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Abstract

Many natural language processing tasks bene-
fit from long inputs, but processing long doc-
uments with Transformers is expensive -- not
only due to quadratic attention complexity but
also from applying feedforward and projec-
tion layers to every token. However, not all
tokens are equally important, especially for
longer documents. We propose COLT5, a
long-input Transformer model that builds on
this intuition by employing conditional compu-
tation, devoting more resources to important
tokens in both feedforward and attention lay-
ers. We show that COLT5 achieves stronger
performance than LONGT5 with much faster
training and inference, achieving SOTA on the
long-input SCROLLS benchmark. Moreover,
COLT5 can effectively and tractably make use
of extremely long inputs, showing strong gains
up to 64k input length.

1 Introduction

Many natural language processing tasks, such as
summarization (Cohan et al., 2018) or question an-
swering over long documents (Joshi et al., 2017),
require machine learning models to encode long-
form text. Processing long documents with a Trans-
former model is computationally expensive, both
because attention cost scales quadratically with in-
put length and because feedforward and attention
projection layers have to be applied to each input
token.

Over the past few years, many “efficient Trans-
former” approaches have been proposed that re-
duce the cost of the attention mechanism over long
inputs (Child et al., 2019; Ainslie et al., 2020; Belt-
agy et al., 2020; Zaheer et al., 2020; Wang et al.,
2020; Tay et al., 2021; Guo et al., 2022). However,
especially for larger models, the feedforward and
projection layers actually make up the majority of

∗Author contributions are outlined in Appendix A. Corre-
spondence author: jainslie@google.com.

Figure 1: An overview of a COLT5 Transformer layer
with conditional computation. All tokens are processed
by light attention and MLP layers, while q routed query
tokens perform heavier attention over v routed key-
value tokens and m routed tokens are processed by a
heavier MLP.

the computational burden and can render process-
ing long inputs intractable.

This paper presents COLT5 (Conditional
LongT5), a new family of models that, building on
top of LONGT5 (Guo et al., 2022), enables fast pro-
cessing of long inputs by combining architecture
improvements for both attention and feedforward
layers. COLT5 is based on the intuition that some
tokens are more important than others, and we can
achieve better quality for lower cost by devoting
more computation to important tokens. Moreover,
the fraction of important tokens is likely to dimin-
ish with document length, allowing for tractable
processing of long documents.

In particular, COLT5 divides each feedforward
layer and each attention layer into a light branch
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Figure 2: COLT5 achieves stronger performance than LONGT5 at any speed. Average performance on all
datasets as a function of inference and fine-tuning time per sample (ms) for LONGT5 and COLT5 Base, Large,
and XL models. LONGT5 does not use MQA, but we report speed as though it had for a conservative baseline.

which is applied to all tokens and a heavy branch
which is applied to a set of important tokens, se-
lected specifically for that input and component.
The light feedforward branch has lower hidden di-
mension than standard LONGT5 while the heavy
feedforward branch has higher hidden dimension.
The light attention branch has fewer heads and ap-
plies only local attention, while the heavy attention
branch performs full attention over another sepa-
rately selected set of important tokens. Figure 1
provides an overview of the COLT5 conditional
mechanism.

Finally, COLT5 also includes two other mod-
ifications to the LONGT5 architecture. COLT5
adds multi-query cross-attention (Shazeer, 2019),
significantly speeding up inference. COLT5 also
employs the UL2 (Tay et al., 2022) pre-training ob-
jective, which we demonstrate allows for in-context
learning over long inputs.

We show that COLT5 performs much faster fine-
tuning and inference with similar or better model
quality, improving over LONGT5 on arXiv summa-
rization (Cohan et al., 2018) and TriviaQA question
answering (Joshi et al., 2017) datasets and achiev-
ing SOTA on the SCROLLS benchmark (Shaham
et al., 2022). Moreover, COLT5 achieves further
gains in quality and speed for tasks with extremely
long inputs (64k tokens), with less-than-linear scal-
ing of “focus” tokens.

2 Background

Transformer FLOPs COLT5 follows an exten-
sive line of work in attempting to reduce the com-
putational cost of Transformer models, particularly

over long inputs. The computational burden of
Transformer models has several distinct elements,
and different approaches focus on reducing the cost
of different components. For that reason, it is help-
ful to start by providing a breakdown of the compu-
tational cost of Transformer components. Table 1
shows the FLOPs1 for each component of a Trans-
former encoder layer (Kaplan et al., 2020).

Encoder Layer Component Flops

Vanilla self-attention computation 2n2d
Attention QKV and output projections 4nd2

Feedforward layer 8nd2

LONGT5 local attention computation 2nwd

LONGT5 global attention computation n2

8 d

Table 1: Computational cost of encoder layer trans-
former components measured in FLOPs. n is the input
length, d is the model dimensionality, and w is the size
of the local attention window.

Sparse attention The first challenge of applying
a Transformer to a long input is that the FLOPs
of the self-attention mechanism scales quadrati-
cally in the input length, becoming intractable for
long inputs. A large body of work focuses on re-
ducing self-attention cost, restricting attention be-
tween a subset of inputs (Child et al., 2019; Ainslie
et al., 2020; Beltagy et al., 2020; Zaheer et al.,
2020; Wang et al., 2020; Guo et al., 2022) or to
a subset of layers (Zemlyanskiy et al., 2021). In
LONGT5 (Guo et al., 2022), the most closely re-
lated model to COLT5, tokens attend within a lo-

1Each multiply-add is counted as a single FLOP.



cal window as well as to a mean-pooled summary
representation for each block of 16 tokens in the
input. LONGT5 attention leads to sharply reduced
(though still non-negligible) FLOPs (Table 1).

Conditional computation After applying a
sparse attention mechanism, the feedforward and
attention projection layers account for the major-
ity of the FLOPs. These costs scale with the
length of the input, such that processing long in-
puts is still prohibitively expensive. A common
approach to reduce the remaining cost is to employ
some form of conditional computation, avoiding
applying all model parameters to the entire input.
CALM (Schuster et al., 2022) applies a varying
number of decoder layers to each decoded token,
outputting a token early if the model is confident in
its prediction. Mixture-of-Experts models (Shazeer
et al., 2017; Fedus et al., 2021; Zoph et al., 2022)
route inputs through a small proportion of expert
sub-modules, bringing to bear only the parame-
ters most relevant to the input. In the context of
retrieval-augmented models, numerous works re-
rank retrieved passages by their relevance to the
query and process only the highest scoring pas-
sages (Mao et al., 2021; Wang et al., 2018; Yu
et al., 2022) and vary the number of processed pas-
sages depending on model confidence (Kratzwald
and Feuerriegel, 2018; Varshney et al., 2022). Con-
current work CoDA (Lei et al., 2023) employs a
related conditional computation mechanism, de-
signed for efficient adaptation rather than modeling
long documents.

Device utilization FLOPs do not tell the whole
story, as modeling choices can influence the effec-
tive speed of operations achieved by accelerators.
For long text inputs, autoregressive decoder infer-
ence is very slow due to memory bandwidth con-
straints from repeatedly loading the long sequence
of keys and values (Shazeer, 2019; de Jong et al.,
2022). Shazeer (2019) introduces multi-query at-
tention (MQA), sharing heads for keys and values
to reduce memory bandwidth overhead. Pope et al.
(2022) studies how to shard large models, espe-
cially in the context of MQA, to obtain optimal
device utilization and therefore speed.

Training objectives T5 introduced the span cor-
ruption objective (Raffel et al., 2020), a modi-
fication of masked language modeling (Devlin
et al., 2019). LONGT5 made use of the PEGA-
SUS (Zhang et al., 2020) sentence reconstruc-

tion objective for improved summarization perfor-
mance. Tay et al. (2022) proposes UL2, a mixture
of span corruption, prefix, and causal language
modeling, and shows that it leads to strong perfor-
mance on both short-output and generative tasks.

3 COLT5

3.1 Conditional computation

As discussed in the previous section, a large propor-
tion of Transformer FLOPs arise from feedforward
and projection layers that scale with the length of
the input sequence. Therefore, LONGT5 training
and inference on long documents remains expen-
sive.

COLT5 further reduces the cost of processing
long documents through conditional computation,
following the intuition that some tokens are more
important and therefore benefit more than others
from heavy computation. First, some types of to-
kens may inherently require less computation, such
as filler words and punctuation. Second, especially
in long documents, large parts of the input may not
be relevant to the current question, task, or process-
ing stage.

The COLT5 conditional computation mecha-
nism consists of three components: routing mod-
ules, conditional feedforward layers, and condi-
tional attention layers. All tokens are processed by
standard, lightweight attention and feedforward lay-
ers. Routing modules additionally select important
tokens from an input at each attention or feedfor-
ward layer, and a heavy conditional layer applies
additional computation to routed tokens. This sec-
tion describes each component in detail. Figure 1
provides an overview of the COLT5 conditional
computation mechanism, and Table 2 compares
COLT5 and LONGT5 FLOPs.

Model Encoder Layer Flops

T5 12nd2 + 2n2d

LONGT5 12nd2 + n2

8 d

COLT5 71
4nd

2 + n2

84d

Table 2: COLT5 uses significantly fewer FLOPs
than LONGT5. Comparison of approximate encoder
layer total FLOPs between T5, LONGT5, and COLT5.
COLT5 FLOPs rounded to readable fractions.

Routing In order to separately select important
tokens for each component in each layer, we need



a learnable and tractable routing function. We
follow the simple three-step mechanism from Lei
et al. (2023): (1) multiply inputs with a learned
embedding to obtain routing scores, (2) normalize,
and (3) select the top-k highest scoring inputs.

Let Xi be the representation of token i, and u
a d-dimensional learnable embedding. Then the
routing score of token i is

si = Xi · u

We select the top-k highest scoring inputs. In order
to provide a learning signal to the scoring embed-
ding, we make sure the contribution of the routed
tokens to the layer update is scaled according to the
routing score, as will be seen later. To provide a bet-
ter distributed signal to all tokens, we also globally
normalize the routing scores to sum up to the num-
ber of desired routed tokens using a generalized
softmax, resulting in normalized scores s̃i. Each
COLT5 layer has three independent routers, one
each for the feedforward layer, attention queries,
and attention key-values.

Conditional Feedforward Intuitively, some to-
ken representations may benefit from more pro-
cessing than others. The COLT5 conditional feed-
forward layer applies an additional high-capacity
feedforward layer to selected tokens. In particular,
let Xi be the model state of the ith token and s̃i
denote the normalized routing score (set to 0 for
non-routed tokens). Then the feedforward update
for COLT5 is given by

Xi = Xi + FFdLight(Xi) + s̃i · FFdHeavy(Xi)

The light and heavy feedforward branches differ
only in their hidden dimension, with the light
branch having smaller hidden dimension than
the standard T5 feedforward layer and the heavy
branch larger. Let n denote the number of input to-
kens, m the number of selected tokens, and rL and
rH the ratios of light and heavy hidden dimension
to standard T5 hidden dimension. Then the FLOPs
of the COLT5 layer are given by

FLOPsFFd = 8nrLd
2︸ ︷︷ ︸

Light branch

+ 8mrHd
2︸ ︷︷ ︸

Heavy branch

We set the light and heavy ratios as rL = 1
2 and

rH = 4, half and quadruple the standard T5 hid-
den dimension respectively. For our main exper-
iments, a fraction 1

16 of tokens are routed to the

Figure 3: An overview of the COLT5 attention pattern.
The light branch performs local attention for each to-
ken. In the higher capacity heavy branch q selected
query tokens (2 in the figure) attend to v separately se-
lected key and value tokens (4 in the figure).

heavy branch. As a result the approximate FLOPs
from the COLT5 feedforward layer equals

FLOPsFFd = 4nd2︸︷︷︸
Light branch

+ 2nd2︸︷︷︸
Heavy branch

consuming 75% of the FLOPs of a standard T5
feedforward layer.

Conditional Attention COLT5 conditional at-
tention operates on the intuition that most tokens
have simple, local interactions, but some tokens
benefit from heavier processing and long-range in-
teractions. The COLT5 conditional attention layer
applies an additional high-capacity attention layer
that attends from selected query tokens to selected
key-value tokens. Let s̃qi denote the normalized
routing query score for token i, and s̃kv the key-
value scores for all tokens (set to 0 if not routed).
Then the attention update for COLT5 is given by

Xi = Xi+ALight(Xi, X)+ s̃qi ·AHeavy(Xi, s̃
kvX)

The light and heavy branches differ in the number
of heads and tokens attended to: the light branch
has fewer heads and attends to a local context win-
dow, while the heavy branch has more heads and
attends to all routed key-value tokens. Separately
selecting query and key-value tokens also allows
the model to differentiate between tokens that re-
quire additional information and those that possess



Model Avg Speed TQA NQA QAS QuAL CNLI arXiv SumS QMS GovR

inf fn F1 F1 F1 EM EM Rgm Rgm Rgm Rgm

LONGT5-B 43.1 0.6 / 7.4 3.7 82.2 23.0 46.6 37.9 85.6 35.4 19.2 20.4 37.7
COLT5-B 42.4 11.2 6.5 82.4 23.3 42.1 36.5 86.5 35.3 18.7 18.4 37.9

LONGT5-L 45.3 0.3 / 3.0 1.3 84.2 27.2 52.3 40.6 87.3 35.7 19.1 21.4 39.5
COLT5-L 45.3 5.0 2.0 84.5 27.7 49.8 39.9 88.7 35.9 20.5 21.0 39.7

LONGT5-XL 46.6 0.2 / 1.2 0.4 85.3 29.3 53.1 46.0 88.2 35.9 19.4 21.3 40.5
COLT5-XL 47.4 2.3 0.5 86.1 31.1 53.9 48.1 88.4 36.1 20.0 22.5 40.5

Table 3: Performance comparison of COLT5 and LONGT5 Base, Large and XL models on question-answering
datasets TriviaQA (TQA), NarrativeQA (NQA), QASPER (QAS), and QuALITY (QuAL), NLI dataset Con-
tractNLI (CNLI), and summarization datasets arXiv, SummScreenFD (SumS), QMSum (QMS), and GovReport
(GovR). SCROLLS results are on leaderboard test set where COLT5-XL achieves SOTA. Average speed is re-
ported in samples per second for inference (inf) and fine-tuning (fn). LONGT5 does not use MQA but inference
speed is reported without/with MQA for conservative baseline. Rgm stands for the geometric mean of ROUGE-
1,2,L. Similar to SCROLLS, we take a simple average across all datasets even though the datasets use different
performance metrics.

such information. Figure 3 shows the COLT5 at-
tention pattern. Let q, v be the number of selected
query and key-value tokens, w the size of the lo-
cal attention window and rL, rH the proportion of
light and heavy heads relative to standard T5. Then
the FLOPs of the COLT5 attention layer are given
by

FLOPsAtt = 4n · rLd2︸ ︷︷ ︸
Local projection

+ 2nw · rLd︸ ︷︷ ︸
Local attention

+ 2q · rHd2 + 2v · rHd2︸ ︷︷ ︸
Global projection

+ 2qv · rHd︸ ︷︷ ︸
Global attention

We set the light and heavy head ratios as rL = 1
4

and rH = 3
4 , keeping the total number of heads

across the light and heavy branches equal to stan-
dard T5 heads. For our main experiments a fraction
1
16 query tokens and 1

8 key-value tokens are routed
to the heavy branch, so q = n

16 and v = n
8 . Ignor-

ing local attention computation, we approximate
attention FLOPS by2

FLOPsAtt ≈ nd2︸︷︷︸
Local proj.

+
1

4
nd2︸ ︷︷ ︸

Global proj.

+
1

84
n2d︸ ︷︷ ︸

Global att.

with less than half projection FLOPs and order-of-
magnitude smaller quadratic length scaling com-
pared to LONGT5. Table 2 shows total FLOPs for
the COLT5 layer. In general, we set q = m and
v = 2m, and use m to summarize the number of
routed tokens going forward.

2Global projection and attention FLOPs rounded to read-
able fractions, exact values are 9

32
and 3

256
. Complexity as-

sumes constant fraction of routed tokens; we show we can do
better in practice for extremely long inputs.

3.2 Multi-query Attention
Conditional computation effectively reduces the
computational cost of the encoder. However, for
encoder-decoder models with long inputs the ma-
jority of inference time is spent in the decoder due
to memory bandwidth constraints (Shazeer, 2019;
de Jong et al., 2022). Most of the overhead is
caused by repeatedly reading all the input token
keys and values from memory for every output to-
ken that is autoregressively decoded during cross
attention. Multi-query attention (Shazeer, 2019)
(MQA) allows all query heads to share a single key
and value head, alleviating this bottleneck. Accord-
ingly, we apply MQA in cross-attention layers for
much faster inference. Note however that MQA
does not improve training speed since target tokens
are processed in parallel during training, avoiding
this memory bandwidth bottleneck.

3.3 UL2
The UL2 pre-training objective (Tay et al., 2022)
combines different denoising objectives, extending
the span corruption pre-training used in T5 to a
variety of noise rates / average span lengths and
adding a prefix language modeling objective more
similar to typical decoder-only model pre-training.
UL2 has been shown to lead to improved in-context
learning. We train COLT5 on UL2 instead of PE-
GASUS (Zhang et al., 2020), endowing COLT5
with in-context learning capabilities.

4 Experiments

In order to evaluate COLT5, we perform the fol-
lowing experiments: (1) our main results com-



pare COLT5 and LONGT5 on a collection of long
input datasets using input length of 16k tokens;
(2) we evaluate COLT5 on extremely long in-
puts up to 64k tokens and compare scaling against
LONGT5; (3) demonstrate COLT5’s few-shot ca-
pability, investigating how performance changes as
input length and number of shots increase, (4) per-
form a series of ablations to understand the effect
of individual COLT5 components, and (5) inves-
tigate empirical routing patterns. The remainder
of the section outlines our experimental setup, and
then describes each of the experiments above.

4.1 Experimental setup

Configurations COLT5 is based on the T5.1.1
architecture (Raffel et al., 2020), implemented
with JAX (Bradbury et al., 2018), Flax (Heek et al.,
2020), and Flaxformer3. Following LONGT5, we
experiment with Base, Large, and XL model sizes.
COLT5 models use the same embedding dimen-
sion, number of layers, and total attention heads as
corresponding LONGT5 models of the same size,
with more overall parameters (but less compute)
due to the conditional branch. See Appendix B for
additional details on model configuration.

Pre-training We pre-train COLT5 for 1M steps
on the C4 dataset (Raffel et al., 2020) using a vari-
ant of the UL2 objective (Tay et al., 2022) with
batch size 256, input length 4096, and output length
910. In particular, our mixture contains four objec-
tives in equal proportion: prefix-LM with noise rate
0.5, and span corruption (Raffel et al., 2020) with
noise rate 0.15 and average span lengths 3, 8, and
64. We use the Adafactor optimizer (Shazeer and
Stern, 2018) with the T5.1.1 inverse square root
learning rate schedule and no dropout. COLT5 is
trained with the T5X (Roberts et al., 2022) frame-
work. For pre-training, we route m = 512 tokens,
1
8 th of the input length.

Fine-tuning For fine-tuning we use a constant
learning rate of 0.001, batch size 128, and dropout
rate 0.1 for all tasks. Main results use input length
of 16384 for all datasets other than ContractNLI,
which uses 8192. Question answering datasets use
output length 128 and summarization datasets use
output length 512, except for GovRep which uses
output length 1024. We route m = 1024 tokens,
1
16 th of the input length. We train until convergence

3https://github.com/google/flaxformer

and select the checkpoint with the highest dev per-
formance. We use greedy decoding for inference.

Data We evaluate COLT5 on TriviaQA (Joshi
et al., 2017), arXiv (Cohan et al., 2018),
and the SCROLLS benchmark (Shaham et al.,
2022). SCROLLS contains question-answering
datasets: NarrativeQA (Kočiský et al., 2018),
QASPER (Dasigi et al., 2021), and QuAL-
ITY (Pang et al., 2021), an NLI dataset: Con-
tractNLI (Koreeda and Manning, 2021), and sum-
marization datasets: SummScreenFD (Chen et al.,
2022), QMSum (Zhong et al., 2021), and Gov-
Report (Huang et al., 2021). Table 4 provides
an overview of the size and input length for each
dataset.

Dataset Type Samples Median 90%
TriviaQA QA 157,053 8,858 28,956
arXiv Sum 215,913 8,519 20,170
NarrativeQA QA 71,187 57,829 176,862
QASPER QA 5,692 5,472 8,657
QuALITY QA 6,737 7,171 8,276
ContractNLI NLI 10,319 2,148 4,485
SummScreen Sum 4,348 9,046 15,172
QMSum Sum 1,810 14,197 27,761
GovRep Sum 19,402 8,841 18,835

Table 4: Median and 90th percentile input length by
dataset measured in SentencePiece tokens.

Timing We report time per sample per TPUv4
chip, as measured by xprof (Google, 2020). For
inference we use a single TPUv4 with batch size 16
or the largest that fits in memory. For fine-tuning
we profile with 8 TPUv4 chips, sharded separately
for each model to maximize throughput.

4.2 Main results

Figure 2 compares the quality-speed trade-off for
LONGT54 and COLT5, showing that COLT5 is
better at any speed. For 16k input length, COLT5
matches or exceeds LONGT5 quality for Large and
XL with 35-75% training speedup and 50-100% in-
ference speedup on top of the order-of-magnitude
inference speedup from MQA. Encoder speedups
are even greater (Appendix D). COLT5-XL also
achieves SOTA performance on the SCROLLS
benchmark. Table 3 contains all main results.
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Figure 4: COLT5 effectively scales to extremely long
inputs, achieving stronger performance and faster
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4.3 Scaling to extremely long inputs

We hypothesize that the advantage of COLT5 over
LONGT5 strengthens with input length, as the frac-
tion of important tokens decreases and COLT5 can
route a greater proportion of important tokens to
the heavy branch. Figure 4 compares the quality-
speed trade-off for LONGT5 and COLT5 on Nar-
rativeQA, sweeping over input length rather than
model size. The number of routed tokens is 1

16 th
of the input length, except that we do not increase
routed tokens going from 32k to 64k, so at 64k
we route only 1

32nd of the input length. COLT5
achieves both stronger performance and faster in-
ference speed at all input lengths and is able to
effectively make use of extremely long inputs. We
note that COLT5 achieves large quality gains by
going from 32k to 64k tokens even while keeping
the number of routed tokens constant, providing
more evidence for our hypothesis.

4.4 In-context learning

Models trained on the UL2 objective have shown
strong few-shot in-context learning (ICL) capa-
bilities5 even at smaller sizes (Tay et al., 2022).
COLT5 enables tractable inference with long in-
puts. Here, we leverage this for scaling the number
of examples used for in-context learning.

4Note that LONGT5 does not use MQA, but for profiling
we add MQA to LONGT5 for a conservative baseline.

5We initially evaluated ICL for models pre-trained with
PEGASUS but found performance to be nearly 0.

0.1 0.2 0.3

1k

2k

4k

8k

16k

NaturalQ

0.05 0.1

TriviaQA

Figure 5: COLT5 can use its long-input capability
to benefit from more shots for in-context learning.
Few-shot exact match for COLT5-Large on Natural
Questions and TriviaQA dev sets as a function of in-
put tokens, fitting as many examples as possible. Each
example contains question, context, and answer. Inputs
length used are 1024, 2048, 4096, 8192, 16384.

We test the above hypothesis by evaluating
few-shot learning performance on Natural Ques-
tions (Kwiatkowski et al., 2019) and TriviaQA as
a function of input length, using as many exam-
ples as fit in the context. We consider the open
book setting, such that each example consists of
question, context document, and answer. Table 5
shows the number of examples by input length. We
evaluate on the full dev set, randomly sampling
examples from the training set for each dev sample
until no further examples fit in the input length. We
found that COLT5 can perform in-context learning
only up to the input length it was trained on, so
for these experiments we continued pre-training
a COLT5-Large model on input length 16384 for
another 100k steps. For the same reason we route
m = 512 tokens as in pre-training.

Figure 5 displays COLT5 few-shot performance
as a function of input length, showing that COLT5
is able to apply its long-input capabilities to extract
information from increasing numbers of examples.

Dataset 1024 2048 4096 8192 16384
NQ 0.1 0.7 1.7 3.4 5.6
TriviaQA 1.6 2.3 3.8 7.0 9.8

Table 5: Average number of Natural Questions and
TriviaQA few-shot examples that fit in input length.

4.5 Ablations
This section studies the effect of different choices
in the COLT5 recipe. Table 6 contains results of a
series of experiments that change a single compo-



Ablation Model Avg Inf TQA NQA QAS QuAL CNLI arX SumS QMS GovR

S/s F1 F1 F1 EM EM Rgm Rgm Rgm Rgm

Baseline COLT5-B 42.5 11.2 82.4 23.1 38.3 36.6 87.8 35.3 19.3 20.5 39.4

Routing Static 40.5 11.6 79.7 19.2 34.2 34.5 86.4 34.9 18.1 18.9 38.8
Share QKV 42.0 11.8 82.1 21.9 37.5 36.2 87.0 35.2 18.2 20.4 39.7

Attention v=all 42.5 9.4 82.4 22.3 38.6 37.2 87.8 35.3 19.1 20.3 39.8
v=q 42.3 11.5 82.5 22.5 37.3 37.0 85.9 35.2 19.0 20.5 39.7

Routed
Tokens

m=512 41.6 12.2 81.9 22.1 37.3 35.4 84.6 35.2 18.9 19.5 39.6
m=1536 42.9 10.4 82.6 23.5 39.8 37.5 87.5 35.4 19.4 20.8 40.0

Encoder LONGT5-B 42.1 7.4 82.0 21.4 38.4 35.8 88.0 35.5 18.7 20.4 38.5

Decoder Multi-head 42.9 0.7 82.7 22.9 40.2 35.8 87.7 35.5 19.7 21.2 40.3

Objective PEGASUS 42.8 11.2 82.6 22.6 40.5 37.3 87.3 35.3 19.6 20.8 39.6

Table 6: COLT5 ablations evaluated on validation sets. Each experiment modifies a component of the COLT5
recipe for COLT5-Base. Static routing divides the input into equal-length blocks and selects the first token in
each block to be routed. Shared QKV routing shares routing decisions for queries and keys/values. In v=all the
routed queries attend to the entire input, while v=q selects the same number of key and value tokens as query
tokens. m=512 and m=1536 use different numbers of routed tokens. LONGT5-B uses a LONGT5 encoder while
retaining other parts of the COLT5 training recipe such as MQA and the UL2 objective. Multi-head refers to using
multi-head cross-attention. The final ablation replaces the UL2 objective with PEGASUS as in LONGT5.

nent for COLT5 Base.

Routing First, we note that static routing --
evenly distributing routed tokens over the input
-- leads to massive drop in performance. The impor-
tance of routing provides evidence that the model
learns to devote capacity to important tokens and
the advantage of COLT5 is not merely a result of
additional parameters. Sharing routing decisions
for query and KV tokens should be compared with
v=q, and leads to a modest reduction in quality and
increase in speed.

The optimal number of routed tokens represents
a trade-off between improved performance and
computational cost of applying heavier layers. Ta-
ble 6 shows strong gains going from 512 to 1024
(baseline) routed tokens and diminishing returns
for further increases.

Attention COLT5 relies on routing to identify
not only tokens that can benefit from important in-
formation elsewhere in the input, but also which
tokens contain such important information. We
study whether COLT5 is successful in this task by
comparing performance with two different atten-
tion settings -- v=all, in which routed tokens attend
to the entire input, and v=q, which uses equal num-
ber of routed keys and values as queries, rather than
twice as many. COLT5 appears to occupy a sweet
spot, as using fewer routed key-values modestly de-
creases performance at similar speed but attending
to all inputs barely helps at sharply increased cost.

MLP Query KV
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Figure 6: Proportion of tokens routed for answer (string
match), question, and other tokens by routing compo-
nent for COLT5 Large model, averaged over examples
in TriviaQA dev set and all layers of model.

Other We compare COLT5 to LONGT5 with
multi-query cross-attention, confirming that
LONGT5 indeed does not achieve an unexpected
quality gain from MQA, and our conservative
assumptions in Figures 2, 4 are valid. Next, we
evaluate multi-head cross-attention for COLT5,
finding that it leads to modestly improved COLT5
performance. However, as MHA exhibits order-
of-magnitude slower inference, MQA is clearly
favored. Finally, PEGASUS appears to fine-tune
slightly better than UL2, though the difference is
small and UL2 enables few-shot learning.



4.6 Routing analysis

It is interesting to ask whether COLT5 routed to-
kens line up with what we consider intuitively
important tokens in each document. We investi-
gate this question by studying routing patterns of a
Large COLT5 model fine-tuned on TriviaQA. We
divide tokens into three categories: (1) question
tokens, (2) answer tokens, and (3) other tokens.
Figure 6 shows the average fraction of each type of
token that is routed through the heavy path for MLP
and attention layers on TriviaQA. We note that
question and answer tokens are significantly more
likely to be routed than other tokens, for feedfor-
ward as well as attention queries and keys/values.
Appendix F presents more detailed routing analy-
sis; e.g., semantically important tokens are much
more likely to be selected in later layers.

5 Conclusion

We propose COLT5, a new model for long-range
inputs that employs conditional computation for
higher quality and faster speed. COLT5 has light
feedforward and attention layers that apply to the
entire input, as well as heavy branches that are ap-
plied only to a subset of important tokens selected
by a learned router. We show that COLT5 achieves
stronger performance at any speed compared to
LONGT5 on a variety of long-input datasets, and
can effectively and efficiently make use of ex-
tremely long inputs up to 64k tokens.

Limitations

COLT5 applies conditional computation only in the
encoder. Applying conditional computation in the
decoder is more complicated; the routing method
in COLT5 is not causal, so it isn’t applicable when
generating token by token. Since decoder-only
models and applications with long outputs have
become more popular recently, this is a strong limi-
tation of the current approach. Although the rout-
ing method in COLT5 could potentially be applied
to the input context in a decoder-only model, we
didn’t investigate this setup.

COLT5 is specialized towards long sequences
and has to be trained from scratch. For large-scale
training and deployment, it is desirable to either
train a single model that can handle both short and
long sequences, or develop a long-input architec-
ture that can be adapted from an existing large
model.
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Model Layers Model dim MLPlight dim MLPheavy dim Headslight Headsheavy Params
LONGT5-B 12 768 2048 N/A 12 N/A 248m
COLT5-B 12 768 1024 8096 4 8 433m

LONGT5-L 24 1024 2816 N/A 16 N/A 783m
COLT5-L 24 1024 1408 11264 4 12 1462m

LONGT5-XL 24 2048 5120 N/A 32 N/A 2850m
COLT5-XL 24 2048 2560 20480 8 24 5297m

Table 7: Hyperparameters for LONGT5 and COLT5 models. T5.1.1 hyperparameters match LONGT5. COLT5
parameters are sparsely accessed as a result of conditional computation, so parameter counts do not reflect compute,
and for a given model size COLT5 is in fact faster than LONGT5 despite having more parameters.

A Contributions

Joshua led the project, developed the initial con-
ditional attention mechanisms, and conducted
most experimental ablations. Tao developed the
heavy/light formulation for heterogeneous condi-
tional computation, comprising the routing and con-
ditional feedforward mechanisms, and iterated with
Joshua on initial experiments demonstrating fea-
sibility. Michiel helped to scope the paper, per-
formed most of the writing, and oversaw speed
benchmarking. Santiago designed and conducted
all the few-shot experiments, initiated the routing
analysis visualization, and integrated UL2 into the
codebase. Siddhartha developed the separate rout-
ing for query and key/value tokens in the condi-
tional attention component and demonstrated the
resulting quality improvements. Yury designed and
conducted all experiments for inputs larger than
16k tokens, demonstrating favorable scaling up to
64k. David integrated all SCROLLS tasks into
the codebase and ran early experiments, especially
comparing UL2 with PEGASUS. Mandy devel-
oped the leaderboard comparisons with LongT5
and helped run several experiments. James advised
on and ran early comparisons with MoE conditional

computation. Yi advised on the adaptation of UL2
to 4k input length pre-training. Finally, Yun-Hsuan
and Sumit provided guidance and support for the
project overall.

B Model Hyperparameters

Table 7 shows LONGT5 and COLT5 hyperparam-
eters, including parameter counts. For LONGT5,
we report numbers for the TGlobal configuration,
which match T5.1.1. Notice that COLT5’s parame-
ter counts are larger due to using conditional com-
pute. Similar to other conditional compute archi-
tectures such as mixture-of-experts, computational
cost does not necessarily increase with parameter
count.

We use the same 127-token local radius for
COLT5 as LONGT5. This results in a local atten-
tion windoww of 255 since 127 tokens are attended
to the left and 127 to the right.

C Routing Normalization
Hyperparameters

To normalize the routing scores for differentiable
top-k token selection, we use the iterative soft top-
k algorithm from Lei et al. (2023) and Qian et al.

Model Average 16k in, 128 out 16k in, 512 out 16k in, 1024 out 8k in, 128 out

Enc Tot Enc Tot Enc Tot Enc Tot Enc Tot

LONGT5-B 77 136 84 98 84 165 84 296 27 39
COLT5-B 29 90 30 45 30 113 30 256 18 30

LONGT5-L 164 329 173 222 179 392 179 799 66 100
COLT5-L 70 201 73 103 73 250 73 578 45 69

LONGT5-XL 390 870 412 557 423 1081 423 2065 166 290
COLT5-XL 177 439 185 239 185 525 185 1253 115 163

Table 8: Comparison of total and encoder inference time per sample (ms) for LONGT5 and COLT5 Base, Large,
and XL models at different input and output lengths. Average time per sample is computed as a weighted average
over input and output lengths, weighted by the number of tasks in our evaluation that use the corresponding setting
(4 for 16k/128, 3 for 16k/512, and one each for 16k/1024 and 8k/128).



Model arXiv SummScreenFD QMSum GovRep

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

LONGT5-B 47.4 21.4 43.5 34.8 9.3 20.7 35.1 11.1 23.4 59.3 30.1 33.0
COLT5-B 47.5 21.3 43.6 35.6 9.7 21.0 34.6 10.9 23.0 60.2 31.0 32.8

LONGT5-L 47.9 21.7 43.8 35.3 9.1 20.8 35.9 12.0 24.1 61.4 32.5 34.1
COLT5-L 48.4 21.7 44.3 35.7 10.1 21.4 36.8 12.6 24.7 61.8 32.7 34.4

LONGT5-XL 48.2 21.8 44.1 36.6 10.3 21.5 37.0 12.5 24.7 61.8 33.2 34.8
COLT5-XL 48.4 22.0 44.3 36.3 10.0 21.5 37.4 13.0 25.1 62.2 33.3 34.9

Table 9: Full performance comparison with Rouge-1, Rouge-2, and Rouge-L metrics of COLT5 and LONGT5
Base, Large, and XL models on summarization dev sets. Results based on checkpoint that maximizes Rgm as in
Table 3.

(2022) with ε = 1.0 and 50 iterations. During
training we allow the top 9

8k tokens to have nonzero
weight instead of just the top k in order to provide
a slightly improved training signal.

D Additional Experimental Results

Table 8 compares LONGT5 and COLT5 inference
speed in more detail, splitting off encoder and total
time per sample. Since COLT5 applies conditional
computation only in the encoder, encoder speed
gains are larger than overall speed gain, and total
speed gains are largest for shorter output length.
Trade-offs are even more in the favor of COLT5
when paired with other decoder optimizations.

Table 9 shows full (Rouge-1, Rouge-2, Rouge-L)
results for summarization datasets.

E Computational Resources

For pre-training we generally used 128 TPUv4
chips for Base and 256 TPUv4 chips for Large
and XL. Pre-training took approximately 2.5 days
for Base, 3.7 days for Large, and 12.8 days for XL.
For fine-tuning we generally used 64, 128, and 256

TPUv4 chips for Base, Large, and XL, respectively,
with training time varying with dataset size.

F Routing Analysis

In this section we take a closer look at the routing
mechanisms in COLT5. There are three routing
processes in each layer of COLT5: (1) Routing
of attention keys and values (“KV-routing”), (2)
routing of attention queries (“Q-routing”) and (3)
routing of MLP tokens (“MLP-routing”). For sim-
plicity, we will say that a token is selected, when it
is routed to the heavy alternative (of either MLP or
attention). We are interested in understanding what
tokens are selected and whether these mechanisms
select similar or different tokens in each layer.

Which tokens are selected We divide input to-
kens into three categories: (1) question tokens, (2)
answer tokens (found via simple normalized string
match of the ground truth answer), and (3) other to-
kens. Figure 7 shows the proportion of each token
type that is routed by a fine-tuned COLT5-Large
model on the TriviaQA dev set, by layer and rout-
ing component.
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Figure 7: Proportion of tokens routed for answer (string match), question, and other tokens by routing component
and layer for COLT5 Large model, averaged over examples in TriviaQA dev set.



The same is true 
for tokens around 
the correct answer 
(“papageno” in 
this example).

Question is 
heavily routed to 
the expensive 
alternative by last 
layers of the 
model.

Figure 8: Visualization of token routing weights for some fragments of an example on TriviaQA.

Earlier we showed that question and answer to-
kens are more likely to be selected, but separat-
ing routing decisions by layer reveals interesting
patterns. At early layers question and answer to-
kens are only modestly more likely to be selected,
with routing probability sharply increasing at later
layers and peaking in the last layer. This makes
intuitive sense: in early layers the model has not
yet had the opportunity to identify which tokens
and parts of the document are important. However,
the increase is not monotonic and there is strong
variation between layers. This variation may im-
ply that different layers focus on different types of
tokens, or that some routing components do not
successfully learn to identify important tokens.

To gain a better insight into this, Figure 8 vi-
sualizes routing on two sample fragments from a
TriviaQA example (notice that, given the large in-
put length used in COLT5, we do not show the
complete example in the figure). The two frag-
ments shown correspond to the beginning of the
example (where the question is located), and the
part of the context surrounding the correct answer.
We have added a colored background to the figure,
where each of the three CMY channels are mapped
to the KV-routing weights in different layers of the
model. Cyan corresponds to layer 1, Magenta to
layer 12, and Yellow to layer 24. As we can see,
question and answer are heavily yellow colored,
showing those tokens are selected in the last layer.

Correlation between routing processes. Table
10 shows the Pearson correlation coefficient be-
tween the routing weights of the different routing
mechanisms in each layer in a COLT5 Large model
(MLP-routing correlation with KV-routing, MLP-

routing with Q-routing, and KV-routing with Q-
routing). We show numbers for both the pre-trained
checkpoint, as well as a fine-tuned model on Trivi-
aQA. As we can see, the routing of keys/values and
routing of queries is highly correlated at all layers
except the first two, while the routing of tokens
in the MLP has lower correlation to the other two
processes. Interestingly correlation between MLP
and attention routing increases in the last layers of
the model.



Pre-trained Fine-tuned
MLP-KV MLP-Q KV-Q MLP-KV MLP-Q KV-Q

1 -0.06 -0.06 -0.09 -0.06 -0.09 -0.26
2 0.27 0.52 0.04 0.27 0.39 0.02
3 -0.05 -0.03 0.75 0.05 -0.01 0.69
4 0.05 0.09 0.76 0.18 0.14 0.72
5 0.02 -0.01 0.75 0.22 0.26 0.68
6 0.02 -0.01 0.78 0.31 0.33 0.70
7 0.02 0.00 0.73 0.26 0.27 0.70
8 0.00 -0.02 0.44 0.11 -0.07 0.29
9 0.13 0.11 0.74 0.36 0.40 0.70
10 -0.06 -0.08 0.08 -0.15 -0.15 0.12
11 -0.05 -0.07 0.31 -0.08 -0.03 0.18
12 -0.04 -0.08 0.27 0.03 0.00 0.28
13 -0.10 -0.09 0.87 -0.13 -0.03 0.72
14 -0.04 -0.05 0.76 -0.06 -0.12 0.67
15 0.53 0.64 0.69 0.51 0.55 0.67
16 0.08 0.12 0.63 0.06 0.57 0.24
17 0.28 0.30 0.65 0.27 0.32 0.69
18 0.28 0.02 0.84 0.31 0.20 0.76
19 0.45 0.77 0.59 0.19 0.38 0.64
20 0.30 0.39 0.64 0.38 0.47 0.62
21 0.05 -0.04 0.49 0.18 0.11 0.47
22 0.05 0.00 0.69 0.21 0.16 0.68
23 0.39 0.33 0.68 0.60 0.79 0.69
24 0.43 0.39 0.59 0.57 0.63 0.65

Table 10: Pearson correlation coefficient between the
routing weights of the different routing mechanisms in
each layer in a COLT5 Large model. We show num-
bers for both the pre-trained checkpoint, as well as a
fine-tuned model on TriviaQA. Blue bars visualize pos-
itive correlation, whereas red bars visualize negative
correlation.


