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Abstract

Neural force fields (NFFs) have gained prominence in computational chemistry
as surrogate models, superseding quantum-chemistry calculations in ab initio
molecular dynamics. The prevalent benchmark for NFFs has been the MD17
dataset and its subsequent extension. These datasets predominantly comprise
geometries from the equilibrium region of the ground electronic state potential
energy surface, sampling from direct adiabatic dynamics. However, many chemical
reactions entail significant molecular deformations, notably bond breaking. We
demonstrate the constrained distribution of internal coordinates and energies in the
MD17 datasets, underscoring their inadequacy for representing systems undergoing
chemical reactions. Addressing this sampling limitation, we introduce the xxMD
(Extended Excited-state Molecular Dynamics) dataset, derived from non-adiabatic
dynamics. This dataset encompasses energies and forces ascertained from both
multireference wave function theory and density functional theory. Furthermore, its
nuclear configuration spaces authentically depict chemical reactions, making xxMD
a more chemically relevant dataset. Our re-assessment of equivariant models on
the xxMD datasets reveals notably higher mean absolute errors than those reported
for MD17 and its variants. This observation underscores the challenges faced in
crafting a generalizable NFF model with extrapolation capability.

1 Introduction

The data-driven evolution of molecular force fields is predominantly benchmarked against the MD17
dataset introduced by Chmiela et al. [5] and its derivative, the rMD17 [6]. These datasets encompass
dynamic data of ten small to medium-sized gas-phase molecules. While it’s a common practice in
machine learning community to consider both training and testing data as in-domain, this assumption
is precarious for molecular dynamics. Such data, inherently being time-series sequences, mandates
careful sampling to prevent unintended leakage of future information. A closer scrutiny of MD17 and
its variant reveals their sampling bias, majorly confined to an exceedingly narrow potential energy
surface (PES) in proximity to the equilibrium structure. This limited exploration translates to a
circumscribed conformation and energy space. To highlight these shortcomings, we employ internal
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coordinate analysis, revealing that existing molecular dynamics datasets are suboptimal concerning
their segmentation strategy and the scope of molecular conformation space they cover.

For our analysis, we label those preliminary molecular dynamic datasets as in-distribution (ID)
datasets. Nevertheless, significant chemical processes typically fall under the out-of-distribution
(OOD) category. To underscore this discrepancy, consider the simplest chemical reaction depicted
in Figure 1. The nuclear configuration space in this instance encompasses three pivotal regions:
the reactant, the product, and the transition state (or the dividing plane) bridging the reactant and
product. Merely sampling from the reactant region is inadequate and does not authentically represent
chemical reactions. Consequently, calibrating NFF models on these skewed datasets induces a bias
towards the reactant region. This can not only skew the NFF models but might also lead them to offer
qualitatively inaccurate insights.

In this study, we introduce the extended excited-state molecular dynamics (xxMD) dataset, a
successor to the MD17 dataset. While it retains the foundational aspect of encapsulating trajectory
data from small to medium-sized gas-phase molecules, the xxMD stands apart due to its incorporation
of non-adiabatic trajectories, emphasizing the dynamics associated with excited electronic states.[8,
24, 23, 4] Comprising four photo-sensitive molecules, these entities start within the excited electronic
states, endowing them with a notably higher initial energy in contrast to their MD17 or rMD17
counterparts. This distinction leads the xxMD dataset to span a broader nuclear configuration
space, ensuring representation across the complete chemical reaction PES: reactants, transition
states, and products. A salient feature of the xxMD is its capture of regions near the conical
intersections—crossings of potential energies spanning different electronic states. By encompassing
these critical regions, including reactants, transition states, products, and conical intersections, the
xxMD dataset promises to set novel benchmarks and challenges for NFF models.

For our xxMD dataset, we diverge from the MD17’s framework by employing the trajectory surface
hopping dynamics algorithm in tandem with the state-averaged complete active state self-consistent
field (SA-CASSCF) electronic theory. This approach stands in contrast to the adiabatic dynamics
used in MD17. The reason for the pivot to SA-CASSCF lies in its adeptness at handling electronic
correlation effects at strongly deformed geometries, where KS-DFT often falls short, especially
in scenarios involving multiple electronic states and conical intersections. Nevertheless, to ensure
compatibility with prevalent datasets like MD17, we also computed single-point spin-polarized
KS-DFT (or unrestricted KS-DFT) values. These calculations leverage the M06[27] exchange-
correlation functional—a notably superior meta-GGA functional relative to PBE. This dual approach
culminates in two datasets: xxMD-CASSCF and xxMD-DFT. The former captures potential energies
and forces across the first three electronic states for azobenzene, dithiophene, malonaldehyde, and
stilbene. The latter provides recomputed ground-state energy and force values, anchored to the same
trajectories. Both xxMD datasets are structured via a temporal split method, partitioning training
and testing data based on trajectory timesteps.

We evaluated six prominent message-passing NFF models on the xxMD datasets: SchNet[19],
DimeNet++ (DPP)[7], SphereNet (SPN)[12], NequIP[3], Allegro[16], and MACE[2]. Each model
was mostly used with its default parameters, and in line with convention, we trained the NFFs
emphasizing more on force losses. While hyperparameter optimization could potentially fine-tune
performance (See Supplementary Information for an example), it remains outside the scope of this
study. Therefore, the presented results might not showcase the absolute best performance for each
model. Given our observations, we urge researchers aiming to apply NFFs in practical scenarios to
conduct rigorous re-benchmarks tailored to their specific chemical systems and objectives.

2 Preliminaries

In the realm of quantum mechanics, the behavior of nuclei is ideally described by the time-dependent
Schrödinger equation. Yet, practical computation limits restrict nuclear quantum dynamics simula-
tions to small systems with just 5 or 6 atoms. Consequently, in many cases, the nuclei are treated as
classical particles. This premise paves the way for classical Molecular Dynamics (MD) and adiabatic
Ab Initio Molecular Dynamics (AIMD), wherein the dynamics are propagated based on a single
electronic state.
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2.1 Dynamics

At the heart of classical MD is the Newtonian equation of motion:

mi
d2ri
dt2

= Fi (1)

where mi denotes the mass of atom i, ri its position, and Fi the force exerted on it. This force can be
described as the negative gradient of the potential energy V at the atom’s location:

Fi = −∇V (ri) (2)

The ground state electronic potential energy, V (ri), in the absence of an external field, forms the
basis for the PES. Classical force fields offer an analytical approximation of this energy based on
nuclear configuration:

V (r) = Vbond(r) + Vangle(r) + Vdihedral(r) + Vnon-bonded(r) (3)

This classical approximation often falls short under quantum mechanical scenarios, particularly during
bond breaks, necessitating improvements in force field formulations. Upon electronic excitation, as
observed in solar cells or photochemical reactions, nuclei confront electronic potentials beyond the
ground state. Herein, dynamics involving multiple electronic states emerge. Nonadiabatic dynamics,
particularly pertinent when energy levels soar, may either adopt the trajectory surface hopping method
or the semiclassical Ehrenfest dynamics, depending on the specific conditions.

2.2 Chemical Reactions and PES

Chemical reactions within the classical MD or adiabatic AIMD framework involve a system transition
between different PES minima. This movement is influenced by differences in electronic potential
energy across nuclear configurations. However, systems generally adopt paths that demand minimal
effort, known as reaction pathways. Accurate NFFs demand two crucial ingredients: a quantum
chemical dataset spanning reactants, transition states, and products, and a proficient machine learning
model capable of extrapolating across the PES. Notably, nonadiabatic dynamics can help curate
datasets that offer richer nuclear configuration insights compared to adiabatic AIMD.

Figure 1: Illustration of trajectories on a sample potential energy surface[9]. The contour plot
showcases the energy landscape, with varied hues depicting distinct energy tiers. Predominantly,
trajectories navigate regions surrounding the minima, emphasizing systems’ inclination towards states
with diminished potential energy in or near equilibrium.

3 Dataset

3.1 MD17 and Revised MD17 Datasets (rMD17)

The use of the PBE density functional in conjunction with single-valence basis sets often falls
short in simulating chemically meaningful reactions. Chmiela et al.[5] conducted adiabatic AIMD
simulations on small gas-phase molecules at room temperature, purporting the electronic potential
energies to be computed at the KS-DFT level. However, detailed specifics about the density functional,
basis set, spin-polarization, and the software employed were notably absent from both the main
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manuscript and supporting information. Later, Christensen et al.[6] revisited the potential energies
and forces of the MD17 dataset, recalculating them at the PBE[17]/def2SVP[26] level of theory
with an enhanced grid precision, leading to the inception of the rMD17 dataset. These datasets have
been embraced widely as benchmarks in NFF studies[3, 2]. It’s pivotal to underscore the inadequacy
of employing the PBE density functional and def2SVP basis set for accurate chemical reaction
simulations, as they can sometimes yield both quantitatively and qualitatively erroneous outcomes.
Despite this, they might offer a continuous PES dependent on nuclear configuration, suggesting that
the MD17 and rMD17 could be considered well-behaved datasets.

Adiabatic molecular dynamics datasets at low energy can not benefit from uniform sampling
and cross-validation. It’s important to highlight that the initial low-energy conditions in these
adiabatic AIMD simulations constrain the nuclear configuration space considerably. As illustrated
in Figure 1, adiabatic AIMD simulations at ambient conditions tend to produce trajectories that
linger primarily within the reactant zone of the PES. To scrutinize the nuclear configuration space
covered in the MD17 and rMD17 datasets, we analyzed the internal coordinate distributions of two
specific molecules: the C-N=N-C dihedral angle and N=N bond length for azobenzene, as well as the
C-C-C=O dihedral angle and C=O bond length for malonaldehyde. These distributions are visualized
in Figure 2. Additionally, Figure 2 portrays the relative electronic potential energies, benchmarked
against the ground state minimum geometry, and the force norm (essentially the electronic potential
energy derivative) corresponding to these geometries. It’s evident from the findings that the internal
coordinate distribution is notably constricted. Consequently, this suggests that the training and testing
samples in the MD17 and rMD17 datasets overlap significantly. Such overlaps flag concerns related
to potential data leakage, which could inadvertently lead to unduly optimistic benchmark outcomes
as cited in previous literature [1, 2, 3, 20, 12].

Figure 2: Illustration of training and testing sets using the reference split indices for azobenzene and
malonaldehyde datasets in rMD17. The X-axis depicts dihedral angles (marked by ’C’, ’N’, and ’O’),
the Y-axis denotes bond distances (highlighted by bold letters), and the Z-axis shows relative energy.
Training and testing samples are differentiated by color, correlating to force norms. Note that training
samples overlap with testing ones.

3.2 xxMD dataset

An updated alternative to the MD17 dataset is imperative for the effective development and
benchmarking of NFFs. To meet this need, we introduce the xxMD dataset, curated specifically for
benchmarking NFFs in the context of chemical reactions. This dataset encompasses four molecular
entities: azobenzene, malonaldehyde, stilbene, and dithiophene. Key geometries along their respective
reaction trajectories are depicted in Figure 6. It’s noteworthy that both azobenzene and malonaldehyde
are constituents of the MD17 and rMD17 datasets. This inclusion facilitates a comparative analysis
of the internal coordinate distribution between the xxMD and the previously mentioned datasets. We
refer readers to the supplementary information for the comparison.

The cornerstone of the xxMD datasets is the non-adiabatic dynamic sampling. We employed
the trajectory surface hopping (TSH) nonadiabatic dynamics, interfaced with the SA-CASSCF [18]
electronic structure method, for all included molecules. In stark contrast to KS-DFT, SA-CASSCF
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ensures qualitative precision in representing the global PES—encompassing both bond-breaking
geometries and conical intersections[11, 21]. Our data selection prioritized samples from energy-
conserving trajectories exclusively, with the criteria for total energy conservation. The sample size is
listed in Table 9. Current NFF methodologies have demonstrated the capability to attain chemical
precision vis-à-vis the foundational electronic structure calculations, even with a dataset of fewer
than 1,000 training samples [19, 12, 3, 2, 20]. Comprehensive computational specifics can be found
in the Supplementary Information.

The ensemble-averaged radial distribution function (RDF) and mean square displacement
(MSD) from the xxMD datasets demonstrate a more expansive and meaningful sampling of the
PES than that of MD17. Both the RDF and MSD of nuclear configurations as functions of time
are depicted in the left and right columns of Figure 3, respectively. While the RDF quantifies the
average likelihood of finding a particle at a particular radial distance from a reference configuration,
the MSD gauges the average squared movement of molecules over time. The nuclear configuration
shifts evident in nonadiabatic dynamics—and by extension, in the xxMD dataset—are substantial.
This dynamic sampling breadth sets the xxMD dataset distinctly apart from the MD17 datasets and its
variants. With the xxMD dataset capturing diverse regions on the PESs, we anticipate that mastering
the PESs for molecules within this dataset will pose a significantly greater challenge.

Spin-unpolarized DFT is ill-suited for simulating chemical reactions involving bond-breaking or
bond-forming events. From the geometries sampled through TSH with SA-CASSCF dynamics, we
recalculated the ground-state potential energy and atomic forces employing spin-polarized KS-DFT
at the M06[27]/6-31g level. It’s worth noting that M06 is a hybrid meta-GGA exchange-correlation
functional, which delivers notably superior accuracy compared to PBE. Crucially, spin-unpolarized
(or unrestricted) KS-DFT falls short when simulating chemical reactions, particularly during bond-
breaking events due to the reactions’ open-shell nature. For clarity, we’ve named the dataset derived
from these recalculations as the xxMD-DFT dataset, whereas our principal dataset is referred to as
the xxMD-CASSCF dataset.

Temporal splitting presents a formidable yet insightful test for NFFs in predicting unexplored
sections of the PES. In curating the xxMD datasets, we favored temporal over random splitting.
While the latter uniformly divides data by shuffling all sampled geometries and randomly segregating
them into training, validation, and testing sets, temporal splitting allocates time-series data based
on timesteps. A designated range of timesteps in the dynamic sequence is reserved as the hold-out
test set, adhering to a 50:25:25 splitm, granting a unique vantage point to scrutinize the predictive
prowess of the model over unseen portions of PESs. This distinction becomes evident in the right
columns of Figure 3 where trajectories rapidly deviate over time. This behavior underscores that the
temporal-split xxMD datasets adeptly challenge the extrapolation and predictive power of NFFs.

4 Experiment

We picked six representative equivariant NFFs to benchmark. The hyperparameters and training
details of models in the supplementary information. We used a weighted loss of 1:1000 on energy
and forces. We stress that our purpose is not to perform an extensive comparison of models over
multiple choices of hyperparameters. Rather, we limit ourselves to showing the performance of the
models in the default configurations.

4.1 Complete xxMD-CASSCF and xxMD-DFT

We first evaluate the regression precision of all models on the first three electronic states, which are
labeled as S0, S1, and S2 respectively (Label S denotes the singlet spin state which is a widely used
notation in photochemistry) by using the temporal splitting approach. The MAE of the predictive
energy and forces for test sets are shown in Table 1. Similarly, we present such results of using xxMD-
DFT datasets in Table 2. Additional results on the validation sets are available in the supporting
information. Note that validation sets depict the nuclear configurations that are closer to the training
sets. Therefore, the MAE shown in validation sets are in general lower than that for test sets.
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Figure 3: Comparison of Average RDFs and MSDs Across Multiple Trajectories. Each row corre-
sponds to a group of trajectories, with RDF on the left (indicating particle density as a function of
distance) and MSD on the right (showing particle displacement over time). Shaded regions represent
standard deviations.
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Table 1: Comparison of predictive MAE of energy(E, meV) and forces(F, meV/A) on hold-out testing
set for different models on temporally split xxMD-CASSCF datasets and tasks.

Dataset State Task MACE Allegro NequIP SchNet DPP SPN
Azobenzene S0 E 527 437 870 648 528 493

F 63 82 76 156 102 96
S1 E 599 524 1160 619 497 494

F 78 98 85 157 91 88
S2 E 881 783 1957 894 837 831

F 191 216 215 284 224 231

Dithiophene S0 E 293 296 295 306 295 290
F 14 31 21 94 30 31

S1 E 205 211 224 217 204 205
F 37 81 49 103 41 44

S2 E 246 255 259 262 244 246
F 52 10 70 121 51 54

Malonaldehyde S0 E 530 443 770 515 452 442
F 105 142 166 220 138 137

S1 E 528 458 1227 482 482 462
F 164 189 189 260 165 161

S2 E 679 528 159 653 610 615
F 276 307 309 353 251 238

Stilbene S0 E 538 544 529 604 519 544
F 72 87 112 191 91 114

S1 E 391 353 370 424 313 352
F 58 66 85 142 88 93

S2 E 604 669 674 678 550 529
F 117 142 178 259 148 159

Table 2: Comparison of predictive MAE of energy(E, meV) and forces(F, meV/A) on hold-out testing
set for different models xxMD-DFT datasets and tasks with temporal split.

Dataset Task MACE Allegro NequIP SchNet DPP SPN
Azobenzene E 292 174 1754 722 300 260

F 85 110 129 283 173 168

Stilbene E 315 332 647 397 439 477
F 149 189 156 291 162 168

Malonaldehyde E 190 151 244 360 179 185
F 166 210 227 394 257 255

Dithiophene E 100 103 243 323 61 76
F 51 75 101 177 74 90

4.2 Model behavior comparison between xxMD and (r)MD17 datasets

In this section, we analyze model behavior for azobenzene and malonaldehyde from xxMD and
(r)MD17 datasets. Benchmarks for (r)MD17 reveal that the accuracy of MACE, NequIP, and SPN
exceeds that of traditional electronic structure methods[2, 3, 12, 14]. It’s essential to note that typical
errors for KS-DFT in predicting relative transition state energy can be several kcal/mol. For instance,
the MAE of HTBH38 and NHTBH38 is about 9.1 kcal/mol for PBE and 2.4 kcal/mol for M06.
Thus, an NFF fitting error below 50 meV would surpass the accuracy of modern density functionals.
However, such claims are pertinent mainly to ground state potential energies, given that excited state
calculations are often less precise. Therefore, given the reported MAEs, these NFF models perform
admirably on (r)MD17 datasets.
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However, this conclusion might be deceiving. Previous discussions highlight the constrained nuclear
configuration space in MD17 and rMD17. A comparative analysis of MAEs for the six NFF
models on azobenzene and malonaldehyde from xxMD-DFT and (r)MD17 is presented in Table 3.
Literature-derived MD17/rMD17 results indicate that all models used 1,000 training samples[2, 3, 12].
Predictably, the predictive prowess of NFF models diminishes when applied to the xxMD dataset.

Table 3: Comparison of predictive MAE on hold-out testing sets of NFF models on azobenzene and
malonaldehyde in (r)MD17 and xxMD-DFT datasets. (r)MD17 benchmarks with 1,000 samples are
taken from [2, 12, 19].

Molecule Dataset Task MACE Allegro NequIP SchNet DPP SPN
Azobenzene rMD17 E 1.2 1.2 0.7 N/A N/A N/A

F 3.0 2.6 2.9 N/A N/A N/A
xxMD E 292 174 1754 722 300 260

F 85 110 129 283 173 168

Malonaldehyde (r)MD17 E 0.8 0.6 0.8 5.6 4.5 N/A
F 4.1 3.6 5.1 28.6 16.6 7.5

xxMD E 190 151 244 360 179 185
F 166 210 227 394 257 255

5 Conclusion

The effectiveness of NFF models largely depends on the datasets they are benchmarked against.
Historically, the (r)MD17 datasets have been the gold standard for this purpose. However, our study
highlights the potential shortcomings of relying solely on (r)MD17 datasets. Given that they primarily
capture a narrow nuclear configuration space from ground state ab initio molecular dynamics, they
fall short of encompassing the holistic nuclear configuration pertinent to chemical reactions. Training
NFF models on such datasets can be somewhat trivial and could result in misleading conclusions
about their true capabilities.

Addressing this gap, we introduced the xxMD dataset, derived from nonadiabatic dynamics trajecto-
ries. The xxMD dataset offers a comprehensive representation of the nuclear configuration space,
encapsulating the reactant, transition state, product, and conical intersection regions of potential
energy surfaces. Its inclusion of several low-lying excited state potential energy surfaces underscores
its importance and the challenges it presents for NFF model development. Our benchmarks of
prevailing NFF models on the xxMD dataset have revealed pronounced difficulties. Utilizing default
hyperparameters, the chosen NFF models struggled to offer quantitatively or even qualitatively
accurate force field models for specific systems. We anticipate that our findings will galvanize
the community towards pioneering more advanced NFF models better equipped to study intricate
chemical reactions.
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A Brief introduction of chosen neural force fields

In this study, we picked six representative neural network architectures for NFF applications, namely,
SchNet[19], DPP[7], SPN[12], NequIP[3], Allegro[16] and MACE[2]. In general, those approaches
can be devided into two catagories based on the representation of the feature space. SchNet, DPP and
SPN are the so-called scaler-based NFFs, while NequIP, MACE and Allegro are vector-based NFFs,
as we summarized in Table 4.

The key concept in SchNet is the continuous-filter convolution, which involves two steps: interaction
and update. In the interaction step, the model calculates pairwise interaction features between all
atoms based on their distances, using a set of radial bessel basis. The update step then uses these
interaction features to update the atom-centered descriptors. In DPP, a higher-order feature, bond
angle has been introduced to enhance the expressiveness of the neural network. DPP uses a concept
called spherical functions to account for the directionality of the interactions between atoms. The DPP
architecture uses ’interaction blocks’ to propagate information through the molecular graph. Each
interaction block consists of a radial and a spherical part. The radial part captures the distance-based
interactions, similar to SchNet. The spherical part captures the angular interactions among any
three atoms in the molecule, which is unique to DPP. As a continuation of the DPP, SPN further
introduces another higher-order feature called dihedral angles among any four atoms in the molecule.
These improvements are chemically-intuitive since bond lengths, angles, and dihedral angles are very
common descriptors in classical force fields [15].

Table 4: Summary of models, their features, and the corresponding years of introduction.

Model Feature Year
SchNet Bond length 2017
DPP Bond length, Bond angle 2020
SPN Bond length, Bond angle, Dihedral angle 2021
NequIP SO(3) vector 2021
Allegro SO(3) vector 2022
MACE SO(3) vector 2022

On the other hand, NequIP, Allegro, and MACE are examples of group equivariant NFFs that based
on SO(3) relative displacement vectors between any two atoms in the molecule. These networks use
the representation theory of the three-dimensional orthogonal group to construct neurons that obey
equivariance with respect rotations and reflections of a molecular system’s pose. We visualize this
concept in Figure 4. Atomic types are embedded as node features, and relative displacement vectors
that contains the positional information are converted into activations that transform according to
irreducible representations (irreps) of the orthogonal group. Nonlinearities for these activations are
constructed using the tensor product, followed by applying the Clebsch-Gordon decomposition to
convert the product back into irreducible components.

SchNet, DimeNet++ and SphereNet are available as implemented in the Dive Into Graphs
package (https://github.com/divelab/DIG.git). NequIP package is available at https:
//github.com/mir-group/nequip.git. Allegro package is available at https://github.com/
mir-group/allegro. MACE package is available at https://github.com/ACEsuit/mace.
git. All packages are up-to-date at the data of the publication. All the trainings are done with
single precision float format. SchNet, DPP and SPN models are initialized using the default hyperpa-
rameters shipped with the packages. Allegro hyperameters can be found at https://github.com/
mir-group/allegro/blob/main/configs/example.yaml, NequIP hyperparameters are mainly
https://github.com/mir-group/nequip/blob/main/configs/example.yaml, MACE hy-
perparameters are mainly https://github.com/ACEsuit/mace. Since Dive Into Graphs package
doesn’t implement the scale and shift of the energy, we manually rescaled the energy by substracting
the energy of the configuration with the lowest potential energy.
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Figure 4: (a) depicts three atoms with their relative displacement vectors. (b) illustrates the details
of atomic embedding with E(3) equivariant activations based on spherical harmonics and one-hot
encoding for chemical elements. (c) gives an illustration of spherical harmonics with quantum
numbers L = 0, 1, 2. The Clebsch-Gordan coefficients are used during the aggregation step to ensure
rotational equivariance when combining activations with different irreps.

Figure 5: Comparison of average computational time for NFFs. The timing is specific to the
chosen hyperparameters. All NFFs, except MACE, operate with single precision. Generally, group-
equivariant NFFs are significantly more computationally expensive.

B Timing

In this practical view, we present a comprehensive analysis of the operational time of multiple NFFs
examined in our study as illustrated in Figure 5. It is important to note that the specific runtime of
each NFF model is contingent upon the chosen setup and hyperparameter selection. For example, the
radius cutoff utilized for generating locally fully-connected graphs can yield varying numbers of edges
and nodes in each mini-batch. Within our findings, we have diligently reported the time required for
processing each sample in a mini-batch using the designated hyperparameters. Consequently, we
emphasize that while we employed mostly default hyperparameters as a practical reference.
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C Additional illustration of xxMD datasets

Figure 6: Schematic representation of the photodynamic processes featured in the xxMD dataset.

Here we provide addition illustration (Figure 7) of the xxMD-CASSCF datasets with the ground-
state energy and forces as the internal coordinate analysis of MD17. For azobenzene, the primary
reaction path involves the cis-trans isomerization of the two phenyl groups along the N=N bond.
For malonaldehyde, the reaction path involves either a H-H cis-trans isomerization occurs along the
O=C bond or a O-O cis-trans isomerization occurs along the carbon skeleton. The reaction path
of stilbene involves the cis-trans isomerization of the two phenyl rings along the C=C double bond
and the flip of the phenyl rings to opposite directions. The reaction path of dithiophene is also the
cis-trans isomerization of two five-member rings along the C=C double bond.
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Figure 7: Illustration of xxMD datasets using similar internal coordinates as MD17 analysis. Only
the ground-state (in black/white color scheme) energies are visualized for clarity. This figure clearly
indicates the breadth of the conformation space explored by using direct non-adiabatic dynamics as
compared to MD simulation with room temperature.

D Benchmark results on the validation sets of xxMD-CASSCF and
xxMD-DFT
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Table 5: Comparison of predictive MAE on validation set for different models on temporally split
xxMD-CASSCF datasets and tasks. Energy(E) has the unit of meV, while forces(F) have the unit of
meV/A.

Dataset State Task MACE Allegro NequIP SchNet DPP SPN
Azobenzene S0 E 527 367 530 682 526 494

F 50 70 69 141 83 79
S1 E 474 308 869 483 478 428

F 67 83 74 134 79 74
S2 E 864 742 1590 897 804 801

F 163 185 180 257 191 185

Dithiophene S0 E 300 295 304 302 286 287
F 10 21 17 76 22 24

S1 E 259 208 226 219 206 208
F 65 78 46 101 33 36

S2 E 246 258 256 259 244 249
F 50 104 69 119 49 51

Malonaldehyde S0 E 488 386 583 470 419 415
F 84 147 109 179 108 109

S1 E 507 406 828 469 446 451
F 144 184 168 233 147 145

S2 E 556 457 858 526 512 512
F 221 255 281 301 197 188

Stilbene S0 E 517 514 359 505 467 461
F 54 71 12 145 71 75

S1 E 322 293 262 351 294 316
F 38 45 20 97 62 61

S2 E 494 505 377 596 486 473
F 80 98 31 176 104 106

Table 6: Comparison of predictive MAE on validation set for different models xxMD-DFT datasets
and tasks with temporal split. Energy(E) has the unit of meV, while forces(F) have the unit of meV/A.

Dataset Task MACE Allegro NequIP SchNet DPP SPN
Azobenzene E 257 106 393 539 184 168

F 71 98 119 248 150 140

Stilbene E 190 200 161 156 224 248
F 104 116 117 196 114 125

Malonaldehyde E 156 91 134 257 116 127
F 135 162 173 326 208 204

Dithiophene E 89 54 86 198 49 69
F 47 59 81 158 61 78

E Addition experiment of hyperparameter tuning

We would like to stress again, our purpose is to give a initial view of the datasets using common
hyperparameters without tuning, and we don’t aim to strictly test models listed. We left most
hyperparameters unchanged as default, and uses a loss weight heavily focused on the forces following
the literatures [22, 2, 3]. However, users should carefully use the hyperparameters before applying to
specific chemical problems.

We used a default MACE model and one subset of xxMD-CASSCF dataset and varied the weights
on the energy and forces, and we found that by simply tuning this hyperparameter, MACE would
perform noticeably differently. For instance, the regression accuracy on force is not improved and
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Table 7: Predictive MAE of energy (meV) and forces (meV/A) on the ground-state azobenzene in
xxMD-CASSCF dataset using various loss weights and default MACE model.

Testing Validation
Loss E:F ratio E F E F

1000:1 325 210 291 186
100:1 311 104 266 87
10:1 338 72 327 58
1:1 446 66 458 53

1:10 516 64 524 50
1:100 541 65 544 50

1:1000 527 63 527 50

accuracy on energy deteriorates quickly when the weight on the force gradually increase from 1
to 1000. On the contrary, putting slightly more weights on the energy greatly improve the overall
performance, as we laid out in Table 7. Thus, we would like to leave a note to future users that
exploring the hyperparameter spaces is important.
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F Computational details

The active space and basis set used for SA-CASSCF for all four molecules are shwon in Table 9.
The total number of trajectories simulated are vary, but finally selected number of points for each
molecule in xxMD dataset is summarized in Table 9 as well. These points are selected from energy
conserving trajectories only, and we used the criteria for the total energy conservation as listed in
Table 9. Therefore, all trajectories fail to conserve the total energy below the threshold are discarded.
We show the total energy conservation in Figure 8

Table 8: Summary of the computational methods, number of samples used in direct non-adiabatic
dynamics sampling for four molecules, and number of data points for all studied molecules. The
number in the parenthesis indicates the number of active electrons and orbitals. The total energy
conservation (Total E. Con.) criteria has a unit of eV.

Molecule Method Total E. Con. Num. of Samples
Dithiophene SA-CASSCF(10e,10o)/6-31g 0.2 24769
Azobenzene SA-CASSCF(6e,6o)/6-31g 0.6 8414
Malonaldehyde SA-CASSCF(8e,6o)/6-31g 0.3 25568
Stilbene SA-CASSCF(2e,2o)/6-31g* 0.2 27965

Table 9: Summary of the number of samples used in direct non-adiabatic dynamics sampling for four
molecules, and number of data points for all studied molecules.

Molecule Num. of Samples Train Valid Test
Dithiophene 24769 12400 6169 6200
Azobenzene 8414 4200 2114 2100
Malonaldehyde 25568 14000 6965 7000
Stilbene 27965 12800 6368 6400

F.1 Dynamics

We used SHARC-MD[13] 2.1.2 package to run non-adiabatic dynamic simulations, the software
is available at https://github.com/sharc-md/sharc. Initial conformations are generated by
Wigner-Sampling of the optimized ground-state structure with the same level of electronic structure
method. For each conformation, a single-point calculation is performed to acquire the energy of
states without spin-orbit calculations. To select initial excited-states, the MCH representation of the
Hamiltonian is used to simulate delta-pulse excitation based on excitation energies and oscillators
strengths with an excitation window of 0.0 to 10.0 eV.

For azobenzene, we conducted 300 fs SHARC dynamics simulations with a time step of 0.5 fs. For
dithiophene, we conducted 500 fs SHARC dynamics simulations with a time step of 0.5 fs. For
malonaldehyde, we conducted 300 fs SHARC dynamics with a timestep of 0.25 fs. For stilbene, we
performed 500 fs SHARC dynamics with a time step of 0.5 fs. Local diabatizatrion scheme was used
to calculate the non-adiabatic coupling vectors by calculating the overlap matrix of wavefunctions
between steps. Non-adiabatic coupling vectors are included in the gradient transformation. kinetic
energy are adjusted by rescaling the velocity vectors during a surface hop. When the surface hop is
refused due to insufficient energy, the velocity doesn’t reflect at a frustrated hop. Default energy-based
decoherence scheme was used for decoherence correction. The standard SHARC surface hopping
probabilities was used as the surface hopping scheme. All gradients and non-adiabatic couplings of
active states were calculated at each time step. For azobenzene, dithiophene, malonaldehyde, and
stilbene the threshold of total energy was set to 0.6 eV, 0.2 eV, 0.3 eV and 0.2 eV.
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Figure 8: Illustration of total energy conservation over the simulation time of trajectories in xxMD-
CASSCF datasets. All trajectories follow the total energy conservation threshold.

F.2 Complete Active Space Self-Consistent Field (CASSCF)

In quantum chemistry, accurately capturing electron correlation—the interaction of electrons relative
to one another—is pivotal for an in-depth understanding of a molecule’s electronic structure. While
standard methods like Hartree-Fock (HF) have their strengths, they can falter in specific scenarios.
This is where the CASSCF method becomes instrumental.

Central to CASSCF is the categorization of molecular orbitals into three distinct groups:

1. Inactive (core) orbitals: These are fully occupied orbitals, exempted from the correlation
treatment.

2. Active orbitals: A defined number of electrons within these orbitals undergo correlation
across a predetermined set of orbitals. The flexibility in electron configuration within the
active space encapsulates static electron correlation.

3. Virtual (secondary) orbitals: Remaining unoccupied, these orbitals are sidelined from the
primary correlation procedure.

The CASSCF methodology initially optimizes the active space orbitals employing a comprehensive
configuration interaction (CI) calculation. This act of considering all plausible electron configurations
within the active ambit captures static correlation. To address dynamic correlation, supplementary
methods, like multi-reference perturbation theory (MRPT), are often invoked.

Advantages of CASSCF:

• Offers a harmonized treatment of electron correlation.

• Particularly apt for systems with closely-spaced electronic states, encompassing transition
states, metal complexes, and excited states.
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However, one should note the substantial computational demands, especially with enlarging active
spaces, which can potentially restrict its application or mandate approximate solutions.

For SA-CASSCF calculations, OpenMolcas 22.06 was used, which is available at https://gitlab.
com/Molcas/OpenMolcas. The active space orbitals of the starting configurations are listed as
following (Figure 9).

Figure 9: Active space orbitals used SA-CASSCF calculations for malonaldehyde, stilbene, azoben-
zene and dithiophine.

F.3 Unrestricted KS-DFT

In molecular modeling, the precise representation of electronic configurations during chemical
reactions is paramount. The popular restricted KS-DFT inherently pairs electrons, enforcing identical
spatial orbitals for both spin-up and spin-down states.

Consider the paradigmatic dissociation of hydrogen (H2) into atomic hydrogen:

H2 → 2H (4)
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Within the confines of restricted KS-DFT, as H2 dissociates, the emerging electrons—now localized
on individual atoms—are still bound to identical spatial distributions. This treatment may distort the
real physical scenario.

Unrestricted KS-DFT, on the other hand, permits differentiation between spin-up and spin-down
spatial orbitals, enabling a nuanced portrayal of the process. In the H2 example, would independently
model the electron on each hydrogen atom, providing a truer representation of the physical system.

For all unrestricted KS-DFT calculations, we used M06[27] meta-GGA hybrid functional with
6-31g basis set. All calculations are done with the Psi4[25] package (available at https:
//github.com/psi4/psi4) interfaced the ASE[10] package (available at https://github.com/
rosswhitfield/ase).

F.4 Dihydrogen dissociation: a comparative case of RKS, UKS and CASSCF

The limitation of using DFT, espeicially restricted DFT becomes evident when examining the H-H
bond-breaking process, as illustrated in Figure 10. Here, spin-unpolarized DFT yields an inaccurate
yet smooth curve when juxtaposed against its spin-polarized counterpart, with CASSCF serving as
the reference.

Figure 10: Dissociation Curve of dihydrogen molecule using RKS, UKS, and CASSCF(2,2) methods.
RKS is inherently inadequate for capturing the true electronic structure nuances of bond-breaking
events, as seen in the deviation from the CASSCF. In principle, multi-reference methods are essential
for accurate modeling of such chemical reactions, ensuring a more holistic representation of the
electronic correlation effects.
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