and condition on text for style transfer.
A concurrent work, SingSong (Donahue et al., 2023), introduces vocal-to-mixture accompaniment
generation. Our accompaniment generation procedure differs from the latter since we perform
generation at the stem level in a composable way, while the former outputs a single mixture.

DiffWave (Kong et al., 2021) and WaveGrad (Chen et al., 2021) were the first diffusion (score) based
generative models in audio, tackling speech synthesis. Many subsequent models followed these
preliminary works, mainly conditioned to solve particular tasks such as speech enhancement (Lu
et al., 2021; Serrà et al., 2022; Sawata et al., 2023; Saito et al., 2023), audio upsampling (Lee &
Han, 2021; Yu et al., 2023), MIDI-to-waveform (Mittal et al., 2021; Hawthorne et al., 2022), or
spectrogram-to-MIDI generation (Cheuk et al., 2023). The first work in source-specific generation
with diffusion models is CRASH (Rouard & Hadjeres, 2021). (Yang et al., 2023; Pascual et al.,
2023; Liu et al., 2023) proposed text-conditioned diffusion models to generate general sounds, not
focusing on restricted classes such as speech or music. Closer to our work, diffusion models targeting
the musical domain are Riffusion (Forsgren & Martiros, 2022) and Moûsai (Schneider et al., 2023).
Riffusion fine-tunes Stable Diffusion (Rombach et al., 2022), a large pre-trained text-conditioned
vision diffusion model, over STFT magnitude spectrograms. Moûsai performs generation in a latent
domain, resulting in context lengths that surpass the minute. Our score network follows the design of
the U-Net proposed in Moûsai, albeit using the waveform data representation.

2.2 AUDIO SOURCE SEPARATION

Existing audio source separation models can be broadly classified into deterministic and generative.
Deterministic source separators are parametric models that input the mixtures and systematically
extract one or all sources. These models are typically trained with a regression loss (Gusó et al.,
2022) on the estimated signal represented as waveform (Lluís et al., 2019; Luo & Mesgarani, 2019;
Défossez et al., 2019), STFT (Takahashi et al., 2018; Choi et al., 2021), or both (Défossez, 2021).
On the other hand, generative source separation models based on (independent) Bayesian inference
learn a prior model for each source, thus targeting the distributions {pn(xn)}n=1,...,N . The mixture
is observed only during inference, where a likelihood function connects it to its constituent sources.
The literature has explored different priors, such as GANs (Subakan & Smaragdis, 2018; Kong et al.,
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Total generation

Partial generation

Source separation

Figure 2: Inference tasks with MSDM. Oblique lines represent the presence of noise in the signal, decreasing
from left to right, with the highest noise level at time T when we start the sampling procedure. Top-left:
We generate all stems in a mixture, obtaining a total generation. Bottom-left: We perform partial generation
(source imputation) by fixing the sources x1 (Bass) and x3 (Piano) and generating the other two sources x̂2(0)
(Drums) and x̂4(0) (Guitar). We denote with x1(t) and x3(t), the noisy stems obtained from x1 and x3 via the
perturbation kernel in Eq. (1). Right: We perform source separation by conditioning the prior with a mixture y,
following Algorithm 1.

2019; Narayanaswamy et al., 2020), normalizing flows (Jayaram & Thickstun, 2020; Zhu et al.,
2022), and autoregressive models (Jayaram & Thickstun, 2021; Postolache et al., 2023a).

The separation method closer to ours is NCSN-BASIS (Jayaram & Thickstun, 2020). This method
was proposed for image source separation, using Langevin Dynamics to separate the mixtures with
an NCSN score-based model. It employs a Gaussian likelihood function during inference, which,
as we demonstrate experimentally, is sub-optimal compared to our novel Dirac-based likelihood
function. The main difference between our method and other generative source separation methods
(including NCSN-BASIS) is the modeling of the full joint distribution. As such, we can perform
source separation and synthesize mixtures or subsets of stems with a single model.

Contextual information between sources is explicitly modeled in (Manilow et al., 2022) and (Posto-
lache et al., 2023b). The first work models the relationship between sources by training an orderless
NADE estimator, which predicts a subset of the sources while conditioning on the input mixture
and the remaining sources. The subsequent study achieves universal source separation (Kavalerov
et al., 2019; Wisdom et al., 2020) through adversarial training, utilizing a context-based discriminator
to model the relationship between sources. Both methods are deterministic and conditioned on the
mixtures architecturally. The same architectural limitation is present in diffusion-based (Scheibler
et al., 2023; Lutati et al., 2023) or diffusion-inspired (Plaja-Roglans et al., 2022) conditional ap-
proaches. Our method sets itself apart as it proposes a model not constrained architecturally by a
mixture conditioner, so we can also perform unconditional generation.

3 BACKGROUND

The foundation of our model lies in estimating the joint distribution of the sources p(x1, . . . ,xN ).
Our approach is generative because we model an unconditional distribution (the prior). The different
tasks are then solved at inference time, exploiting the prior.

We employ a diffusion-based (Sohl-Dickstein et al., 2015; Ho et al., 2020) generative model trained
via denoising score-matching (Song & Ermon, 2019) to learn the prior. Specifically, we present
our formalism by utilizing the notation and assumptions established in (Karras et al., 2022). The
central idea of score-matching (Hyvärinen, 2005; Kingma & LeCun, 2010; Vincent, 2011) is to
approximate the “score” function of the target distribution p(x), namely ∇x log p(x), rather than the
distribution itself. To effectively approximate the score in sparse data regions, denoising diffusion
methods introduce controlled noise to the data and learn to remove it. Formally, the data distribution
is perturbed with a Gaussian perturbation kernel:

p(x(t) | x(0)) = N (x(t);x(0), σ2(t)I) , (1)
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where the parameter σ(t) regulates the degree of noise added to the data. Following the authors in
(Karras et al., 2022), we consider an optimal schedule given by σ(t) = t. With that choice of σ(t),
the forward evolution of a data point x(t) in time is described by a probability flow ODE (Song et al.,
2021):

dx(t) = −σ(t)∇x(t) log p(x(t)) dt . (2)

For t = T >> 0, a data point x(T ) is approximately distributed according to a Gaussian distribution
N (x(t);0, σ2(T )I), from which sampling is straightforward. Eq. (2) can be inverted in time,
resulting in the following backward ODE that describes the denoising process:

dx(t) = σ(t)∇x(t) log p(x(t)) dt . (3)

Sampling can be performed integrating Eq. (3) with a standard ODE solver, starting from an initial
(noisy) sample drawn from N (x(t);0, σ2(T )I). The score function, is approximated by a neural
network Sθ(x(t), σ(t)), minimizing the following score-matching loss:

Et∼U([0,T ])Ex(0)∼p(x(0))Ex(t)∼p(x(t)|x(0))
∥∥Sθ(x(t), σ(t))−∇x(t) log p (x(t) | x(0))

∥∥2
2
.

By expanding p(x(t) | x(0)) with Eq. (1), the score-matching loss simplifies to:

Et∼U([0,T ])Ex(0)∼p(x(0))Eϵ∼N (0,σ2(t)I)

∥∥Dθ(x(0) + ϵ, σ(t))− x(0)
∥∥2
2
,

where we define Sθ(x(t), σ(t)) =: (Dθ(x(t), σ(t))− x(t))/σ2(t).

4 METHOD

4.1 MULTI-SOURCE AUDIO DIFFUSION MODELS

In our setup, we have N distinct source waveforms {x1, . . . ,xN} with xn ∈ RD for each n.
The sources coherently sum to a mixture y =

∑N
n=1 xn. We also use the aggregated form x =

(x1, . . . ,xN ) ∈ RN×D. In this setting, multiple tasks can be performed: one may generate a
consistent mixture y or separate the individual sources x from a given mixture y. We refer to the first
task as generation and the second as source separation. A subset of sources can also be fixed in the
generation task, and the others can be generated consistently. We call this task partial generation
or source imputation. Our key contribution is the ability to perform all these tasks simultaneously
by training a single multi-source diffusion model (MSDM), capturing the prior p(x1, . . . ,xN ). The
model, illustrated in Figure 1, approximates the noisy score function:

∇x(t) log p(x(t)) = ∇(x1(t),...,xN (t)) log p(x1(t), . . . ,xN (t)) ,

with a neural network:
Sθ(x(t), σ(t)) : RN×D × R → RN×D , (4)

where x(t) = (x1(t), . . . ,xN (t)) denotes the sources perturbed with the Gaussian kernel in Eq. (1).
We describe the three tasks (illustrated in Figure 2) using the prior distribution:

• Total Generation. This task requires generating a plausible mixture y. It can be achieved by
sampling the sources {x1, ...,xN} from the prior distribution and summing them to obtain
the mixture y.

• Partial Generation. Given a subset of sources, this task requires generating a plausible
accompaniment. We define the subset of fixed sources as xI and generate the remaining
sources xI by sampling from the conditional distribution p(xI | xI).

• Source Separation. Given a mixture y, this task requires isolating the individual sources
that compose it. It can be achieved by sampling from the posterior distribution p(x | y).

4.2 INFERENCE

The three tasks of our method are solved during inference by discretizing the backward Eq. (3).
Although different tasks require distinct score functions, they all originate directly from the prior
score function in Eq. (4). We analyze each of these score functions in detail. For more details on the
discretization method, refer to Section C.3.
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Algorithm 1 ‘MSDM Dirac’ sampler for source separation.

Require: I number of discretization steps for the ODE, R number of corrector steps, {σi}i∈{0,...,I} noise
schedule, Schurn

1: Initialize x̂ ∼ N (0, σ2
II)

2: α← min(Schurn/I,
√
2− 1)

3: for i← I to 1 do
4: for r ← R to 0 do
5: σ̂ ← σi · (α+ 1)
6: ϵ ∼ N (0, I)

7: x̂← x̂+
√

σ̂2 − σ2
i ϵ

8: z← [x̂1:N−1,y −
∑N−1

n=1 x̂n]
9: for n← 1 to N − 1 do

10: gn ← Sθ
n(z, σ̂)− Sθ

N (z, σ̂)
11: end for
12: g← [g1, . . . ,gN−1]
13: x̂1:N−1 ← x̂1:N−1 + (σi−1 − σ̂)g

14: x̂← [x̂1:N−1,y −
∑N−1

n=1 x̂n]
15: if r > 0 then
16: ϵ ∼ N (0, I)

17: x̂← x̂+
√

σ2
i − σ2

i−1ϵ

18: end if
19: end for
20: end for
21: return x̂

4.2.1 TOTAL GENERATION

The total generation task is performed by sampling from Eq. (3) using the score function in Eq. (4).
The mixture is then obtained by summing over all the generated sources.

4.2.2 PARTIAL GENERATION

In the partial generation task, we fix a subset of source indices I ⊂ {1, . . . , N} and the relative
sources xI := {xn}n∈I . The goal is to generate the remaining sources xI := {xn}n∈I consistently,
where I = {1, . . . , N} − I. To do so, we estimate the gradient of the conditional distribution:

∇xI(t)
log p(xI(t) | xI(t)). (5)

This falls into the setting of imputation or, as it is more widely known in the image domain, inpainting.
We approach imputation using the method in (Song et al., 2021). The gradient in Eq. (5) is
approximated as follows:

∇xI(t)
log p([xI(t), x̂I(t)]) ,

where x̂I is a sample from the forward process: x̂I(t) ∼ N (xI(t);xI(0), σ(t)
2I). The square

bracket operator denotes concatenation. Approximating the score function, we write:

∇xI(t)
log p(xI(t) | xI(t)) ≈ Sθ

I([xI(t), x̂I(t)], σ(t)) ,

where Sθ
I denotes the entries of the score network corresponding to the sources indexed by I.

4.2.3 SOURCE SEPARATION

We view source separation as a specific instance of conditional generation, where we condition the
generation process on the given mixture y = y(0). This requires computing the score function of the
posterior distribution:

∇x(t) log p(x(t) | y(0)) . (6)
Standard methods for implementing conditional generation for diffusion models involve directly
estimating the posterior score in Eq. (6) at training time (i.e., Classifier Free Guidance (Ho &
Salimans, 2021)) or estimating the likelihood function p(y(0) | x(t)) and using the Bayes formula
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to derive the posterior. The second approach typically involves training a separate model, often a
classifier, for the likelihood score (i.e., Classifier Guidance (Dhariwal & Nichol, 2021)).

In diffusion-based generative source separation, learning a likelihood model is typically unnecessary
because the relationship between x(t) and y(t) is represented by a simple function, namely the sum.
A natural approach is to model the likelihood function based on such functional dependency. This is
the approach taken by (Jayaram & Thickstun, 2020), where they use a Gaussian likelihood function:

p(y(t) | x(t)) = N (y(t) |
N∑

n=1

xn(t), γ
2(t)I), (7)

with the standard deviation given by a hyperparameter γ(t). The authors argue that aligning the γ(t)
value to be proportionate to σ(t) optimizes the outcomes of their NCSN-BASIS separator.

We present a novel approximation of the posterior score function in Eq. (6) by modeling p(y(t) | x(t))
as a Dirac delta function centered in

∑N
n=1 xn(t):

p(y(t) | x(t)) = 1y(t)=
∑N

n=1 xn(t)
. (8)

The complete derivation can be found in Appendix A, and we present only the final formulation,
which we call ‘MSDM Dirac’. The method constrains a source, without loss of generality xN , by
setting xN (t) = y(0)−

∑N−1
n=1 xn(t) and estimates:

∇xm(t) log p(x(t) | y(0)) ≈ Sθ
m((x1(t), . . . ,xN−1(t),y(0)−

N−1∑
n=1

xn(t)), σ(t))

− Sθ
N ((x1(t), . . . ,xN−1(t),y(0)−

N−1∑
n=1

xn(t)), σ(t)) ,

where 1 ≤ m ≤ N − 1 and Sθ
m, Sθ

N denote the entries of the score network corresponding to the
m-th and N -th sources. Our approach models the limiting case wherein γ(t) → 0 in the Gaussian
likelihood function. This represents a scenario where the functional dependence between x(t) and
y(t) becomes increasingly tight, thereby sharpening the conditioning on the given mixture during
the generation process. The pseudo-code for the ‘MSDM Dirac’ source separation sampler, using
the Euler ODE integrator of (Karras et al., 2022), is provided in Algorithm 1. The Euler ODE
discretization logic uses the Schurn mechanism of (Karras et al., 2022) and optional correction steps
(Song et al., 2021) (see Section C.3 for more details).

The separation procedure can be additionally employed in the weakly-supervised source separation
scenario, typically encountered in generative source separation (Jayaram & Thickstun, 2020; Zhu et al.,
2022; Postolache et al., 2023a). This scenario pertains to cases where we know that specific audio data
belongs to a particular instrument class while not having access to sets of sources sharing a context.
To adapt to this scenario, we assume independence between sources p(x1, . . . ,xN ) =

∏N
n=1 pn(xn)

and train a separate model for each source class. We call the resulting model ‘Independent Source
Diffusion Model with Dirac Likelihood’ (‘ISDM Dirac’). We derive its formula together with
formulas for the Gaussian versions ‘MSDM Gaussian’ and ‘ISDM Gaussian’ in Appendix B.

5 EXPERIMENTAL RESULTS

We experiment on Slakh2100 (Manilow et al., 2019), a standard dataset for music source separation.
We chose Slakh2100 because it has a significantly larger quantity of data (145h) than other multi-
source waveform datasets like MUSDB18-HQ (Rafii et al., 2019) (10h). The amount of data plays a
decisive role in determining the quality of a generative model, making Slakh2100 a preferable choice.
Nevertheless, in Appendix E we conduct a study of data efficiency on MUSDB18-HQ. Details on
datasets, architecture, training, and sampling are provided in Appendix C.

5.1 MUSIC GENERATION

The performance of MSDM on the generative tasks is tested through subjective and objective
evaluation.
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Table 1: Comparison between total generation capabilities of MSDM (Slakh2100) and an equivalent
architecture trained on Slakh2100 mixtures. Both subjective (quality and coherence, higher is better) and
objective (FAD, lower is better) evaluations are shown. The quality and coherence columns refer to the average
scores of the listening tests, with respective variances.

Model FAD ↓ Quality ↑ Coherence ↑

MSDM 6.55 6.51± 2.19 6.35± 2.36

Mixture Model 6.67 6.15± 2.47 5.67± 2.60

Table 2: Quantitative and qualitative results for the partial generation task on Slakh2100. We use both
subjective (quality and density, higher is better) and objective (sub-FAD, lower is better) evaluation metrics. The
sub-FAD metric is reported for all combinations of generated sources (B: Bass, D: Drums, G: Guitar, P: Piano).
The quality and density columns refer to the average scores of the listening tests, with respective variances.

Slakh2100 B D G P BD BG BP DG DP GP BDG BDP BGP DGP Quality ↑ Density ↑

MSDM 0.45 1.09 0.11 0.76 2.09 1.00 2.32 1.45 1.82 1.65 2.93 3.30 4.90 3.10 6.3± 2.7 6.1± 2.6

Subjective evaluation is done through listening tests, whose form format is reported in Appendix
F. Concisely, we produce two forms, one for total generation and one for partial generation. In the
first, subjects are asked to rate, from 1 to 10, the quality and instrument coherence (i.e., how the
instruments sound plausible together) of 30 generated chunks, of which 15 are generated by MSDM
and 15 by a model trained on mixtures (using the same diffusion architecture as MSDM). In the
second one, knowing the fixed instruments, subjects are asked to rate, from 1 to 10, the quality and the
density of the generated accompaniment. Namely, ‘quality’ tests how the full chunk sounds plausible
with respect to the ground truth data, and ‘density’ tests how much the generated instruments are
present in the chunk. We also provide examples of music and accompaniment generation1.

For the objective evaluation of the generative tasks, we generalize the FAD protocol in Donahue et al.
(2023) to our total and partial generation tasks with more than one source. Given Dreal a dataset of
ground truth mixtures chunks and I a set indexing conditioning sources (∅ for total generation), we
build a dataset Dgen whose elements are the sum between conditioning sources (indexed by I) and
the respective generated sources. We define the sub-FAD as FAD(Dreal, Dgen). We use VGGish
embeddings (Hershey et al., 2017) for computing the metric.

Results for total and partial generations are reported in Tables 1 and 2 respectively, both for subjective
and objective evaluations. Results in Table 1 show a minimal difference between the model trained
on mixtures and MSDM. This suggests that, given the same dataset and architecture, the generative
power of MSDM is the same as the model trained on mixtures while being able to perform separation
and partial generation. Table 2 shows via the subjective results that the task of partial generation can
be performed with non-trivial quality. Our method being the first able to generate any combination
of partial sources, does not have a competitor baseline for the objective metrics. We thus report the
sub-FAD results of our method as baseline metrics for future research.

5.2 SOURCE SEPARATION

In order to evaluate source separation, we use the scale-invariant SDR improvement (SI-SDRI) metric
(Roux et al., 2019). The SI-SDR between a ground-truth source xn and an estimate x̂n is defined as:

SI-SDR(xn, x̂n) = 10 log10
∥αxn∥2 + ϵ

∥αxn − x̂n∥2 + ϵ
,

where α =
x⊤
n x̂n+ϵ

∥xn∥2+ϵ and ϵ = 10−8. The improvement with respect to the mixture baseline is defined
as SI-SDRI = SI-SDR(xn, x̂n)− SI-SDR(xn,y).

On Slakh, we compare our supervised MSDM and weakly-supervised MSDM with the ‘Demucs’
(Défossez et al., 2019) and ‘Demucs + Gibbs (512 steps)’ regressor baselines from (Manilow et al.,

1https://gladia-research-group.github.io/multi-source-diffusion-models/
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Table 3: Quantitative results for source separation on the Slakh2100 test set. We use the SI-SDRI as our
evaluation metric (dB – higher is better). We present both the supervised (‘MSDM Dirac’, ‘MSDM Gaussian’)
and weakly-supervised (‘ISDM Dirac’, ‘ISDM Gaussian’) separators and specify if a correction step is used.
‘All’ reports the average over the four stems.

Model Bass Drums Guitar Piano All

Demucs (Défossez et al., 2019; Manilow et al., 2022) 15.77 19.44 15.30 13.92 16.11

Demucs + Gibbs (512 steps) (Manilow et al., 2022) 17.16 19.61 17.82 16.32 17.73

Dirac Likelihood
ISDM 18.44 20.19 13.34 13.25 16.30

ISDM (correction) 19.36 20.90 14.70 14.13 17.27

MSDM 16.21 17.47 12.71 13.29 14.92

MSDM (correction) 17.12 18.68 15.38 14.73 16.48

Gaussian Likelihood (Jayaram & Thickstun, 2020)

ISDM 13.48 18.09 11.93 11.17 13.67

ISDM (correction) 14.27 19.10 12.74 12.20 14.58

MSDM 12.53 16.82 12.98 9.29 12.90

MSDM (correction) 13.93 17.92 14.19 12.11 14.54

2022), the state-of-the-art for supervised music source separation on Slakh2100, aligning with the
evaluation procedure of (Manilow et al., 2022). We evaluate over the test set of Slakh2100, using
chunks of 4 seconds in length (with an overlap of two seconds) and filtering out silent chunks and
chunks consisting of only one source, given the poor performance of SI-SDRI on such segments. We
report results comparing our Dirac score posterior with the Gaussian score posterior of (Jayaram &
Thickstun, 2020), using the best parameters of the ablations in Appendix D and 150 inference steps.

Results are reported in Table 3 and show that: (i) The Dirac likelihood improves overall results,
even outperforming the state of the art when applied to ISDM on Bass and Drums (ii) adding a
correction step is beneficial (iii) MSDM with Dirac likelihood and one step of correction gives results
comparable with the state of the art and superior to standard Demucs overall. We stress again that,
while the baselines can perform the separation task alone, MSDM can also perform generative tasks.

6 CONCLUSIONS

We have presented a general method, based on denoising score-matching, for source separation,
mixture generation, and accompaniment generation in the musical domain. Our approach utilizes a
single neural network trained once, with tasks differentiated during inference. Moreover, we have
defined a new sampling method for source separation. We quantitatively tested the model on source
separation, obtaining results comparable to state-of-the-art regressor models. We qualitatively and
quantitatively tested the model on total and partial generation. Our model’s ability to handle both total
and partial generation and source separation positions it as a significant step toward the development
of general audio models. This flexibility paves the way for more advanced music composition tools,
where users can easily control and manipulate individual sources within a mixture.

6.1 LIMITATIONS AND FUTURE WORK

The amount of available contextual data constrains the performance of our model. To address this,
pre-separating mixtures and training on the separations, as demonstrated in (Donahue et al., 2023),
may prove beneficial. Additionally, it would be intriguing to explore the possibility of extending
our method to situations where the sub-signals are not related by addition but rather by a known but
different function. Finally, future work could adapt the model to jointly model MIDI information (for
example, extracted from sources (Lin et al., 2021)) for further control.
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A DERIVATION OF MSDM DIRAC POSTERIOR SCORE FOR SOURCE
SEPARATION

We prove the main result of Section 4.2.3. We condition the generative model over the mixture
y(0) = y. As such, we compute the posterior:

p(x(t) | y(0)) =
∫
y(t)

p(x(t),y(t) | y(0))dy(t) =
∫
y(t)

p(x(t) | y(t),y(0))p(y(t) | y(0))dy(t) .

The first equality is given by marginalizing over y(t) and the second by the chain rule. Following Eq.
(50) in Song et al. (2021), we can eliminate the dependency on y(0) from the first term, obtaining the
approximation:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t) | y(t))p(y(t) | y(0))dy(t) . (9)

We compute p(y(t) | y(0)), using the chain rule after marginalizing over x(0) and x(t):

p(y(t) | y(0)) =
∫
x(0),x(t)

p(y(t),x(t),x(0) | y(0))dx(0)dx(t)

=

∫
x(0),x(t)

p(y(t) | x(t),x(0),y(0))p(x(t) | x(0),y(0))p(x(0) | y(0))dx(0)dx(t) .

By the Markov property of the forward diffusion process, y(t) is conditionally independent from
x(0) given x(t) and we drop again the conditioning on y(0) from the first two terms, following Eq.
(50) in Song et al. (2021). As such, we have:

p(y(t) | y(0)) ≈
∫
x(0),x(t)

p(x(0) | y(0))p(x(t) | x(0))p(y(t) | x(t))dx(0)dx(t) . (10)

We model the likelihood function p(y(t) | x(t)) with the Dirac delta function in Eq. (8). The
posterior p(x(0) | y(0)) is obtained via Bayes theorem substituting the likelihood:

p(x(0) | y(0)) =
p(x(0))1y(0)=

∑N
n=1 xn(0)

p(y(0))
=

 p(x(0))
p(y(0)) if

∑N
n=1 xn(0) = y(0)

0 otherwise
We substitute it in Eq. (10), together with Eq. (1) and Eq. (8), obtaining:∫

x(0):
∑N

n=1 x(0)=y(0)

p(x(0))

p(y(0))

∫
x(t)

N (x(t);x(0), σ2(t)I)1y(t)=
∑N

n=1 xn(t)
dx(t)dx(0) . (11)

We sum over the first N − 1 sources in the inner integral, setting xN (t) = y(t)−
∑N−1

n=1 xn(t):∫
x1:N−1(t)

N (x1:N−1(t),y(t)−
N−1∑
n=1

xn(t);x(0), σ
2(t)I)dx1:N−1(t) (12)

=

∫
x1:N−1(t)

N−1∏
n=1

N (xn(t);xn(0), σ
2(t)I)N (y(t)−

N−1∑
n=1

xn(t);xN (0), σ2(t)I)dx1:N−1(t)

= N (y(t);

N∑
n=1

xn(0), Nσ2(t)I) . (13)
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The second equality is obtained by factorizing the Gaussian, which has diagonal covariance matrix,
while the last equality is obtained by iterative application of the convolution theorem Katznelson
(2004). We substitute Eq. (13) in Eq. (11), obtaining:

p(y(t) | y(0)) ≈
∫
x(0):

∑N
n=1 xn(0)=y(0)

p(x(0))

p(y(0))
N (y(t);

N∑
n=1

xn(0), Nσ2(t)I)dx(0)

= N (y(t);y(0), Nσ2(t)I)

∫
x(0):

∑N
n=1 xn(0)=y(0)

p(x(0))

p(y(0))
dx(0)

= N (y(t);y(0), Nσ2(t)I) . (14)

At this point, we apply Bayes theorem in Eq. (9), substituting the Dirac likelihood:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t))p(y(t) | x(t))
p(y(t))

p(y(t) | y(0))dy(t) (15)

=

∫
y(t)

p(x(t))1y(t)=
∑N

n=1 xn(t)

p(y(t))
p(y(t) | y(0))dy(t) (16)

=
p(x(t))

p(
∑N

n=1 xn(t))
p(

N∑
n=1

xn(t) | y(0)) . (17)

Estimating Eq. (17), however, requires knowledge of the mixture density p(
∑N

n=1 xn(t)), which
we do not acknowledge. As such, we approximate Eq. (16) with Monte Carlo, using the mean of
p(y(t) | y(0)), namely y(0) (see Eq. (14)), obtaining:

p(x(t) | y(0)) ≈
p(x(t))1y(0)=

∑N
n=1 xn(t)

p(y(0))
=

 p(x(t))
p(y(0)) if

∑N
n=1 xn(t) = y(0)

0 otherwise
(18)

Similar to how we constrained the integral in Eq. (12), we parameterize the posterior, without loss of
generality, using the first N − 1 sources x̃(t) = (x1(t), . . . ,xN−1(t)). The last source is constrained
setting xN (t) = y(0)−

∑N−1
n=1 xn(t) and the parameterization is defined as:

F (x̃(t)) = F (x1(t), . . . ,xN−1(t)) = (x1(t), . . . ,xN−1(t),y(0)−
N−1∑
n=1

xn(t)) . (19)

Plugging Eq. (19) in Eq. (18) we obtain the parameterized posterior:

p(F (x̃(t)) | y(0)) ≈ p(F (x̃(t)))

p(y(0))
(20)

At this point, we compute the gradient of the logarithm of Eq. (20) with respect to x̃(t):

∇x̃(t) log p(F (x̃(t)) | y(0)) ≈ ∇x̃(t) log
p(F (x̃(t)))

p(y(0))

= ∇x̃(t) log p(F (x̃(t)))−∇x̃(t) log p(y(0))

= ∇x̃(t) log p(F (x̃(t))) . (21)

Using the chain-rule for differentiation on Eq. (21) we have:

∇x̃(t) log p(F (x̃(t)) | y(0)) ≈ ∇F (x̃(t)) log p(F (x̃(t)))JF (x̃(t)), (22)

where JF (x̃(t)) ∈ R(N×D)×((N−1)×D) is the Jacobian of F computed in x̃(t), equal to:

JF (x̃(t)) =



I 0 . . . 0

0 I . . . 0
...

...
. . .

...
0 0 . . . I

−I −I . . . −I
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The gradient with respect to a source xm(t) with 1 ≤ m ≤ N − 1 in Eq. (22) is thus equal to:

∇xm(t) log p(F (x̃(t)) | y(0)) ≈ [∇F (x̃(t)) log p(F (x̃(t))]m

− [∇F (x̃(t)) log p(F (x̃(t))]N ,

where we index the components of the m-th and N -th sources in ∇F (x̃(t)) log p(F (x̃(t)). Finally,
we replace the gradients with the score networks:

∇xm(t) log p(F (x̃(t))|y(0)) ≈ Sθ
m((x1(t), . . . ,xN−1(t),y(0)−

N−1∑
n=1

xn(t)), σ(t))

− Sθ
N ((x1(t), . . . ,xN−1(t),y(0)−

N−1∑
n=1

xn(t)), σ(t)) , (23)

where Sθ
m and Sθ

N are the entries of the score network corresponding to the m-th and N -th sources.

B DERIVATION OF GAUSSIAN AND WEAKLY-SUPERVISED POSTERIOR
SCORES FOR SOURCE SEPARATION

In this Section we derive the formulas for ‘MSDM Gaussian’, ‘ISDM Dirac’ and ‘ISDM Gaussian’.
We first adapt the Gaussian posterior introduced in Jayaram & Thickstun (2020) to continuous-time
score-based diffusion models Karras et al. (2022). We plug the Gaussian likelihood function (Eq. (7))
into Eq. (15), obtaining:

p(x(t) | y(0)) ≈
∫
y(t)

p(x(t))N (y(t);
∑N

n=1 xn(t), γ
2(t)I)

p(y(t))
p(y(t) | y(0))dy(t) (24)

Following Jayaram & Thickstun (2020), y(t) is not re-sampled during inference and is always set to
y(0). As such, we perform Monte Carlo in Eq. (24) with y(0), the mean of p(y(t) | y(0) (see Eq.
(14)), obtaining:

p(x(t) | y(0)) ≈
p(x(t))N (y(0);

∑N
n=1 xn(t), γ

2(t)I)

p(y(0))
. (25)

At this point, we compute the gradient of the logarithm of Eq. (25) with respect to xm(t):

∇xm(t) log p(x(t) | y(0)) ≈ ∇xm(t) log
p(x(t))N (y(0);

∑N
n=1 xn(t), γ

2(t)I)

p(y(0))

= ∇xm(t) log p(x(t)) +∇xm(t) logN (y(0);

N∑
n=1

xn(t), γ
2(t)I)

= ∇xm(t) log p(x(t)) − 1

2γ2(t)
∇xm(t)∥y(0)−

N∑
n=1

xn(t)∥22

= ∇xm(t) log p(x(t)) − 1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) . (26)

We obtain the ‘MSDM Gaussian’ posterior score by replacing the contextual prior with the score
network:

∇xm(t) log p(x(t) | y(0)) ≈ Sθ
m((x1(t), . . . ,xN (t)), σ(t))− 1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) . (27)

The weakly-supervised posterior scores are obtained by approximating:

p(x1(t), . . . ,xN (t)) ≈
N∏

n=1

pn(xn(t)) ,
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Model Inference Time (s) # of parameters

Demucs 0.111±0.071 40M
Demucs + Gibbs (512 steps) 0.111±0.071 × 512 = 56.832±36.352 ∼ 40M
Demucs + Gibbs (256 steps) 0.111±0.071 × 256 = 28.416±18.176 ∼ 40M

ISDM (correction) 4.6±0.345 × 4 = 18.4±1.38 405M ×4

MSDM (correction) 4.6±0.345 405M

Table 4: Inference times for a single 12s long separation and number of parameters for each model in
Table 3. We report Demucs + Gibbs (256 steps) since the minimum number of steps that makes the SI-SDRI over
all instruments (17.59 dB) greater than ISDM. While ISDM and MSDM are not time-competitive to Demucs,
they are more time-efficient than Demucs + Gibbs (256 and 512 steps).

where pn are estimated with independent score functions Sθ
n. In the contextual samplers in Eq. (23)

(‘MSDM Dirac‘) and Eq. (27) (‘MSDM Gaussian‘), Sθ
n((x1(t), . . . ,xN (t)), σ(t)) refers to a slice

of the full score network on the components of the n−th source. In the weakly-supervised cases, Sθ
n

is an individual function. To obtain the ‘ISDM Dirac’ posterior score, we factorize the prior in Eq.
(21), then use the chain rule of differentiation, as in Appendix A, to obtain:

∇xm(t) log p(F (x̃(t)) | y(0)) ≈ ∇xm(t) log pm(xm(t)) +∇xm(t) log pN (y(0)−
N−1∑
n=1

xn(t))

≈ Sθ
m(xm(t), σ(t))− Sθ

N (y(0)−
N−1∑
n=1

xn(t), σ(t)) .

We obtain the ‘ISDM Gaussian’ posterior score by factorizing the joint prior in Eq. (26):

∇xm(t) log p(x(t) | y(0)) ≈ Sθ
m(xm(t), σ(t))− 1

γ2(t)
(y(0)−

N∑
n=1

xn(t)) .

C EXPERIMENTAL SETUP

C.1 DATASET

We perform experiments mainly on Slakh2100 (Manilow et al., 2019), a standard dataset for music
source separation. Slakh2100 is a collection of multi-track waveform music data synthesized from
MIDI files using virtual instruments of professional quality. The dataset comprises 2100 tracks,
with a distribution of 1500 tracks for training, 375 for validation, and 225 for testing. Each track
is accompanied by its stems, which belong to 31 instrumental classes. For a fair comparison, we
only used the four most abundant classes as in (Manilow et al., 2022), namely Bass, Drums, Guitar,
and Piano; these instruments are present in the majority of the songs: 94.7% (Bass), 99.3% (Drums),
100.0% (Guitar), and 99.3% (Piano).

In Appendix E, we experiment on MUSDB18-HQ Rafii et al. (2019), a benchmark dataset for the
music source separation task. It contains 150 tracks, with 100 allocated for training and 50 for
testing, amounting to roughly 10 hours of professional-grade audio. Each piece within the dataset is
separated into the stems: Bass, Drums, Vocals, and Other, with the latter encompassing any elements
not included in the categories above.

C.2 ARCHITECTURE AND TRAINING

The implementation of the score network is based on a time domain (non-latent) unconditional
version of Moûsai (Schneider et al., 2023).

We used the publicly available repository audio-diffusion-pytorch/v0.0.4322. The
score network is a U-Net Ronneberger et al. (2015) comprised of encoder, bottleneck, and de-

2https://github.com/archinetai/audio-diffusion-pytorch/tree/v0.0.43
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Table 5: Hyperparameter search for source separation. We use ‘MSDM Dirac’ (top-left), ‘ISDM Dirac’
(bottom-left), ’MSDM Gaussian’ (top-right) and ’ISDM Gaussian’ (bottom-right) posteriors. We report the
SI-SDRI values in dB (higher is better) averaged over all instruments (Bass, Drums, Piano, Guitar).

Dirac Likelihood Gaussian Likelihood

Schurn
Constrained Source γ(t)

Bass Drums Guitar Piano 0.25σ(t) 0.5σ(t) 0.75σ(t) 1σ(t) 1.25σ(t) 1.5σ(t) 2σ(t)

M
SD

M

0 4.41 5.05 3.28 2.87 -41.54 6.37 6.05 5.67 5.729 5.13 4.33
1 7.90 8.18 7.03 7.05 -47.24 6.79 6.51 6.15 6.19 5.66 4.45

20 14.29 12.99 12.19 11.69 -47.17 11.07 10.51 9.43 10.19 9.18 7.58
40 14.28 13.02 5.51 4.78 -47.17 -36.92 12.48 11.25 11.87 10.80 9.03

IS
D

M

0 5.05 3.69 -2.50 6.93 -45.46 7.12 6.50 5.78 5.02 4.49 3.69
1 9.23 8.57 7.28 9.20 -47.54 7.57 7.20 6.32 5.35 4.82 3.83

20 15.35 15.08 13.20 15.36 -46.86 12.89 12.21 10.87 9.32 8.32 6.47
40 17.26 15.77 15.30 14.98 -46.86 -35.97 14.09 12.82 10.85 10.02 8.26
60 16.21 15.57 15.51 14.20 -46.80 -46.85 14.06 12.57 11.83 10.81 9.24

coder with skip connections between the encoder and the decoder. The encoder has six layers
comprising two convolutional ResNet blocks, followed by multi-head attention in the final three
layers. The signal sequence is downsampled in each layer by a factor of 4. The number of chan-
nels in the encoder layers is [256, 512, 1024, 1024, 1024, 1024]. The bottleneck consists of a
ResNet block, followed by self-attention, and another ResNet block (all with 1024 channel lay-
ers). The decoder follows a reverse symmetric structure with respect to the encoder. We employ
audio-diffusion-pytorch-trainer3 for training. We downsample data to 22kHz and
train the score network with four stacked mono channels for MSDM (i.e., one for each stem) and one
mono channel for each model in ISDM, using a context length of ∼ 12 seconds. All our models were
trained until convergence on an NVIDIA RTX A6000 GPU with 24 GB of VRAM. We trained all our
models using Adam Kingma & Ba (2015), with a learning rate of 10−4, β1 = 0.9, β2 = 0.99 and a
batch size of 16.

We report inference times and number of parameters of the various models in Table 4.

C.3 THE SAMPLER

We use a first-order ODE integrator based on the Euler method and introduce stochasticity following
(Karras et al., 2022). The amount of stochasticity is controlled by the parameter Schurn. As shown
in Appendix D and explained in detail in (Karras et al., 2022), stochasticity significantly improves
sample quality. We implemented a correction mechanism (Song et al., 2021; Jayaram & Thickstun,
2020) iterating for R steps after each prediction step i, adding additional noise and re-optimizing
with the score network fixed at σi. As per Karras et al. (2022), we adopt a non-linear schedule for
time discretization that gives more importance to lower noise levels. It is defined as:

ti = σi = σ
1
ρ
max +

i

I − 1
(σ

1
ρ

min − σ
1
ρ
max)

ρ ,

where 0 ≤ i < I , with I the number of discretization steps. We set σmin = 10−4, σmax = 1, ρ = 7.

D HYPERPARAMETER SEARCH FOR SOURCE SEPARATION

We conduct a hyperparameter search over Schurn to evaluate the importance of stochasticity in source
separation over a fixed subset of 100 chunks of the Slakh2100 test set, each spanning 12 seconds
(selected randomly). To provide a fair comparison between the Dirac (‘MSDM Dirac’, ‘ISDM
Dirac’) and Gaussian (‘MSDM Gaussian’, ‘ISDM Gaussian’) posterior scores, we execute a search
over their specific hyperparameters, namely the constrained source for the Dirac separators and the

3https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/
79229912

19

https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/79229912
https://github.com/archinetai/audio-diffusion-pytorch-trainer/tree/79229912


Published as a conference paper at ICLR 2024

Table 6: Comparison of results of MSDM and Demucs v2 (Défossez et al., 2019). We report the SI-SDRI
values in dB (higher is better). The network is the same as the one trained on Slakh2100, except that the sampling
rate is 44kHz and is trained on 6s long chunks.

Tested on MUSDB Finetuned on MUSDB Trained on MUSDB
Model Bass Drums All Bass Drums All Bass Drums Other Vocals All

Demucs v2 - - - - - - 13.28 11.53 8.59 16.80 12.55
MSDM -0.83 -0.94 -0.88 3.46 5.03 4.25 4.87 3.28 1.97 6.83 4.24

γ(t) coefficient for the Gaussian separators. Results are illustrated in Table 5. We observe that: (i)
stochasticity proves beneficial for all separators, given that the highest values of SI-SDRI are achieved
with Schurn = 20 and Schurn = 40, (ii) using the Dirac likelihood we obtain higher values of SI-SDRI
with respect to the Gaussian likelihood, both with the MSDM and ISDM separators, and (iii) the
ISDM separators perform better than the contextual MSDM separators (at the expense of not being
able to perform total and partial generation).

E DATA EFFICIENCY STUDY: RESULTS ON MUSDB

We report in Table 6 the results of MSDM and Demucs v2 (Défossez et al., 2019) on the MUSDB18-
HQ test set Rafii et al. (2019). We try three different strategies, we first check the out-of-distribution
ability of the model trained on Slakh2100 by testing directly on MUSDB18-HQ. Then, we try
finetuning the model trained on Slakh2100 on MUSDB18-HQ, and finally, we train directly on
MUSDB18-HQ. Since the only stems shared between MUSDB18-HQ and Slakh2100 are ‘Bass’ and
‘Drums’, the first and second strategies can be tested only on these two stems.

F SUBJECTIVE EVALUATION

The details of the listening test are explained in Figure 3.
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Figure 3: Snippets from the subjective evaluation form. The first row is relative to total generation, where
people were asked to evaluate 30 songs, 15 of which were generated by the mixture model and 15 by MSDM.
Thirty-two people answered the survey. The second row is relative to partial generation. Subjects were asked
to evaluate 15 songs. A random subset of sources is fixed for each song, and MSDM generates the other. The
requested sources are explicitly stated above the song (e.g., in the snippet, the model has generated only the Bass
stem). Twenty-one subjects answered.
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