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Abstract001

Pre-trained language models (PLMs) have rev-002
olutionized scientific research, yet their ap-003
plication to single-cell analysis remains lim-004
ited. Text PLMs cannot process single-cell005
RNA sequencing data, while cell PLMs lack006
the ability to handle free text, restricting007
their use in multimodal tasks. Existing ef-008
forts to bridge these modalities often suffer009
from information loss or inadequate single-010
modal pre-training, leading to suboptimal per-011
formances. To address these challenges, we012
propose Single-Cell MultiModal Generative013
Pre-trained Transformer (scMMGPT), a uni-014
fied PLM for joint cell and text modeling. scM-015
MGPT effectively integrates the state-of-the-016
art cell and text PLMs, facilitating cross-modal017
knowledge sharing for improved performance.018
To bridge the text-cell modality gap, scM-019
MGPT leverages dedicated cross-modal pro-020
jectors, and undergoes extensive pre-training021
on 27 million cells – the largest dataset for mul-022
timodal cell-text PLMs to date. This large-scale023
pre-training enables scMMGPT to excel in joint024
cell-text tasks, achieving an 84% relative im-025
provement of textual discrepancy for cell de-026
scription generation, 20.5% higher accuracy for027
cell type annotation, and 4% improvement in k-028
NN accuracy for text-conditioned pseudo-cell029
generation, outperforming baselines. Our code030
is available at https://anonymous.4open.031
science/r/scMMGPT-6DDB/.032

1 Introduction033

Pre-trained language models (PLMs) are transform-034

ing scientific research (Touvron et al., 2023a; Ope-035

nAI, 2023; Hurst et al., 2024). Their ability to036

recall scientific knowledge, analyze data, and per-037

form mathematical reasoning helps to reduce man-038

ual efforts and lower the research barrier in many039

tasks. Notably, PLMs are opening new avenues040

for single-cell analysis, which explores the molecu-041

lar and functional characteristics of individual cells.042

Previous studies have successfully employed PLMs043
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Figure 1: Comparison between the scRNA-seq results
and the textual descriptions of a cell. The inherent
disparities between these two data modalities make it
difficult to jointly model them.

for cell annotation (Li et al., 2024) and retrieval (Xu 044

et al., 2023a; Lan et al., 2024), benefiting from 045

the extensive cellular knowledge embedded in the 046

PLMs’ training corpus. 047

Beyond the text-based PLMs above, cell PLMs 048

are also explored for single-cell analysis (Ji et al., 049

2021a; Abdolhosseini et al., 2019). As Figure 1 050

shows, a cell can be represented as an array of gene 051

expression levels, providing insights into its biolog- 052

ical properties. These arrays, known as scRNA-seq 053

data, are generated through single-cell RNA se- 054

quencing (scRNA-seq) (Program et al., 2025). Pre- 055

trained on scRNA-seq data, cell PLMs have been 056

applied for batch effect correction, and pseudo-cell 057

generation (Yang et al., 2022; Hao et al., 2024; Cui 058

et al., 2024). However, cell PLMs are inherently 059

limited by their inability to process free text, pre- 060

venting them from integrating the rich single-cell 061

knowledge in textual corpora and restricting their 062

ability to perform text-guided cell generation and 063

cell description generation. 064

To resolve this limitation, we want to develop a 065

unified multimodal PLM unifying cell and text data 066
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Figure 2: Cell type annotation results with different cell representation methods. (a) Cell type annotation
accuracies on the full dataset and test set. Using cell sentences as cell representation leads to significant accuracy
degradation. (b-d) UMAP visualization of classification results and the ground truth. Classification using cell
sentences yields a lower accuracy score and exhibits poorer recognition capabilities in certain cell clusters.

for comprehensive single-cell analysis. While this067

area has been explored, we identify two common068

limitations of previous works:069

• The Information Loss of Cell Sentences. Pre-070

vious cell-text PLMs primarily represent sin-071

gle cells as “cell sentences” (Hou and Ji, 2024;072

Levine et al., 2024; Choi et al., 2024), where073

genes are ranked by expression level, and only074

the top 30-100 genes are retained as the cell’s rep-075

resentation. This method captures less than 1%076

of the total gene annotations in modern databases077

(Program et al., 2025; Cao et al., 2017), which078

record over 10,000 genes. Additionally, cell sen-079

tences discard crucial information about gene080

expression values. As Figure 2 shows, this repre-081

sentation leads to significant performance degra-082

dation in cell type annotation compared to the083

original expression values representation, high-084

lighting a crucial information loss.085

• Limited Single-Modal Pre-training. Some pre-086

vious works (Choi et al., 2024; Hou and Ji, 2024)087

are built on text PLMs without sufficient pre-088

training on scRNA-seq data, limiting their capac-089

ity for comprehensive single-cell analysis. While090

notably Levine et al. (2024) performs large-scale091

cell pre-training on a text PLM’s checkpoint, it092

suffers from catastrophic forgetting, compromis-093

ing its text processing ability (cf. Section 4.2).094

In this work, we propose the Single-Cell095

MultiModal Generative Pre-trained Transformer096

(scMMGPT), a novel PLM designed for the mul-097

timodal analysis and generation between cell and098

text. scMMGPT builds on the scGPT (Cui et al.,099

2024), an extensively pre-trained cell PLM capable100

of encoding the full scRNA-seq data. To address101

scGPT’s inability to process text, we implement 102

a cell-to-text projector that projects scGPT’s rep- 103

resentations to the text space, leveraging Llama- 104

2 (Touvron et al., 2023b), a powerful text PLM, for 105

text generation. For cell generation, we implement 106

a text-to-cell projector to map Llama-2’s represen- 107

tations to scGPT’s cell space, providing textual 108

guidance. These cross-modal projectors between 109

cell and text enable effective information exchange 110

between the two PLMs, leveraging their respective 111

domain knowledge. 112

Given the advanced PLMs in the cell and text 113

modalities, scMMGPT focuses on bridging their 114

modality gaps by pre-training the two cross-modal 115

projectors. To this end, we pre-train scMMGPT 116

on 27 million cells from CELLxGENE (Program 117

et al., 2025), which is the largest pre-training 118

dataset for multimodal cell-text PLMs. Using this 119

dataset, we pre-train the text-to-cell projector for 120

text-conditioned cell generation, enabling it to map 121

the textual embeddings to a space that the cell PLM 122

can understand. Similarly, the cell-to-text projec- 123

tor is pre-trained for cell description generation. 124

Before this step, we warmup the cell-to-text pro- 125

jector’s weights with the additional pre-training of 126

cell-text contrasting learning and matching. This 127

step follows (Li et al., 2023), aiming to obtain a 128

model for cell type annotation tasks. 129

Our tailor-made architecture and extensive pre- 130

training equips scMMGPT with superior perfor- 131

mance on various downstream tasks. It achieves an 132

84% relative improvement of textual discrepancy 133

for cell description generation, a 4% k-NN accu- 134

racy improvement for text-conditioned pseudo-cell 135

generation, and 20.5% higher accuracy for cell type 136

annotation than baselines. Ablation studies further 137

validate the effectiveness of the key components. 138
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2 Related Works139

Single-Cell PLMs. Single-cell sequencing tech-140

nologies provide diverse biological features that141

facilitate the interpretation of cellular structures142

and functions (Heumos et al., 2023; Cao and Gao,143

2022). Advances in scRNA-seq have generated144

massive, high-precision transcriptomic datasets,145

driving the development of cell PLMs (Ziegenhain146

et al., 2017). This technique quantifies the mRNA147

molecule abundance, producing gene expression148

matrices that record expression values of individual149

genes across cells (Ji et al., 2021b). Previous works150

have developed transformer-based foundation mod-151

els on scRNA-seq data, pre-training with masked152

learning objectives on millions of cells (Zhao et al.,153

2023; Theodoris et al., 2023; Yang et al., 2022).154

Subsequent works improve the learning process by155

incorporating cell labels, such as batch effects (Cui156

et al., 2024). After fine-tuning, these PLMs have157

proven useful in practical downstream tasks includ-158

ing cell-type annotation, perturbation response pre-159

diction, and pathway activity inference.160

Cell-Text Modeling. Textual descriptions of161

cells and scRNA-seq data capture complementary162

aspects of cellular systems. To jointly leverage163

this complementary information, prior research has164

explored enhancing cellular representation learning165

using biological text descriptions (Chen and Zou,166

2023; Zhao et al., 2024). Inspired by multimodal167

PLMs in other scientific domains (Liu et al., 2023b;168

Edwards et al., 2022), cell-to-text translation is also169

exploredn (Xu et al., 2023a). Notably, the “cell170

sentence” representation (Levine et al., 2024) is171

introduced by transforming scRNA-seq data into172

textual token sequences, which are widely used in173

subsequent studies (Hou and Ji, 2024; Choi et al.,174

2024; Fang et al., 2024). However, cell sentences175

have substantial information loss, constraining the176

model’s capacity to perceive fine-grained cellular177

transcriptomics.178

Scientific Multimodal PLMs. Multimodal179

PLMs show remarkable potential for integrating180

data from various modalities (Li et al., 2023;181

Alayrac et al., 2022; Zhang et al., 2024), inspir-182

ing research for scientific modalities. Existing183

works have constructed multimodal PLMs for small184

molecules (Liu et al., 2023b, 2024a) and pro-185

teins (Xu et al., 2023b; Liu et al., 2024b) to tackle186

cross-modal scientific problems, such as descrip-187

tion generation and text-conditioned de novo de-188

sign (Edwards et al., 2022; Cao et al., 2025). While189

single-cell analysis presents similar scientific sig- 190

nificance, existing works struggle to maintain in- 191

formation fidelity when integrating single-cell tran- 192

scriptomics with textual knowledge. Unlike previ- 193

ous methods, scMMGPT employs PLMs on both 194

modalities to precisely model the scRNA-seq data 195

and textual tokens without information loss. 196

3 Methods 197

scMMGPT employs two PLMs for both cell and 198

text modalities, facilitating the understanding and 199

generation of cell and text through effective in- 200

formation sharing via cell-to-text and text-to-cell 201

projectors. Figure 3 illustrates the model architec- 202

ture of scMMGPT. In this section, we delve into 203

the construction process of scMMGPT, including 204

detailed data collection and encoding (§3.1), the 205

multimodal PLMs of scMMGPT (§3.2), and the 206

complete pre-training scheme (§3.3). 207

3.1 Data Preprocessing 208

Single-cell RNA sequencing (scRNA-seq) data 209

records the gene expression levels across individ- 210

ual cells at transcriptomic resolution. These data 211

can be represented as a cell-gene expression ma- 212

trix X ∈ NN×M , where Xij (1 ⩽ i ⩽ N, 1 ⩽ 213

j ⩽ M ) denotes the RNA abundance of gene j 214

in cell i. To accurately characterize the transcrip- 215

tional state of a cell, we represent each cell us- 216

ing the list of genes profiled during sequencing 217

and their corresponding expression values. For- 218

mally, for each cell i, we represent the list of 219

genes as g(i) = [g
(i)
1 , g

(i)
2 , . . . , g

(i)
M ], where each 220

g
(i)
j is a gene token from a pre-defined gene vocab- 221

ulary (Cui et al., 2024). The corresponding RNA 222

abundance information from the gene expression 223

matrix is denoted as an expression value vector 224

x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
M ] ∈ RM . To mitigate the 225

influence of sequencing depths (Zhang et al., 2020), 226

the expression value vectors then undergo a normal- 227

ization step followed by a log1p transformation: 228

x̃
(i)
j = log(1 +

x
(i)
j∑M

k=1 x
(i)
k

). (1) 229

We leverage the scRNA-seq data from the Cellx- 230

Gene Database (Program et al., 2025), and collect 231

the metadata and textual descriptions for each cell 232

i via their online explorer1. We further augment 233

these descriptions with textual knowledge from 234

1https://github.com/chanzuckerberg/cellxgene
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Figure 3: Overview of scMMGPT. scMMGPT utilizes a cell PLM and a text PLM to process corresponding
modalities, undergoing a large-scale pre-training on three primary tasks: (1) Cell-Text Representation Alignment:
scMMGPT receives inputs from both modalities and calculates a relevance score based on the output features of
both PLMs. (2) Cell Generation: scMMGPT uses the text PLM to extract embeddings from the textual descriptions,
which are then passed through a projector and a cross-attention layer to the cellular PLM for cell generation. (3)
Text Generation: scMMGPT uses the cell PLM to parse the genes and expression values from scRNA-seq results.
After a projector, these cellular embeddings are fed to the text PLM to decode as a textual description of the cell.

the Open Biomedical Ontologies Foundry (OBO235

Foundry) (Smith et al., 2007) and Wikipedia2.236

These textual descriptions are then processed us-237

ing a text tokenizer into a textual tokens sequence238

t(i) = [t
(i)
1 , t

(i)
2 , . . . , t

(i)
T ]. The dataset details are in239

Appendix A.240

3.2 Model Architecture241

As shown in Figure 3, scMMGPT consists of three242

trainable components: (1) a cell PLM for the under-243

standing and generation of cells, (2) a text PLM for244

the understanding and generation of textual data,245

and (3) the cross-modal projectors that facilitate246

information sharing between different modalities.247

Cell PLM. We utilize a transformer-based cell248

PLM, scGPT (Cui et al., 2024), to process the gene249

tokens and expression values unique to scRNA-250

seq data. scGPT undergoes generative pre-training251

on over 33 million single-cell samples (Program252

et al., 2025), with training objectives including253

gene expression prediction and cell generation.254

This model encapsulates rich knowledge in the do-255

main of single-cell analysis and has been validated256

for downstream tasks of cell type annotation and257

text-conditioned pseudo-cell generation (Levine258

et al., 2024).259

Text PLM. To facilitate high-quality text gener-260

ation, we utilize a decoder-only generative trans-261

former, Llama-2 (Touvron et al., 2023b), as our text262

PLM. This model is pre-trained on 2 trillion tokens263

2https://www.wikipedia.org/

of publicly available web data, incorporating exten- 264

sive human knowledge across diverse domains. 265

Cross-Modal Projectors. We employ a cell-to- 266

text and a text-to-cell projector to achieve repre- 267

sentation transformation between the cellular and 268

textual PLMs to bridge their modality gap: 269

• The Cell-to-Text Projector is implemented as a 270

Querying-Transformer (Q-Former) (Li et al., 271

2023) to map the cell representations generated 272

by the cell PLM into the input space of the 273

text PLM. Q-Former maintains a set of train- 274

able query tokens that interact with the output 275

embeddings of the cell PLM through a cross- 276

attention mechanism. The parameters of the Q- 277

Former are initialized using BiomedBERT (Gu 278

et al., 2021), a BERT encoder trained with 279

biomedical scientific abstracts and literature from 280

PubMed (Canese and Weis, 2013). 281

• The Text-to-Cell Projector is implemented by 282

cross-attention layers (Vaswani, 2017) to map the 283

textual representations produced by the text PLM 284

into the feature space of the cell PLM. These 285

textual features then serve as soft-prompt (Li 286

and Liang, 2021) to the cell PLM, providing 287

conditions for downstream tasks such as text- 288

conditioned pseudo-cell generation. 289

3.3 Training Pipeline 290

scMMGPT’s pre-training objective is to bridge the 291

embedding spaces of scRNA-seq and text data, 292
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thereby enabling it to perform cross-modal con-293

ditional generation. To achieve this, we first em-294

ploy the cell-text representation alignment task to295

align cellular and textual representations. Then,296

we perform generative pre-training for each modal-297

ity, including cell generation and text generation298

objectives.299

Cell-Text Representation Alignment. Consid-300

ering the intrinsic variability of cellular data, the301

pre-training of cell-text representation alignment302

includes only the cell-to-text projector without the303

text-to-cell projector. This pre-training process in-304

volves two objectives: cell-text contrastive learning305

and cell-text matching.306

The Cell-Text Contrastive objective (CTC) aims307

to map cells and text into a shared feature space.308

We use a projector to extract representations for309

both cells and text. Using the matching cell and text310

as the positive examples, we use other cells within311

the same batch as negative examples, and construct312

the loss function based on InfoNCE (Oord et al.,313

2018):314

LCTC =− 1

B

B∑
i=1

(log
ecos (z

(i)
t ,z(i)c )/τ∑B

j=1 e
cos (z(i)t ,z(j)c )/τ

+ log
ecos (z

(i)
c ,z(i)t )/τ∑B

j=1 e
cos (z(i)c ,z(j)t )/τ

),

(2)315

where z(i)t and z(i)c represent the textual and cellular316

embeddings, τ is the temperature parameter, and317

B indicates batch size.318

The Cell-Text Matching (CTM) objective is de-319

signed as a classification task, where the model320

learns to predict whether a given cell and text are321

matched or not. In this task, we let the textual322

representations in the projector interact with cell323

representations through cross-attention layers in324

our Q-Former projector. Formally, the cell-text325

matching loss for a batch can be expressed as:326

LCTM =
1

B
Ej∼U(1,B)

B∑
k=1

− log ρ(c(i), t(i))

+ log ρ(c(i), t(j)),

(3)327

where U(·) is the uniform distribution and328

ρ(c(i), t(i)) denotes the model’s predicted probabil-329

ity of (c(i), t(i)) being matched. The overall train-330

ing loss for cell-text representation alignment task331

combines LCTC and LCTM:332

LAlign = LCTC + LCTM. (4)333

Cell Description Generation (CDGen). CD- 334

Gen aims to generate the corresponding text de- 335

scriptions for a given cell. The cells are first 336

mapped to the embedding space of text tokens us- 337

ing a cell-to-text projector. Then, the decoder-only 338

text PLM performs autoregressive next token pre- 339

diction starting from these cell tokens to generate 340

a description of the cell. Formally, the objective 341

of this task is to minimize the loss function of the 342

autoregressive language modeling: 343

LCDGen = − log p(t(i)|c(i))

= −
L∑
l=1

log p(t
(i)
l |t(i)1 , . . . , t

(i)
l−1, c(i)).

(5) 344

Cell Generation (CGen). In the CGen task, 345

the model performs conditional cell generation 346

based on textual descriptions. We append some 347

dummy cell tokens at the end of each piece of cell 348

description and use the text PLM to autoregres- 349

sively generate the embeddings corresponding to 350

these dummy tokens based on the text sequence 351

ahead. These features pass through the text-to-cell 352

projector to produce embeddings of textual con- 353

ditions, which are then fed into the cell PLM via 354

cross-attention mechanism to generate pseudo-cells 355

x′(i) = [x
′(i)
1 , . . . , x

′(i)
M ]. 356

Formally, we use Mean Squared Error (MSE) 357

loss to train the model to reconstruct the input cel- 358

lular information: 359

LCGen =
M∑
j=1

MSE(x′(i)j , x̃
(i)
j ). (6) 360

During the cross-modal generative training, we 361

jointly optimize LCDGen and LCGen through a linear 362

combination of the two loss functions: 363

LGen = LCDGen + LCGen. (7) 364

365

4 Experiments 366

We empirically evaluate scMMGPT on three down- 367

stream tasks: cell description generation, text- 368

conditioned pseudo-cell generation, and cell type 369

annotation. Furthermore, we perform ablation stud- 370

ies to illustrate the impacts of different input for- 371

mats and model architectures. Additionally, we 372

visualize experimental outcomes and training de- 373

tails to provide a better understanding of the model. 374
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Model MMD (↓) EMD (↓) T-Test (↑) KS-Test (↑)

GPT-2 Small 1.045 ± 0.009 0.752 ± 0.004 1.31, p = 0.896 1.52, p = 0.783
GPT-2 Large 0.939 ± 0.006 0.701 ± 0.016 -1.44, p = 0.885 1.81, p = 0.581
Mistral-8X7B-Instruct 0.639 ± 0.016 0.544 ± 0.005 -1.20, p = 0.233 0.24, p = 0.246
Mistral-7B-Instruct 0.754 ± 0.010 0.584 ± 0.004 -8.64, p = 0.384 0.23, p = 0.299
GPT-3.5 0.298 ± 0.004 0.490 ± 0.008 1.23, p = 0.220 0.21, p = 0.392
Cell2Sentence Small 0.198 ± 0.004 0.414 ± 0.006 2.96, p = 0.003* 0.35, p = 0.023*
Cell2Sentence Large 0.198 ± 0.004 0.413 ± 0.002 2.85, p = 0.004* 0.36, p = 0.014*

scMMGPT 0.031 ± 0.002 0.011 ± 0.000 29.57, p = 0.000* 0.62, p = 0.000*

Table 1: Results of cell description generation on the immune tissue (Domínguez Conde et al., 2022) dataset.
Asterisks (*) denotes statistical significance (p ⩽ 0.05). Baseline results are borrowed from (Levine et al., 2024).

k-NN Accuracy

Model 3 5 10 25

scGEN 0.2376 ± 0.0112 0.2330 ± 0.0093 0.2377 ± 0.0053 0.2335 ± 0.0041
scVI 0.2436 ± 0.0062 0.2400 ± 0.0064 0.2425 ± 0.0034 0.2348 ± 0.0032
scDiffusion 0.2335 ± 0.0125 0.2288 ± 0.0111 0.2368 ± 0.0067 0.2306 ± 0.0049
scGPT 0.1838 ± 0.0086 0.1788 ± 0.0169 0.1811 ± 0.0149 0.1882 ± 0.0071
Cell2Sentence 0.2588 ± 0.0061 0.2565 ± 0.0060 0.2746 ± 0.0073 0.2715 ± 0.0070

scMMGPT 0.2996 ± 0.0065 0.2992 ± 0.0055 0.2986 ± 0.0038 0.2981 ± 0.0051

Table 2: Results of text-conditioned pseudo-cell generation on the immune tissue dataset. The baseline results are
borrowed from (Levine et al., 2024).

4.1 Experiment Setup375

Unless otherwise mentioned, we use the whole-376

human checkpoint of scGPT to initialize the cell377

PLM, and Llama-2 7B (Touvron et al., 2023b) for378

the text PLM. The model is then pre-trained ac-379

cording to Section 3.3, followed by fine-tuning or380

zero-shot inference on different downstream tasks.381

Unless otherwise specified, the text PLM is pre-382

trained and fine-tuned with a LoRA (Hu et al.,383

2022) adapter, while the cell PLM and the pro-384

jectors undergo full-parameter training. More im-385

plementation details are provided in Appendix B.386

Pre-training Dataset. We collect 27 million387

single-cell data from the CellxGene (Program et al.,388

2025) database for the pre-training of scMMGPT,389

including scRNA-seq matrices and corresponding390

metadata annotations. The textual descriptions391

of each cell are generated with cellular metadata392

and the Open Biological and Biomedical Ontology393

Foundry (Smith et al., 2007). We exclude the test394

sets of the downstream datasets and reserve 1,000395

samples for validation, resulting in approximately396

26.9 million cells for pre-training. Further details397

about data distribution and preprocessing protocols398

are recorded in Appendix A.399

4.2 Cell Description Generation400

The cell description generation task evaluates a401

model’s ability to generate accurate and meaningful402

textual descriptions of cells provided their scRNA-403

seq data. We perform fine-tuning and evaluation404

on the immune tissue (Domínguez Conde et al., 405

2022) dataset using baseline methods including 406

GPT-2 (Radford et al., 2019), Mistral 7B (Jiang 407

et al., 2023), Mixtral 8x7B (Jiang et al., 2024), 408

GPT-3.5, and Cell2Sentence (Levine et al., 2024). 409

To evaluate the generation quality, we compute the 410

Maximum Mean Discrepancy (MMD) and Earth 411

Mover’s Distance (EMD) between the textual em- 412

bedding (Xiao et al., 2024) between predicted and 413

ground truth descriptions. Additionally, we con- 414

duct a T-test and Kolmogorov-Smirnov test (KS- 415

test) to statistically assess and confirm whether the 416

generated descriptions are significantly closer to 417

the original annotations compared to those from 418

unrelated cell descriptions. 419

The performances are shown in Table 1. Our 420

model significantly outperforms all baselines, 421

achieving an 84% reduction in MMD (0.031) and 422

a 97% reduction in EMD (0.011) compared to the 423

best baseline model. scMMGPT also demonstrates 424

lower standard deviations in both MMD and EMD 425

compared to the baselines, suggesting greater ro- 426

bustness and consistency in its performance. The 427

T-test and KS-test results further reveal highly sig- 428

nificant p-values (p ≪ 0.05), indicating a strong 429

alignment between the generated and original de- 430

scriptions. These results demonstrate scMMGPT’s 431

superior capability in understanding cellular states. 432

For more results about cell description generation, 433

see the ablation studies in Section 4.5. 434
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Zero-Shot Fine-tuned on 10% Types Fine-tuned on 20% Types Fine-tuned on 30% Types

Model Acc@1 Acc@5 Acc@10 Acc@1 Acc@5 Acc@10 Acc@1 Acc@5 Acc@10 Acc@1 Acc@5 Acc@10

Random 0.6 3.1 6.2 0.6 3.1 6.2 0.6 3.1 6.2 0.6 3.1 6.2
BioTranlator - - - 3.5 33.6 45.4 13.4 48.2 63.5 13.7 50.6 68.6
LangCell 28.6 69.2 82.9 30.5 71.0 83.7 35.0 74.6 86.4 38.2 83.0 92.1

scMMGPT 49.1 83.1 91.1 55.7 89.2 96.0 59.7 90.4 96.8 60.9 93.6 98.4

Table 3: Results of cell type annotatia 84% on (%) on the Tabula Sapiens (Consortium* et al., 2022) dataset. The
models are fine-tuned on a certain proportion of test cell types to evaluate their generalization performance. For
example, "Fine-tuned on 20% Types" indicates that 20% of the cell types in the test set are used in the fine-tuning
process, while the remaining 80% are used for testing. The baseline results are borrowed from (Zhao et al., 2024).

Model Cell Representation MMD (↓) EMD (↓) BLEU-2 (↑) ROUGE-2 (↑)

scMMGPT (TinyLlama1.1B, w/o scGPT) Cell Sentence 0.104 0.023 45.79% 40.11%
scMMGPT (TinyLlama1.1B) Expression Values 0.074 0.021 48.77% 42.03%
scMMGPT (Llama-27B) Expression Values 0.031 0.011 77.32% 72.49%

Table 4: Results of ablation studies on cell description generation task. We compare different cell representation
methods (cell sentence v.s. expression values) and different backbone text LMs

4.3 Text-guided Pseudo-cell Generation435

We conduct cell generation experiments on the436

immune tissue (Domínguez Conde et al., 2022)437

dataset. We select several generative single-cell438

models as baselines, including scGen (Lotfollahi439

et al., 2019), scVI (Lopez et al., 2018), scDiffu-440

sion (Luo et al., 2024), scGPT (Cui et al., 2024),441

and Cell2Sentence (Levine et al., 2024). Inspired442

by previous studies, we train a simple k-Nearest443

Neighbors (k-NN) classifier on the test set to distin-444

guish the generated cells. The classification accura-445

cies under different k values are reported to reflect446

the quality of the generated cells.447

The results are presented in Table 2. scM-448

MGPT achieves state-of-the-art performance in449

text-conditioned pseudo-cell generation, signifi-450

cantly outperforming all baseline models across451

all k-NN accuracies (k=3,5,10,25). The consis-452

tently high accuracy and low standard deviations453

of scMMGPT demonstrate its robustness and effec-454

tiveness in bridging cellular and textual data.455

4.4 Cell Type Annotation456

In the cell type annotation task, we evaluate the457

model’s ability to classify cells based on their458

scRNA-seq data and textual descriptions of specific459

cell types. The goal is to assign each cell to its cor-460

rect category, leveraging both the transcriptomic461

and textual modalities. We compare our model462

against two baseline methods BioTranslator (Xu463

et al., 2023a) and LangCell (Zhao et al., 2024)464

on the Tabula Sapiens (Consortium* et al., 2022)465

dataset. This dataset comprises 161 distinct hu-466

man cell types, most of which are absent from our467

pre-training corpus. To assess the model’s gener-468

alization performance, we report the classification 469

accuracies under varying fine-tuning conditions, 470

where the model is fine-tuned on different propor- 471

tions of test cell types (10%, 20%, and 30%). 472

The experimental results are summarized in Ta- 473

ble 3. In the zero-shot setting, scMMGPT achieves 474

an Acc@1 of 49.1% and an Acc@5 of 83.1%, sur- 475

passing all the baseline models even in a fine-tuning 476

setting. As shown in the table, the accuracy of scM- 477

MGPT under a zero-shot setting is even higher 478

than many of the fine-tuned baseline results. As 479

the proportion of fine-tuning cell types increases, 480

scMMGPT consistently improves its performance 481

across all metrics, reaching a maximum Acc@1 of 482

60.9% when fine-tuned on 30% cell types, almost 483

doubling the accuracy of the state-of-the-art mod- 484

els. These results demonstrate that scMMGPT’s 485

pre-trained knowledge of both cellular and textual 486

data enables strong generalization to unseen cell 487

types without additional fine-tuning. 488

4.5 Ablation Studies 489

To systematically evaluate the impact of the cell 490

PLM and different text PLM backbones on our 491

model’s performance, we conduct comprehensive 492

ablation studies in this section. 493

Impact of the Cell PLM. To validate the ef- 494

fectiveness of the cell PLM within the scMMGPT 495

framework, we conducted a comparative experi- 496

ment between two model configurations: (1) the 497

full scMMGPT, which integrates both the cell PLM 498

and the text model, and (2) a text-only variant of 499

scMMGPT, which excludes the cell PLM and use 500

the text PLM only. Both models were trained using 501

the same settings and evaluated on the task of cell 502
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Figure 4: UMAP visualization of scMMGPT embeddings for cells from different experimental batches. The result
demonstrates the model’s ability to capture cell type distinctions while effectively mitigating batch effects.

description generation. As shown in Table 4, the503

full scMMGPT model significantly outperforms the504

text-only variant across multiple metrics, including505

BLEU (Papineni et al., 2002) and ROUGE (Lin,506

2004). Specifically, the inclusion of the cell PLM507

improves BLEU-2 and ROUGE-2 scores by 3%508

and 2%, respectively, while reducing text distances509

between generated and ground truth descriptions.510

These results highlight the critical role of the cell511

PLM in capturing and leveraging detailed transcrip-512

tomic information.513

Impact of Different Text PLM Backbones. To514

investigate the influence of model size, we per-515

form experiments with two different text LMs: (1)516

TinyLlama 1.1B and (2) Llama2-7B. As shown in517

Table 4, though using a smaller LM causes perfor-518

mance drops of scMMGPT, its MMD and EMD519

scores still surpass those of the best baseline model,520

Cell2Sentence Large (see Table 1).521

4.6 Visualization522

Influence of Different Cell Representation Meth-523

ods. To further quantify the information loss in cell524

sentences, we conduct a visualization experiment525

comparing cell sentence inputs with original ex-526

pression values. Specifically, we train two separate527

MLPs with identical hyperparameters for cell type528

annotation on the PBMC10K3 dataset. As shown529

in Figure 2, the cell sentence representation leads530

to a significant increase in error rate, particularly531

when distinguishing morphologically similar cell532

types such as dendritic cells and FCGR3A+ mono-533

cytes. This finding highlights the non-negligible534

cellular information lost during the transformation535

from numerical expression levels to cell sentences,536

which limits the effectiveness of related models in537

downstream applications.538

3https://support.10xgenomics.com/
single-cell-multiome-atac-gex/datasets/1.0.0/
pbmc_granulocyte_sorted_10k
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Figure 5: Performance of cell description generation
across different numbers of genes used for cell represen-
tation. The x-axis represents the number of genes (log
scale). Solid lines represent BLEU and ROUGE scores
corresponding to the left axis. Dashed lines represent
the text distances corresponding to the right axis.

Influence of Gene Set Size. We explore the ef- 539

fect of number of genes used for cell representation 540

by selecting the top-k most highly expressed genes 541

and their associated expression levels as input to 542

scMMGPT. The relationship between scRNA-seq 543

length and captioning performance is illustrated 544

in Figure 5, where k ranges from 25 to 211. The 545

results show a consistent improvement in perfor- 546

mance as the input length increases, confirming 547

that more detailed transcriptomic information posi- 548

tively impacts model predictions. 549

Batch Effect Mitigation in scMMGPT Em- 550

beddings. In wet lab experiments, it is challeng- 551

ing to maintain identical experimental conditions 552

across different batches, which can lead to varia- 553

tions in the measured scRNA-seq data. To evalu- 554

ate scMMGPT’s robustness against batch effects, 555

we analyzed two sets of immune tissue samples 556

from different experimental batches, each contain- 557

ing ten randomly selected cell types. We computed 558

scMMGPT embeddings for these samples and vi- 559

sualized them using UMAP, as shown in Figure 4. 560

The results demonstrate that cell embeddings from 561

scMMGPT effectively capture cell type differences 562

while minimizing the influence of batch effects. 563
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Conclusion and Future Works564

In this work, we propose scMMGPT, a novel mul-565

timodal framework for single-cell analysis. scM-566

MGPT bridges scRNA-seq data and text to support567

tasks of cell description generation, text-guided568

cell generation, and cell type annotation. This is569

achieved by integrating a cell PLM with a text570

PLM through cross-modal projectors. Pre-trained571

on 27 million cells from the CELLxGENE dataset,572

scMMGPT demonstrates superior performances573

across various single-cell analysis tasks. Looking574

forward, we will expand scMMGPT to incorporate575

more species, and integrate other cell modalities,576

like scATAC-seq and CITE-seq. This expansion577

will enable scMMGPT to tackle more challenges578

of multi-omic integration (Lotfollahi et al., 2022),579

cross-omic translation (Liu et al., 2023a), and novel580

cell type discovery (Yang et al., 2022), further en-581

hancing its utility in single-cell research.582

Limitations583

One significant limitation of scMMGPT is that its584

pre-training data primarily sourced from the CEL-585

LxGENE (Program et al., 2025) dataset, which586

predominantly covers human tissues. This focus587

restricts scMMGPT’s ability to incorporate knowl-588

edge about cells from non-human species, such as589

those from the widely-used mouse data (Franzén590

et al., 2019).591

Another major limitation is that scMMGPT ex-592

clusively explores transcriptomic information from593

cells, lacking integration with other single-cell594

sequencing modalities, such as scATAC-seq and595

CITE-seq (Liu et al., 2023a; Lin et al., 2022). This596

constraint limits the model to analyzing RNA abun-597

dance alone, omitting critical perspectives on chro-598

matin accessibility and protein expression within599

cells. Incorporating these additional modalities600

could provide a more comprehensive understand-601

ing of cellular states and functions.602
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A Details of Datasets 885

A.1 Collection of the Pre-training Dataset 886

A.1.1 Cell Transcriptomics Collection 887

The pre-training dataset for scMMGPT is con- 888

structed using publicly available data from the Cel- 889

lxGene database (Program et al., 2025), with a 890

snapshot taken on July 1, 2024. The dataset under- 891

goes a series of filtering steps to ensure quality and 892

consistency: 893

• We retain only human single-cell RNA se- 894

quencing (scRNA-seq) data, excluding entries 895

from other species. 896

• We focus on data generated using the 10X Ge- 897

nomics platform, as its standardized outputs 898

minimize technical variability across datasets. 899

• We deduplicate the dataset by keeping only 900

one copy of each unique cell. 901

• To prevent information leakage, we remove all 902

cells that appear in the test sets of downstream 903

evaluation datasets. 904

After these filtering steps, the final dataset com- 905

prises approximately 27 million cells from 344 cat- 906

egories and 60697 different genes spanning diverse 907

human tissues, including brain, lung, heart, blood, 908

pancreas, kidney, pan-cancer, and others. Table 5 909

shows the statistics of the dataset before and after 910

the filtering. 911

Table 5: Dataset statistics before and after data filtering.

Tissue/Category Pre-filtering Post-filtering

Brain 22 M 7.5 M
Lung 3.3 M 1.2 M
Pancreas 0.22 M 0.08 M
Pan-cancer 4.4 M 2.6 M
Kidney 1.0 M 0.35 M
Heart 2.2 M 0.7 M
Blood 5.4 M 4.2 M
Others 22 M 10.3 M

Total 60.5 M 26.9 M

A.1.2 Textual Description Collection 912

To ensure consistent and accurate cell-type annota- 913

tions, we integrate standardized descriptions from 914

two key resources: the Open Biomedical Ontolo- 915

gies Foundry (OBO Foundry) (Smith et al., 2007) 916
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and English Wikipedia. For each cell in the pre-917

training dataset, we first identify its biological clas-918

sification (e.g., "Tendon Cell"). These classifica-919

tions are then mapped to formal definitions in OBO920

Foundry’s Cell Ontology, which provides machine-921

readable terms for cell types.922

Additionally, we supplement these definitions923

with detailed explanations extracted from relevant924

Wikipedia entries, enriching the textual descrip-925

tions with accessible and comprehensive context.926

Example Cell Description from the Open
Biomedical Ontologies Foundry.

Tendon Cell: An elongated fibrocyte that is part
of a tendon. the cytoplasm is stretched between the
collagen fibres of the tendon. they have a central
cell nucleus with a prominent nucleolus. tendon cells
have a well-developed rough endoplasmic reticulum
and they are responsible for synthesis and turnover
of tendon fibres and ground substance.

927

Example Cell Description from Wikipedia.

Tendon Cell: Tendon cells, or tenocytes, are elon-
gated fibroblast type cells. The cytoplasm is stretched
between the collagen fibres of the tendon. They have
a central cell nucleus with a prominent nucleolus.
Tendon cells have a well-developed rough endoplas-
mic reticulum and they are responsible for synthesis
and turnover of tendon fibres and ground substance.
Tendon cells form a connecting epithelial layer be-
tween the muscle and shell in molluscs. In gas-
tropods, for example, the retractor muscles connect
to the shell via tendon cells. Muscle cells are attached
to the collagenous myo-tendon space via hemidesmo-
somes. The myo-tendon space is then attached to
the base of the tendon cells via basal hemidesmo-
somes, while apical hemidesmosomes, which sit atop
microvilli, attach the tendon cells to a thin layer of
collagen. This is in turn attached to the shell via
organic fibres which insert into the shell. Mollus-
can tendon cells appear columnar and contain a large
basal cell nucleus. The cytoplasm is filled with gran-
ular endoplasmic reticulum and sparse golgi. Dense
bundles of microfilaments run the length of the cell
connecting the basal to the apical hemidesmosomes.

928

A.2 Collection of downstream Dataset929

We collected multiple benchmark datasets to eval-930

uate the performance of the scMMGPT model in931

various downstream tasks.932

• Immune Tissue (Domínguez Conde et al.,933

2022): This comprehensive reference dataset934

profiles 360,000 human immune cells through935

single-cell RNA sequencing (scRNA-seq),936

systematically annotated with 35 distinct cell937

subtypes. Derived from 16 tissue types across938

12 adult donors, it provides a cross-tissue char-939

acterization of lymphocyte, myeloid, and stro- 940

mal cell populations, establishing a baseline 941

for immunological studies. 942

• PBMC10K4: Integrating two independent 943

scRNA-seq studies of healthy human 944

peripheral blood mononuclear cells, this 945

resource captures 3,346 actively ex- 946

pressed genes across 9 defined cell types: 947

B cells, CD4+/CD8+ T lymphocytes, 948

CD14+/FCGR3A+ monocytes, dendritic 949

cells, natural killer cells, megakaryocytes, 950

and rare populations. The dataset serves as a 951

standardized benchmark for methodological 952

validation in immunogenomics. 953

• Tabula Sapiens (Consortium* et al., 2022): 954

Spanning 24 human organs with 483,152 955

single-cell profiles, this pan-tissue atlas identi- 956

fies 161 rigorously validated cell types across 957

epithelial, immune, endothelial, and stromal 958

lineages. Incorporating demographic diver- 959

sity through multi-ethnic donors, it establishes 960

transcriptional baselines from bladder mucosa 961

to vascular endothelial using unified scRNA- 962

seq protocols. 963

B Experimental Details 964

Parameter Value

Gene vocab size 60,697
Gene padding function High value
Gene padding max len 2,048
QFormer BERT hidden dim 768
QFormer num_query_token 32
QFormer cross_attention_freq 2
Gene embed dim 512
Cell projector dim 256
Text projector dim 256
Language model hidden size 2,048
LM output max length 128
Cell decoder attention layer 1
Cell decoder attention head 4

Table 6: Model Architecture Specifications

B.1 Pre-Training Details 965

The scMMGPT model employs a multimodal pre- 966

training framework that integrates gene expres- 967

4https://support.10xgenomics.com/
single-cell-multiome-atac-gex/datasets/1.0.0/
pbmc_granulocyte_sorted_10k
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Parameter Value

Similarity function Cosine similarity
Optimizer AdamW
Scheduler Linear
Max learning rate 1e-05
Warm up steps 1000
Weight decay 0.001
Batch size 12

Table 7: pre-train Experiment Configurations

sion data with textual information. Inheriting968

scGPT’s (Cui et al., 2024) architecture, the cell en-969

coder utilizes a gene vocabulary of 60,697 entries.970

For cellular input representation, we implement a971

top-value alignment strategy that selects the 2,048972

highest-expressed genes along with their expres-973

sion values. Cross-modal alignment is achieved974

through a Q-Former (Li et al., 2023) module with975

32 query tokens, where the cross-attention mecha-976

nisms are activated every two layers.977

Pre-training was executed on eight NVIDIA978

4090D GPUs over five epochs (1.4 million to-979

tal steps), requiring approximately five days for980

completion. The optimization process employed981

AdamW with a weight decay of 0.001 and a peak982

learning rate of 10−5, modulated through a linear983

warmup (1,000 steps from 10−6 minimum learn-984

ing rate) followed by linear decay. We select 2985

negative samples for each sample to calculate the986

InfoNCE (Oord et al., 2018) loss described by For-987

mula 2.988

B.2 Downstream Training Details989

For the fine-tuning of downstream tasks, we con-990

duct single-epoch training with a constrained991

batch size of 4, preserving the AdamW opti-992

mizer configuration in the pre-training stage. Lan-993

guage model adaptation employs Low-Rank Adap-994

tation (LoRA) (Hu et al., 2022) with a rank-995

decomposition dimension r of 8, a scaling factor996

α of 32, and a dropout ratio of 0.1 for stochastic997

regularization during weight adaptation.998

For each downstream analysis dataset, we per-999

form quality control by removing the ambiguous1000

categories (e.g., "Other", "Unknown"). We estab-1001

lish symmetrical training pairs with strict 1:1 al-1002

location between cellular generation and textual1003

synthesis objectives. This balanced design pro-1004

motes bidirectional cross-modal alignment while1005

mitigating task dominance.1006

C Visualization of scRNA-seq Data 1007

To facilitate a better understanding of scRNA-seq 1008

matrices, we select a subset of cells from the Tabula 1009

Sapiens dataset for visualization. In wet-lab single- 1010

cell sequencing experiments, researchers measure 1011

the expression levels of a predefined set of genes 1012

across individual cells. Each value in the matrix 1013

represents the expression level of a corresponding 1014

gene within a single cell. The colors in the heatmap 1015

indicate the log1p-transformed expression levels. 1016

Figure 6: Visualization of a single-cell RNA sequencing
matrix. Rows represent individual cells, and columns
represent genes. The color intensity corresponds to the
log1p-transformed expression levels, with darker shades
indicating higher expression.
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