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Figure 1. MapAnything is a flexible, unified feed-forward 3D reconstruction model that predicts metric 3D reconstructions with camera
information from a set of N input images with optional camera poses, intrinsics, or depth maps. MapAnything supports over 12 different
3D reconstruction tasks, including camera localization, structure-from-motion (SfM), multi-view stereo, and metric depth completion,
outperforming or matching the quality of specialist methods.

Abstract
We introduce MapAnything, a unified transformer-based feed-
forward model that ingests one or more images along with
optional geometric inputs such as camera intrinsics, poses,
depth, or partial reconstructions, and then directly regresses
the metric 3D scene geometry and cameras. MapAnything
leverages a factored representation of multi-view scene ge-
ometry, i.e., a collection of depth maps, local ray maps,
camera poses, and a metric scale factor that effectively up-
grades local reconstructions into a globally consistent met-
ric frame. Standardizing the supervision and training across
diverse datasets, along with flexible input augmentation, en-
ables MapAnything to address a broad range of 3D vision
tasks in a single feed-forward pass, including uncalibrated
structure-from-motion, calibrated multi-view stereo, monoc-
ular depth estimation, camera localization, depth comple-
tion, and more. We provide extensive experimental analyses
and model ablations demonstrating that MapAnything out-

performs or matches specialist feed-forward models while
offering more efficient joint training behavior, thus paving
the way toward a universal 3D reconstruction backbone.

1. Introduction

The problem of image-based 3D reconstruction has tradition-
ally been solved using structure-from-motion (SfM) [15, 18],
photometric stereo [28], shape-from-shading [7], and so on.
To make the problem tractable, classic approaches decom-
pose it into distinct tasks, such as feature detection [13]
and matching [16], two-view pose estimation [14], cam-
era calibration [23] and resectioning [17], rotation [4] and
translation averaging [15], bundle adjustment (BA) [21],
multi-view stereo (MVS) [19], and/or monocular surface
estimation [6]. Recent work has demonstrated tremendous
potential in solving these problems in a unified way using
feed-forward architectures [2, 9, 12, 25, 26, 30].
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Figure 2. Overview of the MapAnything Architecture. Given N visual and optional geometric inputs, the model first encodes the images
and the factored representation of the geometric inputs into a common latent space where the patch features (for images, rays & depth)
and broadcasted global features (for translation, rotation, pose scale across all pose inputs & depth scale local to each frame) are summed
together. Then, a fixed reference view embedding is added to the first view’s features and a single learnable scale token is appended to the set
of N view patch tokens. These tokens are then input into an alternating-attention transformer. We use a single DPT to decode the N view
patch tokens into N dense outputs local to all the views. A single average pooling-based pose head also uses the N view patch tokens to
predict N poses in the frame of view 1. Lastly, while these predictions exist in an up-to-scale space, the model passes the scale token through
an MLP to predict the metric scaling factor, which when coupled with the other predictions, provides the dense metric 3D reconstruction.

While prior feed-forward work has approached the dif-
ferent tasks disjointly or by not leveraging all the available
input modalities, we present a unified end-to-end model for
diverse 3D reconstruction tasks. Our method MapAnything
can be used to solve the most general uncalibrated SfM
problem as well as various combinations of sub-problems,
like calibrated SfM or multi-view stereo, monocular depth
estimation, camera localization, metric depth completion,
etc. To enable the training of such a unified model, we: (1)
introduce a flexible input scheme that supports various ge-
ometric modalities when available, (2) propose a suitable
output space that supports all of these diverse tasks, and (3)
discuss flexible dataset aggregation and standardization.

MapAnything’s key insight to address these challenges
is the use of a factored representation of multi-view scene
geometry. Instead of directly representing the scene as a col-
lection of pointmaps, we represent the scene as a collection
of depthmaps, local raymaps, camera poses, and a metric
scale factor that upgrade local reconstructions into a globally
consistent metric frame. We use such a factored represen-
tation to represent both the outputs and (optional) inputs
for MapAnything, allowing it to take advantage of auxil-
iary geometric inputs when available. For example, robotic
applications [1, 5, 8, 11] may have knowledge of camera in-

trinsics (rays) and/or extrinsics (pose). Finally, a significant
benefit of our factored representation is that it allows for
MapAnything to be effectively trained from diverse datasets
with partial annotations, for example, datasets that may be
annotated with only non-metric “up-to-scale” geometry. In
summary, we make the following main contributions:

1. Unified Feed-Forward Model for multi-view metric 3D
reconstruction that supports more than 12 different prob-
lem configurations. The end-to-end transformer is trained
more efficiently than a naive set of bespoke models and
leverages not only image inputs, but also optional geo-
metric information such as camera intrinsics, extrinsics,
depth, and/or metric scale factor, when available.

2. Factored Scene Representation that flexibly enables
decoupled inputs and effective prediction of metric 3D
reconstructions. Our model computes multi-view pixel-
wise scene geometry and cameras directly, without redun-
dancies or costly post-processing.

3. State-of-the-Art Performance compared to other feed-
forward models, matching or surpassing expert models
that are tailored for specific, isolated tasks.

4. Open Source Release of (a) code for data processing,
inference, benchmarking, training & ablations, and (b)
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Figure 3. Auxiliary geometric inputs improve feed-forward performance of MapAnything. (Top) While MapAnything & other
baselines using 100 input images show duplication of 3D structure, when provided with the camera calibration and poses, the 3D
reconstruction significantly improves, showcasing aligned geometry. (Middle) MapAnything using images only as input showcases non-
precise metric scale estimation on ETH3D (a zero-shot dataset). However, when the calibration and metric poses are provided as additional
input, the estimated metric scale significantly improves and approximately matches the ground truth. (Bottom-Left) We showcase
that MapAnything is able to leverage a sparse metric pointcloud as input to perform dense metric depth completion. (Bottom-Right)
Despite not being trained for object-centric data, we showcase how the scene geometry and cameras change based on the input provided.

a pre-trained MapAnything model under the permissive
Apache 2.0 license, thereby providing an extensible &
modular framework plus model to facilitate future re-
search on building 3D/4D foundation models.

2. MapAnything
MapAnything is an end-to-end model that takes as input
N RGB images Î=(Îi)

N
i=1 and optional geometric inputs

corresponding to all or a subset of the input views:
(a) generic central camera calibrations [3, 22, 30] as ray

directions R̂=(R̂i)i∈Sr ,
(b) poses in the frame of the first view Î1 as quaternions

Q̂=(Q̂i)i∈Sq and translations T̂ =(T̂i)i∈St , and
(c) ray depth for each pixel D̂=(D̂i)i∈Sd ,

where Sr, Sq, St, Sd are subsets of frame indices [1, N ].
MapAnything maps these inputs to an N -view factored

metric 3D output (as shown in Figure 2):
fMapAnything

(
Î, [R̂, Q̂, T̂ , D̂]

)
={m, (Ri, D̃i, P̃i)

N
i=1)}, (1)

where m∈R is the predicted global metric scaling factor,
and for each view i, Ri∈R3×H×W are the predicted local
ray directions, D̃i∈R1×H×W are the ray depths in a up-to-
scale space (indicated by the tilde), and P̃i ∈ R4×4 is the
pose of image Îi in the frame of image Î1, represented as
quaternion Qi∈SU(2) and up-to-scale translation T̃i∈R3.

We can further use this factored output to get the up-to-scale
local point maps (3D points corresponding to each pixel) as
L̃i=Ri·D̃i∈R3×H×W . Then, leveraging the rotation matrix
Oi∈SO(3) (obtained from Qi) and up-to-scale translation,
we can compute the N -view up-to-scale point maps in world
frame as X̃i=Oi·L̃i+Ti. The final metric 3D reconstruction
for the N input views (in the frame of image 1) is given by
Xmetric

i =m·X̃i for i∈ [1, N ]. Please see our full paper on
the MapAnything webiste for more details.

3. Benchmarking & Results
In this section, we benchmark MapAnything against expert
baselines specifically designed or trained for the task. We
perform all the experiments with a constant seed. Please see
our paper PDF for the full suite of 3D vision benchmarking
results, ranging from unconstrained SfM, multi-view stereo
(MVS), calibration to localization, and depth completion.
In the full PDF, we also provide ablations providing key
insights into enabling MapAnything.

Multi-View Dense Reconstruction: We benchmark the
performance of pointmaps, pose, depth & ray directions esti-
mation on an undistorted version of ETH3D [20], ScanNet++
v2 [29], and TartanAirV2-WB [27, 31], where, for each test
scene, we randomly sample up to N views that form a sin-
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Figure 4. MapAnything shows state-of-the-art dense multi-view reconstruction for number of input views varying from 2 to 100 and
under different input configurations. We report the absolute relative error (rel), the inlier ratio at a relative threshold of 1.03% (τ ), the
average aligned trajectory error (ATE RMSE), the area under the curve at an error threshold of 5° (AUC@5), and the average angular
error (err) in degrees (°), averaged over ETH3D, ScanNet++ v2 & TAv2. We don’t report performance for baselines when the inference runs
out of GPU memory. We provide results for the exhaustive input configurations of MapAnything in the supplement.

Disjoint

Images MapAnything VGGT

Figure 5. Qualitative comparison of MapAnything to VGGT
[24] using only in-the-wild images as input. For a fair comparison,
we apply the same normal-based edge mask post-processing and
our sky mask to both methods. MapAnything more effectively deals
with large disparity changes, seasonal shifts, textureless surfaces,
water bodies and large scenes.

gle connected component graph based on the pre-computed
pair-wise covisibility of all images in the scene (this prevents
disjoint sets of images as input). Figure 4 shows that Map-
Anything provides state-of-the-art dense multi-view recon-
struction performance over other baselines using only image
input, including VGGT [24]. Beyond the performance using
only images as input, we show that MapAnything can lever-
age additional auxiliary geometric inputs for feed-forward
inference to further increase reconstruction performance by a

significant factor. Furthermore, we find MapAnything is bet-
ter than the bundle adjustment (BA) variant of the two-view
baseline, Pow3R [10], which is also designed to leverage
scene priors. In Figure 3, we illustrate how the auxiliary
geometric inputs improve MapAnything. We also find that
the reconstruction outputs from MapAnything (using only
images as input) display high fidelity, as shown in Figure 5.

4. Conclusion

MapAnything is the first universal transformer-based back-
bone that directly regresses metric 3D geometry and camera
poses from flexible inputs – including images, camera in-
trinsics, poses, depth maps, or partial reconstructions – in a
single pass. By using a factored representation of multi-view
geometry (depth maps, ray maps, poses, and a global scale
factor), MapAnything unifies local estimates into a global
metric frame. With standardized supervision across varied
datasets and augmentations, MapAnything handles multi-
ple tasks like uncalibrated structure-from-motion, calibrated
multi-view stereo, monocular depth estimation, camera lo-
calization, depth completion, and more without task-specific
tuning. Extensive experiments show that it surpasses or
matches specialist models while enabling efficient joint train-
ing. Future extensions to dynamic scenes, uncertainty quan-
tification, and scene understanding promise to further gener-
alize MapAnything’s capabilities and robustness, paving the
way toward a truly universal 3D reconstruction backbone.
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