
Enhancing Table Representations with LLM-powered
Synthetic Data Generation

Dayu Yang∗

University of Delaware
dayu@udel.edu

Natawut Monaikul
Capital One

natawut.monaikul@capitalone.com

Amanda Ding
Capital One

amanda.ding@capitalone.com

Bozhao Tan
Capital One

bozhao.tan@capitalone.com

Kishore Mosaliganti
Capital One

kishore.mosaliganti@capitalone.com

Giri Iyengar
Capital One

giridharan.iyengar@capitalone.com

Abstract

In the era of data-driven decision-making, accurate table-level representations
and efficient table recommendation systems are becoming increasingly crucial
for improving table management, discovery, and analysis. However, existing
approaches to tabular data representation often face limitations, primarily due
to their focus on cell-level tasks and the lack of high-quality training data. To
address these challenges, we first formulate a clear definition of table similarity in
the context of data transformation activities within data-driven enterprises. This
definition serves as the foundation for synthetic data generation, which require a
well-defined data generation process. Building on this, we propose a novel synthetic
data generation pipeline that harnesses the code generation and data manipulation
capabilities of Large Language Models (LLMs) to create a large-scale synthetic
dataset tailored for table-level representation learning. Through manual validation
and performance comparisons on the table recommendation task, we demonstrate
that the synthetic data generated by our pipeline aligns with our proposed definition
of table similarity and significantly enhances table representations, leading to
improved recommendation performance.

1 Introduction

In an era where data-driven decision-making is increasingly central to business operations, the ability
to efficiently and accurately recommend similar tables across vast datasets has become essential [33,
12, 25]. As tables remain a dominant modality in the data landscape, this capability can greatly
enhance both table management and discovery processes [12, 8]. By recommending similar tables,
organizations can streamline table management through effective deduplication, precise lineage
prediction, and robust clustering or labeling [32, 13]. These processes contribute to maintaining clean,
organized, and well-documented data repositories, which can lead to significant cost savings in cloud
services [18]. Furthermore, similar table recommendations play a crucial role in discovery and usage,
suggesting complementary tables that offer additional insights [33]. This enables data analysts to
make more informed decisions and better monitor ongoing processes.

∗Work done when interning at Capital One

Table Representation Learning Workshop at NeurIPS 2024



Although similar table recommendation is a crucial task, many existing table similarity methods [33,
12, 25] often lack a clear and consistent definition of "similarity." This ambiguity can make it
challenging to apply these methods to different use cases, as users may be unsure whether their
understanding of similarity aligns with the definitions used in these approaches.

A single table can contain a large amount of cell data and have a complex structure, making the
manual annotation of similar tables a costly process. This contributes to the scarcity of high-quality
training data. Facing the issue, some studies [32, 13, 5] have attempted to address the challenge by
developing table representations through unsupervised cell-level tasks, such as masked cell value
restoration. However, these representations tend to struggle with capturing the global structure of
a table, which may result in suboptimal performance in table-level tasks, including similar table
recommendation, as suggested by our experimental results. Another line of research has sought to
alleviate the data sparsity challenge [12, 25] by reframing the table recommendation problem as a
pairwise table matching task, rather than focusing on pointwise table representation. This approach is
generally easier to solve and requires less supervision [19, 31]. However, while pairwise tasks may
mitigate some data limitations, they introduce significant computational inefficiencies, shifting the
time complexity from linear to quadratic [19, 34], which can make them impractical for large-scale
tabular databases typically found in modern big data environments.

To address the limitations of existing methods in table similarity recommendation, we propose a
structured approach that begins with a clear definition of table similarity grounded in real-world
use cases from data-driven industries. Building upon this foundation, we develop a synthetic table
similarity data generation pipeline leveraging Large Language Models (LLMs). By providing any
non-annotated tables as a base, this pipeline can generate large-scale, high-quality table similarity
data for enhancing general table representation model and recommendation performance evaluation.

We evaluated the quality of our generated synthetic dataset through three approaches: (i) conducting
human validation on a subset of the dataset, confirming its accuracy with respect to our defined
notion of similarity; (ii) comparing cosine similarities of embeddings from similar tables in our
dataset against those from an existing dataset, demonstrating its enhanced potential for developing
table-level representations; and (iii) improving table representations using our synthetic dataset for
the task of similar table matching, outperforming state-of-the-art embedding models in our out-of-
distribution proprietary dataset collected from Capital One internally. These results indicate that our
method can generate high-quality synthetic training data and contribute to real-world similar table
recommendation applications.

2 Related Studies

2.1 Textual Representation Learning

Text embeddings – vector representations of natural language that capture semantic content – have
been widely utilized in various natural language processing (NLP) tasks, including question answer-
ing [6, 1], conversational search [29, 30], and semantic textual similarity [20]. Sentence-BERT [21]
is one of the earliest and most popular methods for learning text embeddings by fine-tuning BERT [9]
on natural language inference datasets.

To further improve the performance and robustness of text embeddings, state-of-the-art methods like
GTE-series [17] and BGE-series [28] adopt a more complex multi-stage training approach. These
methods first pre-train on billions of weakly supervised text pairs and then fine-tune on several
high-quality labeled datasets.

Recently, with the growing recognition of the strong language understanding capabilities of large
language models (LLMs), there has been a shift towards using LLMs, particularly those based
on decoder Transformers, to generate text embeddings [15, 2]. In addition to changes in model
structure, recent state-of-the-art text representation models have begun leveraging larger LLMs
to generate synthetic data, providing high-quality supervision, combined with large-scale weak
supervision from traditional retrieval datasets like MSMARCO [27, 16]. The success of synthetic
data generation techniques on text representation learning indicates its great potential on enhancing
table representation.

2



2.2 Tabular Representation Learning

Inspired by the success of BERT [9] in constructing general text representations and achieving strong
performance across various downstream natural language processing tasks, many studies in table
representation [32, 13, 5] have adopted a similar training approach – they aim to build general table
representations using masked self-supervised tasks. Specifically, they modify the vanilla Transformer
encoder [26] by introducing additional column or row attention mechanisms to better adapt the model
to learn the spatial structure of a 2D table. In these works, a large unannotated tabular dataset is used
for pre-training, where approximately 15% of the cells are masked, and the modified Transformer is
trained to predict these masked cells.

Recognizing the success of LLMs such as Llama [24] and Gemma [23] in natural language tasks,
some studies have explored their potential applications in tabular data tasks, such as tabular data
cleaning, cell value lookup, and tabular data classification [4]. To apply LLMs directly to tabular
data, the table must first be serialized into a natural text format. However, it remains an open question
as to which format -— CSV, JSON, XML, Markdown, or HTML [22].

Other methods have been developed to directly address the task of estimating table similarity or
performing table retrieval [12, 25]. These methods take a pair of tables simultaneously, giving
a pairwise representation. However, we seek a pointwise representation – a unique table-level
embedding – that can allow for more efficient table retrieval as well as be used for other downstream
tasks involving tabular data.

2.3 Data for Table Similarity Estimation

Currently, only a few datasets for table similarity have been proposed in the literature. One such
dataset uses tables from PubMed Central (PMC) Open Access – pairs of tables were manually
annotated as similar or dissimilar according to the estimated percentage of similarity or dissimilarity
among the cell data and captions in the tables [12, 25]. These tables were drawn from a predominantly
biomedical and scientific domain. Another more domain-general dataset draws tables from Wikipedia,
and table pairs were manually annotated for equivalence or subset relationships based on matching
column names [33, 10, 12]. While these datasets are the most relevant to our work, the annotation
guidelines in both reflect limited definitions of similarity.

Other datasets for table similarity have been adapted from datasets for table retrieval – these datasets,
such as WikiTables [3, 33] and TableArXiv [11], were originally developed for retrieving relevant
tables given a natural-language query. Studies on table similarity then define a pair of tables as similar
if both have been labeled as relevant to the same query [12, 25]. While this definition is useful for
grouping tables around shared keywords in a query, relevance judgments are not between the tables
themselves, so the sense of table similarity is less targeted.

We also note that in the performance evaluation of StruBERT [25], a state-of-the-art model for
predicting if a pair of tables is similar, we found a sort of label leakage in the test set. Although the
test set does not contain pairs also present in the training set, the individual tables overlap between
the sets. Because of this, about 74% of the pairs in the test set could be inferred transitively from
relationships in the training set – for example, if the model learns that tables A and B are similar, and
B and C are similar from the training set, it could infer that A and C are similar in the test set.

We removed these label-leakage pairs from both the training and test sets and trained the StruBERT
model, as well as a vanilla BERT (base) model using a naïve table serialization scheme, on the new
training set. We found the adjusted performance of StruBERT that we calculated on the new test
set to have an accuracy of 0.874, compared to 0.9942 reported on the original test set. This ends
up underperforming compared to the vanilla BERT model (an accuracy of 0.908). Furthermore, we
found the average latency incurred by StruBERT performing inference on each sample to be around
five times longer than BERT due to the added complexity of the model.

Taken together, our literature review demonstrates the need for a large-scale, domain-general dataset
of table pairs that are labeled according to a practical definition of similarity to enable tabular
representation learning and to efficiently perform and fairly evaluate the task of similar table retrieval
in data-driven industries.

3



3 Definition of Similarity

In our work, we define “similarity” based on two key use cases of table matching systems in industry:
table management and complementary information retrieval. In industry, table management systems
are often designed to identify duplicate tables and those with close lineage. While exact duplicates
can be easily identified through hard-coded rule matching, finding tables with close lineage is more
challenging. This is because data analysts often modify or transform elements of parent tables,
requiring the model to understand the underlying semantic connections among tables.

Another critical use case in table recommendation is the retrieval of complementary information. In
this context, the goal is to identify tables that, while not identical, offer additional insights or relevant
data that can enhance the analysis. This requires the model to recognize nuanced relationships
between tables, such as shared themes, overlapping data points, or related metadata.

Taking these two aspects into account, we define two tables to be similar if one is the result of the
other’s having undergone one or more data transformations typically performed by a data analyst.
We elaborate further on these types of operations in the next section. This definition captures the
semantic connections and transformations that occur in real-world data management, ideally resulting
in table-level representations that allow for effective identification and recommendation of other
contextually-related tables.

4 Synthetic Data Generation Pipeline

We now introduce our LLM-assisted pipeline for generating tabular data from a given input table
such that the generated table is considered similar to the original table, i.e., the generated table can be
obtained from some series of transformations on the anchor table.

We first assume we are given a table, which we call an anchor table, from which our goal is to
generate similar tables in a way that (1) mimics the behavior of human analysts, (2) encompasses a
diverse range of data operations, (3) is efficient. We also assume that this anchor table minimally
contains a title, column names, some cell data, and some sort of description that briefly summarizes
the contents and purpose of the table.

We then perform one or more tabular data operations on the anchor table to generate a new table that
is similar to the anchor table. We manually constructed a concise list of possible table transformations
informed by a study of an industry documentation on data management for data analysts:

• Concatenation: Add one or more new columns with new and relevant information.

• Edit: Create a new column based entirely on an existing column, using string operations
like regular expressions, information extraction, or information refinement.

• Reordering: Shuffle the order of columns.

• Calculation: Generate a calculated column based on an existing numerical column.

• Removal: Remove one or more columns.

• Update: Modify the title, description, and column names with respect to any new values, or
simply to re-word.

An example of these operations performed on a sample table is given in Appendix A.3. We believe
these operations cover three major aspects of what a data analyst typically performs on the job:
adding information (Concatenation), deleting information (Removal), and modifying or synthesizing
information (Edit, Reordering, Calculation, Update). The reordering and update operations also help
to ensure the generated tables can promote robust tabular embeddings in terms of order invariance
and semantic representation.

Whereas the reordering and removal operations can be performed programmatically, we call on an
LLM to perform the remaining, more complex operations. After choosing a set of table transforma-
tions to perform on the anchor table, each transformation is applied sequentially (i.e., to the output
of the preceding transformation) – we found that if an LLM is given multiple operations in a single
prompt, the LLM frequently fails to apply all of the operations.

4



We do not include any row operations because, compared to columns, each row represents an
observation, and the number of observations typically exceeds the number of columns (or variables).
When tables are serialized for input into a language model, only a few rows are typically sampled [32,
25, 22]. Therefore, we eschew spending significant computation time on row operations.

The output of this pipeline is then multiple tables that can be considered similar to the anchor table,
where each output table is the result of some set of tabular transformations applied to the anchor table
that mirror those that a data analyst would apply to tabular data in practice. Then, given a sizable
pool of anchor tables, we can generate a large-scale synthetic dataset of pairs of similar tables that
can then be used to train and evaluate embedding models and models for downstream tasks involving
tabular data.

5 Evaluation

To empirically verify the validity and utility of our pipeline, we evaluate the output of the pipeline on
a standard set of anchor tables via manual inspection, an investigation of similarity with respect to
embeddings, and a performance comparison on the downstream task of table retrieval.

In our pipeline implementation, we use the Llama3.1-8B-Instruct model as the LLM for per-
forming tabular transformations. For each anchor table, two random sets of operations are chosen to
perform on the table, generating two similar tables per anchor. Practical considerations for the order
of operations are detailed in Appendix A.3.

We drew anchor tables from the WikiTables dataset [3], which we chose in consideration of its size
(approximately 1.6 million tables) and broad coverage of diverse topics. Each table in the dataset
contains a title, column names, and cell data – because our pipeline also expects a description for
each table, we additionally prompt the same LLM to generate a brief description for about 700,000
randomly-chosen tables.

The exact prompts we designed to have the LLM perform each operation is given in Appendix A.3.
Each table in the dataset is represented in a JSON format, and we serialize these tables for the LLM
by directly taking the string representation of the JSON table – details are given in Appendix A.1.
We prompt the LLM to also produce JSON-formatted tables, although the output was not always
in a valid JSON format, so we only save pairs for which the outputs could be properly parsed. The
generated dataset output from our pipeline ultimately contained 140,000 pairs of tables (70,000
anchor tables with 2 synthetic similar tables each).2

5.1 Manual Validation

An immediate limitation of our pipeline is in the prompt engineering required to ensure the LLM
produces sensible tables that truly reflect the instructions in the prompt. While it is possible to use
the LLM itself to generate a list of operations or sufficient prompts to instruct itself to product new
tables, similar to other studies in LLM-based synthetic data generation [27, 16], this approach is
inefficient because the list of operations generated by the LLM can be long and contain significant
overlap. Given that we apply operations sequentially, this would entail calling on the LLM many
more times, which would incur a significant computational cost.

To verify that our LLM prompting generated reasonable tables, we randomly selected a subsample of
the generated dataset for a round of manual validation. Two professional data analysts inspected each
pair of tables (an anchor table and its corresponding generated table) to determine if the operations
that were performed by the LLM were indeed correct. Though multiple operations could be performed
on an anchor table, the annotators only saw the anchor table and the final generated table; thus, the
annotators were asked to label simply whether or not all of the listed operations had been performed
correctly.

We randomly selected 80 table pairs for manual review. The data analysts independently labeled
these samples, after which disagreements were discussed to arrive at a final label. We measured
the inter-annotator agreement using Cohen’s kappa [7] on the initial labels and found moderately
strong agreement between the annotators (κ = 0.56) [14]. Our manual review found that 65% of the
synthetic tables were generated correctly given their respective sets of operations, with a majority of

2We also plan to release our generated dataset pending approvals.

5



Figure 1: Cosine similarity scores of BGE-based embeddings of 1,000 pairs of similar tables, from
our synthetic dataset and from the labeled portion of the WikiTables dataset used for StruBERT.

the incorrect tables being due to the edit operation. These results suggest that our proposed pipeline
is able to output tables that reflect typical tabular transformations in data-driven industries, but that
further prompt engineering may be required to improve the pipeline’s abilities on more complex
transformations.

5.2 Embedding-Based Similarity Validation

Next, we investigate the potential for our generated dataset to be used to build a robust tabular
representation model. As is typical for representation learning, we envision an embedding space for
tabular data in which the vector representations of similar tables are close to each other. Specifically,
the similarity of two tables T1 and T2 should be a function of the similarity of their embeddings E1

and E2 given some embedding model.

We compared the cosine similarities of embeddings of pairs of similar tables in our generated dataset
against those pairs of similar tables in the dataset used to train and evaluate StruBERT [25], which is
also based on the WikiTables dataset. We seek to show that with our targeted definition of similarity
and our synthetic data generation pipeline developed around that definition, the pairs of tables in our
generated dataset exhibit relatively high similarity scores.

For a fair comparison, we do not train an embedding model on our generated dataset; rather, we use a
state-of-the-art text embedding model – bge-large-en-v1.5 – to embed the tables, from which we
can compute cosine similarities of pairs of tables:

cosine similarity(T1, T2) =
E1 · E2

∥E1∥∥E2∥

We serialized a table by simply concatenating its title, columns names, and the cell data of a randomly-
selected row, separated by periods and commas (between cells). The row to include was selected
randomly so that the generated table pairs are not given an advantage when the first row of both tables
are mostly the same. Descriptions were not included since the original WikiTables dataset does not
contain them.

Figure 1 shows the distribution of cosine similarity scores of 1,000 randomly-sampled similar table
pairs from our generated dataset and 1,000 randomly-sampled similar table pairs from the dataset
used for StruBERT. We see that cosine similarity scores of our generated dataset center around a
higher value, demonstrating that our definition of similarity and our data generation pipeline can
produce a dataset of pairs of similar tables such that the similarity is reflected in an embedding space.
Since we only used a naïve serialization and a pre-trained embedding model, this also suggests that
our dataset can serve as a basis for building a robust table-level representation model.

5.3 Downstream Validation

Finally, we evaluate the quality of our generated dataset by its utility for a downstream task –
specifically, similar table retrieval. An embedding model fine-tuned on a high-quality dataset of
pairs of similar tables should be able to perform better on a similar table retrieval task than other

6



Table 1: Performance comparison of the pointwise table representation models on synthetic data.

Recall@2 nDCG@2 Recall@10 nDCG@10
bge-large-en-v1.5 0.8037 0.9232 0.8880 0.9253
E5-mistral-7b-instruct 0.7830 0.9000 0.9073 0.9097
TABBIE-plus 0.6609 0.6889 0.7902 0.7545

embedding models, since the fine-tuned model will have learned better representations of tabular data
for determining similarity.

In the similar table retrieval task, given a query table Tq , the objective is to find similar tables from a
corpus of tables C = {T1, T2, . . . , Tk}, where k is the total number of tables. A typical solution for
this task would be to use an embedding model to take Tq as input and output an embedding Eq of Tq .
The cosine similarity can then be computed between Eq and the embeddings of all other tables; those
with the highest similarity scores would be considered candidate similar tables.

We randomly split our generated dataset based on 70,000 anchor tables into a training set containing
55,000 anchors, a validation set containing 5,000 anchors, and a test set containing 10,000 anchors,
each with their generated pairs. Given that we generate two similar tables per anchor table, the task
then for a representation model is to generate representations that enable the use of cosine distance to
rank the two ground truth similar tables as high as possible from a pool of around 700,000 tables for
each of the anchor tables in the test set. Note that the pool then is made up of original WikiTables
data as well as the generated tables corresponding to the anchor tables in the test set.

5.3.1 Baseline

We first evaluate state-of-the-art embedding models on this task directly to establish a baseline
of pre-trained model performance. We compare three models: bge-large-en-v1.5 (Short as
BGE), E5-mistral-7b-instruct [27] (a more powerful representation model with about 24x
more parameters than bge-large-en-v1.5), and TABBIE [13] (a general table representation model).
For the two text embedding models, we again serialize tables as described in Appendix A.1. For
TABBIE, we use the [CLS] embedding at the (0, 0) position as the representation for the entire table,
as the original authors had also done in their experiments. Since TABBIE does not take into account a
table’s title or description, to make a fairer comparison, we also embed each table’s concatenated title
and description using bge-large-en-v1.5 and compute similarity as a weighted average between
the similarity of the text embeddings and the similarity of the TABBIE embeddings.3 We refer to this
method as TABBIE-plus.

As metrics, we compute two standard measures of retrieval and ranking performance: recall and
nDCG. In addition to computing these metrics in the top ten returned results, since each anchor table
has exactly two similar tables in the pool, we also compute recall and nDCG in only the top two
returned results. These results are given in Table 1. We see that the BGE model outperforms the other
models, despite being smaller and not originally intended for tabular data. Therefore, we chose BGE
model as the base model that further implemented for fine-tuning on our synthetic data.

5.3.2 Fine-Tuning

With this baseline, we seek to show that fine-tuning the BGE model on our synthetic dataset will
further refine its representations of tabular data such that it will not only perform even better on this
test set, but also be able to generalize to a completely different test set of close-lineage tables for an
industry use case.

We fine-tune the BGE model using contrastive learning. To achieve this, each anchor table and its
corresponding similar tables must be accompanied by some hard negative examples – tables that are
dissimilar to the anchor table and should therefore have representations that are farther away from the
anchor table. For each anchor table, hard negatives were sourced from the pool of 700,000 tables
through a hybrid-search pipeline using both semantic and bag-of-words embeddings.

3We choose to give 90% of the weight to the TABBIE embeddings in order to include the title and description
embeddings but to primarily focus on the TABBIE embeddings.

7



Table 2: Performance comparison of the BGE model before and after fine-tuning on synthetic data,
evaluated on synthetic data and proprietary out-of-distribution data.

Dataset Model Recall@2 NDCG@2 Recall@10 NDCG@10
Synthetic BGE 0.8037 0.9232 0.8880 0.9253

Ours (BGE + Synthetic Data) 0.9043 0.9779 0.9329 0.9768
Industry BGE 0.3972 0.3062 0.5781 0.3126

Ours (BGE + Synthetic Data) 0.4662 0.3517 0.6681 0.3539

Given a pair of similar tables -— an anchor table Ta and a generated target table Tt -— the cosine
similarity between their embeddings should be relatively higher than the cosine similarity between
Ta and a dissimilar table or hard negative. For fine-tuning, we apply the standard InfoNCE loss L
over hard negatives and in-batch negatives:

L = − log
exp(ϕ(Ta, Tt))∑

Tn∈N exp(ϕ(Ta, Tn))

where N denotes the set of all negatives, and Tn represent a dissimilar table sampled from N . ϕ is
the same temperature-scaled cosine similarity defined above.

For training, we set the batch size to 4. Although contrastive learning typically benefits from larger
batch sizes, we limited the batch size to 4 to fit within the memory constraints of a single GPU. The
maximum serialized length for all input tables was set to 512 tokens, truncating any table exceeding
this length. For each sample, we used 15 hard negatives in addition to the in-batch negatives.

In addition to evaluating this fine-tuned model on the test set from our generated dataset, we also
measure its performance on a proprietary dataset from our industry. This dataset contains proprietary
tabular data that have been labeled for close-lineage relationships, i.e., if one table was produced from
another table through some data transformation, making it suitable for evaluating the fine-tuned model
on similar table retrieval. While the Wikipedia tables are more general and easily understandable, the
tables in this proprietary dataset are more specialized, containing domain-specific terminology. As a
result, this dataset is considered out-of-distribution for the model, making it a crucial benchmark for
assessing the model’s value in real-world applications.

This dataset consists of about 8,000 tables, from which we sample 1,000 to perform our evaluation.
The task then is for the model to generate representations that allow the similar (close-lineage) tables
to rank as highly as possible among the pool of 8,000 tables for each of the tables in the evaluation.
We also note that each table contains a title, description, and column names, but no cell data for
privacy purposes; thus, in serializing the tables, we simply leave the cell data blank.

Table 2 shows the improved performance of the fine-tuned model on the synthetic dataset – this
result is expected, given that the test set shares a similar distribution and similar features as the
training set. The more challenging evaluation involves the proprietary dataset of similar tables, which
contains out-of-distribution samples. As also shown in Table 2, the fine-tuned model still improves
upon the pre-trained BGE model, despite being fine-tuned on synthetic data that is quite different
from the proprietary dataset. This demonstrates that the data generated from our pipeline allows for
more robust tabular data representations, enhancing table similarity retrieval performance even for
out-of-distribution samples.

6 Conclusion

In this paper, we enhanced table-level representation for similar table recommendation tasks using
large language models (LLMs). We identified two key challenges in the field -— data sparsity and
the ambiguous definition of table similarity -— and alleviated them by introducing a novel synthetic
data generation process based on LLMs and clearly defining the table similarity problem. We then
demonstrated the quality and utility of our generated dataset through manual validation, comparing
embeddings to an existing table similarity dataset, and evaluating models using our data on the
downstream task of similar table recommendation.

8



Our evaluations, conducted on both synthetic and proprietary datasets, comprehensively demonstrate
that the proposed method effectively improves table similarity matching, even in scenarios involving
out-of-distribution samples. The results suggest that our approach has the potential to bridge the gap
between synthetic training data and practical applications, offering a viable solution for similar table
recommendation in data-driven environments.

While these findings are promising, further research is needed to explore the scalability of our method
across even larger datasets. Additionally, improving the ability of LLMs to generate desired and
complete JSON-formatted tables remains a crucial area for future work.

References
[1] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. “The question answering systems:

A survey”. In: International Journal of Research and Reviews in Information Sciences (IJRRIS)
2.3 (2012).

[2] Parishad BehnamGhader et al. “LLM2Vec: Large Language Models Are Secretly Powerful
Text Encoders”. In: First Conference on Language Modeling. 2024.

[3] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. “Tabel: Entity linking in
web tables”. In: International Semantic Web Conference. Springer. 2015, pp. 425–441.

[4] Vadim Borisov et al. “Deep neural networks and tabular data: A survey”. In: IEEE transactions
on neural networks and learning systems (2022).

[5] Pei Chen et al. “HyTrel: Hypergraph-enhanced Tabular Data Representation Learning”. en. In:
Advances in Neural Information Processing Systems 36 (Dec. 2023), pp. 32173–32193.

[6] Eunsol Choi et al. “QuAC: Question answering in context”. In: arXiv preprint
arXiv:1808.07036 (2018).

[7] Jacob Cohen. “A Coefficient of Agreement for Nominal Scales”. In: Educational and Psy-
chological Measurement 20.1 (1960), pp. 37–46. eprint: https://doi.org/10.1177/
001316446002000104.

[8] Xiang Deng et al. “Turl: Table understanding through representation learning”. In: ACM
SIGMOD Record 51.1 (2022), pp. 33–40.

[9] Jacob Devlin. “Bert: Pre-training of deep bidirectional transformers for language understand-
ing”. In: arXiv preprint arXiv:1810.04805 (2018).

[10] Besnik Fetahu, Avishek Anand, and Maria Koutraki. “TableNet: An Approach for Determining
Fine-grained Relations for Wikipedia Tables”. In: The World Wide Web Conference. WWW
’19. San Francisco, CA, USA: Association for Computing Machinery, 2019, pp. 2736–2742.

[11] Kyle Yingkai Gao and Jamie Callan. “Scientific Table Search Using Keyword Queries”. In:
CoRR abs/1707.03423 (2017). arXiv: 1707.03423.

[12] Maryam Habibi, Johannes Starlinger, and Ulf Leser. “TabSim: A Siamese Neural Network
for Accurate Estimation of Table Similarity”. In: 2020 IEEE International Conference on Big
Data (Big Data). Dec. 2020, pp. 930–937.

[13] Hiroshi Iida et al. “TABBIE: Pretrained Representations of Tabular Data”. In: Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Ed. by Kristina Toutanova et al. Online: Association
for Computational Linguistics, June 2021, pp. 3446–3456.

[14] J. Richard Landis and Gary G. Koch. “The Measurement of Observer Agreement for Categori-
cal Data”. In: Biometrics 33.1 (1977), pp. 159–174.

[15] Chankyu Lee et al. NV-Embed: Improved Techniques for Training LLMs as Generalist Embed-
ding Models. 2024. arXiv: 2405.17428 [cs.CL].

[16] Jinhyuk Lee et al. Gecko: Versatile Text Embeddings Distilled from Large Language Models.
arXiv:2403.20327 [cs]. Mar. 2024.

[17] Zehan Li et al. Towards General Text Embeddings with Multi-stage Contrastive Learning.
2023. arXiv: 2308.03281 [cs.CL].

[18] B Mahesh et al. “A review on data deduplication techniques in cloud”. In: Embedded Systems
and Artificial Intelligence: Proceedings of ESAI 2019, Fez, Morocco (2020), pp. 825–833.

[19] Vitalik Melnikov et al. “Pairwise versus pointwise ranking: A case study”. In: Schedae
Informaticae 25 (2016), pp. 73–83.

9

https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://arxiv.org/abs/1707.03423
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2308.03281


[20] Niklas Muennighoff et al. “MTEB: Massive text embedding benchmark”. In: arXiv preprint
arXiv:2210.07316 (2022).

[21] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks. arXiv:1908.10084 [cs]. Aug. 2019.

[22] Yuan Sui et al. “Table meets llm: Can large language models understand structured table data?
a benchmark and empirical study”. In: Proceedings of the 17th ACM International Conference
on Web Search and Data Mining. 2024, pp. 645–654.

[23] Gemma Team et al. “Gemma: Open models based on gemini research and technology”. In:
arXiv preprint arXiv:2403.08295 (2024).

[24] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In: arXiv
preprint arXiv:2302.13971 (2023).

[25] Mohamed Trabelsi et al. “StruBERT: Structure-aware BERT for Table Search and Matching”.
In: Proceedings of the ACM Web Conference 2022. arXiv:2203.14278 [cs]. Apr. 2022, pp. 442–
451.

[26] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[27] Liang Wang et al. Improving Text Embeddings with Large Language Models. arXiv:2401.00368
[cs]. May 2024.

[28] Shitao Xiao et al. C-Pack: Packaged Resources To Advance General Chinese Embedding. 2023.
arXiv: 2309.07597 [cs.CL].

[29] Dayu Yang, Yue Zhang, and Hui Fang. “An exploration study of mixed-initiative query
reformulation in conversational passage retrieval”. In: arXiv preprint arXiv:2307.08803 (2023).

[30] Dayu Yang, Yue Zhang, and Hui Fang. “Zero-shot query reformulation for conversational
search”. In: Proceedings of the 2023 ACM SIGIR International Conference on Theory of
Information Retrieval. 2023, pp. 257–263.

[31] Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. “Pretrained transformers for text ranking:
BERT and beyond”. In: Proceedings of the 14th ACM International Conference on web search
and data mining. 2021, pp. 1154–1156.

[32] Pengcheng Yin et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular
Data. arXiv:2005.08314 [cs]. May 2020.

[33] Shuo Zhang and Krisztian Balog. “Ad Hoc Table Retrieval using Semantic Similarity”. In:
Proceedings of the 2018 World Wide Web Conference. WWW ’18. Republic and Canton of
Geneva, CHE: International World Wide Web Conferences Steering Committee, Apr. 2018,
pp. 1553–1562.

[34] Shengyao Zhuang et al. “A setwise approach for effective and highly efficient zero-shot ranking
with large language models”. In: Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2024, pp. 38–47.

A Appendix

A.1 Table Serialization

Our tables are originally represented as JSON objects. When serializing a JSON object to text that
fits the input format of a language model, we directly convert the JSON object into a string, following
the order: cell data, description, title, and column names. For cell data, we randomly sample only
two observations to avoid exceeding the context limit of the language model.

A.2 Tabular Operations

We defined six operations to exemplify the tabular transformations that a data analyst performs on
data on the job. Four of these operations rely on an LLM to automatically transform the table: edit,
concatenation, calculation, and update. Figure 2 shows how these operations may look on a sample
table.

The removal operation is applied only to tables without numerical columns, as there may be cases
where a table has only one numerical column, and removing it would prevent a calculation process
from being executed. The edit operation is applied only to non-numerical tables (those without any

10

https://arxiv.org/abs/2309.07597


numerical columns), while the calculation operation is used exclusively for numerical tables (those
with at least one numerical column).

Our pipeline consists of some combination of these six operations performed in the following order:
removal, concatenation, edit, calculation, reordering, and update. This ensures that a newly-created
column does not subsequently get removed and that tabular transformations are performed before
updating any verbiage.

A.3 Prompt Design

This section details the prompts we used for creating the synthetic data generation pipeline.

The system prompt for asking an LLM to accomplish each operation:

SYSTEM_PROMPT = "You are a data scientist/analyst who edits tabular data every day."

Prompts for guiding an LLM to accomplish operations: concatenation (concat), edit, calculation
(calc), and update:

CONCAT_OPERATION = "Make up two new columns with reasonable and diverse values.
Specifically, each row in cell data should have one more element,
and the length of column names should increase by one. You can make up data as long
as the values look reasonable."

EDIT_OPERATION = "Create a new column completely based on one or more
existing columns. Some options are but not limited to: binning, string
operation based on regular expression, information extraction, information
refinement, etc. After the operation, each row in cell data should have
one more element, and the length of column names should increase by one."

CALC_OPERATION = "Create a new column completely based on one or more
existing numerical columns using a type of calculation (mathematical
calculations, aggregations, allocations, etc.). After the calculation,
each row in cell data should have one more element, and the length of column
names should increase by one."

UPDATE_OPERATION = "Update title, column names, and description to match the
updated cell data."

Finally, here is the prompt that incorporates a serialized table and an operation prompt.

{table_data_serialized}

Your mission is to edit the json-formated tabular datapoint shown above
and output the modified table in the exact same format.

Edit the tabular data with following operations:

{operations_prompt}

Your output must only be a JSON object, do not explain yourself or output
anything else. Again, do not explain yourself or output anything else.

"""

11



Figure 2: Four tabular transformations performed on a sample table.

12


	Introduction
	Related Studies
	Textual Representation Learning
	Tabular Representation Learning
	Data for Table Similarity Estimation

	Definition of Similarity
	Synthetic Data Generation Pipeline
	Evaluation
	Manual Validation
	Embedding-Based Similarity Validation
	Downstream Validation
	Baseline
	Fine-Tuning


	Conclusion
	Appendix
	Table Serialization
	Tabular Operations
	Prompt Design


