RLJ | RLC 2024

Learning Abstract World Models for Value-
preserving Planning with Options

Rafael Rodriguez-Sanchez George Konidaris
Department of Computer Science Department of Computer Science
Brown University Brown University
Providence, RI Providence, RI
rrs@brown.edu gdkQ@cs.brown.edu
Abstract

General-purpose agents require fine-grained controls and rich sensory inputs to
perform a wide range of tasks. However, this complexity often leads to intractable
decision-making. Traditionally, agents are provided with task-specific action and
observation spaces to mitigate this challenge, but this reduces autonomy. Instead,
agents must be capable of building state-action spaces at the correct abstraction
level from their sensorimotor experiences. We leverage the structure of a given set
of temporally-extended actions to learn abstract Markov decision processes (MDPs)
that operate at a higher level of temporal and state granularity. We characterize
state abstractions necessary to ensure that planning with these skills, by simulating
trajectories in the abstract MDP, results in policies with bounded value loss in the
original MDP. We evaluate our approach in goal-based navigation environments that
require continuous abstract states to plan successfully and show that abstract model
learning improves the sample efficiency of planning and learning.

1 Introduction

Reinforcement learning (RL) is a promising framework for embodied intelligence because of its
flexibility, generality, and online nature. Recently, RL agents have learned to control complex control
systems: stratospheric balloons (Bellemare et al., 2020), nuclear fusion reactors (Degrave et al., 2022)
and drones (Kaufmann et al., 2023). They have also mastered long-horizon decision-making problems
such as the game of Go and chess (Silver et al., 2016; 2018). To achieve these results, each agent’s
state representation and action spaces were engineered to make learning tractable: the state space
was designed to contain only relevant information for decision-making and the actions were restricted
to task-relevant decisions to be made at every time step. This is in conflict with the state-action
space required for versatile, general-purpose agents (e.g., robots), which must possess broad sensory
data and precise control capabilities to handle a wide variety of tasks, such as playing chess, folding
clothes or navigating a maze. Abstractions alleviate this tension: action abstractions enable agents to
plan at larger temporal scales and state abstractions reduce the complexity of learning and planning;
a combination of action and state abstraction results in a new task model that can capture the
natural complexity of the task, instead of the complexity of the agent (Konidaris, 2019).

For instance, in model-based RL (MBRL; Sutton (1991); Deisenroth and Rasmussen (2011)), there is
a long line of research that focuses on learning transition and reward models to plan by simulating
trajectories. Many modern methods learn abstract state spaces (Ha and Schmidhuber, 2018; Zhang
et al., 2019; Silver et al., 2018; Hafner et al., 2019; 2021; 2023) to handle complex observation spaces.
However, they learn models for the primitive action spaces and work within the single-task setting.
Recently, there has been interest in using MBRL for skill discovery: Hafner et al. (2022) learn a
model in an abstract state space and learn a further abstraction over it to discover goals in a Feudal
RL manner (Dayan and Hinton, 1992). Bagaria and Konidaris (2020) and Bagaria et al. (2021a;b),

RLJ | RLC 2024

Figure 1: An agent needs to solve a task using its actuators and sensors (on the right). However, it
requires an abstract model of the task (on the left) to reason at long time scales. This can be con-
structed by combining temporally-extended actions a with a compatible abstract state representation
5 that contains the minimal information necessary for planning with those actions.

instead, assume that the abstract state space is a graph and learn skills that connect nodes in that
graph, effectively building a model that is both abstract in state and in actions. These approaches
are ultimately limited because they assume a discrete abstract state space.

On the other hand, in robotics, high-level planning searches for sequences of temporally-extended
actions (motor skills) to achieve a task. However, the agents needs a model to compute plans
composed of their motor skills and this is typically given to the agent. To enable the agent to
learn a model compatible with its motor skills from sensor data, Konidaris et al. (2018) propose
novel semantics to automatically learn logical predicates from the agent observation space that
support task planning with PDDL (Planning Domain Definition Language; Fox and Long (2003);
Younes and Littman (2004)). Moreover, they provide theoretical guarantees for learning predicates
that support sound task planning. In a similar vein, Ugur and Piater (2015a;b) and Ahmetoglu
et al. (2022) propose to cluster the effects of motor skills to build discrete symbols for planning.
Similarly, Asai et al. (2022) introduce a discrete VAE (Variational Auto-encoder; Kingma and Welling
(2013)) approach to leverage modern deep networks for grounding PDDL predicates and action
operators from complex observations. While these approaches consider temporally-extended actions
and are promising for planning problems where the appropriate state abstractions are discrete, they
are not applicable when planning with the available high-level actions requires a continuous state
representation.

Instead, we are interested in learning state abstractions that are continuous, compatible with modern
deep learning methods, and that guarantee value-preserving planning with a set of given skills.
Specifically, we focus on building abstract world models in the form of Markov decision processes
(MDPs) that have abstract state and action spaces and, in contrast to previous approaches, provide a
principled approach to characterize the abstract state space that ensures that planning in simulation
with this abstract model produces a policy with expected value equal to that we would get by planning
if we had access to the real MDP. In summary, we (1) introduce the necessary and sufficient conditions
for constructing an abstract Markov decision process sufficient for value-preserving planning for a
given set of skills; (2) introduce an information maximization approach compatible with contemporary
deep learning techniques, ensuring a bounded value loss when planning using the abstract model;
and finally, (3) provide empirical evidence that these abstract models support effective planning with
off-the-shelf deep RL algorithms in goal-based tasks (Mujoco Ant mazes (Fu et al., 2020) and Pinball
(Konidaris and Barto, 2009) from pixels).

2 Background and Notation

Markov Decision Processes A continuous state, continuous action Markov decision process (MDP)
(Puterman, 2014) is defined as the tuple M = (S, A, T, R,po,7) where S C R% is the state space
and A C R% is the action space (ds,d, € N), T : S x A — A(S)! denotes is the transition kernel

1A(-) indicates the set of probability measures over a given set.

RLJ | RLC 2024

that represent the dynamics of the environment, R : S x A — R is the reward function bounded by
Rpyrar € R, v €[0,1) is the discount factor and pg € A(S) is the initial state distribution.

Planning and Bellman Equation A solution to an MDP is a policy 7 : § — A(A) that
maximizes the expected return J(m) = E[>°,° v R(S:, A¢)| So ~ po,n, T]. An important family
of solution methods for MDPs are based on the Bellman optimality principle and the Bellman
equation. For a given policy m, the state-value function v™ : & — R is defined as v™(s) :=
E > 2o v R(St, A¢)|So = s, 7). The state-value function represents the expected discounted return
when following the policy m from state s. Importantly, the value function satisfy the following
recursion, known as the Bellman equation, which is used in many current planning and learning
methods for MDPs: v™(s) = E [R(s,a) 47 [s T(s'|s,a)v™(s')ds'] .

Action Abstractions Options (Sutton et al., 1999) are a formalization of temporally-extended
actions, or skills, that are used by the agent to plan with a longer temporal scope than that allowed
by primitive actions. An option o is defined by the tuple (I,, 7, 3,) where I, : S — {0,1} is the
initiation set, that is, the set of states in which the option can start execution; 7, is the policy
function, and 8, : S — [0, 1] is the termination probability function that indicates the probability of
terminating the option execution at state s.

Expected-length Model of Options Generally, options are used to plan in Semi-Markov decision
processes (SMDP; Sutton et al. (1999)), in which modelling jointly the option’s dynamics T' and
duration 7 as T,(s'[s,0) = Y77 (7 Pr(S; = s,8(s;)|So = s,0) and its reward as R(s,0) =

E, 2;—1 Y R(Sy, At)|s, 0|, result in the Multi-time model of options. However, we will use a simpler

and more practical model of option’s dynamics: the expected-length model of options (Abel et al.,
2019). In this case, the option’s duration is modeled independently from the next-state distribution.
More precisely, let 7, be the average number of timesteps taken to execute the option o, then
T,(s'|s,0) = ~v7p(s'|s,0) where p(s'|s,0) is the probability density function over the next-state
observed when the option is executed as a black-box skill.

State Abstractions and Probabilistic Groundings State abstractions (or state aggregation)
have commonly been defined in the form of non-injective functions f : S — S where S is an abstract
state space. Recently, Konidaris et al. (2018) propose probabilistic groundings to define a new class of
state abstractions. These groundings are defined by G : S — A(S) and, contrary to state aggregation
approaches, these can have overlapping support. That is, for a state s and abstract states 5' and 52,
we can have that Gz (s) > 0 and Gzz2(s) > 0. In state aggregation methods, one state has just one
abstract state to map to. Therefore, this provides a more expressive framework to build abstractions.

3 Value-preserving Abstract MDPs

To plan with a set of options, we must build a model of their effects. In this section, we formalize this
model as an MDP with the following characteristics: (1) Action Abstraction, the action space is the
set of task-relevant temporally-extended skills (i.e., the ground actions are not used for planning); (2)
State Abstraction, because the set of skills operate at a higher-level of abstraction, the observation
space will contains more information than required to plan with the skills; (3) Sufficient for
Planning, the model must support computing a plan with the option set for task-specific rewards.
In the case of abstract MDPs, the abstract model must guarantee accurate trajectory simulations to
leverage the planning and RL algorithms developed for MDPs.

3.1 Ground and Abstract MDPs

We start by defining the ground MDP M, the environment that the agent observes by only executing
the options.

Definition 3.1 (Ground MDP). Let O be a set of options defined over the agent’s state-action
space. The ground MDP is M = (§,0,T, R,v,7,po). T(s'|s,0) is the next-state probability density
function seen by the agent when executing option o at s and its accumulated discounted reward is

RLJ | RLC 2024

R(s,0) =E. [>_;_1 7' R(St, A¢)|s, 0], and 7 : S x O — [0,00) is the expected option’s execution time
of option o when initiated at state s.2

Definition 3.2 (Abstract MDP). The abstract MDP is M = (S,0, T, R,~,7,py) where S is the
abstract state space, T : S x O — A(S) is the abstract transition kernel, R : S x O — R is the
abstract reward function, « is the discount factor, 7 : S x O — [0, 0) is the option’s duration model
and pyg is the initial abstract state distribution.

Given that the objective is to compute plans in the abstract model, we will only consider policies of
the form 7 : S — O in the rest of the paper. Moreover, to connect the abstract MDP to the ground
MDP, we use a grounding function defined in terms of probability density functions, as introduced
by Konidaris et al. (2018). The grounding of an abstract state s is defined by the probability of the
agent being in a state s.

Definition 3.3 (Grounding function). Let M be a ground MDP and M be an abstract MDP. A
grounding function G : & — A(S) maps 5 to probability measures over S of M. Given an abstract
state 5, we denote by G its grounding probability density. We will denote the tuple (M, M, G) as a
grounded abstract model.

3.2 The Dynamics Preserving Abstraction

Our goal is to build an abstract model that enables the agent to simulate trajectories as though it
had access to a simulator of the ground model. To achieve this, we establish two key distributions:
the future state distribution and the grounded future state distribution.

Definition 3.4 (Future State Distribution). Let the tuple (M, M, G) be a grounded abstract model.
Let the future state distribution be B;, and defined recursively as follows,

By (s0) = po(s0);

Bt(stv ey 50|00» ~~~>0t71) = T(5t|3t717 Otfl)Btfl(Stfla ooy 50|007 ooy 0t—2);

and the grounded future state distribution B; is the estimate obtained by grounding the estimate
obtained by simulating trajectories in the abstract model M

P(st,5¢, ..., 50,50[00, .. 04—1) = G§t(St)T(§t|§t71>Otfl)Ptfl(Stfh St—1, ., 50, 80|00, ..., 04—2);

Bt(8t7...78()|O(),...,Ot,1) = /P(St,gt,...,So,g()|007...70t,1)d§0...§t;

Hence, we say that when By(sy,...,s0|00,...,0i_1) = Bi(s4,...,50|00,...,0¢1), then simulating a
trajectory in the abstract model is the same as in the ground model. To satisfy this, we can build an
abstract model based on dynamics-preserving abstractions.?

Definition 3.5 (Dynamics Preserving Abstraction). Let ¢ be a mapping ¢ : S — Z C R% for some

dimension d, € N, typically with d, < ds. If for all 0 € O and all s € S that are reachable with
probability greater than 0, the following holds,

T(s'|s,0) = T(s'|¢(s),0); (1)
Pr(1, = 1|s) = Pr(I, = 1|¢(s)); (2)

where, I, is an indicator variable corresponding to the option’s initiation set. Then, we say that ¢ is
dynamics-preserving. That is, the information in ¢(s) is sufficient to predict the option’s effect and
determine if an option is executable.

This is similar to model-preserving abstractions (Li et al., 2006) and bisimulation (Givan et al., 2003;
Ferns et al., 2004). However, 1) it is stronger in the sense that z must be a sufficient statistic for
next-state prediction, and more importantly, 2) this does not impose a condition over the ground

2The ground MDP would be an SMDP if we used the multi-time model of options (Sutton et al., 1999).
3We defer all proofs to Appendix A.1.

RLJ | RLC 2024

reward function. Because we want to build an abstract model to be re-used for task-specific rewards
(as we will see in Section 4.3), the ground reward function is considered as a way to measure the cost
(negative reward) of executing a skill—retaining Markovianity with respect to the ground reward
function would limit how much information can potentially be abstracted away.

We will now build a sensible abstract MDP M, as follows. Let ¢ : S — Z be a dynamics-preserving
abstraction. Given that T'(s'|s,0) = T(s'|z,0), where ¢(s) = z, then we can build a transition
function in Z-space, T'(z'|z,0), and a grounding function G, that can let us reconstruct T'(s’|z, 0).

po(z) = / po(s)1[6(s) = 2)ds;

T(Z|z,0) = /T(s’\z,o)]l[d)(s’) = 2']ds';

, , % if z'is an initial state (there is not previous (z,0))
Glslz0.2) =\ 1ol =2 otherwise ;
T(z'|z,0)
Given that just knowing z is not enough to determine its grounding distribution, we can build an
abstract state space S = Z x O x Z of transition tuples—with special values 2z, and o, to form
50 = (21,01, 20) for initial abstract states. Let 5 = (2,6, 2') and § = (2,0, 2’) be two abstract states
in S, we define the abstract MDP functions in this new S, as follows.

Gs(-) =G(|2,6,2));
T()5,0) = {T<z’z,o> if 5/ =2

0 otherwise ;
R(§7 0) = ESNGE [R(S, 0)] 5 7__(53 0) =]ESNG§ [T('S? 0)] 5

That is, if the tuples corresponding to s and 5’ are not compatible, we define its transition probability
as 0, and we define the abstract reward and abstract option’s execution length as their corresponding
expected values under the grounding function. Finally, the following theorem formally states that
this construction is sound.

Theorem 3.6. Let the tuple (M, M, G) be a grounded abstract model and a function ¢ : § — Z C R,
The model satisfies that Bi(- | 0g, ..., 0¢—1) = Bi(- | 00, ..., 0¢—1) if and only if ¢ is dynamics-preserving.

This theorem states that if we learn a dynamics-preserving abstraction, we can simulate accurate
trajectories in the abstract model. Therefore, planning in the abstract model is accurate, in the
sense, that the value of an abstract state v™(5) computed using the abstract model is the same as
the one would get by generating trajectories in the ground MDP and computing the expected value
under grounding G, E,q.[v™(5)]].

Corollary 3.7. Let the tuple (M, M,G) be a grounded abstract model. If the dynamics preserving
property holds then the value of policy © computed in abstract model M satisfies that v™(8) =
E[v™(s)|s ~ Gs]. That is, the grounded abstract model preserves the expected value under the
grounding G.

Proof. Given that we have that, by definition, T'(s'|s,0) = T(s'|5,0) = Eg/ 75,0 (G (s)]. It follows
that

Esec.[v™(5)] = Eseq- [EONW [R(S, 0) + Egor(s)s,0) ['yTv”(s’)]]]
= IEo~7r [ESNGg [R(S7 O)] + ES~G§,S’~T(S’|S,O) [’771}7‘—(8/)]]
=Eonr [R(g, o) + Ey 75,0 Es'~as HUW(S/)]}

= Eour [R(5,0) + Egp(50 107 ()] =07 (3).

RLJ | RLC 2024

The Skills to Symbols framework (Konidaris et al., 2018) introduces the strong subgoal property to
build grounded discrete symbols for sound classical planning. The next corollary proves that the
strong subgoal is a special case of the dynamics preserving property when the appropriate abstraction
function has finite co-domain. Therefore, we can build discrete dynamics preserving models if and
only if the strong subgoal property holds.

Corollary 3.8. Let the tuple (M, M, G) be a grounded abstract model. Let the strong subgoal property
(Konidaris et al., 2018) for an option o be defined as, Pr(s'|s,0) = Pr(s'|o). The dynamics preserving
property holds with a finite abstract state space Z = [N] for some N € N if and only if the strong
subgoal property holds.

4 Learning the Abstract Model

4.1 Information Maximization to Learn a Dynamics-Preserving ¢

The mutual information (MI) between random variables X and Y, MI(X;Y), measures the infor-
mation that each variable holds about the other. We are interested in finding a function ¢ that is
dynamics-preserving such that we can build our abstract MDP. By Definition 3.5, we want to learn
¢(s) that is maximally predictive of the effect of o when executed in s and to predict if option o is
executable. That is, we want to maximize the following:

max MI(S',I;$(5),0) = max MI(S";¢(S),0) + MI(I; ¢(5)), (3)

where @ is a class of functions that map the high-dimensional ground states to lower-dimensional
space. I is binary random variable for the initiation set prediction. S’,.S, O are random variables
over the ground states S and the options set O.

In general, by the data processing inequality, MI(S’; ¢(S), O) is upper-bounded by MI(S’; S, O).
Therefore, we can show that optimizing the above objective results in a bounded value loss when
using the abstract model to plan. To see this, we first note that by compressing through ¢, we
lose information AMI £ MI1(S';S,0) — MI(S'; Z,0), where Z = ¢(S), in the transition dynamics
simulation. We show that,

a - (b) -
AMI @ Ep(s) [DKL (T(s’|s,0)||T(s’|z,o))] > 2In2-Ep [||T(s'|s,0) — T(s’|z,o)||%])

where p(s) is a distribution over s that will depend on the data collection policy and (a) follows from
the definition of the KL divergence and (b) from the well-known bound relating the KL divergence
and L1 norm®. Therefore, the error in the learned transition dynamics is minimized by our objective
and this implies, by the following theorem, that this objective also minimizes the value loss resulting
from the approximation.

Theorem 4.1 (Value Loss Bound). Let (M, M,G) be a grounded abstract model and T(s'|3,0) =

[Gs(s")T'(5'|5,0)d5" be the approzimate transition dynamics from the grounded model. If the following
conditions hold for all o € O and all s € S with G5(s) > 0: (1) ||T(s']s,0) — T(s']5,0)|]7 < er, and
(2)|R(s,0) — R(3,0)|? < €r; then, for any policy =,

vV €R + ’YVMaa: VET

‘QW<S>O)_QTF(§’O)| < 177

4.2 Contrastive Abstract Model Learning

We maximize the previous Infomax objective (3) as follows. The term MI(I;Z) reduces to a
cross entropy loss, so we will focus on estimating the term MI(S’;Z,O): we can prove that
maximizing both sides of the identity MI(Z'; Z,0) = (MI(S;Z') — MI1(S'; Z'|Z,0O)) implicitly

Dy (P,Q)>2n2-||P — Q|2

RLJ | RLC 2024

maximizes MI(S’; Z,0) (see extended derivation details in Appendix A.2). Intuitively, the first
term MI(Z'; Z,O) makes 2z’ predictable from knowing the option executed and the previous z. The
second term avoids collapsing ¢ to a trivial solution: maximizing MI(S’;Z") — MI1(S’; Z'|Z,0)
makes ¢ retain information about the ground state s (avoiding collapse of the representation) that is
maximally predicted by the previous (z,0).

We choose to maximize these mutual informa-
tion terms contrastively using InfoNCE (Oord

et al., 2018) to avoid making assumptions about Algorithm 1 Planning and Learning with an Ab-
tractable density models (other MI estimators i, .t Model

(Poole et al., 2019; Alemi .et al.; Belghagi et al., Require: Agent 7, Ground Environment M,
2018) can be used). Using these estimators Abstract Model M. Goal G

allows the model to implicitly learn complex ’
grounding functions that improve the quality of
the abstract state space. Note that by using

1: Initialize dataset D by rolling out IV trajecto-
ries

2: M < PretrainAbstractMDP (D

InfoNCE for the terms above, this algorithm cor- y retrainAbstract MDD (D)
D . 3: M < MakeTaskMDP (M, G)

responds to Temporal Predictive Coding (TPC; 4 while true do
Nguyen .et al. (2021)) Whl.Ch proposes abstract 5. D « Roll out for L steps,
states without reconstruction objectives. There- .
‘ ‘ lati ds to the TPC 6: if H steps have passed then
‘l’re’ i’ﬁ‘r Prﬁuz ton CofeSpon fS Ot € b 7. M < TrainModel(M D)
& BOTILALIL 1 LAE .egensera ¢ Case oL Options betls g, 7 < TrainAgentImagination(M, m)
the primitive actions. .

9: end if
In practice, we assume that we have ac- 10: end while

cess to a dataset of transition samples D =

{(si, 04, 7"17, Sk, Tis Ii)}ij\él that correspond to the execution of option o; from state s;, terminating in
s} with a duration of 7; and accumulated return r} = Z;Bl ~try. I; corresponds to the initiation
sets of all options in state s;. This dataset might be initialized by rolling out trajectories with a

random agent and further enhanced during the agent’s learning (see Algorithm 1).

We propose to learn the abstract model Mg) = (Tg) ,Rg, I g’ , 7o) based on the abstraction ¢ parameter-
ized by a function approximator fg. Notice, that because we need to guarantee good initiation sets
by MI(I;$(S)), the initiation set loss also affects the learning of f:

Lo=—-MIy(Z';2,0) - MI4(S"; 2");
L)y = —log I (Iil f(s1));
Lj 5= —logTy(fs(si)|fo(s:),0i);
Therefore, Lg, £§7 » and [,0T7 » are used to learn the abstraction function f,. Moreover, to compensate
for any imbalances in the data, we use a weighted negative log-likelihood loss for the initiation loss to
learn an initiation classifier to be used during planning. To learn the rest of the model, we consider
[fixed and minimize the following losses and consider samples of the form (s;—1,0;—1, $;,0;,7],7i)

which can be obtained by slicing trajectories appropriately. We map them considering f, and
minimize the following,

LE = (Ro(zi-1,0i-1, 2i,0i) — 1])%; 7= (1o((zi—1,0i1,2i,0i) — Ti)%

Finally, we minimize L9, = BintoLy + 5I££,¢ + BTEg + /J’Rﬁg + B-L§. In our experiments, all
constants were Bingo = 87 = Br = fr = B, = 1.

4.3 Goal-based Planning with an Abstract Model

Consider a goal set G C S and G, C Z, its mapping to Z. In order to define the task MDP Mg
(Algorithm 1, Line 3) for the agent to plan in, we define the task reward function for abstract state

5Extended discussion in Appendix A.2

RLJ | RLC 2024

Ground Features (s)
Ground Features (s)

-2.5
-2.0
1.5
1.0
0.5

Abstract Features (

-3.0
-2.5
2.0
1.5
1.0
0.5

Abstract Features (

(a) Pinball (b) Medium Antmaze

Figure 3: MI matrix: ground features s are in the vertical axis and abstract features z are in the
horizontal axis. High MI (first two rows) corresponds to the position of the ball or the ant.

5=(2,0,2) as Rg(5,0) = Ry(5,0) + Riask1[z € Gy] where Ryask is the goal reward. The first term
can be interpreted as the base cost/reward of executing a skill while the second term indicates to the
agent the task-specific rewarding states. Moreover, we augment the transition dynamics and set all
z € G, as terminating states by setting Tg (2done|2,0) = 1[z € Gy]. The agent uses the task MDP Mg
to simulate trajectories and improves its policy (Algorithm 1, Line 8) and it can rollout the policy in
the environment to collect new data (Algorithm 1, Line 7) that further improves the abstract model.

5 Experiments

Pinball environment (Konidaris and Barto, 2009) This domain has a continuous state space
with position vector (z,y) € [0,1]? and velocities (%,9) € [—1,1]?. As opposed to its original
formulation, we consider a variant with continuous actions that decrease or increase the veloc-
ity by A(#,9) € [~1,1]2. Moreover, we also consider the top view pixel observation of the
environment as the agent’s observation. As options, we handcrafted position controllers imple-
mented as PID controllers that move the ball in the coordinate directions by a fixed step size.
Antmaze We consider the problem of control-
ling a Mujoco (Todorov et al., 2012; Fu et al.,
2020) Ant to navigate through a maze. The state
space is a 29-dimensional vector that contains
the position of the ant in the maze and the ant’s
proprioception. We consider the Medium Play
maze as defined by Fu et al. (2020). We use
8 options learned using TD3 (Fujimoto et al.,
2018) that move the ant in the coordinate direc-
tions (north, south, east, west and the diagonal
directions) in the maze by a fixed step size.

5.1 Abstract State Space Preserves

Relevant Information for Planning Figure 2: Medium Antmaze. 2D MDS projec-

tion of the learned ¢: it learns to represent the
Our main hypothesis is that abstract actions position in the maze. The average grounding shows
drive state abstraction because the information possible configurations of the ant joints when it is
needed to plan with a structured option set will in the represented position.
be less than the ground perception space of the
agent. To quantify this, we measure the infor-
mation contained in the abstract state space about the ground features by estimating the MI using
non-parametric methods based on k-nearest neighbors (Kozachenko and Leonenko, 1987). We use
Scikit-learn implementation (Pedregosa et al., 2011). In Figure 3a, we show the MI matrix between

RLJ | RLC 2024

Pinball’s ideal features (position and velocities) and the learned features from the pixel observations.
For Antmaze (Figure 3b), we purposely over-parameterized the abstract space to give enough capacity
to learn the full observation, if necessary. However, we can see that features that are not necessary
for planning with the skills are effectively abstracted away. In the case of Pinball only the first two
dimensions corresponding to the ball position have high MI. In the Antmazes, similarly, the first 7
dimensions have the highest MI which corresponds to position in the maze (first two dimensions)
and orientation of the ant’s torso. Qualitatively, we can visualize the learned abstract state space
using Multidimensional Scaling (MDS; Borg and Groenen (2005)). Figure 2 shows the abstract state
space learned for the Antmaze and it reveals the pattern of the coordinate positions of the ant in the
maze. Additionally, we show grounded observations that correspond to an abstract state: the ant at
the represented position in the maze with many different configurations of the joints and torso.

5.2 Planning with an Abstract MDP

To evaluate the effectiveness of these models for multiple goal-based tasks, we pretrained abstract
models and use them to plan in imagination using Double DQN (Van Hasselt et al., 2016): the
DDQN agent rolls out imagined trajectories to improve its policy and then rolls it out in the ground
environment to collect new data that is used to learn the task reward function (we keep fix the rest
of the model). As our baseline, we use DDQN tuned to learn a policy with the same options but
interacting with the ground MDP. In Figure 4, we show learning curves (success rate vs. ground
environment steps) averaged over different goals and seeds. The error areas represent one standard
deviation.

For the pinball domain we use pixel observations as input. In Figure 4a, we compare learning curves
averaged over 8 goals and 5 seeds where the gray area represent the number of samples used for
pretraining phase of the model. These curves show that planning in the abstract model achieves
similar performance to the same agent learning directly in the ground MDP which showcases the
gain obtained in terms of sample efficiency.

Figure 4b shows an analogous plot for Antmaze (9 goals and 5 seeds). In this domain we provide
additional results for state-of-the-art model-based RL methods: DreamerV2 and DreamerV3 (Hafner
et al., 2021; 2023). These methods have been shown to work in diverse domains by building (discrete)
latent states based on reconstruction losses. However, their performance is limited in comparison
to our abstract model: (1) notice that after the gray area our abstract model collects data only to
improve the goal reward prediction, whereas the baselines continuously collect data that further
improves their models which shows the sample efficiency afforded by our skill-driven abstraction, and
(2) our simple DDQN agent learns faster in imagination that the more sophisticated planning agents
of the baselines.

—— Abstract(Ours) —— DreamerV2-Disc —— DDQN —— DreamerV3

o
W
a

success rate
success rate

[200K 400K 600K 800K M 0 200K 400K 600K 800K M

(a) Pinball (b) Antmaze

Figure 4: Planning with an abstract model. Success rate v. Environment steps averaged over goals
and 5 seeds. The gray area represents the offset for the steps needed to pre-train the model.

RLJ | RLC 2024

6 Related Works

Grounded Classical Planning Konidaris et al. (2018) present a skill-driven method for constructing
PDDL predicates (Fox and Long, 2003; Younes and Littman, 2004) for classical planning. This
family of work formally bridges the options framework to classical planning, and recent work have
extended this framework to work with portable skills (James et al., 2020) and object-centric skills
(James et al., 2022), and to ground natural language in robotics (Gopalan et al., 2017). Importantly,
this framework offers guarantees that the learned grounded symbols support sound planning. A
related body of work bridges deep learning with classical planning. Asai and Fukunaga (2018); Asai
(2019); Asai et al. (2022) learn abstract binary representations to ground PDDL predicates and action
operators from complex observations. Similarly, Ugur and Piater (2015a;b) approach the grounding
problem by clustering action effects to create discrete symbols for planning, and Ahmetoglu et al.
(2022) extends this approach to leverage deep learning methods. While these approaches manage to
empirically work with complex observations, they do not offer formal guarantees that the symbols
learned are sufficient for planning. Our approach, while not applied to classical planning, generalizes
abstract state learning to continuous cases, it is compatible with the deep learning toolbox and it is
theoretically principled.

Model-based RL and State Abstractions Learning MDP models from experience has been
extensively studied (Sutton, 1991; Deisenroth and Rasmussen, 2011) for their benefits in generalization,
sample efficiency, and knowledge transfer. Recent successful approaches use deep networks to handle
complex observations spaces and long-term reasoning (Krishnan et al., 2015; Ha and Schmidhuber,
2018; Silver et al., 2018; Gregor et al., 2018; Buesing et al., 2018; Zhang et al., 2019; Hansen et al.,
2022; 2023). An important challenge of this approach is learning an effective abstract state space
and, most of them, have focused in learning abstract representations of complex observations based
on reconstruction losses (Gregor et al., 2018; Buesing et al., 2018; Zhang et al., 2019; Hafner et al.,
2019; 2021; 2023). In contrast, recent approaches have moved away from this idea and focused in
minimal abstract state spaces relevant for acting such as value prediction (Silver et al., 2018; Grimm
et al., 2020; Yue et al., 2023), Markov states (Gelada et al., 2019; Zhang et al., 2020; Allen et al.,
2021; Nguyen et al., 2021), and controllability (Lamb et al., 2022). In fact, many of these explicitly
use information maximization and information bottleneck approaches that are theoretically justified
by our work.

From a theoretical point of view, there is extensive research to characterize the types of state
abstractions (or state aggregation) (Li et al., 2006; Ferns et al., 2004; Castro and Precup, 2010) that
are useful for RL. More recent work characterizes approzimate state abstractions (Abel et al., 2016;
2018) that guarantee bounded value loss and the type of options that are compatible with a given
state abstraction to guarantee value preservation (Abel et al., 2020).

Temporally-extended Models MDP models with skills have been recently considered in skill
discovery research. Some work approach the problem assuming that the abstract state space is a
graph and options are learned to reach the initiation set of another option (Bagaria and Konidaris,
2020; Bagaria et al., 2021a;b). Hafner et al. (2022) approaches the problem by building on the
Dreamer algorithm (Hafner et al., 2019; 2021; 2023) and discover goals by abstracting over the learned
abstract state. Similarly, Nair and Finn (2019) use generative models for subgoal generation and
skill learning, and plan with a learned model in observation space. Other approaches learn forward
dynamics models for skills discovered from an offline set of trajectories but do not abstract the state
based on these skills (Freed et al., 2023; Shi et al., 2023; Zhang et al., 2023). While our method
assumes that the options are given, it does not impose discrete constraints to the abstract state
space, does not need to model the state dynamics at the finest time step, and it builds a principled
abstract state space.

7 Conclusion

We introduce a method for learning abstract world models, designed to have agents with effective
planning capabilities for goal-oriented tasks. Our core premise is that an agent must be capable of

RLJ | RLC 2024

building a reusable abstract model for planning with a given skill set. We do this in a principled
manner by characterizing the state abstraction that guarantees that planning in simulation guarantees
bounded value loss. In other words, planning with a learned abstract model is sufficient to compute
a policy for the real-world environment.

Acknowledgments

We would like to thank Sam Lobel, Akhil Bagaria, Saket Tiwari, and other members in the IRL at
Brown for useful discussions during the development of this project. Moreover, we would like to
thank David Abel for his contribution to the Value Loss theorem. This project was funded by NSF
grant #1955361, NSF CAREER #1844960 to Konidaris, ONR grant #N00014-22-1-2592. Partial
funding for this work provided by The Boston Dynamics Al Institute (“The AT Institute”).

References

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pages 2915-2923. PMLR, 2016.

David Abel, Dilip Arumugam, Lucas Lehnert, and Michael Littman. State abstractions for lifelong
reinforcement learning. In International Conference on Machine Learning, pages 10-19. PMLR,
2018.

David Abel, John Winder, Marie DesJardins, and Michael Littman. The expected-length model of
options. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, pages
1951-1958, 2019.

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and Michael
Littman. Value preserving state-action abstractions. In International Conference on Artificial
Intelligence and Statistics, pages 1639-1650. PMLR, 2020.

A. Ahmetoglu, M.Y. Seker, J. Piater, E. Oztop, and E. Ugur. DeepSym: Deep symbol generation and
rule learning for planning from unsupervised robot interaction. Journal of Artificial Intelligence
Research, 75:709-745, 2022.

Alexander A Alemi, Tan Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. In International Conference on Learning Representations.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state
abstractions for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:8229-8241, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

M. Asai. Unsupervised grounding of plannable first-order logic representation from images. In
Proceedings of the International Conference on Automated Planning and Scheduling, pages 583—-591,
2019.

M. Asai and A. Fukunaga. Classical planning in deep latent space: Bridging the subsymbolic-symbolic
boundary. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pages
6094-6101, 2018.

M. Asai, H. Kajino, A. Fukunaga, and C. Muise. Classical planning in deep latent space. Journal of
Artificial Intelligence Research, 74:1599-1686, 2022.

A. Bagaria and G.D. Konidaris. Option discovery using deep skill chaining. In Proceedings of the
Eighth International Conference on Learning Representations, 2020.

RLJ | RLC 2024

A. Bagaria, J. Senthil, and G.D. Konidaris. Skill discovery for exploration and planning using deep
skill graphs. In Proceedings of the Thirty-FEighth International Conference on Machine Learning,
2021a.

A. Bagaria, J. Senthil, M. Slivinski, and G.D. Konidaris. Robustly learning composable options
in deep reinforcement learning. In IProceedings of the 30th International Joint Conference on
Artificial Intelligence, 2021b.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pages 531-540. PMLR, 2018.

Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado, Sub-
hodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77-82, 2020.

Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media, 2005.

Lars Buesing, Theophane Weber, Sébastien Racaniere, SM Eslami, Danilo Rezende, David P Reichert,
Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al. Learning and querying fast
generative models for reinforcement learning. arXiv preprint arXiv:1802.03006, 2018.

Pablo Castro and Doina Precup. Using bisimulation for policy transfer in mdps. In Proceedings of
the AAAI conference on artificial intelligence, volume 24, pages 1065-1070, 2010.

P. Dayan and G.E. Hinton. Feudal reinforcement learning. In Advances in Neural Information
Processing Systems V, 1992.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414-419, 2022.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pages
465-472, 2011.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes.
In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, UAI ’04, page
162-169, Arlington, Virginia, USA, 2004. AUAI Press. ISBN 0974903906.

Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning domains.
Journal of artificial intelligence research, 20:61-124, 2003.

Benjamin Freed, Siddarth Venkatraman, Guillaume Adrien Sartoretti, Jeff Schneider, and Howie
Choset. Learning temporally AbstractWorld models without online experimentation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pages 10338-10356. PMLR, 23-29 Jul 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587-1596. PMLR, 2018.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning, pages 2170-2179. PMLR, 2019.

RLJ | RLC 2024

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2):163-223, 2003.

N. Gopalan, M. desJardins, M.L. Littman, J. MacGlashan, S. Squire, S. Tellex, J. Winder, and L.S.
Wong. Planning with abstract Markov decision processes. In Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling, pages 480-488, 2017.

Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Temporal
difference variational auto-encoder. In International Conference on Learning Representations,
2018.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence principle
for model-based reinforcement learning. Advances in Neural Information Processing Systems, 33:
5541-5552, 2020.

David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pages 2450-2462. Neural information processing systems
foundation, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pages 2555-2565. PMLR, 2019.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels. Advances in Neural Information Processing Systems, 35:26091-26104, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

N Hansen, X Wang, and H Su. Temporal difference learning for model predictive control. In
International Conference on Machine Learning, PMLR, 2022.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2023.

S. James, B. Rosman, and G.D. Konidaris. Learning portable representations for high-level planning.
In Proceedings of the Thirty-Seventh International Conference on Machine Learning, pages 4682—
4691, 2020.

S. James, B. Rosman, and G.D Konidaris. Autonomous learning of object-centric abstractions for high-
level planning. In Proceedings of the Tenth International Conference on Learning Representations,

2022.

Flia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Miiller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature, 620
(7976):982-987, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

G. Konidaris. On the necessity of abstraction. Current Opinion in Behavioral Sciences, 29:1-7, 2019.

G.D. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement learning domains using
skill chaining. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Adwvances in Neural Information Processing Systems 22, pages 1015-1023, 2009.

RLJ | RLC 2024

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols: Learning
symbolic representations for abstract high-level planning. Journal of Artificial Intelligence Research,
61:215-289, 2018.

Lyudmyla F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9-16, 1987.

Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Rajiv Didolkar, Dipendra Misra, Dylan J Foster,
Lekan P Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery
of control-endogenous latent states with multi-step inverse models. Transactions on Machine
Learning Research, 2022.

Lihong Li, Thomas J Walsh, and Michael L. Littman. Towards a unified theory of state abstraction
for mdps. 2006.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. In International Conference on Learning Representations, 2019.

Tung D Nguyen, Rui Shu, Tuan Pham, Hung Bui, and Stefano Ermon. Temporal predictive coding
for model-based planning in latent space. In International Conference on Machine Learning, pages
8130-8139. PMLR, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.08748, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages 5171-5180.
PMLR, 2019.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Conference on Robot Learning, pages 2262-2272. PMLR, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144,
2018.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160-163, 1991.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

RLJ | RLC 2024

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026—-5033.
IEEE, 2012.

E. Ugur and J. Piater. Bottom-up learning of object categories, action effects and logical rules:
From continuous manipulative exploration to symbolic planning. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2627-2633. IEEE, 2015a.

E. Ugur and J. Piater. Refining discovered symbols with multi-step interaction experience. In
Proceedings of the 15th IEEE-RAS International Conference on Humanoid Robots, pages 1007—
1012. TEEE, 2015b.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Hakan LS Younes and Michael L Littman. Ppddll. 0: An extension to pddl for expressing planning
domains with probabilistic effects. Techn. Rep. CMU-CS-04-162, 2:99, 2004.

Yang Yue, Bingyi Kang, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Value-consistent represen-
tation learning for data-efficient reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 11069-11077, 2023.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In International
Conference on Learning Representations, 2020.

Jingwei Zhang, Jost Tobias Springenberg, Arunkumar Byravan, Leonard Hasenclever, Abbas Ab-
dolmaleki, Dushyant Rao, Nicolas Heess, and Martin Riedmiller. Leveraging jumpy models for
planning and fast learning in robotic domains. arXiv preprint arXiv:2302.12617, 2023.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
conference on machine learning, pages 7444-7453. PMLR, 2019.

RLJ | RLC 2024

A Appendix

A.1 Proofs

Theorem A.1. Let the tuple (M, M,G) be a grounded abstract model and a function ¢ : S — Z C
R?. The model satisfies that Bi(- | 0g,...,04_1) = Bi(- | 00,...,0¢_1) if and only if ¢ is dynamics
Preserving.

Proof. Let ¢~ 1(2) = {s € S| ¢(s) = z}. We construct T and G such that it satisfies that,

T(Z|z,0) = / T(s'|z,0)ds';
s'ep=1(2’)

T(s'|z,0)1[p(s") = 2]

G(8l|z70azl) = T(z’|z O)

If the dynamics preserving property holds, we have that there exists a mapping ¢ such that
T(s'|s,0) = T(s'|¢(s),0). Hence, by defining that abstract state as 5 = (z,0,2’), we can build the
grounded abstract model such that it follows that B; = B;, by construction.

To prove the converse, we assume that B, = B;.

Hence, by construction, we have that P(s¢, ..., 50|00, 20, ..., 0¢—1, 2e—1) = [[, P(5¢|00, 20, -+, 0t —1, 2¢—1)-
Therefore, we have that

t
.B_t(St,...,So 007...7Ot,1) = /HP(5i|00;207~~,07L717Zt71)P(Zi;~c-;ZO|007~~70i71)d20~~2t
1=0
t
:/HP(Si|Zia0i71)P<Zi;-~-;ZO|OOa---aoifl)dzo-nzt
=0
t
:/HG(Si‘Zi—laoi—lazi)P(Ziy"'7ZO|007"'70i—1)d20"'zt
=0
t
= H/G(Si‘ziflaOiflazi)P(ZiaZifﬂom~~~70i71)dzizi71
=0

¢
= H/G(Si‘zi—lyOi—laZi>T(Zi‘Zi—1;Oi—l)P(Zi—llom~--70i—2)dzizi—1
i=0

t
:H/T(5i|zi—17Oi—l)P(Zi—1|00a-~-a0i—2)d3i—1
i=0

t

Bt(sta <43 80|005 -+ 0t—1) = po(so) H T(si|3i717 0171)
i=1

t
= H T(silsi—1,0i—1)P(si-1l00; ..., 0¢—2)
i=1

Hence, we must have that for all s;_1 € z;_1 and all ¢ € [t] and ¢ > 0

/T(si‘siflvOifl)P(3i71|007~-~70t72)d3i71 = /T(Si|2¢7170¢71)P(2i71|00,~~~,0i—2)d2¢71

RLJ | RLC 2024

That is,

P(s0) = po(so) = [G(s|z0)po(z0)ds fort =0
P(s1]oo) = [T(s1|50,00)po(s0)dso = [T(s0|20,00)po(20)dzo for t =1

By definition, ¢ = 0 holds. For ¢t = 1, we have

P(s1]og) = /T(81|80,00)p0(80)d80
:/T(81|So,00>G(80|Zo)p0(20)d20d80

:/T(31|Zo,00)po(zo)dzo

which follows from the equation at ¢ = 0. Hence, it must be true that for any so € ¢~1(z¢), for any
20 with pg(zg) > 0.

T(31|Z0,00) = /T(S1|80,00)G(80‘Zo)d80

We can see that for any so € ¢~'(zg) such that T'(s1|sg,00) # T(s1|20,00), the abstract model would
commit a non-zero error in its prediction. Hence, it must be that T'(s1|sg,00) = T(s1]20,00) for

50 € ¢~ (20)-

Let the equations at time t =7 — 1 and ¢t = ¢ — 2 hold, then

P(s;|ogy.ey0i—1) = | T(8i]8i-1,0i—1)Pi-1(8i—1]00, ...0;—2)ds;_1

= /T(3i|3i71;Oifl)T(Sifl‘Zian0i72)pi72(zi72|007~~~>0i73)d5i71dzifldzi72

= /T(3i|5i717Oifl)G(5i71|2i72a01’727Zifl)T(Zi71|Zi72a0i72)pi72(2i72|007-~-;0i73)d5i71d2i71dzi72
= /T(3i|zi—1aOi—l)pi—l(zi—l‘OO;-~-;0i—2)dzi—1

Because p;—1(zi—1]00, ..., 0j—2) = fT(zi_1|zi_2, 0i—2)Pi—2(zi—2]00, ..., 0;—3)dz; 2 hold by construction
of the abstract MDP, we need the following to hold.

T(silzi—1,0i-1) = /T(5i|5i71aOifl)G(3i71|Zi7270i727Zifl)dsifL (4)

Therefore, as in the base case, we need that T(s;]z;_1,0i_1) = T(s4]si_1,0;_1) forall 5,1 € ¢~ (2i_1)
that have G(s;_1|2i—2,0i—2,2zi—1) > 0. Then, ¢ must be dynamics preserving.

O

Corollary A.2. Let the tuple (M,M,G) be a grounded abstract model. Let the strong subgoal
property (Konidaris et al., 2018) for an option o be defined as, Pr(s’|s,0) = Pr(s’|o). The dynamics
preserving property holds with a finite abstract state space Z = [N] for some N € N if and only if the
strong subgoal property holds.

RLJ | RLC 2024

Proof. If the strong subgoal property holds, we have that Pr(s’|s,0) = Pr(s'|o). Then, for any
function ¢ : S — Z, it holds that P(s'|¢(s),0) = P(s'|s,0).

Therefore, it is only important to be able to know if a given option is executable in a given abstract
state. Therefore, we can construct the function Io(s) = [lo(s), ..., [jo|(s)] that returns a binary
vector that indicates which options are executable in s.

Define the equivalence relation s ~¢ s1 iff Io(s1) = Io(s2). We can define the abstract state space
as Z £ S/ ~o, that is, the set of equivalent classes. Given that there at most 2/0l € N classes, then
the abstract MDP is finite.

We assume that the dynamics preserving property holds and that the abstract state space Z is
finite to prove the converse. Then, there exists ¢ : S — Z such that P(s'|¢(s),0) = P(s'|s,0) and

P(1, = 1]s) = P(I, = 1|¢(s)).

We can construct a factored ¢(s) = [¢p(s), ¢1(s)], such that, P(s'|¢(s),0) = P(s'|¢p(s),0) and
P(I, = 1]¢(s)) = P(Io = 1]¢1(s)).

If we define ¢; based on the function I, as before, then ¢; maps to a set of at most 2/°! elements.
As Z = Zp x Z; is finite, then Zp is also finite. Thus, we construct Zp = [M] and for each option o

and equivalence class m € [M] options from each option o such that Pr(s’|o,,) = Pr(s'|m,0). Then,
the strong subgoal property holds for every o,,.

O

Proposition A.3. Let ¢ be a dynamics-preserving abstraction and 5 = (2,0,z). For e > 0, if
|G- (s) — Gs(s)H1 < e, then there exists ey > 0 and egr > 0 such that ||T(s'|s,0) — T(s'|z,0)||? < er
and ||R(s,0) — R(2, 0)||1 < €R.

Proof. First, we prove that the bounded grounding error implies bounded transition distribution error.

If ¢ is a dynamlcs abstraction, then we can learn T(2’|z, 0) and we have that T(! \s 0)=T(s|z,0) =
[G5(s)T(2'|z,0)dz" and its corresponding approximation T'(s'|z,0) = [G, (s)T(2'|z,0)d?’
IT(s'}s,0) — F(s'|2, 0) s = ‘ [GTE200) — Gae)T (2. 0) !

< /T(z’|z,0)\G§/(s) — G (s)|dZ'ds
< Ve

Analogously, we can bound the error of the reward function.

|R(2",0) — R(,0)||1 = ’/GS/(S)R(S,O)dS — /Gz'(S)R s,0)ds
< [162(5) = Gu (9] [R(s,0)] ds

< RMa:l:/ |Gs(s) — G, (s)|ds

< RMax+\/¢

Then, it follows from Minkowski’s inequality that
IR(s,0) — R(',0)|l1 = [|R(s,0) = R(2',0) + R(2',0) = R(',0) |1
< [|R(s,0) = R(,0) [+ ||R(=',0) = R(z", 0) 1
<Ve+ RMax+\/e = \/er

RLJ | RLC 2024

O

Theorem A 4 (Value Loss Bound). Let (M, M, Q) be a grounded abstract model and T(s'|5,0) =

[Gs(s")T(5'|5,0)ds" be the approzimate transition dynamics from the grounded model. If the following
condztzons hold for all 0 € O and all s € S with Gs(s) > 0: (1) |T(s'|s,0) — T(s'|5,0)||? < er, and
(2)|R(s,0) — R(5,0)|> < €r; then, for any policy =,

‘Q’T(s,o) _QW(§70)| < \/@‘f"}/VMax\/G.

1—~
Proof. We proceed by induction on Q7 (5, 0), where
05 (5) = Egns [V7(3)] (5)
Q1 (s,)— P(s) (R(s,0) +77vj (5)) ds, (6)
R(s,0) +~" Ts’o’s/v”(s’)ds’> ds, (7)
ses
Q7 (5,0) = s) (R(s,0) + 770 (5")) ds, (8)

with 8 = T(- | s,0). I use P(s) as shorthand for P(s ~ 5) and 755 for T(s' | s,0), and let

€Qn =Y Ver+7 (VMaxy/er). (9)
i=0

Base Case: Q™ =~ Q7.
QW(S,O) - Q‘f(gv 0) (10)
= R(s,0) + 'yT/ TS’O’S/UW(Sl)dS/ — /P(s) (R(5,0) —y"v§ (5)ds), (11)
= R(s,0) — R(5,0) +7" / T v (s')ds' — / P(s)y"vE (5')ds, (12)

N— s’/ S
<Ver
< R+ / T30 o (/) ds — " /P Eu oo [o™ (s))]ds (13)
Sw/eR—I—WT/ 55 v (s')ds' — /P / P(s' ~ 3w (s)ds' ds, (14)
< \/€R+’YT/ TS’O’S,Uﬂ(S/)dS/—’}/T/P(S)/ T v (s')ds' ds, (15)
< R 47T VMax / T _ / P(s)T*2 ds ds’, (16)
<Jer

< \er + 7" VMAX,/er. (17)
This concludes the base case. O

Inductive Case: Q™ ~ Q. = Q7 ~ Q7 ;. We assume that, for every s € S and any o,

Qﬂ-(s’ 0) - QZ(§7 0) < €Q,n;» (18)

and prove that
Qﬂ-(sv 0) - Q:L+1(§7 0) < €Q,n+1- (19)

RLJ | RLC 2024

By algebra,
Qﬁ(sa 0) - QZ+1(§7 O) (20)
— R(s,0) + 4" / 790 o7 () ds' — / P(s) (R(s,0) + 77 (5)) ds, (21)
= R(s,0) — R(5,0) +fyT/ 755 v™ (s')ds' — 4" /P(s)vi{(E’)ds, (22)
By s’ s
< Ver+ 77/ 5% v™ (s')ds' —~7 /P(s)vz(?)ds, (23)
= Vet [reead - [P e s (24)
s ——

2E, o [o7 ()] =g

s/ ~5

<Ver+7" // 5 v (s")ds' —~7 /P(s) (Eg oz [0 (8")] — €@,n) ds, (25)
— /?R_’_,yr/ Ts7075/ Tr(s/)dsl_,yT/P()/ Tsos rr(sl)dsl dS-l-’}/TGQ’n, (26)
:1/634-’77/ 5% v™ (s')ds' — 47 // $)T5° ™ (s')ds ds' + 7 €q.n, (27)

_TS o, <
< er + 7" VMAX / 5% —T5° ds' +4equm, (28)
<Ver
< Ver +7"VMAX/er + 7T €qn, (29)
< Ver +7YVMAXer + veq n, (30)
= €Q,n+1- (31)
This concludes the inductive case. O

Thus, by induction and the convergence of the geometric series, for any s, 0, 7w, we conclude that

Q" (5.0) ~ @ (5,0) < VLT (32)

O

A.2 TPC is Dynamics Preserving

We start by considering that by learning an abstract state space such that MI(S’; Z, O) is maximized.
The following decomposition based on the mutual information chain rule corresponds to the TPC
algorithm (Nguyen et al., 2021). In the original paper, they work at the primitive action level and all
actions available always, hence, there’s no need to consider initiation sets.

MI(S', 2';2,0) ¥ MI(S'; 2,0) + MI(Z'; Z,0|S");
=0
Y M1z, 2,0) + MI(S'; 2,0|2");
O
©

2 MI(Z';2,0)+ MI(S'; Z,A) — MI(S'; Z') + MI(S'; Z'| Z,0);

RLJ | RLC 2024

where (a) follows from the fact that give s’ we can determine 2/, (b) follows from decomposing the
term on the left-hand size and (c¢) from decomposing term (1).

The above implies that MI1(Z';Z,0) = MI(S';Z') — MI(S";Z'|Z,O). Therefore, if we maximize
both sides of this identity, we must have a latent space that preserve only the information of the
state s’ that is predictable from the previous (z,a) pair. MI(Z'; Z,O) ensures that the next abstract
state is predictable from the (z,0) tuple. M1(S;Z) ensures that the abstract state has information
about the ground state which is measured by g(s|z).

MI(S;0) = /p(s,z) log ggzjdsdz (33)

The following decomposition shows the two extra terms required by the TPC algorithm to estabilize
the optimization. Term (a) is the (differential) entropy of ¢ which tends to infinity for a deterministic
function. This is solved by smoothing it with Gaussian noise of 0 mean and fixed standard deviation,
as done in TPC. The second term (b) corresponds to the consistency term, that is, the transition
function p(z’|z,a) must have low entropy, which ensures that the abstract dynamics are learnt.

p(s', 2|z, 0)
(s'z,0)p(#'|2, 0)

/| o/
= /p(sl’z/7z70) 10g M

p(#'[2,0)
= /p(s’,z’) 10gp(z'|s’)ds’dz’—/p(z',z,o) log p(Z’|z, 0)dz'dzdo

(a) (b)

ds'dz'dzdo

M(S';Z'1Z,0) :/p(s'7z’,z70)log
p

By maximizing M1(Z'; Z,0) and MI(S’; Z") using InfoNCE (Oord et al., 2018), we obtain the TPC
algorithm.

B Experiments

For all our planning experiments we use DDQN (Van Hasselt et al., 2016) modified to consider
initiation sets for action selection and target computation to make it compatible with options. We
use Adam (Kingma and Ba, 2014) as optimizer. As exploration, we use linearly decaying e-greedy
exploration.

B.1 Experiments
B.1.1 Environments

Pinball Domain (Konidaris and Barto, 2009) We use a continuous action variant of the
original environment. The state space s = (z,y,&,9) with (z,y) € [0,1]? and (&,9) € [-1,1]. The
action space is the ball acceleration expressed in the form of A(i,y € [~1,1]2. The layout of the
obstacles is as in the original environment, show in Figure 8. The reward function takes —5 per unit
of acceleration. The discount factor is v = 0.9997.

Pinball Options Pinball options were designed to the agent in the coordinate dimensions by step
size 0.04. The initiation set are all the position in which the ball would not hit an obstacle by moving
in the desired direction. The termination probability is determined by a Gaussian centered in the
goal position with standard deviation as 0.01. For the policy, we handcrafted PI controllers for the
position with constants K, = 50 and K; = 8.

RLJ | RLC 2024

e o o
> o ©

L

ccess rate

202

0.0

0.8
(U]
Qe
©0.6
© 0.4
(9]
)
20.2
0.0

Figure 5: Pinball from pixels. Ground baseline vs Abstract planning. Each goal learning curve is
averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve. The gray
area corresponds to the offset that corresponds to samples used to pre-train the model. Although is

goal 0

goal 1

\

4

goal 2

goal 3

\

S

goal 4

goal 5

y

goal_6

goal_7

N

h

500K M

—— DDQN

shown in every plot, it is common to all goals.

500K M

—— Abstract

RLJ | RLC 2024

success rate success rate success rate
© © © o © © © o o © o o o
B [e)] [e¢] o N H ()} [e¢] o N = [«)} [e¢]

o
IN)

0.0

goal_0 goal 1 goal_2
goal_3 goal_4 goal_5

&

goal_6 goal 7
0 500K M 0 500K M o0 500K M
—— DDQN —— DreamerV3 —— DreamerV2-Cont
—— Abstract(Ours) —— DreamerV2-Disc

Figure 6: Medium Play Antmaze. Ground baseline vs Abstract planning. Each goal learning
curve is averaged over 5 seeds and 1 standard deviation shown in the shaded area of each curve.
The gray area corresponds to the offset that corresponds to samples used to pre-train the model.
Although is shown in every plot, it is common to all goals.

0.8

0.6

0.4

50K

100K 200K 300K
s ol 0 o1
0.8
0.6
0.4
0.2
100K 150K 0 200K 400K
DDQN —— Abstract(Ours)

Figure 7: U-Maze Antmaze.

RLJ | RLC 2024

Ground Features (s)

-1.5
1.0
0.5

Abstract Features (z)

Figure 8: U-Maze Antmaze.

(a) U-Maze (b) Medium Play Maze (c) Pinball Domain

Figure 9: Ground truth visualization of possible positions of the agent in the evaluation Environments

Antmazes We consider the U-Maze and Medium-Play mazes implemented by D4RL (Fu et al.,
2020) with the Mujoco ant. In Figure 9 we show diagrams of the considered mazes. The state space
is S € R??, where the first two dimensions corresponds to the position of the ant in the maze and the
rest is proprioception for the ant controls. The action space is A C [—1,1]® to control the ant joints.

Antmaze Options We consider options that move the ant in the 8 directions (North, South,
East, West, North-East, North-West, South-East, South-West) by a distance of 1 unit. For the
position controller, we train a goal-conditioned policy using Hindsight Experience Replay (HER;
Andrychowicz et al. (2017)) and TD3 (Fujimoto et al., 2018) that would take a goal position in an
drive walk the ant to it. This is generally hard for arbitrary goals given the separation between
the current position and the goal, however, we only needed the policy to become accurate for short
distances, so we sampled initial positions within 1.5 of the desired goal. The goals were sampled
uniformly over the possible positions in the maze. Then we learned the initiation sets as classifiers
were the option execution would be successful. The termination condition is a threshold of 0.5
distance to the goal.

B.1.2 Network Architectures

Pixel Observations As encoder for pixel observation, we use ResNet Convolutional Networks, as
used in Dreamer (Hafner et al., 2021). The ResNet starts with an initial 24 depth and doubles in
depth until reaching the minimal resolution. See Table 1.

RLJ | RLC 2024

Table 1: ResNet CNN Configuration

Parameter Value
in width 50

in height 50
color channels 1
depth 24
cnn blocks 2
min resolution 4
mlp layers [256,]
outdim 4
mlp activation silu
cnn activation silu

MLP Architectures For all other models, we use MLPs with the relevant input and output
dimensions. This includes encoder, initiation classifiers, transition function, reward function and
duration. For the reward function we use the symlog transformation (Hafner et al., 2021) and a log
transformation for the option duration network.

Table 2: MLP Configuration

Parameter Value
hidden dims [128,128]
activation relu

Density Estimation We use mixture of Gaussians with 4 components and Gaussians with diagonal
covariance matrices. We use the reparameterization trick (Kingma and Welling, 2013) to optimize
the mean and variance functions.

B.1.3 Agent Hyperparameters

To train our baseline DDQN agent with the following parameters that we tune by doing grid search
for 5 goal positions and 2 seeds, we use all these parameters to learn for all goals.

Pinball Domain For pixel observations we use the same architecture as described before for the
world model encoder. For simpler observation, we use an MLP as before.

Dreamer Baselines We use the publicly available implementations for the Dreamer baselines.
For the DreamerV2 (Hafner et al., 2021) baseline, we used the hyperparameters recommended for
DeepMind Control environments with (only) proprioception inputs. Instead, for the DreamerV3
(Hafner et al., 2023) baseline we used the recommended hyperparameters.

B.1.4 World Model Hyperparameters

RLJ | RLC 2024

Table 3: Pinball ground DDQN parameters

Parameter

‘ Value

final exploration steps | 500000

final epsilon

eval epsilon
replay start size
replay buffer size

target update interval

steps

update interval
num step return
learning rate

gl

0.1
0.001
10000
500000
10000
1250000
5
1
107°
0.9997

Table 4: Ground DDQN Parameters for the Antmazes

Parameter

Value

final exploration steps
final epsilon

eval epsilon

replay start size
replay buffer size
target update interval
steps

update interval

num step return
learning rate

i

350, 000
0.1
0.001
1,000
100, 000
1,000
1,000, 000
5
1
5% 1074
0.995

Table 5: U-Maze Imagination DDQN Parameters

Parameter ‘

Value

final exploration steps (proportion)
final epsilon

eval epsilon

replay start size

replay buffer size

target update interval

update interval

num step return

learning rate

rollout length

30% of agent training steps
0.1
0.001
1000
100000
10000
5
1
1x 1074
100

Table 6: World Model Parameters

Parameter | Value
buffer size 100, 000
batch size 16
learning rate 1x1074
train every 8
max rollout length 64

