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Abstract

Automatically extracting a timeline on a cer-001
tain topic from multiple documents has been a002
challenge in natural language processing, partly003
due to the difficulty of collecting large amounts004
of training data. In this work, we collect a005
dataset for cross-document timeline extraction006
from online news that gives access to metadata007
such as hyperlinks and publication dates. The008
metadata allows us to define a set of impor-009
tant events while linking them to time anchors,010
which opens the opportunity to scale up data011
collection. Furthermore, with this set of linked012
news articles, we propose a method to enhance013
the inference process of temporal relation pre-014
diction, by utilizing a model to link events to a015
set of anchoring events that are added to the016
inference program. We report performance017
of common neural models and show that our018
method can boost the performance of all base-019
line models.020

1 Introduction021

The problem of representing temporal knowledge022

and performing temporal reasoning appears in mul-023

tiple disciplines, such as philosophy, linguistics,024

and artificial intelligence. In natural language025

processing, multiple aspects of temporal under-026

standing have been explored, including but not027

limited to identification and normalization of tem-028

poral expressions (Strötgen and Gertz, 2010; Lee029

et al., 2014), temporal ordering (Chambers et al.,030

2014; Leeuwenberg and Moens, 2018), and tem-031

poral commonsense knowledge like typical time032

and frequency (Zhou et al., 2019). A fundamen-033

tal task in temporal processing from natural lan-034

guage that is commonly studied is temporal relation035

(TempRel) extraction (Verhagen et al., 2007, 2010),036

which determines the relative order of events. Com-037

bined with the tasks of identifying relevant events038

and explicit temporal expressions from text, this039

could provide a complete picture of the temporal040

sequence of events (UzZaman et al., 2013).041

For TempRel annotations, however, the process 042

is known to be time-consuming and difficult, as 043

inter-annotator agreements are usually low (UzZa- 044

man et al., 2013; Ning et al., 2018). Attempts have 045

been made to improve the process, however the fun- 046

damental problem of annotations still exists, and 047

this makes TempRel datasets relatively unscalable 048

in the current state of training large deep learning 049

models with large datasets (Devlin et al., 2019). 050

Furthermore, current TempRel formulations 051

mostly focus on events that appear under the same 052

context, usually near each other in terms of posi- 053

tion. For example, the TimeBank dataset (Puste- 054

jovsky et al., 2003), for which several commonly 055

used baselines are based upon, considers only rela- 056

tions between events and expressions that appear 057

within adjacent paragraphs. While these densely 058

annotated datasets are suitable for evaluating the 059

comprehensiveness of complete temporal under- 060

standing of a single document, there has not been 061

that many attempts made on tackling the prob- 062

lem of extracting TempRels across multiple doc- 063

uments (Minard et al., 2015; Caselli and Vossen, 064

2017; Reimers et al., 2018). This would be useful 065

in constructing timelines automatically from a set 066

of documents on a topic or a keyword, which could 067

be more viable in real-world use cases such as pro- 068

fessional decision-making (Vossen et al., 2016) or 069

fact-checking (Wang, 2017; Nadeem et al., 2019). 070

Additionally, similar to their single-document coun- 071

terparts, these datasets are hard to collect and thus 072

are small in size. 073

The task of cross-document TempRel extrac- 074

tion could be more challenging than the single- 075

document task since a model would possibly need 076

to perform event coreference while performing tem- 077

poral grounding across documents. This is similar 078

to many tasks nowadays that operate across multi- 079

ple documents, such as open-domain knowledge ex- 080

traction and question answering (Chen et al., 2017), 081

which are much more challenging than that on a 082
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single document.083

In this work, we formulate the task of cross-084

document TempRel extraction, and construct a085

dataset from online news data to evaluate Tem-086

pRels between events that appear both in the same087

document and across documents. The use of hyper-088

links and associated publication dates allow us to089

scale up and automatically construct a large dataset090

that can be used for training and evaluation. We091

run popular neural models as baselines with this092

set of data on cross-document TempRel extraction.093

While we report improved performance over sim-094

pler baselines using pretrained transformers, there095

is still a lot of progress to be made on this task.096

Moreover, we show that the meta data in the form097

of hyperlinks could be incorporated into the infer-098

ence stage to improve the extraction of TempRels,099

by supplementing the original TempRel model with100

an event linking model. Motivated by open-domain101

tasks, events could be linked to a set of news ar-102

ticles, which we call anchoring events, and they103

can be added to the temporal graph and enforce104

additional constraints to help inference. The contri-105

butions of this work are as follows:106

• We construct a dataset1 automatically by uti-107

lizing hyperlinks and publication dates from108

news articles to identify events and ground109

them temporally, which would be scalable.110

We run neural network baselines on cross-111

document TempRel extraction using the col-112

lected dataset and show that the task is hard113

even using state-of-the-art pretrained trans-114

former models.115

• We use the associated links for training an116

event linking model, which is used to add117

additional constraints to the temporal graph118

by linking events to anchoring documents. We119

show that this method can boost performance120

on top of popular baselines.121

2 Related Work122

Temporal Relation Extraction There have been123

many attempts on the problem of classifying the124

temporal relation between two given events. To125

support temporal relation research, datasets such as126

TimeBANK (Pustejovsky et al., 2003) have been127

used as benchmarks for training and evaluating tem-128

poral information extraction systems. A number of129

datasets have been collected in the following years,130

1The data will be released publicly pending review.

including augmentations to TimeBANK (Verha- 131

gen et al., 2007, 2010; Bethard et al., 2007; Uz- 132

Zaman et al., 2013; Cassidy et al., 2014; Reimers 133

et al., 2016), and datasets with both temporal and 134

other types of relations (Mostafazadeh et al., 2016). 135

These datasets are densely annotated by experts, 136

who identify every event and temporal expression 137

described in text in each document and assign 138

ground truth relations to pairs of entities. They 139

are usually low in inter-annotator agreement (Ning 140

et al., 2018), and are limited in terms of dataset size 141

as the data collection process is quite challenging. 142

In terms of modeling temporal relations, early 143

methods (Mani et al., 2006; Chambers et al., 2007) 144

studied the use of classical machine learning algo- 145

rithms with extracted features. Following a series 146

of TempEval workshops (Verhagen et al., 2007, 147

2010; UzZaman et al., 2013), a number of works 148

on TempRel extraction have been published (Cham- 149

bers et al., 2014; Leeuwenberg and Moens, 2017; 150

Ning et al., 2017; Meng and Rumshisky, 2018). 151

In recent studies, large neural models were ex- 152

plored and shown to outperform feature-based 153

methods (Ning et al., 2019; Ballesteros et al., 2020; 154

Lin et al., 2019). In our work, we follow this line of 155

study and explore popular neural models, including 156

pretrained transformer models, as baselines. 157

Timeline Construction More closely related to 158

our work is the task of cross-document timeline 159

construction, which focuses on cross-document 160

event coreference resolution and cross-document 161

temporal relation extraction (Minard et al., 2015). 162

The latter topic, compared to the counterpart task 163

without the cross-document aspect, sees less inter- 164

est since the original task is already shown to be 165

very challenging. The first to approach this task 166

was Minard et al., who formulated it as an ordering 167

task in which events involving a specific target en- 168

tity are to be extracted from documents and ordered 169

chronologically. A small dataset with only trial and 170

evaluation data was collected in the challenge. A 171

slightly larger challenge dataset on storyline extrac- 172

tion followed, which extended to a specific set of 173

topics (Caselli and Vossen, 2017). More recently, 174

Reimers et al. proposed a carefully crafted neural 175

decision tree. In our work, we focus not only on 176

entities or a very specific set of topics, but con- 177

struct timelines in our dataset based on semantic 178

similarity, and scale the dataset up by a magnitude. 179

The cross-document event coreference resolu- 180

tion task, on the other hand, is an extension from 181
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the coreference resolution task which includes not182

only entities and noun phrases but also for event183

mentions that usually contain verbs (Humphreys184

et al., 1997; Bagga and Baldwin, 1998; Lee et al.,185

2012). In our work we do not directly predict event-186

event links but do so by linking them to anchoring187

article titles. Similar to (Lee et al., 2017), we use188

a neural model to classify links and explore using189

contemporary transformer models.190

3 Task Description and Data Collection191

Given a set of documents and a set of target events,192

the cross-document TempRel extraction task re-193

quires a model to order the set of events into a194

timeline. For this task, ideally we would like to195

focus on a set of documents that is most relevant to196

a topic, as this would be most useful for real-world197

applications. We cannot simply aggregate across198

single-document TempRel datasets by picking any199

two time-anchored events and ask a model to pre-200

dict the relation. Furthermore, it would not make201

much sense to consider the TempRels between ev-202

ery minor event in a densely annotated dataset, as203

current datasets mostly restrict TempRels to the204

events that are close, for example in adjacent para-205

graphs. This could result in too many irrelevant206

events in the presentation of a timeline, while also207

complicating the construction of the timeline and208

harming performance.209

Hence in our work we require data that is210

more sparsely annotated, containing only the major211

events in each news article while having built-in212

temporal annotations in order to scale the data up.213

News articles published by media sources present214

an interesting resource for our use case. First of215

all, these news articles usually identify important216

events in the text by highlighting them, and then217

hyperlinking them to other news articles that de-218

scribe those events. Additionally, as information219

spreads through the internet almost instantly nowa-220

days, news articles are usually written by reporters221

right after the start of events, and thus the time and222

dates of news articles could provide us crucial time223

information to the events themselves and be treated224

as labels. Moreover, the hyperlinks can be utilized225

as training signals for linking identified events to226

related articles that are written about them, as we227

will describe later in Section 4.2. Given these rea-228

sons, we collect a dataset of news articles from229

online media to train and evaluate our models.230

We gather a total of 10,000 articles from CNN2, 231

dated up to June 2020. Of those 10,000 articles, 232

7,116 contain hyperlinked text to other news arti- 233

cles. Following previous work on the definition of 234

events, we extract the head verb from each piece 235

of hyperlinked text with NLTK (Loper and Bird, 236

2002) to represent an event. This gives us a to- 237

tal of 6,648 articles that contain at least one event. 238

We further split the articles chronologically to get 239

4640/946/1062 of train/dev/test articles. The title 240

and date of the article that is hyperlinked to the text 241

is also extracted for each piece of hyperlinked text. 242

We again follow previous work and focus only on 243

the starting points of each event, as end-points has 244

been shown to be hard to determine even for human 245

annotators (Minard et al., 2015; Ning et al., 2018). 246

The exact date of the hyperlinked article is used 247

as a proxy to the exact event start time, since most 248

news articles nowadays are published and dated on 249

the day of the start of the event. Overall, we have 250

16,458 events in the 6,648 articles, an average of 251

2.48 events per article. 252

An example article from the collected dataset is 253

shown in Figure 1. The hyperlinked text are in blue, 254

with event verbs tagged by NLTK in bold, and the 255

hyperlinked articles are shown on the side. In the 256

example, important events that are relevant to the 257

topic of air pollution during lockdowns, are high- 258

lighted and linked to related articles that are also 259

published by CNN. Additionally, the hyperlinked 260

articles are mostly close to the start of the event that 261

the text is referring to, as seen in events “extended” 262

and “began”. This supports the use of the hyperlink 263

dates as a proxy to the highlighted events. This, 264

however, also introduces some error, which can be 265

seen in the event “declared”, for which the linked 266

article does not describe that particular event, but 267

refers to it in its text. We find these kinds of er- 268

ror infrequent, and the dates are generally correct. 269

The publication dates of two given events are fur- 270

ther used to determine the TempRel labels from the 271

label set {before, after, equal}. 272

Finally, to construct a set of documents that are 273

relevant for building a timeline, we take each article 274

and retrieve the top 2 articles from the same split 275

with TF-IDF to create a triplet, resulting in a total 276

of 4640/946/1062 triplets for the splits respectively, 277

the same as the number of documents. A triplet of 278

articles is treated as a set, and given a triplet the 279

goal is to create a timeline out of all events that 280

2https://www.cnn.com
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Air pollution falls by unprecedented levels in major global
cities during coronavirus lockdowns
2020/04/23 
Lockdowns restricting travel and industry imposed to halt the spread of
coronavirus have resulted in unprecedented reductions in deadly air pollution
around the world, new analysis shows. 
... 
The Indian capital New Delhi -- which frequently tops the world's most polluted
city lists -- saw a 60% reduction in PM2.5 levels from March 23 to April 13 from
the same period in 2019. Both New Delhi and the country's commercial center
Mumbai experienced their best March air quality on record in 2020. During the
initial three-week lockdown period, the number of hours rated as "unhealthy" in
New Delhi dropped from 68% in 2019 to 17% in 2020. On March 25, India
placed its entire 1.3 billion population into lockdown, closing factories, markets,
shops, places of worship and suspending most public transport services. The
world's largest lockdown was then extended to May 3. 
... 
Meanwhile, the South Korean capital Seoul saw a 54% drop in PM2.5 levels
from February 26 to March 18 from the previous year. South Korea's air quality
ranks among the worst of Organization for Economic Cooperation and
Development (OECD) countries, with some of the highest levels of particulate
matter pollution. Last year in March, the government declared air pollution a
"social disaster." 
... 
And the Chinese city of Wuhan, where the deadly virus was first identified, saw a
44% reduction in air pollution levels from February 26 to March 18 from the
same period last year. The city of 11 million people in central China's Hubei
province was the first city to impose a complete shutdown after Chinese
authorities struggled to contain the spread of the coronavirus -- an unprecedented
move at the time. After 75 days those restrictions began to be lifted on April 8 --
a milestone in China's fight against Covid-19 as the country reported nearly zero
new local infections. 

India's Modi
extends nationwide
coronavirus
lockdown until May
3
2020/04/14
Indian Prime Minister
Narendra Modi has
extended the country's ...

South Korea is
shutting down a
quarter of its coal
generators this
winter to tackle air
pollution
2019/11/29
...In March, the
government declared air
pollution a “social
disaster” and passed a set
of bills ...

How Wuhan
residents are trying
to make the best of
the coronavirus
lockdown 

2020/01/30
For the millions of
residents trapped in an
unprecedented lockdown
in Wuhan...

China lifts 76-day
lockdown on
Wuhan as city
reemerges from
coronavirus crisis 

2020/04/07
China has ended its
lockdown of Wuhan, the
original epicenter of the
coronavirus crisis...

21 of the world's 30 cities with the worst air
pollution are in India
2020/02/25 
Lockdowns restricting travel and industry imposed to halt
the spread of coronavirus have resulted in unprecedented
reductions in deadly air pollution around the world, new
analysis shows. 
... 
And in November, a public health emergency was declared
after the air quality index (AQI) level exceeded 800 in
certain parts of New Delhi, which was more than three times
the "hazardous" level.
...
And in the past year residents of Jakarta have sued the
government over worsening air pollution in the city. Jakarta
is Southeast Asia's most polluted city and the fifth most
polluted capital... 

New Delhi is
choking on smog
and there’s no end
in sight 
2019/11/04
A public health
emergency has been
declared in New Delhi, ...

Angry citizens sue
Indonesian
government over
growing air pollution 
2019/07/03
...a group of Jakarta
residents is suing the
country’s president...

Air quality in US dramatically worse than in
prior years, says new 'State of the Air' report
2020/04/21 

The air quality in the United States is dramatically declining,
leaving about 150 million people -- nearly half of America's
population -- breathing unhealthy, heavily polluted air,
according to the newly released "State of the Air" 2020
report by the American Lung Association 
... 
A recent Harvard study found US counties with the highest
levels of air pollution had significantly higher death rates
from COVID-19 than counties with much lower levels. 
... 

Covid-19 death rate
rises in counties
with high air
pollution, study
says 
2020/04/07
You are more likely to die
from Covid-
19...according to new
research released Tuesday
by Harvard T.H. Chan
School of Public Health...

Documents

Timeline (relative)

have sued extendedwas declared declared impose began

had

Figure 1: An example triplet from the created dataset. The documents are shown in the middle, and the hyperlinked
articles containing titles and publication dates are shown on the sides. The hyperlink text are in blue, with event
verbs tagged by NLTK in bold. At test time, given a triplet of documents with events highlighted but without links,
the goal is to predict the relative timeline that is shown at the bottom.

train dev test

#Docs
(=#Triplets)

4640 946 1062

#Events 11.6k 2.2k 2.6k
#TempRels 1,059k 166k 135k
#Events / Doc 2.5 2.4 2.4
#Events / Triplet 13.6 13.9 13.0
#TempRels / Triplet 228.3 175.5 127.3

Table 1: Dataset statistics from the collected news
dataset.

are in these three articles. The dataset statistics are281

shown in Table 1.282

4 Modeling283

In this section we describe the proposed method of284

determining cross-document TempRels with tem-285

poral anchoring events. As a refresher, given a286

set of documents and a set of events, the goal of287

this task is to order the set of events into a relative288

timeline. This process is usually done by construct-289

ing a temporal graph with each node in the graph 290

representing an event, and predicting the TempRel, 291

represented as edges, between events. We follow 292

most previous studies and separate this process into 293

local (L) relative predictions between two events, 294

followed by an inference (I) stage to enforce tem- 295

poral constraints. There have been works that ex- 296

plored global methods, however we focus on neural 297

models in our work, which are usually incompati- 298

ble with those methods due to discreteness of the 299

inference problem. 300

In Section 4.1 we introduce the local prediction 301

method we use for baseline models, in Section 4.2 302

we describe the model we use to link events to a 303

set of anchoring events, and finally in Section 4.3 304

we describe the inference process that incorporates 305

the anchors to construct the final temporal graph 306

output that is globally consistent. An overview of 307

the proposed method is shown in Figure 2. 308

4.1 Temporal Relation Modeling 309

As described earlier, in this step we are performing 310

local TempRel predictions given a pair of events. 311
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A nchor ing Set

L inking 
model

D oc1

D oc2

D oc1

D oc2

TempR el 
model

(1) Local Predict ion with TempRel model. (2) Temporal linking to anchoring event  set .

(3) Add nodes & const raints, predict  on new edges (4) Run inference, then remove new nodes & edges

TempR el 
model

 equal

 before

Figure 2: An illustration of the proposed method. (1)
Obtain local predictions with the TempRel model. No-
tice that there may be inconsistencies in the temporal
graph, which happens here as there exists a cycle. (2)
Using the event linking model, obtain a set of “event -
anchor event” links. (3) Add anchor nodes and edges
to the temporal graph, while constraining the linked
edges to be equal. (4) Run integer linear programming
(ILP) inference. The extra nodes and edges give extra
temporal information for the program to sort out the
inconsistencies. They are then discarded at output.

We explore several neural sequence models in this312

work.313

We follow previous work in feeding the context314

of the events as a sequence into the model, ob-315

taining a representation for the particular pair of316

events, and finally feeding it into a fully-connected317

network to generate confidence scores as outputs.318

Specifically, the contexts for the two events are first319

concatenated as inputs, separated by separator to-320

kens. The sequence goes through an encoder model321

into a sequence of hidden state representations. The322

hidden states corresponding to the tokens of each323

event are extracted and averaged to get an embed-324

ding vector. The two embedding vectors are finally325

concatenated and fed to the fully-connected layers326

for prediction.327

4.2 Temporal Anchoring with Event Linking328

At this stage, we have a model that can predict329

the TempRel between two given events. Normally,330

given a set of events, or nodes, and a set of edges331

to be predicted, the model could be used to pre-332

dict those edges before proceeding to the inference333

stage.334

However, given the dataset we collected, we 335

have extra metadata we can utilize to potentially 336

improve our predictions. Recall that each event 337

in the original news article is hyperlinked to an 338

article that describes the event. If we have access 339

to a set of such documents, which we refer to as 340

anchoring events, and have a model that can detect 341

such links, we could inject extra temporal infor- 342

mation that may be useful in the inference step. 343

There are information that we may be able to gain 344

based on these links. For example, suppose we 345

have a linking model that links several events to 346

the same underlying anchoring event, we would be 347

able to enforce at the inference stage these events 348

happen on the same date (equal). Even if we do not 349

link multiple events to the same anchoring event, 350

these anchoring events may still be useful when 351

we use them as extra events. Note that we would 352

need to make sure the original event and the linked 353

event are equal in the graph. With the additional 354

nodes in the graph, we can predict extra edges in 355

the graph, and then run the inference algorithm to 356

take the information into account. We hypothesize 357

that this would make the system more robust, and 358

potentially correct some of the original mistakes 359

the local model makes. Based on the reasons laid 360

out above, we propose to add an event linking step 361

before inference. 362

In our formulation, the goal of this step is to link 363

an event to some other events which are represented 364

by articles. This differs from existing event coref- 365

erence resolution problems and datasets, for which 366

tagged events need to be partitioned into those that 367

refer to the same underlying event. Specifically, 368

given a tagged event and an article, our goal is to 369

predict whether they refer to the same event. This 370

is comparable to mention-pair models for event 371

coreference problems. 372

To train such an event linking model, here again 373

we utilize the additional proxy targets in the dataset. 374

A hyperlink leads to the article that describes the 375

event, and thus we choose to utilize that article 376

along with the hyperlinked text as a pair. The 377

(hyperlinked text, hyperlink article title) pairs are 378

treated as positive examples, and as we would need 379

negative examples for training, we randomly sam- 380

ple unrelated articles from the training set as nega- 381

tive pairs. For our classifier, again we use an neural 382

sequence model, which takes a context-title pair 383

concatenated as inputs. The hidden states corre- 384

sponding to the event and title are averaged, sep- 385
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arately, and the concatenation of the two mean386

vectors are passed through a classifier to get the387

prediction score.388

4.3 Inference389

Local predictions, for which we predict relations390

between each pair of events independently, could391

lead to inconsistencies across multiple pairs. In the392

view of temporal graphs, the structure should be393

constrained by transitivity. To enforce the global394

temporal consistency, we follow previous work by395

formulating and solving an integer linear program-396

ming (ILP) problem (Roth and Yih, 2004; Cham-397

bers and Jurafsky, 2008).398

In our work, we follow the formulation de-399

scribed in Ning et al. (2017). To integrate an-400

choring events into the inference process, we add401

the linked anchoring events as new nodes to the402

graph, and then produce local predictions between403

each pair of events. Transitivity constraints are404

enforced through the optimization problem con-405

straints. Additionally, each linked event should be406

labeled equal to the original event, so we enforce407

this by adding it as an extra constraint to the pro-408

gram. After adding all constraints to the problem,409

we solve the ILP with an off-the-shelf solver to410

obtain temporally-consistent predictions.411

Specifically, let y = {y1, . . . , yn} ∈ Yn where412

Y = {before, after, equal} is the label set for413

TempRels. For the inference optimization problem,414

let Ir(i, j) ∈ {0, 1} be the indicator function of415

the relation r between events i and j and fr(i, j)416

be the corresponding classifier output score. The417

ILP problem is then:418

Î =argmax
I

∑
i,j∈E

∑
r∈Y

fr(i, j)Ir(i, j)419

+ λ
∑
i,j∈E ′

∑
r∈Y

fr(i, j)Ir(i, j)420

s.t.
∑
r

Ir(i, j) = 1, (1)421

Ir(i, j) = Ir̄(j, i), (2)422

Ir1(i, j) + Ir2(j, k)−
N∑

m=1

Irm3 (i, k) ≤ 1,

(3)

423

Iequal(i, j) = 1 when i, j are linked, (4)424

for all distinct events i, j, and k, where E is the425

set of all original event pairs, E ′ is the set of all426

newly added event pairs due to linking, r̄ is the 427

reverse relation of r, and N is the number of pos- 428

sible relations of r3 when r1 and r2 are true, and 429

λ is a weighting factor for the newly added links. 430

Constraints (1) enforces uniqueness, constraints (2) 431

enforces symmetry, constraints (3) enforces transi- 432

tivity, and constraints (4) enforces simultaneity of 433

the linked events. 434

After solving for the objective, we can finally 435

drop all edges E ′ connecting to the newly-added 436

nodes while keeping the original edges E , and out- 437

put the edge predictions. 438

5 Experiments 439

5.1 Event Linking Model 440

Before moving on to the main results, we first de- 441

scribe how we trained the event linking model that 442

is used to link to anchoring events, and evaluate 443

how well this linking model is performing. 444

We use the training process of event linking de- 445

scribed earlier on the training set. Given an event 446

and the hyperlink title, we use the pair (event text, 447

hyperlink article title) as input to predict a posi- 448

tive target, and sample random titles to get pairs to 449

predict negative titles. When sampling a random 450

title, we set a 30% probability of sampling the ti- 451

tle from another event in the article, or otherwise 452

sample from the entire training article pool. We 453

use 10 negative samples in our experiments. The 454

RoBERTa (Liu et al., 2019) base model is used as 455

our linking model. We set the maximum length to 456

512 tokens, train for 10 epochs with early stopping, 457

a learning rate of 3e-5 using a triangular schedule 458

with warmup of 0.1, and a batch size of 256. 459

Here we report the event linking performance of 460

the model that we use for the TempRel task. For 461

a given input event, we input (event, title) for all 462

titles in our article pool. We choose to evaluate in a 463

ranking setting, by ranking the output scores of the 464

model and selecting the articles with top k scores. 465

The RoBERTa model achieves recall@k of 33.8, 466

53.5, and 61.8, respectively for k = 1, 5, and 10, 467

correctly retrieving 33.8% when greedily selecting 468

the article with the top score. 469

5.2 Temporal Relation Extraction Setting 470

We now describe the experimental setting for the 471

cross-document TempRel extraction task. For the 472

local prediction encoder model, we consider the 473

following baselines: 474
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Random & Majority We report performance of475

a random baseline where the unnormalized output476

logits are randomly sampled from a uniform distri-477

bution. For the majority baseline, the model always478

chooses the after.479

LSTM (Hochreiter and Schmidhuber, 1997) We480

compare against a 4-layer unidirectional LSTM as481

baseline, with the same number of hidden units in482

a layer, 768, as a RoBERTa model. It is trained483

for 5 epochs with early stopping, a learning rate of484

3e-5 using a triangular schedule with warmup of485

0.2, and a batch size of 16.486

RoBERTa (Liu et al., 2019) Here again the487

RoBERTa base model is used. We set the max-488

imum length to 512 tokens, and use the same train-489

ing hyperparameters as the LSTM model.490

Longformer (Beltagy et al., 2020) We also491

would like to explore the effects of using longer492

contexts, since models would need to integrate493

information across documents and may require494

longer term dependencies to perform well. Since495

RoBERTa supports maximum sequence length only496

up to 512, we experiment with the Longformer497

model, a variant that combines local and global498

attention windows, which takes sequences with499

length up to 4096. We use the Longformer base500

model, which has the same number of layers and501

hidden units as RoBERTa base. The training hyper-502

parameters are kept the same.503

For baselines on TempRel prediction, all models504

are run on the testing set by first predicting the505

confidence scores for all pairs of events that appear506

in each triplet of articles. Inference step is then run507

on the output scores to get the final predictions.508

We also perform inference by linking to anchor-509

ing events with the linking model obtained earlier.510

For the set of anchoring events, we randomly chose511

10% of all article titles that appear in the train-512

ing split, including titles from the training articles513

themselves and the article titles of the hyperlinks.514

We restrict each event to link to at most one arti-515

cle from the anchoring pool, by selecting the one516

with the highest confidence score in that situation.517

Once we obtain a set of event-to-anchor-event links,518

we add those to the inference step as new events,519

relations and constraints, but remove them when520

calculating the final evaluation scores. The factor521

λ is selected by performance on the dev set. We522

report scores for the baseline models with the addi-523

tion of the linking step, which are denoted by “w/524

Local Pred. Inference
Acc. F1 Acc. F1

1 Random 33.5 27.1 - -
2 Majority 54.8 23.6 - -
3 LSTM 54.5 33.6 53.1 35.5
4 - w/ linking - - 53.5 37.9
5 RoBERTa 56.5 43.7 56.6 42.8
6 - w/ linking - - 56.9 43.4
7 Longformer 56.6 45.6 56.6 44.4
8 - w/ linking - - 57.1 44.6

Table 2: Results of cross-document temporal relation
extraction on the collected news dataset.

linking”. To solve the ILP programs, we use the 525

Gurobi solver (Gurobi Optimization, LLC, 2021). 526

We use PyTorch (Paszke et al., 2019) and the Trans- 527

formers library (Wolf et al., 2020) for our models 528

and experiments. 529

The evaluation metrics we use for this task are 530

accuracy and macro F1 score. In addition to re- 531

porting metrics on the final outputs, we also report 532

performance when obtaining predictions directly 533

from the outputs of the local prediction models and 534

skipping the inference step. All experiments were 535

performed over three runs, including the random 536

selection of anchoring events. Reported scores are 537

averaged over those runs. 538

5.3 Temporal Relation Extraction Results 539

In Table 2 we show the results of the cross- 540

document temporal relation extraction task. Lines 541

1 and 2 show the most naive baseline results, giv- 542

ing very low F1 scores. We are not able to report 543

the performance after running the inference step, 544

since the outputs would violate too many temporal 545

constraints that cannot be resolved efficiently by 546

running ILP. 547

Comparing lines 3, 5, and 7, we see that LSTM 548

has a big performance gap compared to the other 549

two pretrained transformer models, which is not 550

completely unexpected. There is a 3.5% gap in 551

accuracy and a 7% gap in F1, with the latter metric 552

usually being harder to improve, suggesting the 553

transformer models are major improvements over 554

the LSTM. Between the two transformer models 555

using different context lengths, both models have 556

almost the same accuracy score, but Longformer 557

outperforms on F1 by almost 2%. Since the num- 558

ber of parameters are similar, with the two models 559

having the same number of layers and units except 560
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the positional embedding size, this suggests that561

the task possibly requires longer ranged dependen-562

cies in order to do better on temporal grounding,563

which is what we had hypothesized when setting564

up the task.565

Comparing the two columns, the performance of566

the models based on local prediction scores versus567

after inference, we see that most models perform568

equally or worse on accuracy. LSTM benefits on569

F1, but the transformers have a roughly 1% de-570

crease in performance. The inference step sorts571

out the inconsistencies from the local prediction572

outputs, however, it comes at the sacrifice of per-573

formance.574

With linking, lines 4, 6, and 8, we obtain quite575

an improvement on LSTM, with more than 2% in-576

crease in F1. For the transformers, we see a smaller577

scale but still consistently gives the baseline mod-578

els performance improvements. RoBERTa gains579

roughly 0.3% on accuracy and 0.6% on F1, while580

Longformer gains 0.5% on accuracy and 0.2% on581

F1. The local predictions are the same as their base-582

line counterparts (and thus the scores are not shown583

in the table), so the addition of these links sug-584

gest we can mitigate some of the performance drop585

when sorting out the conflicting output confidence586

scores. We can think of these linked events as a587

“paraphrase” or augmentation of the original events,588

and we use these to get extra output scores aver-589

aged with the original scores to make the system590

more robust, potentially correcting more mistakes591

that the model originally makes.592

5.4 Effects of Anchoring Set Size593

Since we are using anchoring event sets that we594

have on hand to aid inference, we would like to595

know how much data we need to have in order to596

perform well. Keeping too large of an anchoring597

set not only requires larger space, it also slows598

down the entire process as we would need to run599

linking scores over the entire anchoring set, and600

that more links would be generated and would also601

slow down the inference process itself.602

In previous experiments, we use a set size of 10%603

of all titles seen in training, around 900, which is604

selected by performance on the dev set. Here we605

run the experiments with the RoBERTa model over606

set sizes of {1%, 5%, 10%, 20%, 50%}, and the607

results are shown in Figure 3. When we use 1%,608

we do not have many links so the performance is609

roughly the same. Interestingly, when we use 5%610

0% 10% 20% 30% 40% 50%
56%

56.2%

56.4%

56.6%

56.8%

57%

Anchoring Set Size

A
cc

ur
ac

y

42%

42.5%

43%

43.5%

44%

F
1

Acc
Baseline Acc

F1

Baseline F1

Figure 3: Performance of the RoBERTa model with
different anchoring set size (as a percentage of all titles
in the training set). Accuracy is on the left and F1 is
on the right. The performance for the baseline model
without linking are shown as constants in the plot.

the model performances actually worsen, which 611

may indicate that the set doesn’t cover enough good 612

anchors and the linking model links to those that 613

hurt performance. With larger amounts of links, we 614

would get more “nice” anchors but also introduce 615

more noise, and at around the set size of 10% we 616

get the best tradeoff. Finally, we note that 50% 617

anchoring set size gives roughly the same accuracy 618

but improves F1 performance. 619

6 Conclusion and Future Work 620

In this work we focus on extracting timelines across 621

documents. We construct a dataset automatically 622

by utilizing hyperlinks and publication dates from 623

online news articles to identify events and time an- 624

chors, making it scalable. We target the temporal 625

relation extraction task, and propose a method us- 626

ing the associated links for training an event linking 627

model, which is used to aid the inference procedure. 628

We run neural model baselines and show that our 629

proposed method can boost performance on top of 630

them. 631

For future work, we would like to focus not only 632

on event-event relations but also consider event- 633

time connections. This would allow us to anchor 634

events to absolute time or dates and be more ap- 635

plicable to real world tasks. This could also be 636

extended to a complete system that detects events 637

and performs event coreference for end-to-end op- 638

eration. We also plan to further investigate the 639

transfer of our collected data to other similar tasks 640

or datasets, especially those that have little to none 641

training data. 642
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