
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ESTIMATING THE EFFECTS OF SAMPLE TRAINING OR-
DERS FOR LARGE LANGUAGE MODELS WITHOUT RE-
TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The order of training samples plays a crucial role in large language models
(LLMs), significantly impacting both their external performance and internal
learning dynamics. Traditional methods for investigating this effect generally re-
quire retraining the model with various sample orders, which is computationally
infeasible for LLMs. In this work, we improve traditional methods by designing a
retraining-free framework. By approximating Adam optimizer updates with first-
and second-order Taylor expansions and utilizing random projection methods to
store intermediate checkpoints, our framework can efficiently estimate model pa-
rameters for arbitrary training sample orders. Next, we apply our framework to
two downstream research problems: (1) Training curriculum design for LLMs —
We base our retraining-free framework to propose a novel curriculum learning
strategy that augments curriculum proposals with estimated model performances,
enabling more informed sample scheduling. (2) LLMs’ memorization and gener-
alization effect analysis — We use our retraining-free framework to estimate how
the positions of training samples influence LLMs’ capacity for memorization and
generalization. We conduct extensive experiments to validate the effectiveness of
our retraining-free framework in reproducing the true model performances, and
further demonstrate its potential in optimizing LLM training curricula and analyz-
ing the memorization and generalization effects of LLMs.

1 INTRODUCTION

The order of training samples is crucial for optimizing large language models (LLMs), primarily due
to the inherent nature of batch-based optimization methods (e.g., mini-batch gradient descent) (Xue
et al., 2023; Peng et al., 2025). This insight has spurred significant research in areas such as train-
ing curriculum design for LLMs, which strategically schedules training samples to enhance model
optimization (Zhang et al., 2025b;a; Campos, 2021; Dai et al., 2025), and LLMs’ memorization and
generalization effect analysis (Lesci et al., 2024; Tirumala et al., 2022; Budnikov et al., 2025; Zheng
& Jiang, 2022), which investigates how the sequence of sample exposure influences the model’s
ability to retain knowledge and generalize effectively. A straightforward strategy to study these
problems is to train the target model multiple times with different sample orders, and then observe
the results to either select the optimal one or analyze the underlying patterns (Zhang et al., 2018b;
Xue et al., 2023; Kim & Lee, 2024).

In traditional machine learning, the above strategy is feasible because sample and parameter sizes
are typically manageable, and training costs are relatively low (Zhang et al., 2018a; Graves et al.,
2017). However, in the era of LLMs, this approach becomes impractical due to the massive scale of
samples and parameters. This naturally raises a novel and fundamental research question:

Can we estimate the effect of sample ordering on LLM performance without retraining?

Despite its significance, answering this question is challenging. To begin with, a practical strategy
for estimating model performance under a target sample order is to first measure the performance
for a reference sample order and then infer the target performance by establishing a relationship
between these two orders. However, since the target sample order can be arbitrary in an extremely

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

large space, identifying a common basis to effectively bridge the reference and target performances
becomes a non-trivial challenge. And then, even if we can successfully identify a common basis for
relating different sample orders, efficiently storing this basis also poses a significant challenge, as it
may involve a vast number of LLM parameters.

To overcome the above challenges, in this paper, we propose a novel retraining-free framework
by approximating the parameter updating process with Taylor expansions (called FUT for short).
Specifically, we focus on the Adam optimizer and reformulate its update term as a function of the
current model parameters. Next, we apply Taylor expansions to derive the relationships between
the update terms across different model parameters based on the first- and second-order gradients of
the loss function. This formulation establishes the common basis for correlating LLM performance
across varying sample orders. Finally, we adopt the Random Projection based on the Johnson-
Lindenstrauss (JL) theorem (Venkatasubramanian & Wang, 2011) to store the update terms for all
training batches, significantly reducing memory consumption while maintaining accuracy.

Building on the above foundational framework, we further apply it to two specific research problems:
(1) Training curriculum design for LLMs. Unlike traditional curriculum learning strategies that rely
on human heuristics to determine sample orders, our framework empowers users to select sample
orders based on the final model performance. Furthermore, for each sample order, our framework
provides performance estimations, enabling users to make more informed decisions. (2) LLMs’
memorization and generalization effect analysis. Unlike previous approaches that assess the impact
of sample positioning on memorization and generalization through costly retraining or black-box
neural network approximations, our framework offers an efficient and principled method to analyze
these capabilities in LLMs.

In summary, the main contributions of this paper can be summarized as follows:

• We formally define the problem of “estimating the impact of training sample orders on model
performance without retraining” in the context of LLMs.

• To solve the above problem, we propose a principled framework based on Taylor expansions and
the Random Projection to efficiently estimate LLM performance for arbitrary sample orders.

•We apply our framework to two specific applications: (1) training curriculum design for LLMs and
(2) LLMs’ memorization and generalization effect analysis to demonstrate its fundamental nature
and general applicability.

•We conduct extensive experiments to demonstrate the effectiveness of our framework in approxi-
mating the true performance and validate its potential in addressing the aforementioned applications.

2 PROBLEM FORMULATION

Suppose we have a training dataset with T batches, denoted as Dtr = {Bt}T−1
t=0 , and an LLM M .

We begin by training M on Dtr following a reference sample order and obtain the corresponding
reference checkpoints1. Specifically, without loss of generality, we assume the reference sample
order is B0, B1, . . . , BT−1, with the initial parameters of M represented as θ0. After processing
each batch Bt, the model parameters are updated from θt to θt+1. Ultimately, we collect the refer-
ence checkpoints as Θ = {θt}Tt=0. For a new sample order, Bl0 , Bl1 , . . . , BlT−1

, where Blt is the
(t+1)th training batch, our problem aims to efficiently derive the model parameters {γt}Tt=0, where
γt+1 is the model parameter after training batch Blt , and we set γ0 = θ0.

Relation with the influence function. The above problem shares similarities with the influence
function (Koh & Liang, 2017), as both study the effects of training samples. However, there are
fundamental differences: our focus is on understanding the impact of sample ordering, while the
influence function primarily examines the effect of removing individual samples. Moreover, our
problem is situated within the context of LLMs, demanding efficient storage and management of
large-scale model parameters.

Straightforward solutions. To solve the above problem, one is to retrain M using the new sample
order Bl0 , Bl1 , . . . , BlT−1

and obtain the model parameters {γt}Tt=0 after each batch. Another po-

1Note that the reference sample order can be arbitrary or chosen based on user preference.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝜃! = 𝜃+ − 𝜂Γ(𝜃+,)

…

𝜃#$" 𝜃#$! 𝜃#𝜃+

Γ(𝜃+,)
Γ(𝜃+,)

…

Γ(𝜃+,)

Γ(𝜃+,)

Γ(𝜃!,)
Γ(𝜃!,)

…

Γ(𝜃!,)

Γ(𝜃!,)

▽, Γ(𝜃!,)

▽, Γ(𝜃!,)

▽, Γ(𝜃!,)…

▽, Γ(𝜃!,)

Γ(𝜃#$!,)
Γ(𝜃#$!,)

…

Γ(𝜃#$!,)

Γ(𝜃#$!,)

▽, Γ(𝜃#$!,)
▽, Γ(𝜃#$!,)…

▽, Γ(𝜃#$!,)

▽, Γ(𝜃#$!,)

…
𝛾!
-! = 𝛾+

-! − 𝜂Γ(𝛾+
-! ,) 𝛾"

-! = 𝛾!
-! − 𝜂 Γ(𝛾!

-! ,)

Γ(𝛾!
-! ,) = Γ(𝜃!,) +▽, Γ 𝜃!, + 𝛾!

-! − 𝜃!

𝛾#$"
-! 𝛾#$!

-! 𝛾#
-!𝛾+

-! = 𝜃+

…

…
𝛾!
-% = 𝛾+

-% − 𝜂Γ(𝛾+
-% ,) 𝛾"

-% = 𝛾!
-% − 𝜂Γ(𝛾!

-% ,) 𝛾#$"
-% 𝛾#$!

-% 𝛾#
-%𝛾+

-% = 𝜃+

Permuted
Order 𝑘"

Permuted
Order 𝑘'

Reference
Order 𝑟

Stage 1: Reference Model Training

Stage 3: Estimating

Stage 2: Update Term Storing

𝜃" = 𝜃! − 𝜂Γ(𝜃!,)
…

Γ(𝜃#$",)
Γ(𝜃#$",)…

Γ(𝜃#$",)

Γ(𝜃#$",)

▽, Γ(𝜃#$",)
▽, Γ(𝜃#$",)…

▽, Γ(𝜃#$",)

▽, Γ(𝜃#$",)
Random
Projection

…

[First-Order Taylor Expansion]

①

100%

<<100%

Memory

②

Figure 1: Overview of the FUT framework. FUT operates in three stages: Stage 1: Compute the
reference trajectory Θ = {θt}Tt=0 using a fixed data order r. Stage 2: Store update and gradient
terms for all (θt, Blt) pairs, compressing them via random projection. Stage 3: Estimate trajectories
{γki

t }Tt=0 under permuted data orders {ki}Ni=1 using first-order Taylor expansion based on stored
terms. A toy example along the dashed line illustrates: ① retrieving stored terms for expansion, and
② updating parameters along a permuted order.

tential solution treats the sample order as the input to a neural network, with the model parameters
as the output. In this way, a neural network could be trained to learn the correlation between the
input and output, enabling parameter estimation without full retraining. However, the first solution
demands substantial time and computational resources to retrain LLMs, rendering it practically in-
feasible. For the second solution, the limited availability of input-output pairs makes it difficult for
a neural network to accurately learn the correlations, resulting in significantly lower performance.

3 THE FUT FRAMEWORK

To address the limitations of the above straightforward solutions, in this section, we propose a princi-
pled retraining-free framework. The core idea of our approach is to establish a relationship between
{γt}Tt=0 and {θt}Tt=0 by delving deeply into their respective generation processes. Then, we derive
{γt}Tt=0 based on {θt}Tt=0, which are precomputed as reference checkpoints.

Here, we focus on the Adam optimizer due to its widespread use in LLM optimization. However,
our method can be easily extended to other batch-based gradient methods, such as SGD. By applying
the updating rule of Adam, we have: 2

θt+1 − θt = −ηΓ(θt, Bt), ∀ 0 ≤ t ≤ T − 1 (1)

In this equation, Γ(θt, Bt) = mt/(
√
vt + ϵ) is the update term, and

mt = (β1mt−1 + (1− β1)∇θL(θt, Bt))/(1− βt
1),

vt = (β2vt−1 + (1− β2)∇θL(θt, Bt)
2)/(1− βt

2),
(2)

where∇θL(θt, Bt) represents the gradient of the loss functionL computed with respect to the model
parameters θt using the mini-batch Bt. η is the learning rate. mt and vt are the first and second
momentum statistics, respectively. β1 and β2 are both the smoothing coefficients that control the
decay rate of past gradients. ϵ is a small constant to prevent mt and vt from being divided by zero.

Similar to the above updating rule, we have γt+1−γt = −ηΓ(γt, Blt) (0 ≤ t ≤ T−1). To compute
γt+1, we regard Γ(θ,B) as a function of the model parameters θ. By using Taylor expansions on

2Without special mention, the updating is applied to each dimension of the parameter separately.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Γ(γt, Blt), we have:

Γ(γt, Blt) ≈ Γ(θt, Blt) + (γt − θt)∇θΓ(θt, Blt) (3)

where ∇θΓ(θt, Blt) represents the gradient of Γ(θt, Blt) with respect to θ. In this equation, since
Blt is one of B0, B1, . . . , BT−1, if we can obtain Γ(θt, Blt) and∇θΓ(θt, Blt) for all 0 ≤ t ≤ T−1,
then γt+1 can be recursively computed as follows:

γt+1 = γt − ηΓ(θt, Blt)− η(γt − θt)∇θΓ(θt, Blt), (4)

where all the variables on the right-hand side are known. Here, Γ(θt, Blt) and ∇θΓ(θt, Blt) form
the basis for connecting γt and θt. According to the Adam computational rules, we have:

∇θΓ(θt, Blt) =
∂mt

∂θ (
√
vt + ϵ)− ∂

√
vt

∂θ mt

(
√
vt + ϵ)2

(5)

where
∂mt

∂θ
=

β1 · ∂mt−1

∂θ + (1− β1) · ∇2
θL(θt, Blt)

1− βt
1

,

∂
√
vt

∂θ
=

β2 · ∂vt−1

∂θ + 2(1− β2) · ∇θL(θt, Blt) · ∇2
θL(θt, Blt)

2(1− βt
2)
√
vt

.

(6)

By jointly observing equation (2) and (5), we can see Γ(θt, Blt) and ∇θΓ(θt, Blt) only rely on
∇θL(θt, Blt) and ∇2

θL(θt, Blt). These terms are the gradients of the loss function with respect
to the reference checkpoint and the training batch. Since the reference checkpoints {θt}Tt=0 have
already been collected before, we can efficiently compute ∇θL(θt, Blt) and ∇2

θL(θt, Blt) simply
by bringing θt and Blt into the gradient functions.

The algorithm for deriving {γt}Tt=0 is shown in Algorithm 1. In specific, there are three stages.
In the reference model training stage, we train M using Dtr based on the reference sample order.
After obtaining Θ = {θt}Tt=0, in the update term storing stage, we derive and store Γ(θt, Blt) and
∇θΓ(θt, Blt) for all 0 ≤ t ≤ T−1 based on equation (2) and (5). At last, in the estimation stage, for
a new sample order {lt}T−1

t=0 , we compute {γt}Tt=0 based on equation (4) in a recursive manner. In
practice, the first two stages are executed only once, after which the performance of any new sample
order can be efficiently estimated. Figure 1 illustrates the complete FUT framework.

Enhanced model with the second-order Taylor expansion. In the above method, we approximate
Γ(γt, Blt) with the first-order Taylor expansion. To enhance accuracy, we extend our approach by
incorporating the second-order term, resulting in an updated version of equation (3) as follows:

Γ(γt, Blt) ≈ Γ(θt, Blt) + (γt − θt)∇θΓ(θt, Blt) +
1

2
· (γt − θt)

2∇2
θΓ(θt, Blt) (7)

where ∇2
θΓ(θt, Blt) is the second-order gradient of Γ(θt, Blt). By combining this equation with

γt+1 − γt = −ηΓ(γt, Blt), we have:

γt+1 = γt − ηΓ(θt, Blt)− η(γt − θt)∇θΓ(θt, Blt)−
1

2
η · (γt − θt)

2∇2
θΓ(θt, Blt). (8)

Please referred to Appendix B.1 for more details to precompute ∇2
θΓ(θt, Blt). After obtaining

∇2
θΓ(θt, Blt), we can efficiently derive {γt}Tt=0 based on equation (8) in a recursive manner.

Efficient storage of the update terms. According to the above analysis, our framework heav-
ily rely on Γ(θt, Blt), ∇θΓ(θt, Blt) and ∇2

θΓ(θt, Blt). However, in the context of LLMs, their
dimensions are extremely large, posing significant storage challenges. To address this issue, we
leverage the Random Projection technique (Chen et al., 2019a; Zhang et al., 2018b) based on the
Johnson-Lindenstrauss (JL) theorem (Venkatasubramanian & Wang, 2011) to efficiently reduce their
dimensionality. To illustrate this process, consider storing a 2-dimensional matrix M ∈ Rd1×d2 . We
first generate a random matrix A ∈ Rd2×k that follows a Gaussian distribution N (0, 1/k), where
k is the target dimension chosen based on the JL theorem. Next, we perform dimensionality re-
duction by left-multiplying A with M , that is, M ′ = MA. Here, M ′ ∈ Rd1×k is the compressed
representation for storage. To recover the original matrix M , we similarly perform a left multipli-
cation using the Moore-Penrose pseudoinverse of A, denoted as A+, that is, M̃ = M ′A+. This

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 FUT Framework for Deriving {γt}Tt=0 with First-order Taylor Expansion

Require: Initialized model parameter θ0, reference training batches {Bt}T−1
t=0 , learning rate η, and

ϵ.
Ensure: Derived sequence {γt}Tt=0

1: Reference Model Training Stage:
2: for t = 0 to T − 1 do
3: Compute the (t+ 1)th reference checkpoint:
4: θt+1 ← θt − ηΓ(θt, Bt) (Eq. 1)
5: end for
6: Obtain Θ = {θt}Tt=0
7: Update Term Storing Stage:
8: for t = 0 to T − 1 do
9: Compute first- and second-order update terms:

10: Γ(θt, Blt)← calculate ∇θL(θt, Blt) with checkpoint θt on batch Blt
11: ∇θΓ(θt, Blt)← calculate ∇θL(θt, Blt), ∇2

θL(θt, Blt) with checkpoint θt on batch Blt
12: end for
13: Estimation Stage:
14: γ0 ← θ0
15: for t = 0 to T − 1 do
16: First-order Taylor expansion for Γ(γt, Blt):
17: Γ(γt, Blt)← Γ(θt, Blt) + (γt − θt)∇θΓ(θt, Blt) (Eq. 3)
18: Update γt+1:
19: γt+1 ← γt − ηΓ(γt, Blt) (Eq. 4)
20: end for
21: Return {γt}Tt=0

approach effectively reduces the space complexity of M from O(d1d2) to O(d1k), where k ≪ d,
significantly alleviating the storage burden when precomputing it. For higher-order terms such as
∇θΓ(θt, Blt) and∇2

θΓ(θt, Blt), we similarly apply the random projection technique to reduce their
storage complexity, making the process efficient and scalable.

Comparison between the computational costs of retraining and our method. Assume that the
time complexity for computing the loss gradient once is O(C). Enumerating model parameters
under all possible training orders requires retraining the model on the original dataset for T ! times,
where in each permuted order, we need to perform ∇θL(θt, Blt) for T times. Therefore, the total
time complexity of retraining is O(T · C · T !), which is computationally prohibitive for LLMs
with billions of parameters. In contrast, our method estimates the model updates under different
batch orders without retraining. Its main computational cost comes from computing the updating
terms Γ(θt, Blt), ∇θΓ(θt, Blt), and ∇2

θΓ(θt, Blt). In specific, each of these terms requires a single
backward computation of the model at checkpoint θt over batch Blt , i.e., L(θt, Blt). Since there are
T 2 such (θt, Blt) pairs in total, the overall time complexity of our method is O(T 2 · C).

4 APPLICATIONS

4.1 TRAINING CURRICULUM DESIGN FOR LLMS

Problem definition. Following the notations in Section 2, suppose we aim to train a model M
on the dataset Dtr = {Bt}T−1

t=0 . Let π be a permutation function that maps the standard index set
{0, 1, . . . , T − 1} to {π(0), π(1), . . . , π(T − 1)}, where π(t) ∈ [0, T − 1] indicates that batch Bt is
placed at the (π(t) + 1)-th position in the training sequence. Following common practice, we train
the LLM for only one epoch (Xue et al., 2023). The goal is to find an optimal permutation π∗ such
that the resulting model performs best on a validation set Dval, formally defined as:

π∗ := argmax
π∈Π

R(γπ
T ,Dval), (9)

where γπ
T denotes the final model parameters estimated using our FUT framework, and the training

order lt is induced by π. The performance metricR is implemented using Perplexity (PPL)Hu et al.
(2024), and Π denotes the space of all possible permutation functions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Our solution based on FUT. Since objective (9) is non-differentiable, we design a Genetic Algo-
rithm (GA) (Katoch et al., 2020) to obtain π∗. In specific, we maintain a set of candidate sample
orders and iteratively apply crossover and mutation operators to generate improved sample orders,
aiming to optimize the model performance. For more details, we refer readers to Appendix B.3.

Compared to traditional curriculum learning strategies, a key advantage of our method is its ability
to estimate model performance for each curriculum proposal, enabling more informed decisions.
For instance, by knowing the performance gap between different curricula, users can assess whether
the difference is significant. If the gap is small, users can confidently choose one at random.

4.2 LLMS’ MEMORIZATION AND GENERALIZATION EFFECT ANALYSIS

Problem definition. We continue to follow the notations introduced in Section 2. For each training
batch in Dtr, the memorization problem evaluates model performance when the batch appears at
different positions in the training sequence. Specifically, we use the following evaluation method:

Mi,j =
1

N

N∑
k=1

R(θπ
ij
k

T , Bi),

where πij
k is a permutation function that fixes Bi at the j-th training position while randomly shuf-

fling all other batches. For each Bi, we generate N such permutations, and the final performance
is computed as the average across these permutations. The generalization problem is defined in a
similar manner, with the key distinction that Bi in the above equation is replaced by Di, a dataset
not seen during training, i.e., Di /∈ Dtr.

Our solution based on FUT. For each πij
k , we first generate the sequence lt and then estimate γ

πij
k

T

using the reference checkpoints {θt}Tt=0. Finally, we computeR(θπ
ij
k

T , Bi) orR(θπ
ij
k

T , Di) based on

γ
πij
k

T , and average the resulting performances over different values of k.

Compared to previous studies that estimate memorization capability using black-box neural net-
work (Zheng & Jiang, 2022; Lesci et al., 2024; Feldman & Zhang, 2020), our method is more
principled and grounded in theoretical foundations.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our framework
and its potential applications in designing LLM training curricula and analyzing LLMs’ memoriza-
tion and generalization capabilities.

5.1 EVALUATION ON THE GENERAL CAPABILITY OF OUR METHODS

Experimental Setup. To evaluate the effectiveness of our FUT framework, we incorporate the es-
timated model parameters into the LLM and measure the performance gap between the estimated
and actual results. Specifically, we conduct our experiments on the Wikitext dataset (Merity et al.,
2018a), a curated collection of high-quality English Wikipedia articles that is widely used for lan-
guage modeling and evaluation. This dataset is particularly well-suited for assessing model perplex-
ity due to its long-range token dependencies (Merity et al., 2018b). We adopt the architecture of
LLaMA (Touvron et al., 2023) to construct a base model with 636 million parameters. The model
has a hidden size of 2048 and consists of 10 stacked transformer layers with 10 attention heads. We
choose this relatively small architecture because our main experiments involve repeated LLM train-
ing to validate that the proposed FUT framework can accurately estimate model parameters under
various training orders. In Appendix D.1, we scale the model size up to 6.0 billion parameters to
assess the scalability of our approach. Following common practice (Xue et al., 2023), we use the
Adam optimizer for LLM training and train for a single epoch to evaluate performance based on per-
plexity (Hu et al., 2024). We also report fine-grained performance estimation results at intermediate
stages in Appendix D.3.

In our experiments, assuming the dataset consists of T batches, we randomly select N training or-
ders from the total of T ! possible permutations. For each selected order, we use our method to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance estimation ac-
curacy (use AbsDiff as metric) across
methods under settings with different
numbers of batches.

T Random FUT FUT++
8 0.0205 0.0165 0.0085

16 0.0917 0.0649 0.0703
32 0.0373 0.0290 0.0193
64 0.0644 0.0445 0.0319
128 0.0575 0.0372 0.0284
256 0.0471 0.0205 0.0368

10 50 100 1000(#Orders)
0102

103

104

Ti
m

e
Co

st
 (m

in
)

1.9 6.6 13.3 132.61.4
3.4 6.5 64.8

1.2

2.0
3.4 32.2

1.1

1.4

2.0
15.5

1.1

1.2
1.5

8.0

1.0

1.1

1.2

3.8

Amortized Time Cost per Order (Log)
T=8
T=16
T=32
T=64
T=128
T=256

Figure 2: Time cost comparison. The numbers indicate
how many times our model time exceeds Retraining.

estimate the model performance r̂ and also train the LLM using that order to obtain the ground-truth
performance r. The performance gap is then calculated as: AbsDiff = 1

N

∑N
k=1 |r̂k − rk|, where

k indexes the different training orders. We set N = 10 to balance evaluation reliability with com-
putational cost. To assess the scalability and robustness of our framework, we vary the number of
batches T across the set {8, 16, 32, 64, 128, 256}. This setup allows us to evaluate how performance
estimation behaves under increasing training granularity and longer optimization trajectories.

Baseline. We denote our method using the first- and second-order Taylor expansions as FUT and
FUT++, respectively. The ground-truth performance obtained via actual LLM training is referred
to as Retraining. Additionally, we introduce a heuristic baseline, named Random, where we first
obtain all the N ground-truth performances {rk}Nk=1, and then randomly estimate the performance
within the range

[
mink∈[1,N] rk, maxk∈[1,N] rk

]
.

Results. Table 1 shows that the Random baseline performs the worst, indicating that estimating
LLM performance without retraining itself is a non-trivial task. Both FUT and FUT++ consistently
outperform Random across all batch settings with considerable margins, demonstrating their effec-
tiveness. Between our methods, FUT++ performs better than FUT in more cases, suggesting that
the inclusion of the second-order term in the Taylor expansion is beneficial for our problem. In
addition, we also compare the efficiency of our method with the Retraining strategy. Here, we vary
N over the set {10, 50, 100, 1000} to observe the trend as the number of sample orders increases3.
We compare different methods with various T ’s. The results are presented in Figure 2, where the
solid bars represent our method and the dashed bars represent Retraining. We observe that as the
total number of orders increases, our method progressively achieves higher time efficiency per order
compared to Retraining, with a maximum speedup of 132.6 times. Our methods across all T surpass
Retraining, highlighting the advantages of our methods in scalability. We also conduct experiments
to demonstrate the necessity of using the random projection for storage in Appendix D.2.

5.2 EVALUATION ON THE APPLICATION OF TRAINING CURRICULUM DESIGN FOR LLMS

Experimental Setup & Baselines. In this experiment, we evaluate whether our methods can as-
sist in designing more effective training curricula for LLMs. Similar to the above section, we
use perplexity as the evaluation metric and measure different models by varying T in the range
of {8, 16, 32, 64, 128, 256}. We compare our methods with the following baselines:

•Random Order (RO), which generates the curriculum by randomly shuffling the training batches.

• Sample Length (SL) (Campos, 2021), which is a difficulty-based curriculum design strategy, and
the difficulty score is determined based on the sentence length.

• Perplexity (PPL) (Zhang et al., 2025a), which uses the perplexity from a reference model as a
proxy to evaluate sample difficulty and design the curriculum.

• Perplexity Difference (PD) (Zhang et al., 2025b), measuring the perplexity gap between a strong
and a weak model, treating samples with larger gaps as more difficult to design the curriculum.

3The costs of the first two stages in our method are amortized across all sample orders, as they are executed
only once.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Perplexity results across different batch numbers and curriculum design strategies. “Est.”
means the performance estimated by our methods, and the colored results represent the best estima-
tion accuracy between the FUT and FUT++ methods.

Methods RO Len PPL PD FUT (Est.) FUT++ (Est.)
8 1.4414 1.4392 1.4012 1.4006 1.3996 (1.3963) 1.3998 (1.3962)

16 1.4599 1.5291 1.4531 1.4542 1.4536 (1.4314) 1.4523 (1.4307)

32 1.4109 1.4042 1.3966 1.3933 1.3909 (1.3823) 1.3881 (1.3686)

64 1.4248 1.4079 1.4027 1.4071 1.3785 (1.3838) 1.3804 (1.3856)

128 1.3838 1.3872 1.3790 1.3697 1.3412 (1.3446) 1.3619 (1.3512)

256 1.3696 1.3766 1.3645 1.3660 1.3378 (1.3551) 1.3178 (1.3460)

0 1 2 3 4 5 6 7
Position

0
1

2
3

4
5

6
7

M
em

or
ize

d
Ba

tc
h

1.43 1.44 1.44 1.43 1.43 1.40 1.40 1.37

1.44 1.43 1.44 1.44 1.42 1.43 1.40 1.39

1.44 1.42 1.40 1.38 1.40 1.38 1.38 1.35

1.44 1.43 1.42 1.44 1.44 1.44 1.39 1.39

1.43 1.44 1.43 1.43 1.40 1.37 1.40 1.38

1.44 1.44 1.42 1.40 1.37 1.37 1.39 1.36

1.44 1.44 1.41 1.40 1.37 1.40 1.35 1.36

1.39 1.43 1.42 1.37 1.40 1.37 1.36 1.38

Memorization Effects (FUT)

(a) FUT

0 1 2 3 4 5 6 7
Position

0
1

2
3

4
5

6
7

M
em

or
ize

d
Ba

tc
h

1.44 1.43 1.44 1.42 1.43 1.39 1.40 1.37

1.44 1.44 1.43 1.43 1.41 1.44 1.40 1.39

1.44 1.42 1.39 1.37 1.40 1.37 1.37 1.35

1.43 1.43 1.43 1.43 1.43 1.44 1.39 1.40

1.44 1.43 1.43 1.44 1.40 1.37 1.39 1.37

1.44 1.44 1.44 1.40 1.37 1.37 1.40 1.35

1.44 1.44 1.42 1.40 1.37 1.40 1.35 1.35

1.40 1.42 1.42 1.37 1.40 1.37 1.36 1.38

Memorization Effects (FUT++)

(b) FUT++

0 1 2 3 4 5 6 7
Position

0
1

2
3

4
5

6
7

Se
le

ct
ed

 B
at

ch

1.45 1.45 1.44 1.43 1.44 1.40 1.40 1.37

1.44 1.45 1.45 1.45 1.43 1.44 1.40 1.40

1.45 1.43 1.40 1.37 1.36 1.36 1.37 1.34

1.45 1.45 1.45 1.44 1.44 1.44 1.40 1.40

1.44 1.45 1.45 1.44 1.40 1.37 1.40 1.36

1.45 1.44 1.43 1.40 1.37 1.36 1.40 1.34

1.43 1.44 1.43 1.40 1.36 1.40 1.36 1.34

1.40 1.43 1.43 1.37 1.40 1.37 1.34 1.36

Memorization Effects (Retraining)

1.34

1.36

1.38

1.40

1.42

1.44

1.46

1.48

(c) True

Figure 3: Memorization effects. Heatmaps in (a) and (b) are estimated by our FUT and FUT++
methods, respectively. Heatmap in (c) represents the true memorization effect obtained by retraining.

We use the baseline methods and our proposed approaches (using equation (9)) to generate training
curricula, and train the LLM based on them for comparison.

Results. The results are shown in Table 2. We can see: In most cases, RO performs the worst, as it
lacks any problem-specific design and simply generates the training curriculum randomly. PPL and
PD consistently outperform SL across different batch sizes, which is as expected since they both
leverage perplexity as a proxy to design the curricula-aligning well with the final evaluation metric.
Finally, our methods achieve superior performance compared to all baselines, demonstrating their
effectiveness in designing training curricula for LLMs. As shown in the last two columns of Table 2,
our methods provide performance estimates that closely match the actual results, enabling more
efficient decision-making when selecting optimal training orders.

5.3 EVALUATION ON THE APPLICATION OF LLM MEMORIZATION & GENERALIZATION
EFFECT ANALYSIS

Experimental Setup. In this experiment, we evaluate the memorization & generalization effects
of LLM when a sample batch is placed at different training positions. In specific, the number of
training batches is set as 8 (i.e., T = 8). We visualize the value of Mi,j in Section 4.2 based on
perplexity by setting different (i, j) pairs.

Results. The results are presented in Figure 3, 4 and 5. We can see: Compared to the true mem-
orization effect (in Figure 3(c)), where we retrain the LLM to compute Mi,j , FUT and FUT++ in
Figure 3(a) and (b), can accurately estimate the model’s memorization of different batches at various
positions using both first- and second-order approximations, respectively. The results reveal that the
model tends to memorize batches appearing later in the training order more effectively, as indicated
by lower perplexity. For generalization analysis, we divide training batches into two groups based
on their similarity to the test set D, using the average similarity τ as a threshold. Our metric is the
cosine similarity of the sample representations. As shown in Figures 4 and 5, our method (dashed
red/blue lines) closely estimates the true performance (black line) and captures the same generaliza-
tion trend in most cases. In Figure 4, batches similar to the test data generalize better when placed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7
Position

1.300
1.325
1.350
1.375
1.400
1.425
1.450
1.475
1.500

Pe
rp

le
xi

ty

Generalize B1 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B2 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B3 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B4 to D
Real Values FUT FUT++

Figure 4: The generalization effect of batch Bi on dataset D, with sim(Bi, D) >= τ .

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B0 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B5 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B6 to D
Real Values FUT FUT++

0 1 2 3 4 5 6 7
Position

1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50

Pe
rp

le
xi

ty

Generalize B7 to D
Real Values FUT FUT++

Figure 5: The generalization effect of batch Bi on dataset D, with sim(Bi, D) < τ .

later in training. In contrast, Figure 5 shows that dissimilar batches have little or random effect on
generalization, regardless of their positions in the training sequences.

6 RELATED WORK

Training Dynamics of Language Models. Understanding training dynamics is essential for analyz-
ing how deep models evolve during optimization (Frankle et al., 2020; Raghu et al., 2017; Achille
et al., 2018). In the context of language models, early work focused on the evolution of learned
representations (Saphra & Lopez, 2018; Saphra, 2021) and the encoding of world knowledge (Liu
et al., 2021) during pre-training. These insights have also been extended to downstream tasks such
as summarization (Goyal et al., 2022) and speech translation (Savoldi et al., 2022). More recent
studies have begun to examine the training dynamics of LLMs (Ren & Sutherland, 2025; Biderman
et al., 2023; Teehan et al., 2022; Lesci et al., 2024; Dai et al., 2025), which are harder to analyze
due to their scale. For example, Teehan et al. (2022) studies internal representation development
and structural changes during training, while Biderman et al. (2023) uses models of varying sizes to
study how training behavior shifts with scale. Additionally, Ren & Sutherland (2025) explores how
learning certain examples affects the model’s behavior on other inputs.

Influence Function. Influence function is used to estimate the impact of each training sample on a
specific test prediction (Koh & Liang, 2017; Bae et al., 2022; Koh et al., 2019). The foundational
work by Koh & Liang (2017) applies influence functions by calculating gradients and Hessian-
vector products to measure the contribution of each training example to a test point. However,
research in (Basu et al., 2021; Guo et al., 2021) has shown that influence functions can be unstable
and unreliable in neural network. Additionally, computing the necessary Hessian-vector products is
computationally expensive, particularly for LLMs. To address this challenge, a recent study by (Lin
et al., 2024) introduces a caching mechanism to estimate token-level influences in LLMs. While this
method alleviates some computational difficulties, it overlooks the crucial influence of sample order
in the training process, which plays a significant role in shaping the learning dynamics.

7 CONCLUSION

In this work, we propose a retraining-free framework for analyzing the effect of training sample
order on LLMs, addressing the prohibitive cost of retraining-based approaches. By approximating
the optimization dynamics of Adam via Taylor expansion and employing random projection for
efficient parameter estimation, our framework enables accurate performance prediction under arbi-
trary sample orders. We demonstrate the utility of this framework in two key research problems of
LLMs: training curriculum design, and memorization & generalization effect analysis. Extensive
experiments show that our framework faithfully approximates true model performance and provides
valuable insights into both external performance and internal learning dynamics of LLMs. Our
framework offers a practical tool for understanding and optimizing the model behaviors of LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that this research adheres to the ICLR Code of Ethics. Our study does not involve
human subjects, and all datasets used are publicly available, with no sensitive or personal data
involved. We have considered the ethical implications of our work, particularly in terms of fairness
and potential misuse of large language models. We are committed to ensuring that our research
contributes positively to the academic community and society at large.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide clear descriptions of the methods and experi-
ments in the main text and appendix. The framework used in our experiments is built upon the Adam
optimizer with first- and second-order Taylor expansions, which are explained in detail in Section 3,
particularly in Algorithm 1. The source code for the implementation of our retraining-free frame-
work, as well as additional resources, are available as supplementary materials. For datasets, we use
the Wikitext dataset as detailed in Section 5.1. All experimental settings and hyperparameters used
in our evaluation are provided in Appendix C to ensure that our results can be reproduced accurately.

REFERENCES

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks.
In International Conference on Learning Representations, 2018.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Andrei Z. Broder. On the resemblance and containment of documents. Proceedings. Compression
and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), pp. 21–29, 1997.

Mikhail Budnikov, Anna Bykova, and Ivan P Yamshchikov. Generalization potential of large lan-
guage models. Neural Computing and Applications, 37(4):1973–1997, 2025.

Daniel Campos. Curriculum learning for language modeling. arXiv preprint arXiv:2108.02170,
2021.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and ac-
curate network embeddings via very sparse random projection. In Proceedings of the 28th ACM
international conference on information and knowledge management, pp. 399–408, 2019a.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm:
Zeroth-order adaptive momentum method for black-box optimization. Advances in neural infor-
mation processing systems, 32, 2019b.

Yalun Dai, Yangyu Huang, Xin Zhang, Wenshan Wu, Chong Li, Wenhui Lu, Shijie Cao, Li Dong,
and Scarlett Li. Data efficacy for language model training. arXiv preprint arXiv:2506.21545,
2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. arXiv preprint cs/0408007, 2004.

Jonathan Frankle, David J Schwab, and Ari S Morcos. The early phase of neural network training.
arXiv preprint arXiv:2002.10365, 2020.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Henok Ghebrechristos and Gita Alaghband. Deep curriculum learning optimization. SN Computer
Science, 1(5):245, 2020.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gra-
dientless descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317,
2019.

Tanya Goyal, Jiacheng Xu, Junyi Jessy Li, and Greg Durrett. Training dynamics for text summa-
rization models. In Findings of the Association for Computational Linguistics: ACL 2022, pp.
2061–2073, 2022.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. Pmlr, 2017.

Liangke Gui, Tadas Baltrušaitis, and Louis-Philippe Morency. Curriculum learning for facial ex-
pression recognition. In 2017 12th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2017), pp. 505–511. IEEE, 2017.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. Fastif: Scalable influence
functions for efficient model interpretation and debugging. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 10333–10350, 2021.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep net-
works. In International conference on machine learning, pp. 2535–2544. PMLR, 2019.

Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect
large language model’s ability in long text understanding? ArXiv, abs/2405.06105, 2024. URL
https://api.semanticscholar.org/CorpusID:269741336.

Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm: past,
present, and future. Multimedia Tools and Applications, 80:8091 – 8126, 2020. URL https:
//api.semanticscholar.org/CorpusID:226227415.

Jisu Kim and Juhwan Lee. Strategic data ordering: Enhancing large language model performance
through curriculum learning. ArXiv, abs/2405.07490, 2024.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. Advances in neural information processing systems, 32,
2019.

Padmavathi Kora and Priyanka Yadlapalli. Crossover operators in genetic algorithms: A review.
International Journal of Computer Applications, 162(10), 2017.

11

https://api.semanticscholar.org/CorpusID:269741336
https://api.semanticscholar.org/CorpusID:226227415
https://api.semanticscholar.org/CorpusID:226227415

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pietro Lesci, Clara Meister, Thomas Hofmann, Andreas Vlachos, and Tiago Pimentel. Causal esti-
mation of memorisation profiles. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 15616–15635, 2024.

William Liang, Sam Wang, Hung-Ju Wang, Osbert Bastani, Dinesh Jayaraman, and Yecheng Jason
Ma. Environment curriculum generation via large language models. In 8th Annual Conference
on Robot Learning, 2024.

Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao. Token-wise influential training data re-
trieval for large language models. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 841–860, 2024.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Zeyu Liu, Yizhong Wang, Jungo Kasai, Hannaneh Hajishirzi, and Noah A Smith. Probing across
time: What does roberta know and when? In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 820–842, 2021.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum learn-
ing. IEEE transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

Stephen Merity, Nitish Shirish Keskar, James Bradbury, and Richard Socher. Scalable language
modeling: Wikitext-103 on a single gpu in 12 hours. Proceedings of the SYSML, 18, 2018a.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural language modeling
at multiple scales. arXiv preprint arXiv:1803.08240, 2018b.

Marwa Naı̈r, Kamel Yamani, Lynda Said Lhadj, and Riyadh Baghdadi. Curriculum learning for
small code language models. arXiv preprint arXiv:2407.10194, 2024.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Ru Peng, Kexin Yang, Yawen Zeng, Junyang Lin, Dayiheng Liu, and Junbo Zhao. Dataman: Data
manager for pre-training large language models. arXiv preprint arXiv:2502.19363, 2025.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

Yi Ren and Danica J. Sutherland. Learning dynamics of llm finetuning, 2025. URL https:
//arxiv.org/abs/2407.10490.

Naomi Saphra. Training dynamics of neural language models. 2021.

Naomi Saphra and Adam Lopez. Understanding learning dynamics of language models with svcca.
arXiv preprint arXiv:1811.00225, 2018.

Beatrice Savoldi, Marco Gaido, Luisa Bentivogli, Matteo Negri, and Marco Turchi. On the dynamics
of gender learning in speech translation. In Proceedings of the 4th Workshop on Gender Bias in
Natural Language Processing (GeBNLP), pp. 94–111. Association for Computational Linguistics,
2022.

Ryan Teehan, Miruna Clinciu, Oleg Serikov, Eliza Szczechla, Natasha Seelam, Shachar Mirkin, and
Aaron Gokaslan. Emergent structures and training dynamics in large language models. In Pro-
ceedings of BigScience Episode# 5–Workshop on Challenges & Perspectives in Creating Large
Language Models, pp. 146–159, 2022.

12

https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2407.10490

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim P Papadopoulos, and
Vittorio Ferrari. How hard can it be? estimating the difficulty of visual search in an image. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–
2166, 2016.

Suresh Venkatasubramanian and Qiushi Wang. The johnson-lindenstrauss transform: an empirical
study. In 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pp. 164–173. SIAM, 2011.

Xin Wang, Yuwei Zhou, Hong Chen, and Wenwu Zhu. Curriculum learning for multimedia in the
era of large language models. In Proceedings of the 32nd ACM International Conference on
Multimedia, pp. 11296–11297, 2024.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning: Theory
and experiments with deep networks. In International conference on machine learning, pp. 5238–
5246. PMLR, 2018.

Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong Zhang.
Curriculum learning for natural language understanding. In Proceedings of the 58th annual meet-
ing of the association for computational linguistics, pp. 6095–6104, 2020.

Fuzhao Xue, Yao Fu, Wangchunshu Zhou, Zangwei Zheng, and Yang You. To repeat or not to
repeat: Insights from scaling llm under token-crisis, 2023.

Liang Zhang, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. Dpzero: dimension-
independent and differentially private zeroth-order optimization. In International Workshop on
Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023, 2023.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J Mar-
tindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical exploration of curriculum
learning for neural machine translation. arXiv preprint arXiv:1811.00739, 2018a.

Xuemiao Zhang, Feiyu Duan, Liangyu Xu, Yongwei Zhou, Sirui Wang, Rongxiang Weng, Jingang
Wang, and Xunliang Cai. Frames: Boosting llms with a four-quadrant multi-stage pretraining
strategy. arXiv preprint arXiv:2502.05551, 2025a.

Xuemiao Zhang, Liangyu Xu, Feiyu Duan, Yongwei Zhou, Sirui Wang, Rongxiang Weng, Jingang
Wang, and Xunliang Cai. Preference curriculum: Llms should always be pretrained on their
preferred data. arXiv preprint arXiv:2501.13126, 2025b.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. Billion-scale network embed-
ding with iterative random projection. In 2018 IEEE international conference on data mining
(ICDM), pp. 787–796. IEEE, 2018b.

Deli Zhao, Jiapeng Zhu, Zhenfang Guo, and Bo Zhang. Curriculum learning for deep generative
models with clustering. arXiv preprint arXiv:1906.11594, 2019.

Xiaosen Zheng and Jing Jiang. An empirical study of memorization in nlp. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 6265–6278, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

A Acknowledgment of LLM Usage 15

B Technical Details 15

B.1 Precomputation in Update Term Storing Stage . 15

B.2 Random Projection for Storing Update Terms . 16

B.3 Genetic Algorithm for Training Curriculum Design in FUT Framework 17

C Experimental Details 18

C.1 General Capability . 18

C.2 Training Curriculum Design for LLMs . 19

D Additional Experimental Results 20

D.1 Scalability of FUT Framework . 20

D.2 Impact of Random Projection Technique . 20

D.3 Batch-wise Analysis of Performance Estimation Accuracy 21

E Further Discussions of Related Work 22

E.1 Curriculum Learning for LLMs . 22

E.2 Zeroth-Order Optimization . 22

F Broader Impacts 22

G Limitations 23

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ACKNOWLEDGMENT OF LLM USAGE

For this manuscript, large language models (LLMs) were only used to assist with language editing,
including the correction of typos, enhancement of grammar, and improvement of phrasing. They
were not involved in any aspect of research ideation, analysis, result generation, or interpretation.
The responsibility for all scientific content in this work rests entirely with the authors.

B TECHNICAL DETAILS

B.1 PRECOMPUTATION IN UPDATE TERM STORING STAGE

Recall that the proposed FUT framework consists of three stages in Figure 1, where the update term
storing (Stage 2) plays an important role to bridge the gap between the learning dynamic of reference
order and that of the new order. In specific, in Stage 2, we need to compute three kinds of update
terms: Γ(θt, Blt) and ∇θΓ(θt, Blt) for the first-order Taylor expansion (in equation (3)), and the
additional ∇2

θΓ(θt, Blt) for the second-order Taylor expansion (in equation (7)). In the following,
we describe how we compute these three update terms in detail, respectively.

• First, for each Γ(θt, Blt) term, we can compute it by directly applying the checkpoint θt over batch
Blt following the updating rule of Adam optimizer:

Γ(θt, Blt) = mt/(
√
vt + ϵ), (10)

where
mt = (β1 ·mt−1 + (1− β1) · ∇θL(Blt ; θt))/(1− βt

1),

vt = (β2 · vt−1 + (1− β2) · ∇θL(Blt ; θt)
2)/(1− βt

2),
(11)

where the accumulative terms mt−1 and vt−1 terms in mt and vt are constructed by the gradient
from the last step in the original training process, i.e., ∇θL(Bt−1; θt−1).

• Second, for each first-order update term ∇θΓ(θt, Blt), we first expand it as:

∇Γ(θt, Blt) =
∂Γ(θt, Blt)

∂θ
=

∂mt

∂θ (
√
vt + ϵ)− ∂

√
vt

∂θ mt

(
√
vt + ϵ)2

(12)

where
∂mt

∂θ
=

β1 · ∂mt−1

∂θ + (1− β1) · ∇2
θL(Blt ; θt)

1− βt
1

,

∂
√
vt

∂θ
=

β2 · ∂vt−1

∂θ + 2(1− β2) · ∇θL(Blt ; θt) · ∇2
θL(Blt ; θt)

2(1− βt
2)
√
vt

,

(13)

To compute the second-order gradient ∇2
θL(Blt ; θt), a straightforward approach is to apply the

backward operator to L(Blt ; θt) twice. However, this requires computing the Hessian matrix of the
parameters, which is prohibitively expensive, especially for LLMs with a large number of parame-
ters.

To address this limitation, we approximate the second-order gradient using (∇θL(Blt ; θt) −
∇θL(Blt ; θt−1))/(θt − θt−1), where θt−1 denotes the parameter at step t−1 in the original train-
ing process. This approximation is justified by the limited variation in parameter updates between
adjacent training steps.

• At last, for each ∇2Γ(θt, Blt) term, we can also expand it as:

∇2Γ(θt, Blt) =
∂2Γ(θt, Blt)

∂θ2
=

1(√
vt + ϵ

)2
[(

∂2mt

∂θ2

)
(
√
vt + ϵ)−

(
∂2√vt
∂θ2

)
mt

− 2

(
∂
√
vt

∂θ

)(
∂mt

∂θ

)
+ 2

(
∂
√
vt

∂θ

)2
mt√
vt + ϵ

]
(14)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where

∂2mt

∂θ2
=

β1 · ∂
2mt−1

∂θ2 + (1− β1) · ∇3
θL(Blt ; θt)

1− βt
1

,

∂2√vt
∂θ2

=
β2 · ∂

2vt−1

∂θ2 + 2(1− β2)
[
∇2

θL(Blt ; θt) · ∇2
θL(Blt ; θt) +∇θL(Blt ; θt) · ∇3

θL(Blt ; θt)
]

2(1− βt
2)
√
vt

−

(
β2 · ∂vt−1

∂θ + 2(1− β2) · ∇θL(Blt ; θt) · ∇2
θL(Blt ; θt)

)
· ∂vt

∂θ

4(1− βt
2)(vt)

3/2
,

(15)
Similarly, to compute the third-order gradient ∇3

θL(Blt ; θt), we use (∇2
θL(Blt ; θt) −

∇2
θL(Blt ; θt−1))/(θt − θt−1) to approximate it.

By computing these update terms for each (θt, Blt) pair, we can access all the update terms we
may need in Estimating Stage (Stage 3 in Figure 1). That is, given an arbitrary permuted order,
which is different from the reference one, we can recursively execute the first-order Taylor expan-
sion in equation (3) or the second-order Taylor expansion in equation (7) to obtain the new model
parameters.

B.2 RANDOM PROJECTION FOR STORING UPDATE TERMS

The update terms Γ(θt, Blt), ∇θΓ(θt, Blt), and ∇2
θΓ(θt, Blt) are essential to our FUT framework.

However, in large-scale neural networks such as LLMs, these terms typically have dimensionality
comparable to that of the model parameters, making direct precomputation and storage for every
pair (θt, Blt) prohibitively expensive in terms of memory.

To mitigate this issue, we adopt a random projection strategy based on the Johnson–Lindenstrauss
(JL) theorem (Venkatasubramanian & Wang, 2011), following the well-established compression
techniques in (Lin et al., 2024). The JL theorem guarantees that high-dimensional vectors can be em-
bedded into a significantly lower-dimensional space with bounded distortion of pairwise distances,
which aligns well with our goal of efficiently storing approximate versions of gradient-related terms.

Theorem 1 (Johnson–Lindenstrauss Theorem) Let 0 < ϵ < 1 and let X = {x1, x2, . . . , xn} ⊂
Rd be a set of n vectors. Then there exists a linear mapping f : Rd → Rk, where k = O(ϵ−2 log n),
such that for all xi, xj ∈ X ,

(1− ϵ)∥xi − xj∥22 ≤ ∥f(xi)− f(xj)∥22 ≤ (1 + ϵ)∥xi − xj∥22.

In our setting, we apply the JL projection to compress each update matrix prior to storage.
Formally, for any matrix M ∈ Rd1×d2—where M may represent Γ(θt, Blt), ∇θΓ(θt, Blt), or
∇2

θΓ(θt, Blt)—we generate a random projection matrix A ∈ Rd2×k whose entries are sampled
i.i.d. from a Gaussian distribution: Aij ∼ N (0, 1/k). The compressed representation of M is then
given by:

M ′ = MA ∈ Rd1×k.

This projection reduces the space complexity from O(d1d2) to O(d1k) while approximately pre-
serving the geometric structure of the original matrix rows.

To recover these terms for estimating the parameters under a new batch order, an approximate re-
construction can be achieved using the Moore–Penrose pseudoinverse A+ ∈ Rk×d2 as:

M̃ = M ′A+ ≈M.

In practice, the target dimension k is selected based on the number of rows d1 in M , which cor-
responds to the number of vectors n in Theorem 1. To balance accuracy and memory usage, we
empirically choose k ∈ {300, 200, 160, 80, 20, 8} depending on the layer size and update type.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 Genetic Algorithm for Finding Optimal Training Curriculum

Require: Validation set Dval, number of batches T , population size N , number of generations K,
mutation probability pm

Ensure: Optimal sample order πGA∗

1: Initialize permutation space ST = {π | π is a permutation of {1, . . . , T}}
2: Randomly sample N permutations as initial population: POP = {πi}Ni=1 ⊂ ST
3: for k = 1 to K do
4: for all πi ∈ POP do
5: Compute γπi

T using FUT with sample order πi

6: Evaluate fitness ri = R(γπi

T ,Dval)
7: end for
8: Retain top 50% individuals with highest fitness to form POPsurvive
9: while Size of new children < N/2 do

10: Randomly select two parents πa, πb from POPsurvive
11: Randomly choose crossover points l, r such that 1 ≤ l < r ≤ T
12: Generate child πc = PMX(πa, πb, l, r)
13: if random() < pm then
14: Randomly select positions i, j and swap πc

i and πc
j

15: end if
16: Add πc to new children
17: end while
18: Replace discarded individuals in POP with new children
19: end for
20: return πGA∗ = argmaxπ∈POPR(γπ

T ,Dval)

B.3 GENETIC ALGORITHM FOR TRAINING CURRICULUM DESIGN IN FUT FRAMEWORK

Recall that the objective in equation (9), i.e., π∗ := argmaxπ∈ΠR(γπ
T ,Dval), is to find the optimal

permutation π∗ that leads to the best validation performance, where γπ
T represents the final model

parameters estimated by FUT framework. However, equation (9) is naturally non-differentiable,
hindering its application in finding the optimal curriculum. To address this issue, we design an
optimization algorithm based on Genetic Algorithm (GA) (Katoch et al., 2020). GA is a well-
established metaheuristic algorithm inspired by Darwinian evolution, which iteratively evolves a
population of candidate solutions based on the principle of survival of the fittest. In our context,
each candidate represents a specific sample order π, and the fitness of each individual is evaluated
by the model’s performance rπ = R(γπ

T ,Dval). By leveraging crossover, mutation, and selection
operators, GA enables us to efficiently explore the exponentially large permutation space without
exhaustive enumeration. We describe the detailed design of our GA-based search strategy as follows:

1. Population Initialization: Randomly select N sample orders POP={πi}Ni=1 from ST as
the initial populations, where ST = {π | π is a permutation of {1, . . . , T}}, with |ST | =
T !.

2. Fitness Selection: For each πi ∈ POP, evaluate the model performance R(γπi

T ,Dval) as
its fitness, where γπi

T is estimated via the FUT method. Retain the top 50% individuals with
the highest fitness scores for reproduction, and discard the rest.

3. Crossover: Generate new children by applying the partially matched crossover
(PMX) (Kora & Yadlapalli, 2017) to randomly selected parent pairs πa and πb from the
surviving population. Specifically, randomly choose two crossover points l and r such that
1 ≤ l < r ≤ T , then exchange the subsequences πa

l:r and πb
l:r between the parents. At last,

resolve conflicts using the mapping induced by the swapped segments to produce a valid
permutation child πc = PMX(πa, πb, l, r) ∈ ST .

4. Mutation: With a predefined mutation probability pm, randomly select two indices i and j
in πc and swap their values: πc ← πc

i↔j . This operation introduces diversity and prevents
premature convergence.

5. Replacement: Insert the newly generated children into the population, replacing the dis-
carded individuals. The updated population then forms the basis for the next generation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By iteratively performing 2-5 steps over a fixed number of generations K, or until a convergence
criterion is met (e.g., no improvement in validation performance over several generations), the al-
gorithm ultimately returns the best sample order πGA∗ with the highest validation performance.
Therefore, this GA-based optimization reduces the inference time complexity of FUT from O(T !)
to O(K ·N), significantly accelerating the search for the optimal sample order.

C EXPERIMENTAL DETAILS

C.1 GENERAL CAPABILITY

In this section, we introduce more details for the experiments to test the general capability of our
FUT framework in Section 5.1.

C.1.1 BASE MODEL

We conduct all of our experiments on a language model that follows the LLaMA architecture (Tou-
vron et al., 2023), but with a reduced number of parameters—specifically, a hidden size of 2048 and
10 stacked transformer layers, resulting in approximately 636 million parameters.

We choose this relatively small model to enable repeated training under varying experimental condi-
tions, which is essential for rigorously evaluating the effectiveness of our proposed FUT framework
in both training curriculum design and the analysis of memorization and generalization behaviors.
In contrast, training large-scale models typically takes tens or even hundreds of days, making such
extensive experimentation prohibitively time-consuming and computationally expensive.

C.1.2 DATASET

WikiText-103 (Merity et al., 2018a) is a widely used benchmark dataset for evaluating language
models, particularly in long-range dependency modeling. It consists of over 100 million tokens
extracted from high-quality Wikipedia articles, specifically curated to preserve coherent paragraph
and document-level structures. Unlike other common datasets that contain shuffled or sentence-
level data, WikiText-103 maintains the original article formatting and ordering, enabling models
to better learn contextual and discourse-level information. The vocabulary is relatively large and
diverse, making it a challenging and realistic corpus for testing the generalization and memorization
capabilities of large-scale language models. In our experiments, we partition the dataset into 80%
for training, 10% for validation, and the remaining 10% for testing.

To preprocess the WikiText-103 dataset, we first remove short texts with fewer than five characters to
eliminate noise. Then, we apply MinHash-based deduplication (Broder, 1997) to efficiently identify
and discard near-duplicate samples. Specifically, each text is tokenized into a set of words, and
a MinHash signature is computed using 128 permutations. Texts with identical MinHash digests
are considered duplicates, and only one representative is retained. This process effectively reduces
redundancy while preserving semantically diverse content.

C.1.3 TRAINING AND EVALUATION PROTOCOLS

Training Protocol. For the preprocessed WikiText dataset, we split the data into 80%, 10%,
and 10% for training, validation, and testing, respectively. The learning rate is selected from the
range [0.0001, 0.005] based on validation performance, and we choose the number of batches from
{8, 16, 32, 64, 128, 256}. Since it is not feasible to process very large batch sizes directly due to
memory constraints, we apply gradient accumulation over multiple smaller mini-batches to effec-
tively simulate the desired larger batch size. For the Adam optimizer, we fix the hyperparameters
β1 and β2 to 0.9 and 0.95, respectively. Within our FUT framework, to stabilize parameter estima-
tion and mitigate the influence of outliers, we apply parameter clipping. Specifically, the parame-
ters are constrained within a tunable range, with the clipping threshold selected from the interval
[−1.1,−0.3] ∪ [0.3, 1.1] to ensure numerical stability and prevent extreme values from dominating
the update dynamics. The experiments were conducted on a computing platform equipped with
NVIDIA A800-SXM GPUs, with a total of 4 GPUs each providing 80GB of memory.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Evaluation Protocol. We adopt Perplexity (PPL) (Hu et al., 2024) as the evaluation metric to assess
language modeling performance. Given a token sequence x = (x1, x2, . . . , xN), the perplexity is
defined as:

PPL(x) = P (x1, . . . , xN)−
1
N =

(
N∏
t=1

P (xt | x<t)

)− 1
N

= exp

(
− 1

N

N∑
t=1

logP (xt | x<t)

)
.

(16)

This is equivalent to the exponential of the average cross-entropy loss. Thus, for a given validation
set Dval and final model parameters θT , we compute:

PPL(Dval) = exp (L(Dval; θT)) , (17)

where L(Dval; θT) denotes the average cross-entropy loss over the validation set.

C.2 TRAINING CURRICULUM DESIGN FOR LLMS

C.2.1 BASELINES

Although curriculum learning largely depends on human heuristics or empirical findings, there are
still many works that make efforts to design a rational curriculum in the field of LLMs, primarily
based on either the characteristics of the dataset (Campos, 2021), or the quantitative criteria (Zhang
et al., 2025a;b) that are perceptible to the model. In this section, we introduce all the baselines used
in training curriculum design in detail. For better understanding, we define ρBi

as the difficulty
score for batch Bi.

• Random Order (RO). RO is a naive baseline, which randomly assigns the difficulty score ρBi to
each batch Bi in the range of [0, 1].

• Sample Length (SL) (Campos, 2021). SL is a purely statistical method based on the intuition
that longer sentences are inherently more difficult to model. This is because they require more
effective tracking of dependencies, making the learning process more challenging. Therefore, the
difficulty score of each batch Bi is defined as the total number of tokens in the batch, computed as
ρBi =

∑
x∈Bi

|x|, where |x| denotes the length of sample x.

• Perplexity (PPL) (Zhang et al., 2025a). PPL metric closely aligns with the self-supervised
learning objective of LLMs and effectively measures model-data fit, making it appropriate for data
organization. Recent studies (Zhang et al., 2025a) empirically show that training on high-PPL data
followed by low-PPL data can significantly reduce loss and boost performance. Following this
finding, we introduce a reference model Mref with parameter θR to compute PPL for each batch as
the difficulty score, i.e., ρBi

= −R(θR, Bi).

• Perplexity Difference (PD) (Zhang et al., 2025b). Building on the idea in (Zhang et al.,
2025b), PD between strong and weak models can serve as an indicator of how difficult a batch
is for the model. Specifically, a low PD implies that both models perform similarly in terms
of learning efficiency, while a high PD suggests that the batch presents greater difficulty for the
weaker model. Consider two reference models, Mstr and Mweak, with parameters θS and θW ,
respectively, both trained on the same dataset. In practice, we train two models: Mstr with 636
million parameters and Mweak with 167 million parameters, using their perplexity differences
to guide batch rescheduling. For each batch Bi, we define PD as the difficulty score, given by
ρBi = (R(θW , Bi)−R(θS , Bi))/R(θW , Bi).

C.2.2 GENETIC ALGORITHM CONFIGURATION

To effectively search the optimal sample order within the exponentially large permutation space, we
employ a Genetic Algorithm (GA) tailored to our FUT framework. The key design choices focus on
maintaining a balance between exploration and exploitation: a moderately sized population ensures
sufficient diversity, while elitist selection preserves high-quality solutions across generations. The
complete set of hyperparameters and their configurations are summarized in Table 3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 3: Genetic Algorithm hyperparameters used in our framework

Hyperparameter Notation Description Scope
Population size N Number of candidates per generation [16, 12, 8, 4, 2]
Max generations K Total evolution rounds [16, 12, 8, 4, 2, 1]
Number of batches T Total number of Batches [256, 128, 64, 32, 16, 8]
Crossover points l, r Random crossover segment indices 1 ≤ l < r ≤ T
Mutation probability pm Swap probability per child 0.1
Selection rate – Top individuals retained 50%

1.2B 2.0B 4.0B 6.0B
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

Pe
rfo

rm
an

ce

Scalability at Batch Number = 8
True Random FUT FUT++

1.2B 2.0B 4.0B 6.0B
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Pe
rfo

rm
an

ce

Scalability at Batch Number = 16
True Random FUT FUT++

Figure 6: Scalable estimation performance across model sizes. We evaluate the estimation accu-
racy of FUT and FUT++ across model scales {1.2B, 2.0B, 4.0B, 6.0B} under training batch numbers
T = 8 (left) and T = 16 (right). FUT and FUT++ consistently outperform the Random baseline,
with FUT++ showing improved accuracy for larger models.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 SCALABILITY OF FUT FRAMEWORK

Experimental Setup. In this section, we conduct additional experiments to evaluate whether our
proposed FUT framework remains effective in estimating model performance as the base model
size increases. Specifically, we scale the original 0.6B model to {1.2B, 2.0B, 4.0B, 6.0B}. In these
experiments, the number of training batches is set to T = 8 and T = 16. We adopt perplexity as
the evaluation metric and measure the performance gap between the true values and the estimates
produced by our FUT framework.

Results. The results are illustrated in Figure 6. Across both batch settings (T = 8 and T = 16),
our proposed FUT and FUT++ methods consistently outperform the Random baseline in estimating
model performance, achieving smaller performance gaps to the ground truth. This trend holds true
as we scale the base model size from 1.2B to 6.0B, validating the scalability of our framework.
Importantly, we observe that FUT++—which incorporates second-order information—yields even
more accurate estimates compared to the original FUT, particularly for larger models. This sug-
gests that higher-order approximations are more effective at capturing complex parameter updates
in large-scale language models. The Random baseline, by contrast, lacks theoretical grounding and
exhibits less consistent performance as model size grows.

D.2 IMPACT OF RANDOM PROJECTION TECHNIQUE

Experimental Setup. Random projection is used in our FUT framework to squeeze the storage com-
plexity, which makes the performance estimation of large model with massive parameters become
possible. In this section, we aim to explore how random projection can affect the final estimation
accuracy. Since the entire storage of pairs of update terms is unaffordable for a single machine, we
conduct this ablation study in a relatively small model with 200M parameters. All other experimen-
tal setup is consistent with the main experiment.

Results. The results are presented in Tale 4, where we can see that the use of random projection
may have negative impact on estimation accuracy, because the variant without using random pro-
jection have a more accurate estimation to the true perplexity performance. Nevertheless, we can

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Impact of random projection. We experiment on all different number of batches from 8
to 256 in model with 200M parameters. The results show that the use of random projection can
inevitably hurt the estimation accuracy, but it can largely save the storage memory.

Batch Num Accuracy Memory
True With RP W/O RP With RP W/O RP

8 1.4885 1.5158 1.5016 ∼ 0.3G ∼ 12G
16 1.4569 1.4793 1.4789 ∼ 1.6G ∼ 52G
32 1.4512 1.4839 1.4783 ∼ 6.3G ∼ 200G
64 1.4485 1.4468 1.4647 ∼ 26G ∼ 820G
128 1.4359 1.4269 1.4394 ∼ 102G ∼ 3.2T
256 1.4268 1.4258 1.4358 ∼ 410G ∼ 13.1T

0 1 2 3 4 5 6 7
Step

1.30

1.35

1.40

1.45

1.50

1.55

Pe
rp

le
xi

ty

Perplexity Across 8 Batches
Real Values FUT FUT++

0 1 2 3 4 5 6 7 8 9 101112131415
Step

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75

Pe
rp

le
xi

ty
Perplexity Across 16 Batches

Real Values FUT FUT++

0 2 4 6 8 1012141618202224262830
Step

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

Pe
rp

le
xi

ty

Perplexity Across 32 Batches
Real Values FUT FUT++

Figure 7: Perplexity estimation at intermediate training steps. We visualize the validation per-
plexity estimated by FUT and FUT++ compared to the real validation perplexity after each batch,
for training schedules with T ∈ {8, 16, 32} total batches. FUT and FUT++ both closely follow the
true performance trends, with FUT++ consistently providing more accurate estimates—especially
when T is larger. These results demonstrate the effectiveness of our methods in tracking training
progress in a fine-grained manner.

observe that the use of random projection can largely save the storage memory, especially when the
number of batches increases. Therefore in practice, random projection can still have great function
in implementing our framework.

D.3 BATCH-WISE ANALYSIS OF PERFORMANCE ESTIMATION ACCURACY

Experimental Setup. In this section, we conduct a fine-grained evaluation of our FUT framework
by comparing estimated and true model performance at intermediate stages of training. Specifically,
we consider batch numbers T ∈ {8, 16, 32} and evaluate performance after each training batch.
For each time step 1 ≤ t ≤ T , we replace the final-step performance comparison R(γπ

T ,Dval)
and R(θπT ,Dval) with the intermediate-step comparison R(γπ

t ,Dval) and R(θπt ,Dval). We use
perplexity on the validation set Dval as the evaluation metric to assess how well the FUT-estimated
parameters align with those obtained from actual training at each step.

Results. As shown in Figure 7, both FUT and FUT++ generate accurate perplexity estimates
across different training stages. While FUT performs well in general, FUT++ shows higher fi-
delity—especially as the number of batches increases. This is most evident in the T = 32 case,
where FUT++ remains close to the true perplexity throughout, whereas FUT slightly deviates in
later stages. These findings affirm the utility of incorporating higher-order dynamics in FUT++,
and highlight the robustness of our framework in real-time model monitoring, dynamic training
adaptation, and early stopping decisions. In addition, we observe that in certain training stages,
particularly under small batch sizes or early steps, the estimated perplexity remains unchanged over
multiple steps, forming plateau-like segments. This phenomenon arises from the Taylor-based ap-
proximation mechanism in our framework. Specifically, when the update gradients are small (e.g.,
due to flat regions in the loss landscape), the computed updates become negligible. Consequently,
FUT and FUT++ produce nearly identical estimates across consecutive steps.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E FURTHER DISCUSSIONS OF RELATED WORK

E.1 CURRICULUM LEARNING FOR LLMS

Curriculum learning is a training paradigm that organizes training data in an easy-to-hard manner
to facilitate more effective learning (Bengio et al., 2009; Graves et al., 2017; Hacohen & Wein-
shall, 2019; Xu et al., 2020). In deep learning tasks, sample difficulty is typically defined using
either surface-level heuristics or model-based metrics (Matiisen et al., 2019; Hacohen & Weinshall,
2019; Gui et al., 2017; Ghebrechristos & Alaghband, 2020; Weinshall et al., 2018). For instance,
in sequence modeling, easier examples are often shorter or contain more frequent tokens (Zhang
et al., 2018a). In the generative modeling domain, difficulty can be measured by how well a sample
aligns with human cognitive expectations or its deviation from the data distribution center (Tu-
dor Ionescu et al., 2016; Zhao et al., 2019). In the context of LLMs, several empirical studies have
explored strategies to score training samples (Naı̈r et al., 2024; Liang et al., 2024; Wang et al.,
2024; Matiisen et al., 2019; Campos, 2021; Zhang et al., 2025a;b). Specifically, (Campos, 2021)
reorganizes samples based on their sequence length to progressively improve the model’s ability to
capture long-range dependencies. Furthermore, some researchers (Zhang et al., 2025a;b) propose
curriculum schemes guided by model-based metrics such as perplexity and perplexity difference,
motivated by their empirical observations. In contrast to conventional curriculum learning ap-
proaches that depend on human-designed heuristics for determining sample order, our pro-
posed FUT framework offers an efficient and reliable means of estimating final performance
across arbitrary curricula. This allows practitioners to make well-informed decisions among di-
verse curriculum strategies without incurring the cost of repeated retraining.

E.2 ZEROTH-ORDER OPTIMIZATION

Zeroth-order (ZO) optimization refers to a class of derivative-free methods that estimate gradients
using only function evaluations, making them suitable for black-box or simulation-based scenarios
where gradients are inaccessible or costly (Flaxman et al., 2004; Ghadimi & Lan, 2013; Nesterov
& Spokoiny, 2017; Duchi et al., 2015; Wang et al., 2018; Chen et al., 2017; Liu et al., 2020).
Classical approaches include finite-difference methods (Flaxman et al., 2004), random gradient esti-
mators (Nesterov & Spokoiny, 2017; Duchi et al., 2015), and ZO-SGD (Ghadimi & Lan, 2013). Re-
cently, ZO has been applied to LLM fine-tuning to reduce the memory burden of back-propagation.
Notably, MeZO (Malladi et al., 2023) introduced a forward-only ZO-SGD variant, while Zhang
et al. (Zhang et al., 2024) benchmarked and extended ZO techniques—such as ZO-Adam (Chen
et al., 2019b) and block-wise estimation—for scalable LLM fine-tuning. However, applying ZO
to pre-training remains impractical due to the extreme dimensionality of LLMs, high vari-
ance of estimators, and computational overhead from repeated forward passes (Zhang et al.,
2023; Golovin et al., 2019; Wang et al., 2018). Moreover, most of ZO methods rely on dynamic
random perturbations, limiting result reproducibility and reuse. In contrast, our FUT framework
is a performance estimation tool—not an optimizer—that precomputes all necessary update
terms using Taylor expansions. This enables efficient, deterministic evaluation of arbitrary cur-
ricula without retraining, making FUT quite suitable for analyzing training dynamics and guiding
curriculum design.

F BROADER IMPACTS

With the rapid advancement of LLMs, not only have their language understanding and reasoning
abilities improved, but their parameter sizes have also grown significantly. As a result, training
LLMs has become increasingly time-consuming and computationally expensive. In this paper, we
propose a retrain-free framework called FUT, which accurately estimates model performance using
Taylor expansion. This has several important practical implications.

First, FUT enables researchers to study the effect of training sample order on LLM performance
without repeated retraining, including downstream applications such as memorization and general-
ization analysis. The performance estimates associated with different sample orders provide valu-
able insights into both internal learning dynamics and external behavior.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Second, the FUT framework can serve as a tool for efficient performance evaluation and training
analysis in large-scale model development pipelines. For example, developers can leverage FUT
to screen and prioritize data curricula, identify critical samples, or detect unstable training con-
figurations before committing to full-scale training. As LLMs continue to scale, such cost-effective
analysis tools will be increasingly essential to accelerate research while reducing resource consump-
tion.

G LIMITATIONS

While our proposed retraining-free framework (FUT) provides a computationally efficient and the-
oretically grounded method for estimating the effects of sample order in LLMs, several limitations
should be acknowledged.

1. The accuracy of our estimates relies on the validity of Taylor expansions, particularly
when higher-order nonlinearities dominate the optimization dynamics—scenarios where
our first- and second-order approximations may fall short.

2. Although the use of random projection significantly reduces memory overhead, it may in-
troduce approximation noise, especially for models with extremely large parameter spaces.

3. We evaluate the effectiveness of our FUT framework solely based on perplexity perfor-
mance. This is because downstream natural language understanding and reasoning tasks
typically require large-scale models, which are infeasible to retrain repeatedly under vary-
ing conditions. Nevertheless, further validation is needed to assess the generalizability of
our framework in these more complex tasks.

23

	Introduction
	Problem Formulation
	The FUT Framework
	Applications
	Training Curriculum Design for LLMs
	LLMs' Memorization and Generalization Effect Analysis

	Experiments
	Evaluation on the General Capability of Our Methods
	Evaluation on the Application of Training Curriculum Design for LLMs
	Evaluation on the Application of LLM Memorization & Generalization Effect Analysis

	Related Work
	Conclusion
	Acknowledgment of LLM Usage
	Technical Details
	Precomputation in Update Term Storing Stage
	Random Projection for Storing Update Terms
	Genetic Algorithm for Training Curriculum Design in FUT Framework

	Experimental Details
	General Capability
	Training Curriculum Design for LLMs

	Additional Experimental Results
	Scalability of FUT Framework
	Impact of Random Projection Technique
	Batch-wise Analysis of Performance Estimation Accuracy

	Further Discussions of Related Work
	Curriculum Learning for LLMs
	Zeroth-Order Optimization

	Broader Impacts
	Limitations

