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ABSTRACT

Modeling event sequences of multiple event types with marked temporal point
processes (MTPPs) provides a principled way to uncover governing dynamical
rules and predict future events. Current neural network approaches to MTPP infer-
ence rely on training separate, specialized models for each target system. We pur-
sue a radically different approach: drawing on amortized inference and in-context
learning, we pretrain a deep neural network to infer, in-context, the conditional
intensity functions of event histories from a context defined by sets of event se-
quences. Pretraining is performed on a large synthetic dataset of MTPPs sampled
from a broad distribution of Hawkes processes. Once pretrained, our Foundation
Inference Model for Point Processes (FIM-PP) can estimate MTPPs from real-
world data without any additional training, or be rapidly finetuned to target sys-
tems. Experiments show that this amortized approach matches the performance of
specialized models on next-event prediction across common benchmark datasets.
We provide the pretrained model1 weights with the supplementary material.

1 INTRODUCTION

The mathematical modeling of asynchronous and irregular sequences of events has long occupied a
distinctive role in the machine learning community. Temporal point processes comprise the canon-
ical framework for modeling neural dynamics (Truccolo et al., 2005; Linderman & Adams, 2014),
and serve as the de facto tool for describing a wide range of internet phenomena, including retweet-
ing, posting, and information cascades (Zhao et al., 2015; Cvejoski et al., 2020). Their ability to
encode fine-grained temporal structure, together with their capacity to reveal causal interactions be-
tween events in an interpretable manner, has made them indispensable not only in neuroscience and
social media, but also in finance (Aı̈t-Sahalia et al., 2015) and epidemiology Chiang et al. (2022).
Despite this centrality, the trajectory of foundation models has developed along a different path.
Large-scale pretraining first emerged in natural language processing, enabled by massive internet
corpora, and has only recently been extended to dynamical systems, with recent work addressing
ODEs (d’Ascoli et al., 2024; Seifner et al., 2025b), MJPs (Berghaus et al., 2025), SDEs (Seifner
et al., 2025a), and even specific applications to pharmacology (Marin et al., 2025). It is therefore
ironic that event data — the very modality underlying the internet activity that made text-based
pretraining possible — has not yet given rise to a corresponding foundation model for point pro-
cesses. The present work takes a first step toward filling this gap by developing a foundation model
explicitly designed for temporal point processes.

Marked Temporal Point Processes (MTPPs) (Daley & Vere-Jones, 2007; Rasmussen, 2018) are
stochastic processes consisting of ordered occurrence times, each accompanied by a categorical
mark specifying its type. Formally, the objective is to specify the conditional distribution of the
next event time and mark, given the history of the process up to the current time. The extensive
literature on point processes explores different ways to encode event histories and to specify the
stochastic mechanism that governs new arrivals and their marks (Lin et al., 2024). A common ap-
proach is to represent this distribution through a conditional intensity function, which describes the
instantaneous rate at which events of different types occur given the history. Traditionally, models
such as the Hawkes process (Hawkes, 1971) define this conditional intensity as the superposition
of self-exciting effects from past events. Forecasting is then carried out recurrently using Ogata’s

1Model and data: https://anonymous.4open.science/r/FIM-PP-0303/README.md
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thinning algorithm applied to the conditional intensity. Building on this cornerstone, more recent
work has extended Hawkes processes by parameterizing event histories with neural architectures
(Mei & Eisner, 2017), including recurrent neural networks (Du et al., 2016), attention mechanisms
(Zhang et al., 2020), and Transformers (Zuo et al., 2021). These models are typically trained either
via maximum likelihood — often requiring expensive integral evaluations — or through generative
approaches that bypass intensity modeling altogether and directly sample future events conditional
on the past (Kerrigan et al., 2024; Zeng et al., 2024). A fundamental limitation of these approaches
is their lack of transferability: each new dataset requires retraining from scratch, forcing the model
to relearn representations for every distinct dynamics.

In contrast, modern approaches to dynamical systems increasingly prioritize pretraining on syn-
thetic data, yielding general models that can learn dynamics in-context. This paradigm has the
crucial advantage that practitioners no longer need to train models de novo for every dataset, but
can instead obtain accurate characterizations in a zero-shot manner. Within this family, two variants
have emerged: Prior-fitted Networks (PFNs) and Foundation Inference Models (FIMs). PFNs train
networks to approximate predictive posterior distributions in a sequence-to-sequence or context-
to-sequence fashion, often implemented with recurrent or transformer architectures (Müller et al.,
2022; Hollmann et al., 2022; Müller et al., 2025). FIMs, by contrast, focus on directly estimating the
infinitesimal operators of stochastic processes (e.g., drift and diffusion functions for SDEs), thereby
retaining a degree of interpretability (Berghaus et al., 2025; Seifner et al., 2025a;b). Access to these
operators enables explicit study of physically relevant observables such as entropy production, sta-
tionary distributions, and attractors.

In the context of point processes, we adapt the FIM pretraining paradigm to MTPPs by following
three steps. First, we define a broad family of conditional intensity functions, inducing a diverse
prior over MTPPs. This prior captures assumptions about the excitatory and inhibitory effects be-
tween events, as well as the interaction structure across event types. Second, we sample MTPPs
from this prior, generate synthetic event sequences, and construct training pairs of event histories
with their corresponding intensities, creating a meta-learning task that amortizes inference across
heterogeneous dynamics. Third, we train a neural network to recover conditional intensities from
observed histories. A key advantage of this formulation is that it preserves the possibility of injecting
expert knowledge: the choice of prior directly encodes desired inductive biases, guiding the network
toward desired dynamical models. We summarize our contributions:

1. Introduce a synthetic data generation framework for sampling event sequences from a prior
distribution over Hawkes processes, with randomized base intensities, kernels, and inter-
action types (excitatory, inhibitory, neutral). We empirically demonstrate that this con-
struction encodes a strong prior, enabling models trained on it to generalize across both
in-distribution processes and real-world event data.

2. Train the first transformer-based recognition model capable of estimating in-context the
conditional intensity functions of marked temporal point processes, where history repre-
sentations serve as queries and the encoded sequence context provides the keys and values.

3. Show that the resulting model achieves strong zero-shot performance across synthetic
benchmarks and multiple real-world datasets, and that it can be rapidly finetuned on new
event data.

2 RELATED WORK

Here we provide a brief overview of temporal point processes. For detailed surveys and benchmarks
of deep TPP models, including open challenges in history encoding, conditional intensity design,
relational discovery, and learning strategies, see e.g., Lin et al. (2024) and Xue et al. (2024).

While the mathematical theory of point processes is extensive (Daley & Vere-Jones, 2007; Kingman,
1992), work on temporal point processes (TPPs) in machine learning has crystallized around two
central questions: (i) how should representations of past events be constructed, and (ii) how should
the future be modeled (Lin et al., 2024). Early approaches, epitomized by the Hawkes process,
addressed both questions using linear self-exciting kernels. A natural extension is the neural Hawkes
process (Mei & Eisner, 2017), along with related recurrent formulations (Du et al., 2016), which
rely on neural representations of past events, trained via likelihood maximization, and model future
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events using the thinning algorithm. Later work introduced more expressive architectures. Attention
mechanisms (Zuo et al., 2021; Zhang et al., 2020; Yang et al., 2021) extend the memory horizon of
TPPs, though at the cost of higher computational demand. Neural ODEs (Chen et al., 2018) have
also been incorporated to better capture the irregular timing of events in latent representations (Song
et al., 2024; Kidger et al., 2020).

To improve predictive accuracy over long horizons, different decompositions of the likelihood for
future arrivals have been proposed (Rasmussen, 2018; Panos, 2024; Deshpande et al., 2021). These
works highlight the limitations of intensity-based inference, particularly when relying on thinning
algorithms. Such limitations have motivated a shift toward generative models, which typically sam-
ple entire sequences. Approaches include optimal transport (Xiao et al., 2017), diffusion models
(Zeng et al., 2024; Lüdke et al., 2023), and flow-matching methods (Kerrigan et al., 2024), often
trading accuracy for interpretability. In contrast, traditional machine learning methods (Rasmussen,
2013; Malem-Shinitski et al., 2022) emphasize interpretability from the outset. A key advantage of
the Hawkes process is that its excitation graph makes causal structure explicit (Xu et al., 2016; Wu
et al., 2024), which has been especially relevant in neuroscience (Linderman & Adams, 2014; Truc-
colo et al., 2005) and in finance, where Hawkes models often serve as hidden drivers of observed
activity (Aı̈t-Sahalia et al., 2015). Applications extend more broadly, for instance to dynamics of
text (Cvejoski et al., 2020; 2021), social online activity (Zhao et al., 2015) and operations research
(Ojeda et al., 2021).

3 PRELIMINARIES

In this section, we recall the definition and basic properties of marked temporal point processes
(Daley & Vere-Jones, 2007) and Hawkes processes (Hawkes, 1971; Laub et al., 2015). Additionally,
we define the inference problem our proposed approach tackles.

Marked Temporal Point Processes: We consider marked temporal point processes (marked TPPs,
or MTPPs) as simple point processes on R+ ×K, where K is a discrete and finite set of marks. The
density f of a sequence of events S = {(ti, κi)}ni=1 in the interval [0, T ], w.l.o.g. ordered by their
time component ti ∈ R+, factors into conditional densities

f ({(ti, κi}ni=1) =

n∏
i=1

f ((ti, κi) | Hti) =

n∏
i=1

f(ti | Hti)f(κi | ti,Hti) , (1)

where Ht = {(ti, κi) | ti < t} ⊂ S is the history strictly preceding t. By the last equality of
equation 1, MTPPs may be characterized by dependent densities of the next-event time f(t | Ht)
and its event mark f(κ | t,Ht). MTPPs are commonly represented by their piece-wise continuous
conditional intensity function

λ(t, κ | Ht) =
f(t | Ht)

1−
∫ t

t′
f(s | Hs)ds

f(κ | t,Ht) = λ(t | Ht)f(κ | t,Ht) , (2)

where t′ is the last event time in Ht, or t′ = 0 if Ht = ∅. The conditional intensity function may be
interpreted of the instantaneous rate of mark κ occurring at t, conditioned of the history up to time
ti. Reversely, any such function λ, satisfying some mild conditions, defines the density of an MTPP
on a set of events in an interval [0, T ] by

f ({(ti, κi}ni=1) =

[
n∏

i=1

λ(ti, κi | Hti)

]
exp

(
−
∫ T

0

λ(s | Hs)ds

)
. (3)

Collection of TPPs: A TPP is just an MTPP with a single mark. An MTPP can be viewed as a
collection of TPPs per mark, interdependent through a joined history. Indeed, given an MTPP as
above, the conditional intensity λκ(t | Ht) = λ(t | Ht)f(κ | t,Ht) defines the marginal TPP
for mark κ ∈ K, that may depend on other marks via Ht. Conversely, a collection of TPPs with
conditional intensity λκ per κ ∈ K can be joined to an MTPP. Using

λ(t | Ht) =
∑
κ∈K

λκ(t | Ht) and f(κ | t,Ht) =
λκ(t | Ht)

λ(t | Ht)
(4)
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in equation 2 defines the conditional intensity function λ(t, κ | Ht) of an MTPP. In fact, λ(t, κ |
Ht) = λκ(t | Ht). In contrast to some other neural methods (Du et al., 2016), which estimate
λ(t | Ht) and f(κ | t,Ht), we design our model to parametrize TPPs per mark, conditioned on the
joined history of all marks.

Hawkes Processes: A Hawkes MTPP with marks K is defined by the conditional intensity

λ(t, κ | Ht) = max

0, µκ(t) +
∑

(t′,κ′)∈Ht

γκκ′(t− t′)

 (5)

where {µk}κ∈K is a set of time-dependent base intensity functions and {γκκ′}κ,κ′∈K is a set of
interaction kernels, specifying the influence of mark κ′ on mark κ. If γκκ′ is positive, the influence
of κ′ on κ is called excitatory or exciting, otherwise it is called inhibitory or limiting. We use a
distribution over Hawkes MTPPs to generate a large corpus of synthetic training data for our model.

Simulation: We use Ogata’s modified thinning algorithm (Ogata, 1981) to generate synthetic train-
ing data from Hawkes processes and to simulate processes inferred by our model.

Inference Problem: Let C = {Sj}mj=1 be a collection of m event sequences Sj = {(tji , κji )}
nj

i=1
observed from some system. Our objective is to predict or simulate the next event and estimate
the likelihood of a (previously unseen) sequence S, assuming an MTPP model. Previous neural
methods train an autoregressive encoding network on C that compresses the history Ht of S into
some embedding ht for a neural estimate λ̂(t, κ | ht) of the conditional intensity. In contrast, we
propose a radically different foundation model approach to the inference problem. We pretrain a
deep neural model to estimate λ̂ from a history of events in-context of a collection of sequences.
Once trained, the model can be applied to any C and Ht, without any further training.

4 FOUNDATION INFERENCE MODELS FOR POINT PROCESSES

In this section, we present a novel in-context learning method for the MTPP intensity inference
problem. In a two-step approach, we first generate a large set of marked event sequences from
parametrized MTPPs, sampled from a broad distribution over MTPPs. This yields train data for a
neural network recognition model, trained to estimate the underlying known, ground-truth intensity
functions. Such pretrained inference model can be applied directly to real-world problems, or swiftly
finetuned for improved performance.

4.1 SYNTHETIC DATASET GENERATION

To design a synthetic dataset of MTTPs, we choose a distribution over Hawkes processes, defined
by a distribution over conditional intensity functions of the form

λ(t, κ | Ht) = max

0, µκ(t) +
∑

(t′,κ′)∈Ht

zκκ′γκκ′(t− t′)

 . (6)

From a sample of this distribution, we simulate a large set of marked sequences, and record the
conditional intensity for training. Let us now specify each step of the data generation in more detail.

Intensity Function Generation: The intensity function of a process with |K| marks in equation 6
is characterized by non-negative, time-dependent functions base intensities and interaction kernels
µκ, γκκ′ : R+ → R+ and pre-factors zκκ′ ∈ {−1, 0, 1} for κκ′ ∈ K.

To generate an intensity function, we select a single parametrized functional form of non-negative
functions for all base intensities and interaction kernels. Instances µκ and γκκ′ are realized by iid.
samples of the describing parameters from broad distributions for each κ, κ′ ∈ K. We capture
various distributions such as periodic intensities, Poisson processes, Hawkes processes, etc. as
described in Table 3.

Pre-factors zκκ′ are sampled iid. from a random variable Z on {−1, 0, 1}. Due to the non-negativity
of γκκ′ , they determine the type of influence of κ′ on κ. It is excitatory if zκκ′ = 1, inhibitory if
zκκ′ = −1 and non-influencing if zκκ′ = 0.

4
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Figure 1: Schematic representation of FIM-PP. A context of marked event sequences Sj is encoded
by a self-attentive transformer encoder. The result is further processed by a transformer decoder,
using a history Ht of marked events before time t as queries. The final embedding is joined with an
encoding of mark κ. The results is projected to a set of parameters that determine the value of the
conditional intensity function λ̂ evaluated at (t, κ).

Simulation: We simulate a collection Cλ = {Sj}mj=1 of m sequences Sj
λ = {(tji , κji )}ni=1 of the

MTPP defined by a sampled conditional intensity function λ from equation 6. Each sequence con-
tains n marked events. All simulations are performed with Ogata’s modified thinning algorithm.

4.2 FOUNDATION INFERENCE MODEL ARCHITECTURE

We now present the architecture of FIM-PP, a pretrained deep neural network for inference of
MTPPs from sets C = {Sj}mj=1 of marked event sequences Sj = {(tji , κji )}

nj

i=1. FIM-PP processes
the context sequences C and estimates the conditional intensity function λ̂ of an MTPP that describes
the observed dynamics. Following previous intensity-based methods (Zhang et al., 2020; Zuo et al.,
2021), λ̂ is implemented by a flexible parametrized function family λ̂(·, κ | H·) for all κ ∈ K.
FIM-PP estimates its parameters by encoding the history Ht = {(thist

i , κhist
i )}nhist

i=1 before time t >
thist
nhist

, subject to the processed context sequences. Figure 1 depicts a schematic representation of this
approach.

To cover applications in different time scales, FIM-PP instance normalizes its inputs and renormal-
izes λ̂ accordingly. Appendix B provides the details. Once trained, FIM-PP can be applied for all
counts of marks |K| up to some fixed upper bound, similar to in-context methods in other domains
(d’Ascoli et al., 2024; Berghaus et al., 2025).

We denote linear projections by ϕ, feed-forward neural networks by Φ, attention layers with residual
connections by ψ, transformer encoders by Ψenc and decoders by Ψdec. LetE ∈ N denote the model’s
embedding dimension.

Context Encoding: To encode C, we combine encodings of individual sequences Sj . Recognizing
the importance of inter-observation times for the inference problem, we consider ∆tji = tji − tji−1

as an additional feature, identifying tj0 = 0. To encode Sj , we first embed the features (tji , κ
j
i ,∆t

j
i )

of the i-th event in sequence j into embeddings

uj
i = ϕt(t

j
i ) + ϕκ(κ

j
i ) + ϕ∆t(∆t

j
i ) ∈ RE . (7)

Sinusoidal output activations from Shukla & Marlin (2020) enhance the networks ϕt and ϕ∆t. Let
Sj = [uj

1, . . . ,u
j
nj
] ∈ Rnj×E denote the matrix of embedding of sequence Sj . We extract a

context sequence embedding cj ∈ RE by applying a transformer encoder S̃j = Ψcont
enc (S

j) ∈ Rnj×E ,
followed by fixed-query attention

cj = ψcont(qcont, S̃j , S̃j) ∈ RE , (8)

where qcont ∈ RE is a learnable query. The embeddings of all sequences C = [c1, . . . , cm] ∈ Rm×E

are finally combined by another transformer encoder C̃ = Ψcomb
enc (C) ∈ Rm×E .

Context-aware History Encoding: To encode the history Ht of events prior to time t > thist
nhist

, we
embed each tuple (thist

i , κhist
i ,∆thist

i ) into feature vectors H = [uhist
1 , . . . ,uhist

nhist
] ∈ Rnhist×E , reusing
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Figure 2: Example intensity estimates of FIM-PP on a synthetic Hawkes process with three marks,
constant base intensity and exponential decaying kernels (left) and a real-world RETWEET dataset
(right). Each row contains the intensity for one mark. Events of the same mark are colored ma-
genta, while events for other marks are gray. For the Hawkes process, the model (blue line) esti-
mate matches the ground-truth intensity level (black dashed line) closely. For the RETWEET data,
FIM-PP estimates a mixture of many excitatory and a few inhibitory interactions.

the networks from equation 7. These history embeddings serve as the queries of a transformer
decoder Ψhist

dec , which attends to the context representation C̃ (used as keys and values), yielding a
unified encoding hhist

t that integrates both history and context:

hhist
t = Ψhist

dec(H, C̃) ∈ RE (9)

Intensity Parametrization: To extract intensity functions for all marks from hhist
t , we concatenate

hhist
t and a (linear) encoding of κ′ to vHt

κ′ = [hhist
t , ϕhist

κ (κ′)] ∈ R2E and project them to non-negative
parameter estimates

α̂Ht

κ′ = Φα(v
Ht

κ′ ) ∈ R+, β̂Ht

κ′ = Φβ(v
Ht

κ′ ) ∈ R+ and µ̂Ht

κ′ = Φµ(v
Ht

κ′ ) ∈ R+ (10)

using softplus output activations. These parametrize our neural conditional intensity estimate:2

λ̂(t, κ′ | Ht) = µ̂Ht

κ′ + (α̂Ht

κ′ − µ̂Ht

κ′ ) exp
(
−β̂Ht

κ′ (t− tnhist)
)

(11)

This parametrization is flexible, yet interpretable. Immediately after incorporating a new event in
the history, the intensity jumps to α̂Ht

κ′ . In a long interval without events, the intensity converges
towards µ̂Ht

κ′ . The convergence speed is determined by β̂Ht

κ′ .

Training: To train FIM-PP on a set of sequences Cλ from our synthetic train data, we select a
target sequence T ∈ Cλ to provide a history of events and use remaining sequences Cλ \ {T } as
context. We subsample Cλ, truncate sequences and vary the number of marks throughout training,
which enables us to apply a pretrained FIM-PP in a wide range of (real-world) settings. Our train
objective is the next-event negative log likelihood of the target sequence:

LNLL =
∑
κ∈K

∫ T

0

λ̂(s, κ | Hs)ds−
∑

(t,κ)∈T
λ̂(t, κ | Ht) (12)

Appendix C discussed the training of FIM-PP in greater detail.

Finetuning: FIM-PP can be finetuned on the train split C of an evaluation dataset, minimizing
LNLL. For each iteration, a random sequence T ∈ C in the train split is selected as the target
sequence. The remaining sequences C \ {T } serve as context. Finetuning progress is monitored by
processing target sequences from the validation split, given the train split context.

2Note that the functional form of λ̂ is similar to the conditional intensity in Zhang et al. (2020).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 10 20
Horizon N

0.6

1.2

1.8

2.4

R
M

SE
e

5 10 20
Horizon N

96

102

108

114

sM
AP

E
∆
t

AttNHP
CDiff
Dual-TPP

FIM (fine-tuned)
FIM (zero-shot)
HYPRO

IFTPP
NHP
TCDDM

(a) Mean performance metrics across five different
datasets for different horizon lengths.

1.3 1.4 1.5 1.6 1.7
Event time

9→10

10→11

11→12

12→13St
ep

 (k
→

k+
1)

True
Predicted

Mark 3
Mark 8

(b) Next event prediction on Taxi after fine-tuning

Figure 3: (a) shows that FIM-PP (zs) is competitive but slightly worse than the baseline models.
FIM-PP (f) however performs best among all horizon lengths. (b) shows that FIM-PP (f) also
reliably captures patterns in the Taxi dataset.

5 EXPERIMENTS

In this section, we repeat the experiments by Zeng et al. (2024), who introduced CDiff, a re-
cent state-of-the-art diffusion-based marked event sequence forecasting model. They compare their
method against a range of intensity-based and intensity-free baselines, on common benchmark
datasets, evaluated on standard metrics. In the following, we recall their experimental setup, de-
scribe the pretraining and application of FIM-PP, before presenting and analyzing our results.

5.1 EXPERIMENTAL SETUP

Prediction Task: Given a sequence of events S = {(ti, κi)}ni=1, the task is to predict the next
N ∈ N events following S, where N is the prediction horizon length. We denote the ground-truth
continuation by SN

final and the model prediction by ŜN
final. We refer to the case N = 1 as next-event

prediction and to N > 1 as multi-event prediction.

Evaluation Metrics: We evaluate predictions by comparing ŜN
final with SN

final across five metrics.
For N > 1, we report the Optimal Transport Distance (OTD) (Mei et al., 2019); event count error
(RMSEe), comparing the number of predicted and true events per mark; and two standard regression
metrics on waiting times: RMSE∆t and sMAPE∆t. For the special case N = 1, OTD and RMSEe

are not applicable, and we instead report next-event mark prediction accuracy (Acc). Formal defini-
tions of all metrics are provided in Appendix E.

Evaluation Data: We benchmark on five widely used real-world datasets:TAXI, TAOBAO, STACK-
OVERFLOW, AMAZON, and RETWEET. These datasets vary in the number of marks, sequence
lengths, and event counts, making them a strong testbed for evaluating the broad applicability of
FIM-PP. We use the preprocessing and train/test/validation splits of Zeng et al. (2024). Appendix D
contains further details, including dataset statistics and original sources.

Baselines: We compare FIM-PP against methods falling into two categories: models that learn
joint distributions over multiple events, and autoregressive approaches such as FIM-PP. The first
category includes Dual-TPP (Deshpande et al., 2021), HYPRO (Xue et al., 2022), and the Cross-
diffusion Model (CDiff) (Zeng et al., 2024). The second category further splits into intensity-based
and intensity-free approaches. Intensity-based baselines are the Neural Hawkes Process (NHP) (Mei
& Eisner, 2017), and the Attentive Neural Hawkes Process (A-NHP) (Mei et al., 2022). Intensity-
free baselines are the Intensity-Free Temporal Point Process (IFTPP) (Shchur et al., 2020), and the
Temporal Conditional Diffusion Denoising Model (TCDDM) (Lin et al., 2022).

5.2 PRETRAINING AND APPLYING FIM-PP

We pretrain a single FIM-PP on a synthetic dataset containing 14.4M events, simulated from 72K
Hawkes processes of diverse kernels, and sparsity levels, and varying number of marks, sequences,
and events. Appendix A contains the details. The model has 16M parameters and supports up to

7
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Table 1: Performance on four real-world datasets, predicting N = 20 events. Results for baseline
methods were extracted from Zeng et al. (2024). We report mean and standard deviation over 10
trials for two metrics. Best results are bold.

TAXI STACKOVERFLOW AMAZON RETWEET

Method OTD sMAPE∆t OTD sMAPE∆t OTD sMAPE∆t OTD sMAPE∆t

HYPRO 21.60±0.20 93.8±0.4 42.40±0.20 111.00±0.60 38.6±0.5 82.5±0.8 61.03±0.09 106.11±1.51

Dual-TPP 24.48±0.38 95.2±0.2 41.75±0.20 117.58±0.42 42.6±0.7 86.5±2.0 61.10±0.10 106.90±1.29

A-NHP 24.76±0.22 97.4±0.4 42.59±0.41 108.54±0.53 39.5±0.3 84.3±1.8 60.63±0.10 107.23±1.29

NHP 25.11±0.27 96.5±0.5 43.79±0.15 116.95±0.40 42.6±0.3 92.1±1.6 60.95±0.08 107.08±1.40

IFTPP 24.05±0.61 95.7±0.8 46.28±0.89 115.12±0.63 43.8±0.2 90.9±1.6 61.72±0.15 106.71±1.62

TCDDM 22.15±0.53 90.6±0.6 42.13±0.59 107.66±0.93 42.2±0.2 83.8±1.5 60.50±0.09 106.05±0.61

CDiff 21.01±0.16 88.0±0.2 41.25±1.40 106.18±0.34 37.7±0.2 82.0±1.9 60.66±0.10 106.18±1.12

FIM-PP (zs) 23.15±0.07 76.8±0.4 49.26±0.06 96.36±0.05 46.2±0.1 128.6±0.4 60.24±0.16 99.07±0.39

FIM-PP (f) 17.91±0.12 76.8±0.5 39.80±0.0488.25±0.19 37.2±0.1 81.2±0.1 59.44±0.0887.59±0.17

|K| = 22 marks, which covers all evaluation datasets. Further pretraining details are provided in
Appendix C.

In zero-shot mode, we apply the pretrained model directly to all evaluation datasets, and label the
results by FIM-PP (zs). We also experiment with finetuning FIM-PP on the train split of all evalu-
ation datasets, and label these results by FIM-PP (f). FIM-PP utilizes up to 2000 sequences from
the train split of an evaluation dataset as context, limited only by the maximum number of sequences
seen during training. Sequences in the test split define the history. Finally, for multi-event prediction,
FIM-PP simulates events autoregressively, similar to other (intensity-based) baselines.

Figure 2 shows intensities inferred by FIM-PP in zero-shot mode, both from a synthetic Hawkes
process (in-distribution generalization), and from the RETWEET dataset (out-of-distribution gener-
alization). In what follows, we quantitatively evaluate FIM-PP.

5.3 MULTI-EVENT PREDICTION

Table 1 reports OTD and sMAPE∆t results for N = 20 and four datasets. Remarkably, FIM-PP
achieves competitive performance in zero-shot mode, matching or surpassing specialized baselines
on TAXI and RETWEET data. This shows that, solely from pretraining on synthetic data, the model
can translate contextual patters into accurate multi-event predictions, without any further training or
supervision.

The same table also demonstrates the effectiveness of finetuning. The finetuned FIM-PP (f) con-
sistently outperforms both FIM-PP (zs) and all baselines, across the four datasets and nearly all
metrics. Additional experiments with shorter horizons (N = 10, 5) and alternative metrics (RMSEe,
RMSE∆t) are reported in Appendix F, providing a complementary view.

Figure 3a summarizes performance across horizon lengths by averaging results over all datasets. In
aggregate, FIM-PP (zs) performs on par with the baselines, while FIM-PP (f) consistently out-
performs them, agreeing with our previous analysis. We attribute the effectiveness of finetuning
to two factors: (i) the strong prior encoded into the model’s weights through pretraining on our
synthetic distribution, which provides a good initialization for finetuning; and (ii) the flexibility of
the foundation model architecture, which enables direct access to patterns in the train split during
evaluation.

5.4 NEXT-EVENT PREDICTION

The next-event prediction task is a special case of multi-event prediction, but it differs in nature.
Whereas multi-event prediction requires estimating the distribution over a set of future events, next-
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Table 2: Next-event prediction performance on two real-world datasets, displayed with mean and
standard deviation over 10 trials. Results for baseline methods were extracted from Zeng et al.
(2024). Best results are bold.

TAXI TAOBAO

Method RMSE∆t Acc sMAPE∆t RMSE∆t Acc sMAPE∆t

A-NHP 0.32 ±0.00 0.91 ±0.01 85.13 ±0.26 0.53 ±0.00 0.47 ±0.01 129.13 ±1.35

Dual-TPP 0.34 ±0.01 0.91 ±0.01 89.12 ±0.75 0.53 ±0.01 0.47 ±0.02 131.43 ±1.99

NHP 0.34 ±0.01 0.91 ±0.01 90.63 ±0.61 0.53 ±0.00 0.46 ±0.01 133.69 ±2.25

IFTPP 0.38 ±0.01 0.90 ±0.01 90.03 ±0.47 0.53 ±0.01 0.45 ±0.01 126.01 ±1.48

CDiff 0.34 ±0.01 0.91 ±0.00 87.12 ±0.61 0.52 ±0.01 0.48 ±0.00 127.12 ±1.36

FIM-PP (zs) 0.15 ±0.00 0.41 ±0.03 69.37 ±0.91 1.41 ±0.03 0.09 ±0.01 163.34 ±0.51

FIM-PP (f) 0.15 ±0.00 0.69 ±0.01 63.02 ±0.48 9.31 ±0.15 0.39 ±0.01 138.46 ±2.69

event prediction focuses on accurately forecasting a single event. This distinction is also reflected in
the evaluation metrics (see Appendix E)3.

Table 2 reports next-event prediction results (N = 1) on two real-world datasets. FIM-PP (zs)
performs well on event-time prediction for TAXI, but struggles with mark accuracy on TAXI and
with both event-time and mark accuracy on TAOBAO. These difficulties can be explained by dataset-
specific patterns: sequences in TAXI often alternate consistently between two marks, a pattern un-
likely to appear in the Hawkes-process prior. In contrast, TAOBAO is heavily dominated by a single
mark and occasionally exhibits long waiting times. Again, patterns not covered by our pretraining
distribution.

Compared to the baselines, which easily incorporate such patterns during training, FIM-PP (zs)
cannot reproduce them accurately from the context alone. Appendix G further analyzes these out-
of-distribution patterns.

When finetuned, however, FIM-PP can adapt to (some) of these characteristics. Table 2 shows
substantial improvements in mark prediction accuracy (Acc) after finetuning, and Figure 3 illustrates
that FIM-PP (f) successfully recovers the alternating pattern in the TAXI dataset. Nevertheless,
FIM-PP (f) still lags behind the baselines in mark prediction accuracy (Acc). In Appendix G, we
suggest broadening the synthetic pretraining distribution to better capture such distinctive patterns
upfront.

6 CONCLUSIONS

In this work, we introduced FIM-PP, the first Foundation Inference Model capable of inferring
marked temporal point processes (MTPPs) from real-world data. Our experiments empirically
demonstrated that a single FIM-PP, pretrained on synthetic, Hawkes-process data only, is able
to match the predictive performance of other intensity-based MTPP methods in zero-shot mode, i.e.
without any further training. The pretraining distribution also provides an excellent initialization for
finetuning FIM-PP, which rapidly improves its performance in just a few iterations.

Limitations: Hawkes processes do not describe all real-world patterns accurately, biasing our model
in zero-shot mode. Moreover, a pretrained FIM-PP is restricted by a fixed upper bound on the num-
ber of marks |K| it can predict. The number of sequences and events to be passed as context during
evaluation is limited by the maximum number of events passed during training. In applications
surpassing this limit, FIM-PP may not have access to all available context patterns.

Future Work: Future work will broaden the pretraining distribution beyond Hawkes processes,
to capture more real-world patterns in zero-shot mode and provide an even better initialization for
finetuning. Intensity-free methods have demonstrated astonishingly good predictive performance
(Panos, 2024). We will explore incorporating such intensity-free methods into our amortized in-
context learning approach.

3For instance, mark accuracy (Acc) targets the correctness of one event, while RMSEe compares histograms
over multiple events.
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7 REPRODUCIBILITY STATEMENT

Our core methodology consists of two parts: synthetically generated training data and a founda-
tion model deep neural network for inference of marked temporal point processes. Data generation
is described extensively in Section 4.1 and complemented by Appendix A, which covers the exact
hyperparameters and choices required to reproduce our train dataset. Section 4.2 discussed the ar-
chitecture of FIM-PP. Training details, including hyperparameter choices and sizes of submodules,
are described in Appendix C

We include the code for data generation, the model implementation and the model weights in the
supplementary material.4

The real-world datasets for our experiment are described in Appendix D, including the data sizes and
number of marks. For data sourcing and pre-processing, we follow Zeng et al. (2024), as discussed
in Appendix D.

Finally, the evaluation metrics for all experiments are described in Appendix E.
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A DATA GENERATION

To train our Foundation Inference Model, we generate a comprehensive synthetic dataset of marked
temporal point processes. Each process is an instance of a multivariate Hawkes process. The con-
ditional intensity function λ(t, κ | Ht) at time t ∈ R+ for a mark κ ∈ K given a history of marked
events Ht = {(ti, κi) | ti < t} is defined as

λ(t, κ | Ht) = max

0, µκ(t) +
∑

(t′,κ′)∈Ht

zκκ′γκκ′(t− t′)

 , (13)
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where µκ is the time-dependent base intensity for mark κ, γκκ′ is the interaction kernel between κ
and κ′ ∈ K and zκκ′ ∈ R are sampled pre-factors of the interaction, varying the interaction behavior
further.

To the best of our knowledge, no open-source solution for sampling such Hawkes processes with
time-dependent base intensity functions exists. Hence, we implemented an efficient custom sam-
pling library for such processes in C++. We will release the source code of this library in the
supplementary material of our work.

A.1 DATASET CONFIGURATIONS

We sample Hawkes processe instances over a set of marks K in equation 13 in two stages.

At first, the functional forms for the base intensities µκ and interaction kernels γκκ′ are drawn from a
library of parametric functions. The parameters for these functions are then sampled from specified
prior distributions. Our used functional forms and their parameters are summarized in Table 3. The
parameter ranges were chosen more or less arbitrarily so that the paths look realistic. We keep these
choices fixed and did not modify them based on the performance on our evaluation sets in order to
prevent overfitting to those, which would be contrary to the concept of a foundation model.

The pre-factors further diversify the sampled processes by introducing sparse connectivity and in-
hibitory effects. For each process with interactions, we choose one of two pre-factor distributions
Zstrong and Zsparse on {−1, 0, 1}, which differ by their induced connectivity:

Zstrong = Categorical (−1 : 0.06, 0 : 0.4, 1 : 0.54) (14)
Zsparse = Categorical (−1 : 0.01, 0 : 0.9, 1 : 0.09) (15)

In other words, for Zstrong, only 40% of interactions will be non-influencing, while for Zsparse, 90%
of interactions will be non-influencing. For influencing interactions, 90% will be excitatory, while
10% will be inhibitory.

Once the full intensity function for a process is defined, event sequences are generated using Ogata’s
modified thinning algorithm.

A.2 DATASET SIZE

We sample instances of every Hawkes process configuration in Table 3, and simulate them for differ-
ent number of marks, sequences and events, detailed in Table 4. In total, our training data consisted
of 72k processes and 14.4M events.

B INSTANCE NORMALIZATION

To ensure that FIM-PP can generalize across datasets with vastly different time scales, we introduce
an instance normalization scheme that makes the model agnostic to the absolute units of time. Let
C = {Sj}mj=1 denote a context of FIM-PP, i.e. a set of marked event sequences Sj = {(tji , κji )}

nj

i=1.
Identifying tj0 = 0, we define the inter-event times as ∆tji = tji − tji−1 and the maximum inter-event
time in the context as

∆tcont
max = max

j=1,...,m
max

i=1,...,nj

∆tji . (16)

All time-related inputs to the model, including context event times tji , inter-event times features ∆tji ,
and history event times (e.g. from a target sequence during training) t, are scaled by the maximum
inter-event time:

t′ =
t

∆tcont
max

. (17)

This transformation maps all temporal information to a canonical scale where the largest inter-event
gap becomes 1.

This change of time variable also transforms the intensity function. To preserve the number of
expected events within a differential interval, the intensities must be related by λ(t)dt = λ′(t′)dt′.

14
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Table 3: Summary of the parametrized base intensities and interaction kernels of Hawkes processes
used in our synthetic data generation. The parameters of each configuration are sampled from uni-
form distributions, covering a wide range of processes.

Dataset Configuration Base Intensity µ(t) Interaction Kernel γ(t) Parameter Distributions

Constant Base & Constant Exponential Decay c0 ∼ U(0.01, 1.3)
Exponential Kernel µ(t) = c0 γ(t) = αe−βt α ∼ U(0.005, 1.0)
(no interactions) (γij, i̸=j = 0) β ∼ U(0.001, 10.0)
Constant Base & Constant Exponential Decay c0 ∼ U(0.01, 1.3)
Exponential Kernel µ(t) = c0 γ(t) = αe−βt α ∼ U(0.005, 1.0)

β ∼ U(0.001, 10.0)
Sinusoidal Base & Sinusoidal Exponential Decay c0 ∼ U(0.05, 0.15)
Exponential Kernel µ(t) = A sin(ω(t− γ)) + c0 γ(t) = αe−βt A ∼ U(0.0, 10.0)

ω ∼ U(0.1, 15.0)
γ ∼ U(0.0, 5.0)
α ∼ U(0.1, 0.6)
β ∼ U(0.8, 2.0)

Gamma Base & Gamma Shape + Constant Exponential Decay c0 ∼ U(0.1, 1.3)
Exponential Kernel µ(t) = Atpe−β0t + c0 γ(t) = αe−β1t A ∼ U(10.0, 50.0)

p ∼ U(1.0, 2.0)
β0 ∼ U(1.0, 10.1)
α ∼ U(0.005, 1.0)
β1 ∼ U(0.001, 10.0)

Poisson Process Constant Zero Kernel c0 ∼ U(0.01, 1.3)
µ(t) = c0 γ(t) = 0

Constant Base & Constant Rayleigh c0 ∼ U(0.01, 1.3)
Rayleigh Kernel µ(t) = c0 γ(t) = a0

(t−tshift)

a2
1

exp
(
− (t−tshift)

2

2a2
1

)
a0 ∼ U(0.001, 1.0)
a1 ∼ U(0.05, 0.25)
tshift ∼ U(0.0, 0.1)

Table 4: For each dataset configuration, we sample Hawkes processes with varying numbers (#) of
marks, sequences and events per sequence.

# Marks # Samples # Sequences # Events per Sequence

1 1000 2000 100
5 1000 2000 100
10 1000 2000 100
15 1000 2000 100
22 5000 2000 100

Since dt = ∆tcont
max dt

′, it follows that the intensity in the normalized time domain, λ′(t′), is a scaled
version of the original:

λ′(t′) = ∆tcont
max · λ(t). (18)

Consequently, the model is trained to predict this normalized intensity λ′(t′). During inference, to
obtain the intensity in the original, real-world time scale, the model’s output is simply denormalized
by dividing by the same constant ∆tcont

max. This entire process allows the FIM to learn scale-invariant
temporal dynamics, a key requirement for effective zero-shot inference on unseen data.

C TRAINING DETAILS

Our Foundation Inference Model was trained on the comprehensive synthetic datasets described in
Appendix A. The training took about 5 days on a single NVIDIA A100-80GB.
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C.1 DATA HANDLING AND BATCHING

Each sample in our dataset represents a single underlying process, comprising up to 2000 distinct
time series paths. During training, we dynamically partition these paths into context and inference
sets for each batch.

On-the-fly Path Selection For each sample, we randomly select a single path (Pinference = 1) to
serve as the inference target. The remaining paths are designated as the context set. To train a model
that is robust to varying amounts of contextual information, the number of context paths presented
in each training step is randomized. Specifically, for each sample in a batch, we uniformly sample a
number of context paths between a minimum of 400 and a maximum of 2000.

Variable Sequence Lengths As a form of data augmentation, we also vary the length of the his-
torical sequences. For 90% of the training batches, all sequences (both context and inference) are
truncated to a random length chosen uniformly from the interval [15, 100]. For the remaining 10%
of batches, the full sequence length of 100 events is used. This strategy encourages the model to
make reliable predictions from both short and long historical contexts. For validation, we use fixed,
full-length sequences to ensure consistent and comparable evaluation metrics.

C.2 HYPERPARAMETERS AND OPTIMIZATION

The model architecture is based on the Transformer Vaswani et al. (2017). Context sequences are
processed by a 4-layer Transformer encoder, and the resulting path summaries are further refined
by a 2-layer Transformer encoder. The history of the target sequence is processed by a 4-layer
Transformer decoder, which attends to the context summary as memory. Both encoders and the
decoder use 4 attention heads and a hidden dimension of 256. The final intensity parameters (µ, α, β)
are predicted by three separate Multi-Layer Perceptrons (MLPs), each with two hidden layers of 256
units.

In total, our model has 16.1 million trainable parameters.

We trained the model using the AdamW optimizer Loshchilov & Hutter (2019) with a learning rate
of 5 × 10−5 and a weight decay of 10−4. To accelerate computation, we utilized bfloat16 mixed-
precision training.

C.3 TRAIN OBJECTIVE

We use the standard negative log-likelihood (NLL) for a marked temporal point process as the train
objective for FIM-PP. By Section 3, the MTPP density at a sequence of events S = {(ti, κi)}ni=1
in the interval [0, T ] is

f ({(ti, κi}ni=1) =

[
n∏

i=1

λ(ti, κi | Hti)

]
exp

(
−
∫ T

0

λ(s | Hs)ds

)
. (19)

Thus, the NLL of a target sequence under the distribution induced the model’s predicted intensity
function λ̂ is

LNLL =
∑
κ∈K

Λ̂(T, κ)−
∑

(t,κ)∈T
λ̂(t, κ | Ht) . (20)

where Λ̂(T, κ) =
∫ T

0
λ̂(s, κ | Hs)ds is the predicted integrated intensity. We approximate the

integral using Monte Carlo integration

Λ̂(T, κ) ≈ T

NMC

NMC∑
i=1

λ̂(si, κ | Hsi), (21)

with NMC = 100 samples and si ∼ U(0, T ).

D EVALUATION DATASETS

To evaluate the inference capabilities of FIM-PP, we use five widely-recognized real-world datasets
that were not seen during training:
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AMAZON This dataset comprises sequences of product reviews from users on the Amazon plat-
form, collected over a ten-year period from 2008 to 2018 Ni et al. (2019). Each sequence represents
the review history of a single user. An event is defined by the timestamp of a review, and its mark
corresponds to one of 16 distinct product categories. The analysis is performed on a subset of 5,200
of the most active users to ensure sequences are sufficiently long for meaningful analysis.

TAXI Derived from New York City’s public taxi trip records, this dataset captures the operational
patterns of taxi drivers. Each sequence corresponds to the activity log of an individual driver. Events
are either pick-ups or drop-offs, and the event marks are defined by the combination of the event type
(pick-up/drop-off) and the borough where it occurred, resulting in 10 unique marks. The dataset
consists of sequences from a random sample of 2,000 drivers.

TAOBAO This dataset originates from the 2018 Tianchi Big Data Competition and contains logs
of user interactions on the Taobao e-commerce platform over a period in late 2017 Zhu et al. (2018).
The sequences track the behavior of anonymous users, including actions like browsing and pur-
chasing. The 17 event types correspond to different product category groups. For the evaluation,
sequences from the 2,000 most active users are utilized.

STACKOVERFLOW Sourced from the popular question-and-answering website StackOverflow,
this dataset tracks the awarding of achievement badges to users over a two-year span Leskovec
& Krevl (2014). Each sequence represents a user’s history of earned badges. The events are the
timestamps when badges were awarded, and the marks are the 22 different types of badges available
on the platform. The evaluation subset includes 2,200 active users.

RETWEET This dataset tracks the dynamics of information spread through time-stamped user
retweet sequences Zhou et al. (2013). Each sequence corresponds to the retweet history of an in-
dividual user. An event is defined by the timestamp of a retweet, and its mark is categorized into
one of three types based on the influence of the original poster: ”small” (fewer than 120 followers),
”medium” (fewer than 1,363 followers), and ”large” (all other users). The analysis is performed on
a subset of 5,200 active users.

For all real-world datasets, we use the pre-processing and splits from Zeng et al. (2024).

To compare against the other models, FIM-PP uses the sequences which the other models used for
training as context and used the same inference sequences for evaluation.

E EVALUATION METRICS

Following Zeng et al. (2024), we adopt a comprehensive set of metrics to evaluate both the temporal
and categorical aspects of the predicted sequences. Let Sfuture = {(ti, κi)}Ni=1 be a ground truth
sequence ofN future events, and let Ŝfuture be the corresponding predicted sequence. The metrics are
defined based on the sequence of inter-arrival times ∆t = [∆t1, . . . ,∆tN ] (where ∆ti = ti− ti−1)
and the sequence of marks.

Optimal Transport Distance (OTD) We use the Optimal Transport Distance (OTD) to provide a
holistic measure of similarity between the predicted and ground truth event sequences (Mei et al.,
2019). OTD calculates the minimum cost required to transform the predicted sequence Ŝfuture into the
ground truth sequence Sfuture through a series of operations (insertions, deletions, and substitutions),
each associated with a cost. This metric effectively captures discrepancies in timing, marks, and the
total number of events.

RMSE on Event Counts (RMSEe) This metric evaluates how well the model captures the distri-
bution of event types in the predicted sequence. For each event type κ ∈ K, we count its occurrences
in the ground truth sequence (Cκ) and the predicted sequence (Ĉκ). The RMSEe is the root mean
squared error over the vector of these counts, averaged across all m test sequences:

RMSEe =

√√√√ 1

m

m∑
j=1

∑
κ∈K

(Cj,κ − Ĉj,κ)2 (22)
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Event Type Accuracy (Acc) This metric directly measures the model’s ability to predict the cor-
rect event type at each position in the sequence. It is calculated as the fraction of events for which
the predicted mark κ̂i matches the ground truth mark κi, averaged over all test sequences. This
provides a strict, position-wise evaluation of the categorical predictions.

Acc =
1

m

m∑
j=1

1

N

N∑
i=1

I(κj,i = κ̂j,i) (23)

where I(·) is the indicator function. Unlike RMSEe, which assesses the overall distribution of event
types, accuracy penalizes mispredictions at specific positions, making it a more challenging metric
for sequential order. A higher accuracy indicates better performance.

Time-series Forecasting Metrics To specifically assess the accuracy of the predicted inter-arrival
times ∆t, we report two standard time-series forecasting metrics.

• RMSE on Inter-arrival Times (RMSE∆t): The standard root mean squared error between
the predicted and true vectors of inter-arrival times.

RMSE∆t =

√√√√ 1

m

m∑
j=1

1

N

N∑
i=1

(∆tj,i − ∆̂tj,i)2 (24)

• Symmetric Mean Absolute Percentage Error (sMAPE∆t): A normalized version of
MAPE that is less sensitive to outliers and zero values.

sMAPE∆t =
100

m

m∑
j=1

1

N

N∑
i=1

2|∆tj,i − ∆̂tj,i|
|∆tj,i|+ |∆̂tj,i|

(25)

F ADDITIONAL RESULTS

The experimental setup defined by Zeng et al. (2024) covers four metrics (OTD, RMSEe, RMSE∆t,
sMAPE∆t) and five real-world datasets (TAXI, TAOBAO, STACKOVERFLOW, AMAZON and
RETWEET). Table 5, Table 6 and Table 7 contain the long horizon results for all these datasets
and metrics for horizon sizes N = 20, N = 10 and N = 5, respectively.

G CHALLENGES IN NEXT EVENT PREDICTION

Our evaluations in table 2 reveal that FIM-PP in zero-shot mode already performs well for next
event time prediction. It however gets a noticeably worse error in the next event type prediction. Up
on investigating this, we found that many of the real-world datasets have specific patterns (such as
oscillations between two marks) that FIM-PP (zs) struggles to capture (see fig 4). After fine-tuning,
it is however able to spot these patterns well (see fig 5). This might also explain why FIM-PP
performs better on long-horizon tasks: The specific order of the events does not matter here.

Moreover, we found that our model performed poorly on the Taobao dataset compared to other
datasets, and even the fine-tuned version predicts some event-time outliers which drag down the
RMSE∆t. While we do not have a good analysis of this shortcoming yet, we suspect it to be caused
by the fact that the Taobao dataset is significantly dominated by a single mark and sometimes has
long waiting times.

We hypothesize that the underlying reason for these two shortcomings is that our synthetic dataset
distributions does not capture these patterns well. We are planning to investigate this further and
to update our synthetic distribution to include such patterns and provide an updated version of
FIM-PP.
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Table 5: Prediction of N = 20 events in test sequences of five real-world datasets. Error-bars
indicate the standard deviation over 10 trials. Results for the baseline methods were extracted from
Zeng et al. (2024). Best results are bold.

Dataset Method OTD RMSEe RMSE∆t sMAPE∆t

TAXI

HYPRO 21.653±0.163 1.231±0.015 0.372±0.004 93.803±0.454

Dual-TPP 24.483±0.383 1.353±0.037 0.402±0.006 95.211±0.187

A-NHP 24.762±0.217 1.276±0.015 0.430±0.003 97.388±0.381

NHP 25.114±0.268 1.297±0.019 0.399±0.040 96.459±0.521

IFTPP 24.053±0.609 1.364±0.032 0.384±0.005 95.719±0.779

TCDDM 22.148±0.529 1.309±0.030 0.382±0.019 90.596±0.574

CDiff 21.013±0.158 1.131±0.017 0.351±0.004 87.993±0.178

FIM-PP (zs) 23.145 ±0.073 1.421 ±0.014 0.277 ±0.000 76.765 ±0.386

FIM-PP (f) 17.914 ±0.117 0.705 ±0.006 0.314 ±0.004 76.828 ±0.549

TAOBAO

HYPRO 44.336±0.127 2.710±0.021 0.594±0.030 134.922±0.473

Dual-TPP 47.324±0.541 3.237±0.049 0.871±0.005 141.687±0.431

A-NHP 45.555±0.345 2.737±0.021 0.708±0.010 134.582±0.920

NHP 48.131±0.297 3.355±0.030 0.837±0.009 137.644±0.764

IFTPP 45.757±0.287 3.193±0.043 0.575±0.012 127.436±0.606

TCDDM 45.563±0.889 2.850±0.058 0.569±0.015 126.512±0.491

CDiff 44.621±0.139 2.653±0.022 0.551±0.002 125.685±0.151

FIM-PP (zs) 64.281 ±0.077 3.949 ±0.010 1.988 ±0.006 169.687 ±0.089

FIM-PP (f) 60.106 ±0.464 2.428 ±0.005 16.068 ±0.109 152.528 ±0.377

STACKOVERFLOW

HYPRO 42.359±0.170 1.140±0.014 1.554±0.010 110.988±0.559

Dual-TPP 41.752±0.200 1.134±0.019 1.514±0.017 117.582±0.420

A-NHP 42.591±0.408 1.142±0.011 1.340±0.006 108.542±0.531

NHP 43.791±0.147 1.244±0.030 1.487±0.004 116.952±0.404

IFTPP 46.280±0.892 1.447±0.057 1.669±0.005 115.122±0.627

TCDDM 42.128±0.591 1.467±0.014 1.315±0.004 107.659±0.934

CDiff 41.245±1.400 1.141±0.007 1.199±0.006 106.175±0.340

FIM-PP (zs) 49.259 ±0.056 2.393 ±0.015 1.068 ±0.002 96.364 ±0.048

FIM-PP (f) 39.792 ±0.042 1.336 ±0.030 1.018 ±0.003 88.248 ±0.189

AMAZON

HYPRO 38.613±0.536 2.007±0.054 0.477±0.010 82.506±0.840

Dual-TPP 42.646±0.752 2.562±0.202 0.482±0.012 86.453±2.044

A-NHP 39.480±0.326 2.166±0.026 0.476±0.033 84.323±1.815

NHP 42.571±0.293 2.561±0.060 0.519±0.023 92.053±1.553

IFTPP 43.820±0.232 3.050±0.286 0.481±0.145 90.910±1.611

TCDDM 42.245±0.174 2.998±0.115 0.476±0.111 83.826±1.508

CDiff 37.728±0.199 2.091±0.163 0.464±0.086 81.987±1.905

FIM-PP (zs) 46.219 ±0.108 2.073 ±0.012 0.464 ±0.001 128.635 ±0.398

FIM-PP (f) 37.208 ±0.098 2.030 ±0.019 0.366 ±0.001 81.188 ±0.142

RETWEET

HYPRO 61.031±0.092 2.623±0.036 30.100±0.413 106.110±1.505

Dual-TPP 61.095±0.101 2.679±0.026 28.914±0.300 106.900±1.293

A-NHP 60.634±0.097 2.561±0.054 28.812±0.272 107.234±1.293

NHP 60.953±0.079 2.651±0.045 27.130±0.224 107.075±1.398

IFTPP 61.715±0.152 2.776±0.043 27.582±0.191 106.711±1.615

TCDDM 60.501±0.087 2.387±0.050 27.303±0.152 106.048±0.610

CDiff 60.661±0.101 2.293±0.034 27.101±0.113 106.184±1.121

FIM-PP (zs) 60.238 ±0.161 4.172 ±0.064 24.057 ±0.050 99.069 ±0.390

FIM-PP (f) 59.437 ±0.082 2.703 ±0.012 21.985 ±0.014 87.585 ±0.171
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Table 6: Prediction of 10 events in test sequences of five real-world datasets. Error-bars indicate the
standard deviation over 10 trials. Results for the baseline methods were extracted from Zeng et al.
(2024). Best results are bold.

Dataset Method OTD RMSEe RMSE∆t sMAPE∆t

TAXI

HYPRO 11.875±0.172 0.764±0.008 0.363±0.002 89.524±0.552

Dual-TPP 13.058±0.220 0.966±0.011 0.395±0.003 90.812±0.497

A-NHP 12.542±0.336 0.823±0.007 0.376±0.003 92.812±0.129

NHP 13.377±0.184 0.922±0.009 0.397±0.005 92.182±0.384

IFTPP 12.765±0.106 1.004±0.013 0.383±0.015 93.120±0.526

TCDDM 11.885±0.149 1.121±0.072 0.385±0.009 90.703±0.356

CDiff 11.004±0.191 0.785±0.007 0.350±0.002 90.721±0.291

FIM-PP (zs) 13.820 ±0.124 1.190 ±0.013 0.281 ±0.001 78.141 ±0.414

FIM-PP (f) 8.336 ±0.071 0.451 ±0.006 0.291 ±0.004 75.366 ±0.160

TAOBAO

HYPRO 21.547±0.138 1.527±0.035 0.591±0.019 133.147±0.341

Dual-TPP 23.691±0.203 2.674±0.032 0.873±0.010 139.271±0.348

A-NHP 21.683±0.215 1.514±0.015 0.608±0.011 135.271±0.395

NHP 24.068±0.331 2.769±0.033 0.855±0.013 137.693±0.225

IFTPP 23.195±0.039 2.429±0.045 0.602±0.037 127.411±0.573

TCDDM 21.012±0.520 2.598±0.047 0.610±0.022 132.711±0.774

CDiff 21.221±0.176 1.416±0.024 0.535±0.016 126.824±0.366

FIM-PP (zs) 31.880 ±0.040 2.024 ±0.004 1.955 ±0.011 170.278 ±0.029

FIM-PP (f) 27.974 ±0.162 1.325 ±0.010 14.954 ±0.253 145.821 ±1.120

STACKOVERFLOW

HYPRO 21.062±0.372 0.921±0.019 1.235±0.006 107.566±0.218

Dual-TPP 21.229±0.394 0.936±0.013 1.223±0.010 107.274±0.200

A-NHP 22.019±0.220 0.978±0.023 1.225±0.007 100.137±0.167

NHP 21.655±0.314 0.970±0.014 1.266±0.003 108.867±0.361

IFTPP 22.339±0.322 0.970±0.011 1.251±0.005 105.674±0.337

TCDDM 22.042±0.193 1.205±0.014 1.228±0.010 108.111±0.112

CDiff 20.191±0.455 0.916±0.010 1.180±0.003 102.367±0.267

FIM-PP (zs) 23.527 ±0.033 1.188 ±0.005 1.039 ±0.003 92.919 ±0.556

FIM-PP (f) 19.938 ±0.093 0.823 ±0.010 1.012 ±0.004 87.503 ±0.402

AMAZON

HYPRO 24.956±0.663 1.765±0.039 0.442±0.015 83.401±1.033

Dual-TPP 25.929±0.280 2.098±0.101 0.475±0.008 82.352±1.285

A-NHP 24.116±0.807 1.741±0.039 0.454±0.014 84.323±1.815

NHP 25.730±0.497 1.843±0.053 0.491±0.048 89.135±1.092

IFTPP 26.632±0.519 1.955±0.112 0.464±0.066 89.305±1.288

TCDDM 25.091±0.227 1.778±0.090 0.448±0.082 82.105±1.564

CDiff 24.230±0.287 1.766±0.079 0.450±0.049 82.124±2.094

FIM-PP (zs) 21.736 ±0.115 1.141 ±0.010 0.449 ±0.002 120.894 ±0.393

FIM-PP (f) 18.428 ±0.124 1.091 ±0.016 0.361 ±0.001 87.264 ±0.323

RETWEET

HYPRO 31.743±0.068 1.927±0.027 33.683±0.245 105.073±0.958

Dual-TPP 31.652±0.075 1.963±0.038 28.104±0.486 106.721±0.774

A-NHP 30.337±0.065 1.823±0.031 26.310±0.333 106.021±1.011

NHP 30.817±0.090 1.713±0.024 27.010±0.429 107.053±1.390

IFTPP 31.974±0.032 1.942±0.062 28.825±0.221 106.014±0.633

TCDDM 32.006±0.074 1.789±0.094 29.124±0.405 106.738±0.791

CDiff 31.237±0.078 1.745±0.036 26.429±0.201 105.767±0.771

FIM-PP (zs) 31.027 ±0.031 2.355 ±0.032 27.085 ±0.002 97.590 ±0.152

FIM-PP (f) 30.592 ±0.037 1.611 ±0.031 25.021 ±0.034 86.875 ±0.108
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Table 7: Prediction of 5 events in test sequences of five real-world datasets. Error-bars indicate the
standard deviation over 10 trials. Results for the baseline methods were extracted from Zeng et al.
(2024). Best results are bold.

Dataset Method OTD RMSEe RMSE∆t sMAPE∆t

TAXI

HYPRO 5.952±0.126 0.500±0.011 0.322±0.004 85.994±0.227

Dual-TPP 7.534±0.111 0.636±0.009 0.340±0.003 89.727±0.320

A-NHP 6.441±0.090 0.682±0.010 0.347±0.002 89.070±0.152

NHP 7.405±0.122 0.641±0.013 0.351±0.008 91.625±0.177

IFTPP 7.209±0.184 0.608±0.008 0.335±0.003 90.512±0.169

TCDDM 5.877±0.095 0.648±0.015 0.327±0.005 88.051±0.240

CDiff 5.966±0.083 0.547±0.007 0.318±0.003 89.535±0.294

FIM-PP (zs) 6.773 ±0.064 0.655 ±0.013 0.246 ±0.001 74.912 ±0.793

FIM-PP (f) 4.083 ±0.032 0.311 ±0.007 0.250 ±0.002 71.108 ±0.902

TAOBAO

HYPRO 11.317±0.111 0.817±0.037 0.573±0.011 133.837±0.524

Dual-TPP 13.280±0.092 1.877±0.014 0.691±0.007 134.437±0.458

A-NHP 11.223±0.145 0.873±0.023 0.550±0.014 132.266±0.532

NHP 11.973±0.176 1.910±0.031 0.712±0.017 134.693±0.369

IFTPP 11.052±0.108 1.941±0.049 0.601±0.017 126.320±0.591

TCDDM 11.609±0.184 1.690±0.023 0.675±0.009 129.009±0.923

CDiff 10.147±0.140 0.730±0.019 0.519±0.008 124.339±0.322

FIM-PP (zs) 15.951 ±0.042 1.129 ±0.007 1.761 ±0.013 168.299 ±0.249

FIM-PP (f) 13.173 ±0.261 0.745 ±0.010 14.892 ±0.370 146.921 ±0.858

STACKOVERFLOW

HYPRO 11.590±0.186 0.586±0.019 1.227±0.018 109.014±0.422

Dual-TPP 11.719±0.109 0.591±0.026 1.296±0.010 106.697±0.381

A-NHP 11.595±0.197 0.575±0.009 1.188±0.014 105.799±0.516

NHP 11.807±0.155 0.596±0.015 1.261±0.013 108.074±0.661

IFTPP 13.124±0.174 0.702±0.008 1.182±0.039 108.409±0.692

TCDDM 11.410±0.129 0.630±0.015 1.201±0.028 107.893±0.942

CDiff 10.735±0.183 0.571±0.012 1.153±0.011 100.586±0.299

FIM-PP (zs) 11.520 ±0.057 0.657 ±0.003 1.030 ±0.001 93.296 ±0.506

FIM-PP (f) 10.353 ±0.051 0.527 ±0.004 0.990 ±0.003 86.443 ±0.128

AMAZON

HYPRO 9.552±0.172 1.397±0.033 0.433±0.008 82.847±0.748

Dual-TPP 11.309±0.093 1.742±0.302 0.476±0.010 86.633±0.573

A-NHP 9.430±0.131 1.117±0.049 0.427±0.033 83.121±0.415

NHP 11.273±0.198 1.431±0.024 0.501±0.009 90.591±0.667

IFTPP 10.230±0.224 1.663±0.168 0.447±0.015 88.900±0.610

TCDDM 10.557±0.331 1.409±0.203 0.460±0.032 82.401±0.810

CDiff 9.478±0.081 1.326±0.082 0.424±0.018 81.287±0.994

FIM-PP (zs) 11.124 ±0.059 0.736 ±0.004 0.449 ±0.004 119.129 ±0.746

FIM-PP (f) 10.034 ±0.060 0.737 ±0.006 0.341 ±0.004 78.738 ±0.339

RETWEET

HYPRO 16.145±0.096 1.105±0.026 27.236±0.259 103.052±1.206

Dual-TPP 16.050±0.085 1.077±0.027 31.493±0.162 101.322±1.127

A-NHP 16.124±0.089 1.058±0.029 29.247±0.145 105.930±1.380

NHP 15.945±0.094 1.113±0.040 32.367±0.104 107.022±1.077

IFTPP 16.043±0.222 1.313±0.011 30.853±0.119 106.941±2.031

TCDDM 15.874±0.053 1.194±0.021 28.530±0.110 105.570±0.940

CDiff 15.858±0.080 1.023±0.036 26.078±0.175 106.620±1.008

FIM-PP (zs) 15.747 ±0.032 1.342 ±0.027 28.138 ±0.068 98.668 ±0.794

FIM-PP (f) 15.645 ±0.020 1.033 ±0.034 25.308 ±0.135 83.010 ±0.278
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Figure 4: FIM-PP in zero-shot mode struggles to predict the next event type right if the dataset has
alternating patterns such as here for the Taxi dataset.
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Figure 5: After fine-tuning, FIM-PP is able to spot the alternating pattern between mark 3 and mark
8 in the Taxi dataset.
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