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ABSTRACT

We study the task of training regression models with the guarantee of label dif-
ferential privacy (DP). Based on a global prior distribution on label values, which
could be obtained privately, we derive a label DP randomization mechanism that
is optimal under a given regression loss function. We prove that the optimal mech-
anism takes the form of a “randomized response on bins”, and propose an efficient
algorithm for finding the optimal bin values. We carry out a thorough experimen-
tal evaluation on several datasets demonstrating the efficacy of our algorithm.

1 INTRODUCTION

In recent years, differential privacy (DP, Dwork et al., 2006a;b) has emerged as a popular notion of
user privacy in machine learning (ML). On a high level, it guarantees that the output model weights
remain statistically indistinguishable when any single training example is arbitrarily modified. Nu-
merous DP training algorithms have been proposed, with open-source libraries tightly integrated in
popular ML frameworks such as TensorFlow Privacy (Radebaugh & Erlingsson, 2019) and PyTorch
Opacus (Yousefpour et al., 2021).

In the context of supervised ML, a training example consists of input features and a target label.
While many existing research works focus on protecting both features and labels (e.g., Abadi et al.
(2016)), there are also some important scenarios where the input features are already known to the
adversary, and thus protecting the privacy of the features is not needed. A canonical example arises
from computational advertising where the features are known to one website (a publisher), whereas
the conversion events, i.e., the labels, are known to another website (the advertiser).1 Thus, from
the first website’s perspective, only the labels can be treated as unknown and private. This motivates
the study of label DP algorithms, where the statistical indistinguishability is required only when the
label of a single example is modified.2 The study of this model goes back at least to the work of
Chaudhuri & Hsu (2011). Recently, several works including (Ghazi et al., 2021a; Malek Esmaeili
et al., 2021) studied label DP deep learning algorithms for classification objectives.

Our Contributions. In this work, we study label DP for regression tasks. We provide a new
algorithm that, given a global prior distribution (which, if unknown, could be estimated privately),
derives a label DP mechanism that is optimal under a given objective loss function. We provide
an explicit characterization of the optimal mechanism for a broad family of objective functions
including the most commonly used regression losses such as the Poisson log loss, the mean square
error, and the mean absolute error.

More specifically, we show that the optimal mechanism belongs to a class of randomized response
on bins (Algorithm 1). We show this by writing the optimization problem as a linear program (LP),
and characterizing its optimum. With this characterization in mind, it suffices for us to compute the

∗Authors in alphabetical order. Email: {badih.ghazi, ravi.k53}@gmail.com, {pritishk, ethanleeman,
pasin, avaradar, chiyuan}@google.com

1A similar use case is in mobile advertising, where websites are replaced by apps.
2We note that this label DP setting is particularly timely and relevant for ad attribution and conversion

measurement given the deprecation of third-party cookies by several browsers and platforms (Wilander, 2020;
Wood, 2019; Schuh, 2020).
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Figure 1: Learning with feature-oblivious label DP.

optimal mechanism among the class of randomized response on bins. We then provide an efficient
algorithm for this task, based on dynamic programming (Algorithm 2).

In practice, a prior distribution on the labels is not always available. This leads to our two-step
algorithm (Algorithm 3) where we first use a portion of the privacy budget to build an approximate
histogram of the labels, and then feed this approximate histogram as a prior into the optimization
algorithm in the second step; this step would use the remaining privacy budget. We show that as the
number of samples grows, this two-step algorithm yields an expected loss (between the privatized
label and the raw label) which is arbitrarily close to the expected loss of the optimal local DP
mechanism. (We give a quantitative bound on the convergence rate.)

Our two-step algorithm can be naturally deployed in the two-party learning setting where each ex-
ample is vertically partitioned with one party holding the features and the other party holding the
(sensitive) labels. The algorithm is in fact one-way, requiring a single message to be communicated
from the labels party to the features party, and we require that this one-way communication satisfies
(label) DP. We refer to this setting, which is depicted in Figure 1, as feature-oblivious label DP.

We evaluate our algorithm on three datasets: the 1940 US Census IPUMS dataset, the Criteo Spon-
sored Search Conversion dataset, and a proprietary app install ads dataset from a commercial mobile
app store. We compare our algorithm to several baselines, and demonstrate that it achieves higher
utility across all test privacy budgets, with significantly lower test errors for the high privacy regime.
For example, for privacy budget ε = 0.5, comparing to the best baseline methods, the test MSE for
our algorithm is ∼ 1.5× smaller on the Criteo and US Census datasets, and the relative test error is
∼ 5× smaller on the app ads dataset.

Organization. In Section 2, we recall some basics of DP and learning theory, and define the
feature-oblivious label DP setting in which our algorithm can be implemented. Our label DP algo-
rithm for regression objectives is presented in Section 3. Our experimental evaluation and results
are described in Section 4. A brief overview of related work appears in Section 5. We conclude with
some interesting future directions in Section 6. Most proofs are deferred to the Appendix (along
with additional experimental details and background material).

2 PRELIMINARIES

We consider the standard setting of supervised learning, where we have a set of examples of the
form (x, y) ∈ X × Y , drawn from some unknown distribution D and we wish to learn a predictor
fθ (parameterized by θ) to minimize L(fθ) := E(x,y)∼D `(fθ(x), y), for some loss function ` : R×
Y → R≥0; we will consider the case where Y ⊆ R. Some common loss functions include the zero-
one loss `0-1(ỹ, y) := 1[ỹ 6= y], the logistic loss `log(ỹ, y) := log(1+e−ỹy) for binary classification,
and the squared loss `sq(ỹ, y) := 1

2 (ỹ−y)2, the absolute-value loss `abs(ỹ, y) := |ỹ−y|, the Poisson
log loss `Poi(ỹ, y) := ỹ − y · log(ỹ) for regression. This paper focuses on the regression setting.

However, we wish to perform this learning with differential privacy (DP). We start by recalling the
definition of DP, which can be applied to any notion of adjacent pairs of datasets. For an overview
of DP, we refer the reader to the book of Dwork & Roth (2014).

Definition 1 (DP; Dwork et al. (2006b)). Let ε be a positive real number. A randomized algorithmA
taking as input a dataset is said to be ε-differentially private (denoted ε-DP) if for any two adjacent
datasetsX andX ′, and any subset S of outputs ofA, we have Pr[A(X) ∈ S] ≤ eε ·Pr[A(X ′) ∈ S].

In supervised learning applications, the input to a DP algorithm is the training dataset (i.e., a set of
labeled examples) and the output is the description of a predictor (e.g., the weights of the trained
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model). Typically, two datasets are considered adjacent if they differ on a single training example;
this notion protects both the features and the label of any single example. As discussed in Section 1,
in certain situations, protecting the features is either unnecessary or impossible, which motivates the
study of label DP that we define next.
Definition 2 (Label DP; Chaudhuri & Hsu (2011)). An algorithmA taking as input a training dataset
is said to be ε-label differentially private (denoted as ε-LabelDP) if it is ε-DP when two input datasets
are considered adjacent if they differ on the label of a single training example.

We next define an important special case of training with label DP, which commonly arises in prac-
tice. The setting could be viewed as a special case of vertical federated learning, where each training
example is divided across different parties at the beginning of the training process; see, e.g., the sur-
vey of Kairouz et al. (2021) and the references therein. We consider the special case where we only
allow a single round of communication from the first party who holds all the labels, to the second
party, who holds all the features, and who then trains the ML model and outputs it. We refer to this
setting (depicted in Figure 1) as feature-oblivious label DP since the label DP property is guaranteed
without having to look at the features (but with the ability to look at the labels from all users); we
next give the formal definition.
Definition 3 (Feature-Oblivious Label DP). Consider the two-party setting where the “features
party” holds as input a sequence (xi)

n
i=1 of all feature vectors (across all the n users), and the

“labels party” holds as input a sequence (yi)
n
i=1 of the corresponding labels. The labels party sends

a single message M(y1, . . . , yn) to the features party; this message can be randomized using the in-
ternal randomness of the labels party. Based on its input and on this incoming message, the features
party then trains an ML model that it outputs. We say that this output is feature-oblivious ε-LabelDP
if the message M(y1, . . . , yn) is ε-DP with respect to the adjacency relation where a single yi can
differ across the two datasets.

We stress the practical applicability of the setting described in Definition 3. The labels party could
be an advertiser who observes the purchase data of the users, and wants to enable a publisher (the
features party) to train a model predicting the likelihood of a purchase (on the advertiser) being
driven by the showing of a certain type of ad (on the publisher). The advertiser would also want to
limit the leakage of sensitive information to the publisher. From a practical standpoint, the simplest
option for the advertiser is to send a single privatized message to the publisher who can then train a
model using the features at its disposal. This is exactly the feature-oblivious label DP setting.

3 LABEL DP LEARNING ALGORITHM

A common template for learning with label DP is to: (i) compute noisy labels using a local DP
mechanism M, (ii) use a learning algorithm on the dataset with noisy labels. All of the baseline
algorithms that we consider follow this template, through different ways of generating noisy labels,
such as, (a) randomized response (for categorical labels), (b) (continuous/discrete) Laplace mech-
anism, (c) (continuous/discrete) staircase mechanism, etc. (for formal definitions of these mecha-
nisms, see Appendix D). Intuitively, such a learning algorithm will be most effective when the noisy
label mostly agrees with the true label.

Suppose the loss function ` satisfies the triangle inequality, namely that `(ỹ, y) ≤ `(ŷ, y) + `(ỹ, ŷ)
for all y, ŷ, ỹ. Then we have that

E
(x,y)∼D

`(fθ(x), y) ≤ E
y∼P

ŷ∼M(y)

`(ŷ, y) + E
(x,y)∼D
ŷ∼M(y)

`(fθ(x), ŷ) , (1)

where, for ease of notation, we use P to denote the marginal on y for (x, y) ∼ D. The learning
algorithm, in part (ii) of the template above, aims to minimize the second term in the RHS of (1).
Thus, it is natural to choose a mechanismM, in part (i) of the template, to minimize the first term in
the RHS of (1).3 Ghazi et al. (2021a) studied this question for the case of 0-1 loss and showed that
a randomized response on top k labels with the highest prior masses (for some k) is optimal. Their
characterization was limited to this classification loss. In this work, we develop a characterization
for a large class of regression loss functions.

3Note that the first term in the RHS of (1) is a constant, independent of the number of training samples.
Therefore, this upper bound is not vanishing in the number of samples, and hence this inequality can be quite
loose.
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Algorithm 1 RR-on-BinsΦε .

Parameters: Φ : Y → Ŷ (for label set
Y and output set Ŷ), privacy parameter
ε ≥ 0.
Input: A label y ∈ Y .
Output: ŷ ∈ Ŷ .

return a sample ŷ ∼ Ŷ , where the
random variable Ŷ is distributed as

Pr[Ŷ = ŷ] =

{
eε

eε+|Ŷ|−1
if ŷ = Φ(y)

1
eε+|Ŷ|−1

otherwise,

for each ŷ ∈ Ŷ

Algorithm 2 Compute optimal Φ for RR-on-BinsΦε .

Input: Distribution P over Y ⊆ R, privacy param.
ε ≥ 0, loss function ` : R2 → R≥0.
Output: Output set Ŷ ⊆ R and Φ : Y → Ŷ .

y1, . . . , yk ← elements of Y in increasing order
Initialize A[i][j]←∞ for all i, j ∈ {0, . . . , k}
for r, i ∈ {1, . . . , k} do
L[r][i]← minŷ∈R

∑
y∈Y py ·e1[y∈[yr,yi]]·ε ·`(ŷ, y)

A[0][0]← 0
for i ∈ {1, . . . , k} do

for j ∈ {1, . . . , i} do
A[i][j]← min0≤r<iA[r][j − 1] + L[r + 1][i]

return Φ, Ŷ correspond. to mind∈[k]
1

d−1+eεA[k][d]

3.1 RANDOMIZED RESPONSE ON BINS: AN OPTIMAL MECHANISM

We propose a new mechanism for generating noisy labels that minimizes the first term in the RHS
of (1). Namely, we define randomized response on bins (RR-on-BinsΦε ), which is a randomized
algorithm parameterized by a scalar ε > 0 and a non-decreasing function Φ : Y → Ŷ that maps the
label set Y ⊆ R to an output set Ŷ ⊆ R. This algorithm is simple: perform ε-randomized response
on Φ(y), randomizing over Ŷ; see Algorithm 1 for a formal definition. Any Φ we consider will be
non-decreasing unless otherwise stated, and so we often omit mentioning it explicitly.

An important parameter in RR-on-Bins is the mapping Φ and the output set Ŷ . We choose Φ
with the goal of minimizing E `(ŷ, y). First we show, under some basic assumptions about `,
that for any given distribution P over labels Y , there exists a non-decreasing map Φ such that
M = RR-on-BinsΦε minimizes Ey∼P,ŷ∼M(y) `(ŷ, y). Since Φ is non-decreasing, it follows that
Φ−1(ŷ) is an interval4 of Y , for all ŷ ∈ Ŷ . Exploiting this property, we give an efficient algorithm
for computing the optimal Φ.

To state our results formally, we use L(M;P ) to denote Ey∼P,ŷ∼M(y) `(ŷ, y), the first term in the
RHS of (1). Our results hold under the following natural assumption; note that all the standard loss
functions such as squared loss, absolute-value loss, and Poisson log loss satisfy Assumption 4.

Assumption 4. Loss function ` : R× R→ R≥0 is such that

• For all y ∈ R, `(·, y) is continuous.
• For all y ∈ R, `(ŷ, y) is decreasing in ŷ when ŷ ≤ y and increasing in ŷ when ŷ ≥ y.
• For all ŷ ∈ R, `(ŷ, y) is decreasing in y when y ≤ ŷ and increasing in y when y ≥ ŷ.

We can now state our main result:

Theorem 5. For any loss function ` : R×R→ R≥0 satisfying Assumption 4, all finitely supported
distributions P over Y ⊆ R, there is an output set Ŷ ⊆ R and a non-decreasing map Φ : Y → Ŷ
such that

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ),

where the infimum is over all ε-DP mechanismsM.

Proof Sketch. This proof is done in two stages. First, we handle the case where Ŷ is restricted to
be a subset of O, where O is a finite subset of R. Under this restriction, the optimal mechanismM
that minimizes L(M;P) can be computed as the solution to an LP. Since an optimal solution to an

4An interval of Y is a subset of the form [a, b] ∩ Y , for some a, b ∈ R, consisting of consecutive elements
on Y in sorted order.
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Algorithm 3 Labels Party’s Randomizer LabelRandomizerε1,ε2 .

Parameters: Privacy parameters ε1, ε2 ≥ 0.
Input: Labels y1, . . . , yn ∈ Y .
Output: ŷ1, . . . , ŷn ∈ Ŷ .

P ′ ←MLap
ε1 (y1, . . . , yn)

Φ′, Ŷ ′ ← Result of running Algorithm 2 with distribution P ′ and privacy parameter ε2

for i ∈ [n] do
ŷi ← RR-on-BinsΦ

′

ε2 (yi)
return (ŷ1, . . . , ŷn)

LP can always be found at the vertices of the constraint polytope, we study properties of the vertices
of the said polytope and show that the minimizer amongst its vertices necessarily takes the form of
RR-on-BinsΦε . To handle the case of general Ŷ , we first note that due to Assumption 4, it suffices to
consider Ŷ ⊆ [ymin, ymax] (where ymin = miny∈Y y and ymax = maxy∈Y y). Next, we consider a
sequence of increasingly finer discretizations of [ymin, ymax], and show that RR-on-BinsΦε can come
arbitrarily close to the optimal L(M;P ) when restricting Ŷ to be a subset of the discretized set.
But observe that any Φ induces a partition of Y into intervals. Since there are only finitely many
partitions of Y into intervals, it follows that in fact RR-on-BinsΦε can exactly achieve the optimal
L(M;P ). The full proof is deferred to Appendix A.

Given Theorem 5, it suffices to focus on RR-on-BinsΦε mechanisms and optimize over the choice of
Φ. We give an efficient dynamic programming-based algorithm for the latter in Algorithm 2. The
main idea is as follows. We can breakdown the representation of Φ into two parts (i) a partition
PΦ = {S1, S2, . . .} of Y into intervals5, such that Φ is constant over each Si, and (ii) the values yi
that Φ(·) takes over interval Si. Let y1, . . . , yk be elements of Y in increasing order. Our dynamic
program has a state A[i][j], which is (proportional to) the optimal mechanism if we restrict the input
to only {y1, . . . , yi} and consider partitioning into j intervals S1, . . . , Sj . To computeA[i][j], we try
all possibilities for Sj . Recall that Sj must be an interval, i.e., Sj = {yr+1, . . . , yi} for some r < i.
This breaks the problem into two parts: computing optimal RR-on-Bins for {y1, . . . , yr} for j − 1
partitions and solving for the optimal output label ŷ for Sj . The answer to the first part is simply
A[r][j − 1], whereas the second part can be written as a univariate optimization problem (denoted
by L[r][i] in Algorithm 2). When ` is convex (in the first argument), this optimization problem is
convex and can thus be solved efficiently. Furthermore, for squared loss, absolute-value loss, and
Poisson log loss, this problem can be solved in amortized O(1) time, resulting in a total running
time of O(k2) for the entire dynamic programming algorithm. The full description is presented in
Algorithm 26; the complete analyses of its correctness and running time are deferred to Appendix B.

3.2 ESTIMATING THE PRIOR PRIVATELY

In the previous subsection, we assumed that the distribution P of labels is known beforehand. This
might not be the case in all practical scenarios. Below we present an algorithm that first privately
approximates the distribution P and work with this approximation instead. We then analyze how
using such an approximate prior affects the performance of the algorithm.

To formalize this, let us denote byMLap
ε the ε-DP Laplace mechanism for approximating the prior.

Given n samples drawn from P , MLap
ε constructs a histogram over Y and adds Laplace noise

with scale 2/ε to each entry, followed by clipping (to ensure that entries are non-negative) and
normalization. A formal description ofMLap

ε can be found in Algorithm 4 in the Appendix.

5For convenience, we assume that S1, S2, . . . are sorted in increasing order.
6We remark that the corresponding Φ, Ŷ on the last line can be efficiently computed by record-

ing the minimizer for each A[i][j] and L[r][i], and going backward starting from i = k and j =
arg mind∈[k]

1
d−1+eε

A[k][d].
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(a) RR-on-Bins

0 50 100 150 200 250 300 350 400
Original labels

0

50

100

150

200

250

300

350

400

No
ise

d 
la

be
ls

MSE = 14461.2893

0.000

0.005

0.010

0.00 0.02

(b) Laplace Mechanism

Figure 2: Illustration of the training label randomization mechanism under privacy budget ε = 3. In
this case, RR-on-Bins maps the labels to 3 bins chosen for optimal MSE via Algorithm 2. The 2D
density plot contours are generated in log scale. The legends show the MSE between the original
labels and the ε-DP randomized labels.

Our mechanism for the unknown prior case—described in Algorithm 3—is now simple: We split the
privacy budget into ε1, ε2, run the ε1-DP Laplace mechanism to get an approximate prior distribution
P ′ and run the optimal RR-on-Bins for privacy parameter ε2 to randomize the labels. It is not hard
to see that the algorithm is (ε1 + ε2)-DP. (Full proof deferred to the Appendix.)
Theorem 6. LabelRandomizerε1,ε2 is (ε1 + ε2)-DP.

Let us now discuss the performance of the above algorithm in comparison to the case where the
prior P is known, under the assumption that y1, . . . , yn are sampled i.i.d. from P . We show in
the following theorem that the difference between the expected population loss in the two cases
converges to zero as the number of samples n→∞, provided that Y is finite:
Theorem 7. Let ` : R × R → R≥0 be any loss function satisfying Assumption 4. Furthermore,
assume that `(ŷ, y) ≤ B for some parameter B for all y, ŷ ∈ Y . For any distribution P on Y ,
ε > 0, and any sufficiently large n ∈ N, there is a choice of ε1, ε2 > 0 such that ε1 + ε2 = ε and

E
y1,...,yn∼P
P ′,Φ′,Ŷ′

[L(RR-on-BinsΦ
′

ε2 ;P )]− inf
M
L(M;P ) ≤ O

(
B ·
√
|Y|/n

)
,

where P ′,Φ′, Ŷ ′ are as in LabelRandomizerε1,ε2 and the infimum is over all ε-DP mechanismsM.

We remark that the above bound is achieved by setting ε1 =
√
|Y|/n; indeed, we need to assume

that n is sufficiently large so that ε1 < ε. The high-level idea of the proof is to first use a known
utility bound for Laplace mechanism Diakonikolas et al. (2015) to show that P, P ′ are close. Then,
we argue that the optimal RR-on-Bins is robust, in the sense that small changes in the prior (from P
to P ′) and privacy parameter (from ε to ε2) do not affect the resulting population loss too much.

4 EXPERIMENTAL EVALUATION

We evaluate the RR-on-Bins mechanism on three datasets, and compare with the Laplace mecha-
nism (Dwork et al., 2006b), the staircase mechanism (Geng & Viswanath, 2014) and the exponential
mechanism (McSherry & Talwar, 2007). Note the Laplace mechanism and the staircase mechanism
both have a discrete and a continuous variant. For real-valued labels (the Criteo Sponsored Search
Conversion dataset), we use the continuous variant, and for integer-valued labels (the US Census
dataset and the App Ads Conversion Count dataset), we use the discrete variant. All of these algo-
rithms can be implemented in the feature-oblivious label DP setting of Figure 1. Detailed model and
training configurations can be found in Appendix E.
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Privacy
Budget

MSE (Mechanism) MSE (Generalization)

Laplace Mechanism RR-on-Bins Laplace Mechanism RR-on-Bins

0.05 60 746.98± 46.31 11 334.84± 9.07 24 812.56± 139.35 11 339.71± 36.45
0.1 59 038.06± 51.31 11 325.53± 9.25 23 933.23± 172.43 11 328.04± 36.34
0.3 52 756.01± 56.64 11 210.48± 9.06 20 961.83± 149.47 11 185.20± 36.10
0.5 47 253.12± 57.12 10 977.09± 8.85 18 411.30± 111.82 10 901.33± 36.54
0.8 40 223.13± 48.66 10 435.43± 9.77 15 428.75± 91.32 10 256.37± 37.39
1.0 36 226.54± 45.05 9 976.86± 8.21 13 788.51± 75.71 9 744.08± 37.59
1.5 28 170.93± 39.45 8 636.43± 7.04 10 808.53± 52.31 8 406.88± 36.57
2.0 22 219.20± 28.04 7 260.05± 10.55 8 892.80± 32.92 7 294.93± 34.03
3.0 14 411.77± 20.26 4 600.24± 11.15 6 770.33± 22.86 5 577.50± 31.75
4.0 9 851.53± 17.27 2 631.36± 4.41 5 764.32± 28.95 4 769.61± 25.01
6.0 5 270.57± 10.30 709.74± 6.18 4 955.21± 26.75 4 371.68± 25.31
8.0 3 239.22± 6.54 176.47± 2.12 4 668.40± 20.34 4 333.12± 31.94
∞ 0.00± 0.00 0.00± 0.00 4 322.91± 28.31 4 319.86± 29.27

Table 1: MSE on the Criteo dataset. The first column block (Mechanism) measures the error in-
troduced by the DP randomization mechanisms on the training labels. The second column block
(Generalization) measures the test error of the models trained on the corresponding private labels.

4.1 CRITEO SPONSORED SEARCH CONVERSION

The Criteo Sponsored Search Conversion Log Dataset (Tallis & Yadav, 2018) contains logs obtained
from Criteo Predictive Search (CPS). Each data point describes an action performed by a user (click
on a product related advertisement), with additional information consisting of a conversion (product
was bought) within a 30-day window and that could be attributed to the action. We formulate a
(feature-oblivious) label DP problem to predict the revenue (in C) obtained when a conversion takes
place (the SalesAmountInEuro attribute). This dataset represents a sample of 90 days of Criteo live
traffic data, with a total of 15, 995, 634 examples. We remove examples where no conversion hap-
pened (SalesAmountInEuro is −1), resulting in a dataset of 1, 732, 721 examples. The conversion
value goes up to 62, 458.773C. We clip the conversion value at 400C, which corresponds to the
95th percentile of the value distribution.

In Figure 2, we visualize an example of how RR-on-Bins randomizes those labels, and compare it
with the Laplace mechanism, which is a canonical DP mechanism for scalars. In this case (and for
ε = 3), RR-on-Bins chooses 3 bins at around 50, 100, and 250 and maps the sensitive labels to
those bins with Algorithm 1. The joint distribution of the sensitive labels and randomized labels
maintains an overall concentration along the diagonal. On the other hand, the joint distribution for
the Laplace mechanism is generally spread out. Table 1 quantitatively compares the two mechanisms
across different privacy budgets. The first block (Mechanism) shows the MSE between the sensitive
training labels and the private labels generated by the two mechanisms, respectively. We observe
that RR-on-Bins leads to significantly smaller MSE than the Laplace mechanism for the same label
DP guarantee. Furthermore, as shown in the second block of Table 1 (Generalization), the reduced
noise in the training labels leads to lower test errors.

Figure 3 compares with two additional baselines: the exponential mechanism, and the staircase
mechanism. For both the “Mechanism” errors and “Generalization” errors, RR-on-Bins consistently
outperforms other methods for both low- and high-ε regimes.

4.2 US CENSUS

The 1940 US Census dataset has been made publicly available for research since 2012, and has
131, 903, 909 rows. This data is commonly used in the DP literature (e.g., Wang et al. (2019); Cao
et al. (2021); Ghazi et al. (2021b)). In this paper, we set up a label DP problem by learning to predict
the duration for which the respondent worked during the previous year (the WKSWORK1 field, measured
in number of weeks). Figure 4a shows that RR-on-Bins outperforms the baseline mechanisms across
a wide range of privacy budgets.
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Figure 3: MSE on the Criteo dataset: (a) error introduced by DP randomization mechanisms on the
training labels and (b) test error of the models trained on the corresponding private labels.
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Figure 4: Test performance across different privacy budgets. (a) MSE on the US Census dataset.
(b) Relative performance on the App Ads Conversion Count dataset. The relative error is calculated
with respect to the non-private baseline, i.e. (E − Ebaseline)/Ebaseline.

4.3 APP ADS CONVERSION COUNT PREDICTION

Finally, we evaluate our algorithm on an app install ads prediction dataset from a commercial mobile
app store. The examples in this dataset are ad clicks and each label counts post-click events (aka
conversions) occurring in the app after the user installs it. For example, if a user installs a ride share
app after clicking the corresponding ad, the label could be the total number of rides that the user
purchases in a given time window after the installation. We note that ad prediction tasks/datasets of
a similar nature have been previously used for evaluation (Badanidiyuru et al., 2021).

Figure 4b shows the performance on this dataset. Consistent with the results observed on the other
datasets, RR-on-Bins outperforms other mechanisms across all the privacy budget values.

In summary, by first estimating a prior distribution (privately), RR-on-Bins significantly reduces
label noise compared to other label DP mechanisms, especially in the high-privacy (i.e., intermediate
to small ε) regime. This leads to significantly better test performance for the regression networks
trained on these less noisy labels. For example, for ε = 0.5, comparing to the best baseline methods,
the test MSE for RR-on-Bins is ∼ 1.5× smaller on the Criteo and US Census datasets, and the
relative test error is ∼ 5× smaller on the App Ads dataset.
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5 RELATED WORK

There has been a large body of work on learning with DP. Various theoretical and practical set-
tings have been studied including empirical risk minimization (Chaudhuri et al., 2011), optimization
(Song et al., 2013), regression analysis (Zhang et al., 2012), and deep learning (Abadi et al., 2016).
The vast majority of the prior works studied the setting where both the features and the labels are
deemed sensitive and hence ought to be protected.

Chaudhuri & Hsu (2011) and Beimel et al. (2016) studied the sample complexity of learning with
label DP for classification tasks. Wang & Xu (2019) studied label DP for sparse linear regression in
the local DP setting. Ghazi et al. (2021a) provided a procedure for training deep neural classifiers
with label DP. For the classification loss, they formulate an LP and derive an explicit solution, which
they refer to as RRTop-k. Our work could be viewed as an analog of theirs for regression tasks.
Malek Esmaeili et al. (2021) used the PATE framework of Papernot et al. (2017; 2018) to propose a
new label DP training method. We note that this, as well as related work on using unsupervised and
semi-supervised learning to improve label DP algorithms (Esfandiari et al., 2022; Tang et al., 2022),
do not apply to the feature-oblivious label DP setting.

A variant of two-party learning (with a “features party” and a “labels party”) was recently studied
by Li et al. (2021), who considered the interactive setting where the two parties can engage in a
protocol with an arbitrary number of rounds (with the same application to computational advertising
described in Section 1 as a motivation). By contrast, we considered in this paper the one-way
communication setting (from Figure 1), which is arguably more practical and easier to deploy.

Kairouz et al. (2016) study optimal local DP algorithms under a given utility function and prior.
For a number of utility functions, they show that optimal mechanisms belong to a class of staircase
mechanisms. Staircase mechanisms are much more general than randomized response on bins. In
that regard, our work shows that a particular subset of staircase mechanisms is optimal for regression
tasks. In particular, while we give an efficient dynamic programming algorithm for optimizing over
randomized response on bins, we are not aware of any efficient algorithm that can compute an
optimal staircase mechanism. (In particular, a straightforward algorithm takes 2O(k) time.)

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this work we propose a new label DP mechanism for regression. The resulting training algorithm
can be implemented in the feature-oblivious label DP setting. We provide theoretical results shed-
ding light on the operation and guarantees of the algorithm. We also evaluate it on three datasets,
demonstrating that it achieves higher accuracy compared to several non-trivial, natural approaches.

Our work raises many questions for future exploration. First, in our evaluation, we set the objective
function optimized using the LP to be the same as the loss function used during training; different
ways of setting the LP objective in relation to the training loss are worth exploring. Second, our nois-
ing mechanism typically introduces a bias; mitigating it, say by adding unbiasedness constraints into
the LP, is an interesting direction. Third, it might also be useful to investigate de-noising techniques
that can be applied as a post-processing step on top of our label DP mechanism; e.g., the method
proposed in Tang et al. (2022) for computer vision tasks, and the ALIBI method (Malek Esmaeili
et al., 2021) for classification tasks, which is based on Bayesian inference.

We believe that due to its simplicity and practical appeal, the setting of learning with feature-
oblivious label DP merits further study, from both a theoretical and an empirical standpoint.

Finally, we leave the question of obtaining better “feature-aware” label DP regression algorithms for
a future investigation.
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A OPTIMALITY OF RR-on-BinsΦε

In this section, we prove Theorem 5. We prove this in two stages. First we consider the case where
P has finite support and Ŷ is constrained to be a subset of a pre-specified finite setO ⊆ R. Next, we
consider the case where Ŷ is allowed to be an arbitrary subset of R, and thus, the output distribution
of the mechanism on any input y can be an arbitrary probability measure over R.

Stage I: Finitely supported P , Ŷ ⊆ O, ` strictly increasing/decreasing.
Theorem 8. Let P be a distribution over R with finite support, O a finite subset of R, and ` :
R× R→ R≥0 be such that

• For all y ∈ R, `(ŷ, y) is strictly decreasing in ŷ when ŷ ≤ y and strictly increasing in ŷ when
ŷ ≥ y.

• For all ŷ ∈ R, `(ŷ, y) is strictly decreasing in y when y ≤ ŷ and strictly increasing in y when
y ≥ ŷ.

Then for all ε > 0, there exists Φ : Y → O such that

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ).

where infM is over all ε-DP mechanismsM with inputs in Y and outputs in O.

The proof of Theorem 8 is inspired by the proof of Theorem 3.1 of Ghosh et al. (2012). Namely, we
describe the problem of minimizing L(M;P ) as a linear program (LP). We arrange the variables of
the LP into a matrix and associate any solution to the LP a signature matrix, which represents when
constraints of the LP are met with equality. Then we make several observations of the signature
matrix for any optimal solution, which eventually leads to the proof of the theorem.

Proof of Theorem 8. Without loss of generality, we may assume that Y = supp(P ) and therefore is
finite.

When Ŷ is restricted to be a subset of O, the optimal mechanismM which minimizes L(M;P ) =
Ey∼P,ŷ∼M(y) `(ŷ, y), is encoded in the solution of the following LP, with |Y|·|O| variablesMy→ŷ =
Pr[M(y) = ŷ] indexed by (y, ŷ) ∈ Y ×O. Namely, the first two constraints enforce that (My→ŷ)y
is a valid probability distribution and the third constraint enforces the ε-DP constraint.

min
M

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 ,

subject to ∀y ∈ Y, ŷ ∈ O : My→ŷ ≥ 0,

∀y ∈ Y :
∑
ŷ∈O

My→ŷ = 1,

∀ŷ ∈ O,∀y, y′ ∈ Y, y 6= y′ : My′→ŷ ≤ eε ·My→ŷ.

(2)

Corresponding to any feasible solutionM := (My→ŷ)y,ŷ , we associate a |Y|×|O| signature matrix
SM . First, let pmin

ŷ = minyMy→ŷ and let pmax
ŷ = maxyMy→ŷ . Note that, from the constraints it

follows that pmax
ŷ ≤ eε · pmin

ŷ .

Definition 9 (Signature matrix). For any feasible M for the LP in (2), the signature entry SM (y, ŷ)
for all y ∈ Y and ŷ ∈ O is defined as

SM (y, ŷ) =


0 if My→ŷ = 0

U if My→ŷ = pmax
ŷ = eε · pmin

ŷ

L if My→ŷ = pmin
ŷ = e−ε · pmax

ŷ

S otherwise.
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1.5 2.5 3.5 4.5

1 0 1/2 1/4 1/4

2 0 1/2 1/4 1/4

3 0 1/4 1/4 1/2

4 0 1/3 1/3 1/3

5 0 1/3 1/3 1/3

M

1.5 2.5 3.5 4.5

1 0 U S L

2 0 U S L

3 0 L S U

4 0 S S S

5 0 S S S

SM

Figure 5: Example of a signature matrix for eε = 1/2 for Y = {1, 2, 3, 4, 5} and O =
{1.5, 2.5, 3.5, 4.5}

We visualize SM as a matrix with rows corresponding to y’s and columns corresponding to ŷ’s, both
ordered in increasing order (see Figure 5).

If M is an RR-on-BinsΦε mechanism for some Φ : Y → O, then it is easy to see that the cor-
responding signature matrix satisfies some simple properties (given in Claim 10 below). Interest-
ingly, we establish a converse, thereby characterizing the signature of matrices M that correspond
to RR-on-BinsΦε mechanism for some Φ : Y → O.

Claim 10. M corresponds to an RR-on-BinsΦε mechanism for some non-decreasing Φ : Y → Ŷ
(for Ŷ ⊆ O) if and only if either

(1) One column consists entirely of S, while all other columns are entirely 0; let Ψ(y) = ŷ, where
ŷ corresponds to the unique S column,

or all of the following hold:

(2a) Each column in SM is either entirely 0, or entirely consisting of U’s and L’s, with at least one
U and one L.

(2b) Each row contains a single U entry, with all other entries being either L or 0; for each y, we
denote this unique column index of U by Ψ(y).

(2c) For all y < y′ it holds that Ψ(y) ≤ Ψ(y′).

In each case, it holds that Φ = Ψ.

Proof of Claim 10. Suppose M corresponds to RR-on-BinsΦε for some non-decreasing Φ. If Φ is
constant, then condition (1) holds, since all columns corresponding to ŷ /∈ range(Φ) in SM are
all 0, whereas, the only remaining column consists of all S. If Φ is not constant, then My→ŷ =

eε1[Φ(y)=ŷ]/(eε + |Ŷ| − 1), and hence its signature SM is such that SM (y, ŷ) is U if Φ(y) = ŷ, and
L if ŷ ∈ range(Φ) r {Φ(y)}, and 0 otherwise. It is easy to verify that all three conditions hold:
(2a) a column corresponding to ŷ is entirely 0 if and only if ŷ /∈ range(Φ) and entirely consisting of
U’s and L’s otherwise with at least one U corresponding to y such that Φ(y) = ŷ and at least one L
corresponding to y such that Φ(y) 6= ŷ (since Φ is non-constant), (2b) Each row corresponding to y
has a unique U corresponding to ŷ = Ψ(y) = Φ(y), and (2c) For y < y′, it holds that Ψ(y) ≤ Ψ(y′)
since Φ is non-decreasing.

To establish the converse, suppose we have that SM satisfies condition (1). Then we immediately
get that M corresponds to RR-on-Bins for the constant map Φ = Ψ. Next, suppose SM satisfies all
three conditions (2a)–(2c). Immediately, we have that M is given as

My→ŷ =


eε · pmin

ŷ if SM (y, ŷ) = U

pmin
ŷ if SM (y, ŷ) = L

0 if SM (y, ŷ) = 0.

Let Ŷ correspond to the set of non-zero columns of SM . Since each row of M corresponds to a
probability distribution, we have for each ŷ ∈ Ŷ that

∑
ŷ′∈Ŷ p

min
ŷ′ +(eε−1)pmin

ŷ = 1 by considering
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the row corresponding to any y ∈ Ψ−1(ŷ). Thus, we get that pmin
ŷ is the same for all values in Ŷ ,

and in particular, pmin
ŷ = 1

eε+|Ŷ|−1
, and thus, we get that the corresponding M is uniquely given by

My→ŷ =


eε

eε+|Ŷ|−1
if SM (y, ŷ) = U

1
eε+|Ŷ|−1

if SM (y, ŷ) = L

0 if SM (y, ŷ) = 0,

which clearly corresponds to RR-on-BinsΦε for Φ(y) = Ψ(y). We have that Ψ, and hence Φ, is
non-decreasing from condition (2c). This completes the proof of Claim 10.

Thus, to show optimality of RR-on-BinsΦε , it suffices to show that there exists a minimizer M of the
LP (2), such that SM satisfies the conditions in Claim 10.

It is well known that an optimal solution to any LP can be found at the vertices of the constraint
polytope and that for a LP with n variables, vertices must meet n linearly independent constraints.
We use this to find a submatrix of SM , which will determine M in its entirety.

If M is a feasible point, then each column of SM is either entirely 0, or entirely consisting of S, U,
and L. This is necessary since if My→ŷ = 0, then 0 ≤ My′→ŷ ≤ eεMy→ŷ = 0. Let k denote the
number of non-zero columns of SM .

Lemma 11. Suppose M is a vertex of the LP (2) with k non-zero columns of SM . If k ≥ 2, then
M has a k × k submatrix M (k) with all distinct rows, consisting of only U’s and L’s.

Proof. M is a vertex if and only if there are |Y| · |O| many linearly independent constraints that are
tight. We count the number of tight constraints just from SM and note some instances of dependence
to give a lower bound on the number of linearly independent constraints.

1. |Y| constraints, given by
∑
ŷMy→ŷ = 1 are always tight.

2. For a zero column of SM corresponding to ŷ, each My→ŷ ≥ 0 is tight corresponding to
each y ∈ Y . These correspond to |Y| · (|O| − k) constraints.

3. For a non-zero column of SM corresponding to ŷ, let Cŷ(U) denote the number of U
entries in column ŷ and similarly, define Cŷ(L) and Cŷ(S) analogously. For each pair
y1, y2 such that SM (y1, ŷ) = L and SM (y2, ŷ) = U, we have a tight constraint My1→ŷ ≤
eε ·My2→ŷ . However, these constraints are not linearly independent. In fact, there are only
Cŷ(U)+Cŷ(L)−1 = |Y|−Cŷ(S)−1 many linearly independent constraints among these.

4. Another instance where the constraints might be dependent is if two rows of SM , corre-
sponding to say y1 and y2, are identical and do not contain any S’s. In this instance, the
two equations of

∑
ŷMyi→ŷ = 1 and the inequalities given by the 0s, U’s, and L’s are not

independent. The DP inequality conditions imply that all the coordinates are equal between
the two rows, which imply a dependence relation between those and the two conditions.

Counting these all up, we have a lower bound on the number of linearly independent constraints.
This must be at least |Y| · |O|. Let (# of duplicate rows not containing S) be the difference between
the number of all rows not containing S and the number of distinct rows not containing S. Thus, we
get

|Y|+ |Y| ·(|O|−k)+(|Y|−1) ·k−
∑
ŷ

Cŷ(S)−(# of duplicate rows not containing S) ≥ |Y|· |O|.

Rearranging,

|Y| −
∑
ŷ

Cŷ(S)− (# of duplicate rows not containing S) ≥ k,

and because ∑
ŷ

Cŷ(S) ≥ (# rows containing S),
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we conclude

|Y| − (# rows containing S)− (# of duplicate rows not containing S) ≥ k.

Hence, there are at least k rows, which are all distinct and contain only 0’s, U’s, and L’s. Narrowing
our scope to just the k non-zero columns, we get a k × k sub-matrix M (k) that contains only U’s
and L’s. This concludes the proof of Lemma 11.

So far, we did not use any information about the objective. Next we use the properties of the loss
function ` to show that if M is an optimal solution to the LP, any submatrix provided by Lemma 11
can only be of one form, the matrix with U’s along the diagonal and L’s everywhere else:

Lemma 12. Suppose M is an optimal vertex solution to the LP 2 with k ≥ 2 non-zero columns.
Then any k × k submatrix M (k) given by Lemma 11 has U’s along the diagonal and L’s otherwise.

Proof. Firstly, in each row of M (k), the U’s are consecutive. Suppose for any y and ŷ1 < ŷ2 < ŷ3,
it holds that SM (y, ŷ1) = SM (y, ŷ3) = U, whereas SM (y, ŷ2) is either L or S. This implies that
`(ŷ1, y), `(ŷ3, y) < `(ŷ2, y), since otherwise, it is possible to reduce My→ŷ1

(resp. M(y → ŷ3))
and increase My→ŷ2 thereby further reducing the objective, without violating any constraints. But
this is a contradiction to the assumption of ` in Theorem 8, since `(·, y) cannot increase from ŷ1 to
ŷ2 and then decrease from ŷ2 to ŷ3.

Secondly, SM cannot contain the following 2× 2 matrix, where y1 < y2 and ŷ1 < ŷ2:

ŷ1 ŷ2

y1 L U
y2 U L

Since M is optimal, we get that `(ŷ1, y1) > `(ŷ2, y1), and from the assumption on ` it follows that
ŷ1 < y1 (since otherwise, y1 ≤ ŷ1 < ŷ2 which would imply `(ŷ1, y1) < `(ŷ2, y1)). Similarly, we
have that `(ŷ2, y2) > `(ŷ1, y2) and y2 < ŷ2. However, since ŷ1 < y1 < y2 < ŷ2, we have that
`(ŷ2, y1) > `(ŷ2, y2) and `(ŷ1, y2) > `(ŷ1, y1), which gives rise to a contradiction:

`(ŷ1, y1) > `(ŷ2, y1)

> `(ŷ2, y2)

> `(ŷ1, y2)

> `(ŷ1, y1).

In particular, this claim of not containing the above 2× 2 matrix applies to M (k).

Lastly, every row of M (k) has at least one U . Suppose for contradiction that the row y in SM does
not contain a single U. Then it has all L’s and 0’s. Any column that contains an L must contain a U
in SM . So necessarily there is a row y′ in SM containing a U. Now, y containing only L’s and 0’s
implies that

∑
ŷMy→ŷ <

∑
ŷMy′→ŷ , which is a contradiction of the constraints of the LP.

Since the rows of this k × k sub-matrix M (k) are all distinct, and it does not contain any 2 × 2
submatrix as above, the only possible signature is where all the diagonal signature entries are U and
the rest are L. Let si ∈ [k] be the index of the first index U for the ith row and similarly ei ∈ [k]
be the last index of U. Because the U’s are continuous, si and ei determine the signature of the
row. If si = sj for i 6= j, then ei = ej . Else if ei < ej , then

∑
ŷMy→ŷ <

∑
ŷMy′→ŷ where

y corresponds to row i and y′ corresponds to j which is a contradiction. Similarly for ei > ej .

The same argument can be made if ei = ej , then si = sj . The rows of M (k) are distinct, so this
implies that si 6= sj , ei 6= ej for i 6= j. The observation about the 2× 2 matrix shows that if i < j,
si ≤ sj and ei ≤ ej . So the si and ei are both k distinct ordered sequences of [k]. The only such
sequence is si = ei = i, implying M (k) is a diagonal matrix of this form. This completes the proof
of Lemma 12.

We now have the necessary observations to prove Theorem 8. Let M be an optimal vertex solution
to the LP 2. That is L(M ;P ) = infM L(M;P ). If M has one non-zero column, then SM has one
column entirely of S and the rest 0. By Claim 10, M corresponds to a RR-on-BinsΦε mechanism. If
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M has k ≥ 2 non-zero columns, then by Lemma 12, SM has a k × k submatrix M (k) with U along
the diagonal and L otherwise. We show this completely determines SM in the form described by
Claim 10(2a–2c).

Note that SM for any vertexM has at most one S per row. If SM (y, ŷ1) and SM (y, ŷ2) are both equal
to S for y1 6= y2, then it is possible to write M as a convex combination of two other feasible points
given as M + ηM ′ and M − ηM ′ for small enough η, where M ′(y → ŷ2) = −M ′(y → ŷ1) = 1
and M ′(y′ → ŷ′) = 0 for all other y′, ŷ′. Intuitively this corresponds to moving mass My→ŷ1

to /
from My→ŷ2

, in a way that does not violate any of the constraints. But M is a vertex so it cannot be
the convex combination of two feasible points.

But moreover, SM for an optimal vertex solution has exactly one U per row and the rest L’s and 0’s.
Suppose the row corresponding to y has SM (y, ŷ) either L or S and the rest of the entries either L or 0.
From the observations above of the submatrix M (k), there exists a row y′ such that SM (y′, ŷ) = U.
Then, we have

∑
ŷMy→ŷ <

∑
ŷMy′→ŷ = 1, which contradicts feasibility. Similarly, if a row of

SM contains a U and an S (or multiple U’s), then we would have
∑
ŷMy→ŷ >

∑
ŷMy′→ŷ .

This allows us to define Ψ : Y → O to be the unique ŷ such that SM (y, ŷ) = U. Note that Ψ is
non-decreasing from the observation earlier that SM cannot contain the 2× 2 signature above. This
completely characterizes SM as the form described by Claim 10(2a–2c), completing the proof of
Theorem 8.

We use a continuity argument to show that Theorem 8 holds in the case where the loss function
`(ŷ, y) is decreasing / increasing instead of strictly decreasing / increasing.
Corollary 13. Let P be a distribution over R with finite support, O a finite subset of R, and ` :
R× R→ R≥0 is such that

• For all y ∈ R, `(ŷ, y) is decreasing in ŷ when ŷ ≤ y and increasing in ŷ when ŷ ≥ y.
• For all ŷ ∈ R, `(ŷ, y) is decreasing in y when y ≤ ŷ and increasing in y when y ≥ ŷ.

Then for all ε > 0, there exists Φ : Y → O such that

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ).

where infM is over all ε-DP mechanismsM with inputs in Y and outputs in O.

Proof. Let V correspond to the set of solutionsM that are vertices of the LP. LetW ⊆ V correspond
to the set of vertex solutions that are RR-on-Bins. A rephrasing of Theorem 8 is that the minimum
loss over mechanisms in V is equal to the minimum loss over mechanisms in W .

For η > 0, define `η(ŷ, y) = `(ŷ, y)+η · |y − ŷ| . Note that `η satisfies the conditions of Theorem 8.
For any fixed mechanism M , the loss is continuous at η = 0:

lim
η→0

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `η(ŷ, y)

 =
∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 .

The minimum of finitely many continuous functions is continuous. In particular

lim
η→0

min
M∈V

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `η(ŷ, y)

 = min
M∈V

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 ,

and similarly

lim
η→0

min
M∈W

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `η(ŷ, y)

 = min
M∈W

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 ,

but the LHS of both equations are equal by Theorem 8, so

min
M∈V

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 = min
M∈W

∑
y∈Y

py

∑
ŷ∈O

My→ŷ · `(ŷ, y)

 ,

completing our proof.
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Stage II: Finitely supported P and Ŷ ⊆ R. We now set out to prove Theorem 5. Let ymin and
ymax denote the minimum and maximum values in Y , respectively. We will first show that

inf
Ŷ⊆R

inf
Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ), (3)

where the infimum on the RHS is over all ε-DP mechanismsM.

Since RR-on-BinsΦε is an ε-DP mechanism, we have

inf
M
L(M;P ) ≤ inf

Ŷ⊆R
inf

Φ:Y→Ŷ
L(RR-on-BinsΦε ;P ). (4)

To show the converse, let γ > 0 be any parameter. There must exist an ε-DP mechanismM′ : Y →
R such that

L(M′;P ) ≤ inf
M
L(M;P ) + γ/2. (5)

Let O ⊆ [ymin, ymax] be defined as follows:

• For each y ∈ Y , let ay = minŷ∈[ymin,ymax] `(ŷ, y) and by = maxŷ∈[ymin,ymax] `(ŷ, y). Let
T := d4(by − ay)/γe.

• Let oy,t be the finite set containing the maximal and minimal element of {ŷ | `(ŷ, y) =
ay + t

T (by − ay)} if the set is non-empty. Otherwise, let it be the empty set.
• Let Oy :=

⋃T
t=0 oy,t.

• Finally, let O =
⋃
y∈Y Oy .

Naturally, O is finite. Finally, letM′′ be the mechanism that first runsM′ to get ŷ and then outputs
the element in O closest to ŷ. By post-processing of DP,M′′ remains ε-DP. Furthermore, it is not
hard to see that by the construction of O and by Assumption 4, we have

L(M′′;P ) ≤ L(M′;P ) + γ/2. (6)

Finally, since range(M′′) = O is finite, the proof in Stage I implies that

inf
Ŷ⊆O

inf
Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ) ≤ L(M′′;P ). (7)

Combining (5), (6), and (7), we can conclude that

inf
Ŷ⊆R

inf
Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ) ≤ inf
M
L(M;P ) + γ. (8)

Since (8) holds for any γ > 0, combining with (4), we can conclude that (3) holds.

Next, we will show that there exists Ŷ∗ and Φ∗ : Y → Ŷ∗ such that

L(RR-on-BinsΦ
∗

ε ;P ) = inf
Ŷ⊆R

inf
Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ). (9)

Combining this with (3) completes the proof.

For any Φ : Y → R, let PΦ denote the partition on Y induced by Φ−1. Note that the RHS of (9) can
be written as

inf
Ŷ⊆R

inf
Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ) = min
P

inf
Φ:Y→Ŷ
Ŷ⊆R
PΦ=P

L(RR-on-BinsΦε ;P ), (10)

where the minimum is over all partitions of P .

For a fixed partition P = PΦ of Y , L(RR-on-BinsΦε ;P ) can simply be written as

∑
Si∈P

∑
y∈Y

py
eε1[y∈Si]

eε + |Ŷ| − 1
`(ŷi, y)

 ,
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where ŷi is the output corresponding to the part Si in the partition.

Notice that the function ŷi →
(∑

y∈Y py
eε1[y∈Si]

eε+|Ŷ|−1
`(ŷi, y)

)
is continuous. Furthermore, it is ob-

vious that it increases once it becomes further from [ymin, ymax]. Thus, the minimum must be
achieved at some point ŷ∗i ∈ [ymin, ymax]. As a result, by defining Φ∗P such that Φ∗P(Si) = ŷ∗i , this
also achieves the minimum for infΦ:Y→Ŷ

Ŷ⊆R
PΦ=P

L(RR-on-BinsΦε ;P ). Therefore, plugging this back into

(10), we can conclude that the minimum of infŶ⊆R infΦ:Y→Ŷ L(RR-on-BinsΦε ;P ) must be achieved
by some Ŷ∗,Φ∗. This completes our proof of Theorem 5.

A.1 EXTENSION TO ARBITRARY (INFINITELY-SUPPORTED) P AND Ŷ ⊆ R.

We show that Theorem 5 can be extended to hold even for infinitely-supported distributions P over
a bounded interval, but under an additional assumption that the loss ` is Lipschitz over the said
interval.
Assumption 14. For a specified bounded interval [ymin, ymax], loss function ` : [ymin, ymax] ×
[ymin, ymax]→ R≥0 is such that both `(·, y) and `(ŷ, ·) are L-Lipschitz.
Theorem 15. For all ymin, ymax ∈ R, loss functions ` : R × R → R≥0 satisfying Assumptions 4
and 14, and all distributions P over Y ⊆ [ymin, ymax], there is a finite output set Ŷ ⊆ R and a
non-decreasing map Φ : Y → Ŷ such that

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ),

where the infimum is over all ε-DP mechanismsM.

We break down the proof into a series of lemmas. First we show that the infimum is reached by the
infimum of RR-on-Bins mechanisms:
Lemma 16. Under the assumptions of Theorem 15, it holds that

inf
Ŷ⊆R,

Φ:Y→Ŷ

L(RR-on-BinsΦε ;P ) = inf
M
L(M;P ).

Proof. To prove the lemma, it suffices to show that for any g ∈ N, there exists a choice of Ŷ ⊆ R
and Φ : Y → Ŷ such that L(RR-on-BinsΦε ;P ) ≤ infM L(M;P ) + γ where γ = L · ymax−ymin

g .

Consider a discretization of Y given as

Ỹ :=

{
ymin +

iγ

L
: 0 ≤ i ≤ g

}
.

Let ρ : Y → Ỹ be the map that rounds any element of Y to the closes element of Ỹ . Note that
|y − ρ(y)| ≤ γ/(2L) for all y ∈ Y . Consider the distribution P̃ over Ỹ given by the “rounding
process”, which samples y ∼ P and returns ρ(y). Note that there is a natural coupling between P
and P̃ such that |y − ŷ| ≤ γ/(2L) holds with probability 1. From Theorem 5, we have that there
exists a finite Ŷ ⊆ R and non-decreasing map Φ̃ : Ỹ → Ŷ such that

L(RR-on-BinsΦ̃ε ; P̃ ) = inf
M̃
L(M̃; P̃ ), (11)

where M̃ is an ε-DP mechanism mapping Ỹ to Ŷ . We can extend Φ̃ to Φ : Y → Ŷ given as
Φ(y) := Φ̃(ρ(y)). It is easy to see that since Φ̃ is non-decreasing, Φ is also non-decreasing. From
Assumption 14, it follows that
L(RR-on-BinsΦε ;P ) = E

y∼P
`(RR-on-BinsΦε (y), y)

= E
y∼P

`(RR-on-BinsΦ̃ε (ρ(y)), y)

≤ E
y∼P

`(RR-on-BinsΦ̃ε (ρ(y)), ρ(y)) + γ/2 (from Assumption 14)

= L(RR-on-BinsΦ̃ε ; P̃ ) + γ/2. (12)
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Similarly, for any ε-DP mechanismM mapping Y to Ŷ , we can construct an ε-DP mechanism M̃
mapping Ỹ to Ŷ where M̃(ỹ) is sampled asM(y) for y ∼ P |ρ(y)=ỹ . Note that sampling ỹ ∼ P̃
and returning y ∼ P |ρ(y)=ỹ is equivalent to sampling y ∼ P . Thus, we have

L(M̃; P̃ ) = E
ỹ∼P̃

`(M̃(ỹ), ỹ)

= E
y∼P

`(M(y), ρ(y))

≤ E
y∼P

`(M(y), y) + γ/2 (from Assumption 14)

= L(M;P ) + γ/2. (13)

Thus, combining (11), (12), and (13), we get

L(RR-on-BinsΦε ;P ) ≤ L(RR-on-BinsΦ̃ε ; P̃ ) + γ/2

= inf
M̃
L(M̃; P̃ ) + γ/2

≤ inf
M
L(M;P ) + γ .

Next we show that the infimum of RR-on-Bins is reached by considering the RR-on-Bins with
finitely many bins. Towards this end, let RR-on-Binsnε denote the set of all RR-on-BinsΦε mech-
anisms where Φ : Y → Ŷ with |Ŷ| = n.

Lemma 17. Suppose `(ŷ, y) is integrable over y for any ŷ. Then for all ε > 0, it holds that

lim
n→∞

inf
M∈RR-on-Binsnε

L(M;P ) ≥ inf
M∈RR-on-Bins1ε

L(M;P ).

Remark: Interestingly, Lemma 17 does not require any assumption about the distribution P or `
aside from integrability. For example, P can be an unbounded distribution.

Proof. Let

α := inf
M∈RR-on-Bins1ε

L(M;P ) = inf
ŷ∈R

∫
`(ŷ, y)dP (y) .

This is precisely infM∈RR-on-Bins1ε L(M;P ), where the ŷ is selecting the single bin to output to.
Note that α does not depend on ε.

For any n > 1, consider RR-on-BinsΦε , where Φ : Y → Ŷ for Ŷ = {ŷ1, . . . , ŷn}. Then we can
bound the loss from below:

L(RR-on-BinsΦε ;P ) =

∫ (( n∑
i=1

1

eε + n− 1
`(ŷi, y)

)
+

eε − 1

eε + n− 1
`(Φ(y), y)

)
dP (y)

≥
∫ ( n∑

i=1

1

eε + n− 1
`(ŷi, y)

)
dP (y)

=

n∑
i=1

∫
1

eε + n− 1
`(ŷi, y)dP (y)

≥
n∑
i=1

1

eε + n− 1
· α

=
n

eε + n− 1
· α.

In particular, infM∈RR-on-Binsnε L(M;P ) ≥ n
eε+n−1α which implies that

lim
n→∞

inf
M∈RR-on-Binsnε

L(M;P ) ≥ α .
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Corollary 18. Suppose `(ŷ, y) is integrable over y for any ŷ. Then for all ε > 0, there exists n ≥ 1
such that

inf
M∈RR-on-Binsnε

L(M;P ) = inf
n

inf
M∈RR-on-Binsnε

L(M;P ).

Proof. For any n, let αn := infM∈RR-on-Binsnε L(M;P ). From Lemma 17, we have that
limn→∞ αn ≥ α1. If infn αn = α1, then the corollary is true for n = 1. Else, if infn αn =
α′ < α1, then there exists n0 > 0 such that for all n > n0, it holds that αn > (α1 + α′)/2. Thus,
infn αn = minn≤n0 αn which implies that the infimum is realized for some finite n.

Finally, we show that the infimum over RR-on-Binsnε is also achievable, completing the proof of
Theorem 15.

Lemma 19. Suppose P is bounded within the interval Y = [ymin, ymax]. Suppose ` : R×R→ R≥0

satisfies Assumptions 4 and 14, then for any n > 0, there is an output set Ŷ ⊆ R with |Ŷ| = n and
a non-decreasing map Φ : Y → Ŷ such that

L(RR-on-BinsΦε ;P ) = inf
M∈RR-on-Binsnε

L(M;P ).

Proof. Because of the increasing / decreasing nature of `, we can restrict the output of Φ to be
in the range [ymin, ymax]. Given an output range {ŷ1, . . . , ŷn}, the RR-on-BinsΦε mechanism that
minimizes L(RR-on-BinsΦε ;P ) satisfies

Φ(y) = arg min
ŷi

`(ŷi, y) .

So we can consider L(RR-on-BinsΦε ;P ) as a function of (ŷ1, . . . , ŷn) ∈ [ymin, ymax]n.

We claim that L(RR-on-BinsΦε ;P ) is continuous with respect to these inputs {ŷ1, . . . , ŷn}. Indeed
by the Lipschitz continuity, a change in [ŷ1, . . . , ŷn] to [ŷ′1, . . . , ŷ

′
n] where |ŷi − ŷ′i| < δ for some

δ > 0 results in a change in L(RR-on-BinsΦε ;P ) bounded by Lδ. Therefore L(RR-on-BinsΦε ;P )
is a continuous function of (ŷ1, . . . , ŷn) over a compact set [ymin, ymax]n and hence it attains its
infimum. This infimum defines Φ that satisfies the lemma.

B ANALYSIS OF DYNAMIC PROGRAMMING ALGORITHM FOR FINDING
OPTIMAL RR-on-Bins

Below we give correctness and running time analysis of Algorithm 2.

Correctness Proof. We will prove the following statement by strong induction on i:

A[i][j] = min
Φ:{y1,...,yi}→R
|PΦ|=j

∑
S∈PΦ

∑
y∈Y

py · e1[y∈S]·ε · `(Φ(S), y), (14)

where the minimum is across all Φ : {y1, . . . , yi} → R such that, for each ŷ ∈ range(Φ), Φ−1(ŷ)
is an interval and that |PΦ| = j where the j intervals are S1, . . . , Sj (in increasing order).

Before we prove the above statement, note that it implies that A[n][d] = (d − 1 + eε) ·
minŶ,Φ:Y→Ŷ,|PΦ|=d L(RR-on-BinsΦε ;P ). Thus, the last line of the algorithm ensures that we output
the optimal RR-on-Bins as desired.

We will now prove (14) via strong induction on i.

• Base Case. For i = 0 (and thus j = 0), the statement is obviously true.
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• Inductive Step. Now, suppose that the statement is true for all i = 0, . . . , t− 1 for some t ∈ N.
We will show that it is also true for i = t. To see this, we may rewrite the RHS term (for i = t) as

min
Φ:{y1,...,yt}→R
|PΦ|=j

∑
S∈PΦ

∑
y∈Y

py · e1[y∈S]·ε · `(Φ(S), y)

= min
0≤r<t

min
Φ:{y1,...,yt}→R
|PΦ|=j

{yr+1,...,yt}∈PΦ

∑
S∈PΦ

∑
y∈Y

py · e1[y∈S]·ε · `(Φ(S), y)

= min
0≤r<t

(
min

Φ:{y1,...,yr}→R
|PΦ|=j−1

∑
S∈PΦ

∑
y∈Y

py · e1[y∈S]·ε · `(Φ(S), y)

+ min
ŷ=Φ({yr+1,...,yt})

∑
y∈Y

py · e1[y∈[yr+1,yt]]·ε · `(ŷ, y)

)
= min

0≤r<t
A[r][j − 1] + L[r + 1][t].

where the third inequality follows from the inductive hypothesis and the definition of L[r+ 1][t].
The last expression is exactly how A[t][j] is computed in our algorithm. Thus, (14) holds for
i = t.

Running Time Analysis. It is clear that, apart from the computation of L[r+ 1][i], the remainder
of the algorithm runs in time O(k2). Therefore, the total running time is O(k2 ·T ) where T denotes
the running time for solving the problem minŷ∈R

∑
y∈Y py · e1[y∈[yr,yi]]·ε · `(ŷ, y). When the loss

function ` is convex, this problem is a univariate convex optimization problem and can be solved in
polynomial time. We can even speed this up further. In fact, for the three main losses we consider
(squared loss, Poisson log loss, and absolute-value loss) this problem can be solved in amortized
constant time, as detailed below. Therefore, for these three losses, the total running time of the
dynamic programming algorithm is only O(k2).

• Squared Loss.
In this case, the minimizer is simply

arg min
ŷ∈R

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · `sq(ŷ, y) =

∑
y∈Y py · e1[y∈[yr,yi]]·εy∑
y∈Y py · e1[y∈[yr,yi]]·ε =: ŷ∗r,i.

Therefore, to compute ŷ∗r,i, it suffices to keep the values
∑
y∈Y py ·e1[y∈[yr,yi]]·εy and

∑
y∈Y py ·

e1[y∈[yr,yi]]·ε. We can start with r = i and as we increase i, these quantities can be updated in
constant time.
Note also that

min
ŷ∈R

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · `sq(ŷ, y)

=
∑
y∈Y

py · e1[y∈[yr,yi]]·ε · y2 − 2

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · y

 ŷ∗r,i + (ŷ∗r,i)
2.

Therefore, to compute the minimum value, we additionally keep
∑
y∈Y py · e1[y∈[yr,yi]]·εy2,

which again can be updated in constant time for each i.
• Poisson Log Loss.

The minimizer is exactly the same as in the squared loss, i.e.,

arg min
ŷ∈R

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · `Poi(ŷ, y) =

∑
y∈Y py · e1[y∈[yr,yi]]·εy∑
y∈Y py · e1[y∈[yr,yi]]·ε =: ŷ∗r,i.
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Therefore, using the same method as above, we can compute ŷ∗ in amortized constant time.
The minimum is the simply

min
ŷ∈R

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · `Poi(ŷ, y)

=

∑
y∈Y

py · e1[y∈[yr,yi]]·ε

 ŷ∗r,i −

∑
y∈Y

py · e1[y∈[yr,yi]]·εy

 log(ŷ∗r,i),

so this can also be computed in constant time with the quantities that we have recorded.
• Absolute-Value Loss.

To describe the minimizer, we define a weighted version of median. Let {(w1, a1), . . . , (wt, at)}
be a set of t tuples such that w1, . . . , wt ∈ R≥0 and a1, . . . , at ∈ R with a1 ≤ · · · ≤ at.
The weighted median of {(w1, a1), . . . , (wt, at)}, denoted by wmed({(w1, a1), . . . , (wt, at)})
is equal to the minimum value a∗ such that

∑
j∈[t]
aj≤a∗

wj ≥ (
∑
j∈[t] wj)/2. It is not hard to see

that

arg min
ŷ∈R

∑
y∈Y

py · e1[y∈[yr,yi]]·ε · `abs(ŷ, y) = wmed

({(
py · e1[y∈[yr,yi]]·ε, y

)}
y∈Y

)
=: ŷ∗r,i.

Notice also that we must have ŷ∗r,i ∈ Y . For a fixed r (and varying i), the algorithm is now as
follows: first compute ŷ∗r,r, and also compute

wlo :=
∑
y∈Y
y≤ŷ∗r,r

py · e1[y∈[yr,yi]]·ε,

and

whi :=
∑
y∈Y
y>ŷ∗r,r

py · e1[y∈[yr,yi]]·ε.

For i = r + 1, . . . , k, initialize ŷ∗r,i = ŷ∗r,i−1 and update wlo or whi (corresponding to the weight
change from pyi to eεpyi of yi). We then perform updates to reach the correct value of ŷ∗r,i That

is, if wlo < whi, then move to the next larger value in Y; if wlo − pŷ∗r,i · e
1[ŷ∗r,i∈[yr,yi]]·ε ≥ whi,

then move to the next smaller value in Y . Otherwise, stop and keep the current ŷ∗r,i.
To understand the running time of this subroutine, note that the initial running time for computing
ŷ∗r,r and wlo, whi is O(k). Furthermore, each update for ŷ∗r,i takes O(1) time. Finally, observe
that if we ever move ŷ∗r,i to a larger value, it must be that yi > ŷ∗r,i. After this i, ŷ∗r,i will never
decrease again. As a result, in total across all i = r + 1, . . . , k, the total number of updates can
be at most 2k. Thus, the total running time for a fixed r is O(k). Summing up across r ∈ [k], we
can conclude that the total running time of the entire dynamic programming algorithm is O(k2).

C RR-on-Bins WITH APPROXIMATE PRIOR

Recall from Section 3.2 that, when the prior is unknown, we split the budget into ε1, ε2, use the ε1-
DP Laplace mechanism to approximate the prior and then run the RR-on-Bins with privacy parame-
ter ε2. The remainder of this section gives omitted details and proofs from Section 3.2. Throughout
this section, we use k to denote |Y| (the size of the input label set).

C.1 LAPLACE MECHANISM AND ITS GUARANTEES

We start by recalling the Laplace mechanism for estimating distribution. Recall that the Laplace
distribution with scale parameter b, denoted by Lap(b), is the distribution supported on R whose
probability density function is 1

2b exp(−|x|/b). The Laplace mechanism is presented in Algorithm 4.

It is well-known (e.g., Dwork et al. (2006b)) that this mechanism satisfies ε-DP. Its utility guarantee,
which we will use in the analysis of LabelRandomizer, is also well-known:
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Algorithm 4 Laplace Mechanism for Estimating Probability DistributionMLap
ε .

Parameters: Privacy parameter ε ≥ 0.
Input: Labels y1, . . . , yn ∈ Y .
Output: A probability distribution P ′ over Y .

for y ∈ Y do
hy ← number of i such that yi = y
h′y ← max{hy + Lap(2/ε), 0}

return Distribution P ′ over Y such that p′y =
h′y∑

y∈Y h
′
y

Theorem 20 (e.g., Diakonikolas et al. (2015)). For any distribution P on Y , n ∈ N, and ε > 0, we
have

E
y1,...,yn∼P

P ′∼MLap
ε (y1,...,yn)

[‖P ′ − P‖1] ≤ O

(√
k

n
+

k

εn

)
.

C.2 PROOF OF THEOREM 6

Theorem 6. LabelRandomizerε1,ε2 is (ε1 + ε2)-DP.

Proof of Theorem 6. The Laplace mechanism is ε1-DP; by post-processing property of DP, Φ′ is
also ε1-DP. For fixed Φ′, since RR-on-BinsΦ

′

ε2 is ε2-DP and it is applied only once on each label,
the parallel composition theorem ensures that (ŷ1, . . . , ŷn) is ε2-DP. Finally, applying the basic
composition theorem, we can conclude that the entire algorithm is (ε1 + ε2)-DP.

C.3 PROOF OF THEOREM 7

Theorem 7. Let ` : R × R → R≥0 be any loss function satisfying Assumption 4. Furthermore,
assume that `(ŷ, y) ≤ B for some parameter B for all y, ŷ ∈ Y . For any distribution P on Y ,
ε > 0, and any sufficiently large n ∈ N, there is a choice of ε1, ε2 > 0 such that ε1 + ε2 = ε and

E
y1,...,yn∼P
P ′,Φ′,Ŷ′

[L(RR-on-BinsΦ
′

ε2 ;P )]− inf
M
L(M;P ) ≤ O

(
B ·
√
|Y|/n

)
,

where P ′,Φ′, Ŷ ′ are as in LabelRandomizerε1,ε2 and the infimum is over all ε-DP mechanismsM.

Proof of Theorem 7. From Theorem 20, we have

E
D∼Pn

P ′∼MLap
ε1

(D)

[‖P ′ − P‖1] ≤ O

(√
k

n
+

k

ε1n

)
.
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Recall from Theorem 5 that there exists Φ : Y → Ŷ such that L(RR-on-BinsΦε ;P ) =

infM L(M;P ). Consider instead the RR-on-BinsΦε2 mechanism. We have

| inf
M
L(M;P )− L(RR-on-BinsΦε2 ;P )|

= |L(RR-on-BinsΦε ;P )− L(RR-on-BinsΦε2 ;P )|

≤
∑
y∈Y

py ·B ·

∣∣∣∣∣ eε

eε + |Ŷ| − 1
− eε2

eε2 + |Ŷ| − 1

∣∣∣∣∣+
∑

ŷ∈Ŷ\{Φ(y)}

∣∣∣∣∣ 1

eε + |Ŷ| − 1
− 1

eε2 + |Ŷ| − 1

∣∣∣∣∣


= B · 2(|Ŷ| − 1)(eε − eε2)

(eε + |Ŷ| − 1)(eε2 + |Ŷ| − 1)

≤ 2B · (1− eε2−ε)
≤ 2B(ε− ε2)

= 2Bε1.

Recall that RR-on-BinsΦ
′

ε2 is an ε2-DP optimal mechanism for prior P ′. That is, we have

L(RR-on-BinsΦ
′

ε2 ;P ′) ≤ L(RR-on-BinsΦε2 ;P ′).

Finally, we also have

|L(RR-on-BinsΦε2 ;P )− L(RR-on-BinsΦε2 ;P ′)| ≤ B · ‖P ′ − P‖1.

|L(RR-on-BinsΦ
′

ε2 ;P )− L(RR-on-BinsΦ
′

ε2 ;P ′)| ≤ B · ‖P ′ − P‖1.

Combining the above five inequalities, we arrive at

E
y1,...,yn∼P
P ′,Φ′,Ŷ′

[L(RR-on-BinsΦ
′

ε2 ;P )]− inf
M
L(M;P ) ≤ O

(
B ·

(
ε1 +

√
k

n
+

k

ε1n

))
.

Setting ε1 =
√
k/n then yields the desired bound7.

D DP MECHANISMS DEFINITIONS

In this section, we recall the definition of various DP notions that we use throughout the paper.

Definition 21 (Global Sensitivity). Let f be a function taking as input a dataset and returning as
output a vector in Rd. Then, the global sensitivity ∆(f) of f is defined as the maximum, over all
pairs (X,X ′) of adjacent datasets, of ||f(X)− f(X ′)||1.

The (discrete) Laplace distribution with scale parameter b > 0 is denoted by DLap(b). Its probabil-
ity mass function is given by p(y) ∝ exp(−|y|/b) for any y ∈ Z.

Definition 22 (Discrete Laplace Mechanism). Let f be a function taking as input a dataset X and
returning as output a vector in Zd. The discrete Laplace mechanism applied to f on input X returns
f(X) + (Y1, . . . , Yd) where each Yi is sampled i.i.d. from DLap(∆(f)/ε). The output of the
mechanism is ε-DP.

Next, recall that the (continuous) Laplace distribution Lap(b) with scale parameter b > 0 has prob-
ability density function given by h(y) ∝ exp(−|y|/b) for any y ∈ R.

Definition 23 (Continuous Laplace Mechanism, Dwork et al. (2006b)). Let f be a function taking as
input a datasetX and returning as output a vector in Rd. The continuous Laplace mechanism applied
to f on input X returns f(X) + (Y1, . . . , Yd) where each Yi is sampled i.i.d. from Lap(∆(f)/ε).
The output of the mechanism is ε-DP.

7Note that this requires n > k/ε2 for the setting of ε2 = ε− ε1 to be valid.
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We next define the discrete and continuous versions of the staircase mechanism (Geng & Viswanath,
2014).

Definition 24 (Discrete Staircase Distribution). Fix ∆ ≥ 2. The discrete staircase distribution is
parameterized by an integer 1 ≤ r ≤ ∆ and has probability mass function given by:

pr(i) =


a(r) for 0 ≤ i < r,

e−εa(r) for r ≤ i < ∆

e−kεpr(i− k∆) for k∆ ≤ i < (k + 1)∆ and k ∈ N
pr(−i) for i < 0,

(15)

where

a(r) =:=
1− b

2r + 2b(∆− r)− (1− b)
.

Let f be a function taking as input a dataset X and returning as output a scalar in Z. The discrete
staircase mechanism applied to f on inputX returns f(X)+Y where Y is sampled from the discrete
staircase distribution given in (15).

Definition 25 (Continuous Staircase Distribution). The continuous staircase distribution is param-
eterized by γ ∈ (0, 1) and has probability density function given by:

hγ(x) =


a(γ) for x ∈ [0, γ∆)

e−εa(γ) for x ∈ [γ∆,∆)

e−kεhγ(x− k∆) for x ∈ [k∆, (k + 1)∆) and k ∈ N
hγ(−x) for x < 0,

(16)

where

a(γ) =:=
1− e−ε

2∆(γ + e−ε(1− γ)
.

Let f be a function taking as input a dataset X and returning as output a scalar in R. The continuous
staircase mechanism applied to f on input X returns f(X) + Y where Y is sampled from the
continuous staircase distribution given in (16).

Definition 26 (Exponential Mechanism, McSherry & Talwar (2007)). Let q(·, ·) be a scoring func-
tion such that q(X, r) is a real number equal to the score to be assigned to output r when the input
dataset is X . The exponential mechanism returns a sample from the distribution that puts mass
∝ exp(εq(X, r)) on each possible output r. It is (2ε∆(q))-DP, where ∆(q) is defined as the maxi-
mum global sensitivity of q(·, r) over all possible values of r.

Definition 27 (Randomized Response, Warner (1965)). Let ε ≥ 0, and q be a positive integer.
The randomized response mechanism with parameters ε and K (denoted by RRε,q) takes as input
y ∈ {1, . . . ,K} and returns a random sample ỹ drawn from the following probability distribution:

Pr[ỹ = ŷ] =

{
eε

eε+q−1 for ŷ = y
1

eε+q−1 otherwise.
(17)

The output of RRε,q is ε-DP.

E ADDITIONAL EXPERIMENT DETAILS

We evaluate the proposed RR-on-Bins mechanism on three datasets, and compare with the Laplace
mechanism (Dwork et al., 2006b), the staircase mechanism (Geng & Viswanath, 2014) and the expo-
nential mechanism (McSherry & Talwar, 2007). For real valued labels (the Criteo Sponsored Search
Conversion dataset), we use the continuous Laplace mechanism (Definition 23) and the continuous
staircase mechanism (Definition 25), and for integer valued labels (the US Census dataset and the
App Ads Conversion Count dataset), we use the discrete Laplace mechanism (Definition 22) and the
discrete staircase mechanism (Definition 24).
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E.1 CRITEO SPONSORED SEARCH CONVERSION

The Criteo Sponsored Search Conversion dataset is publicly available from https://ailab.
criteo.com/criteo-sponsored-search-conversion-log-dataset/. To predict the conversion
value (SalesAmountInEuro), we use the following attributes as inputs:

• Numerical attributes: Time_delay_for_conversion, nb_clicks_1week, product_price.

• Categorical attributes: product_age_group, device_type, audience_id, product_gender,
product_brand, product_category_1 ∼ product_category_7, product_country,
product_id, product_title, partner_id, user_id.

All categorical features in this dataset have been hashed. We build a vocabulary for each feature by
counting all the unique values. All the values with less than 5 occurrences are mapped to a single
out-of-vocabulary item.

We randomly partition the dataset into 80%–20% train–test splits. For each evaluation configuration,
we report the mean and std over 10 random runs. In each run, the dataset is also partitioned with a
different random seed.

Our deep neural network consists of a feature extraction module and 3 fully connected layers.
Specifically, each categorical attribute is mapped to a 8-dimensional feature vector using the pre-
built vocabulary for each attribute. The mapped feature vectors are concatenated together with the
numerical attributes to form a feature vector. Then 3 fully connected layers with the output dimen-
sion 128, 64, and 1 are used to map the feature vector to the output prediction. The ReLU activation
is applied after each fully connected layer, except for the output layer.

We train the model by minimizing the mean squared error (MSE) with L2 regularization 10−4, using
the RMSProp optimizer. We use learning rate 0.001 with cosine decay (Loshchilov & Hutter, 2017),
batch size 8192, and train for 50 epochs. Those hyperparameters are chosen based on a setup with
minor label noise (generated via Laplace mechanism for ε = 6), and then fixed throughout all runs.

For the RR-on-Bins mechanism, we use the recommended ε1 =
√
|Y|/n in Theorem 7 to query a

private prior, and with the remaining privacy budget, optimize the mean squared loss via dynamic
programming. When running Algorithm 2, it would be quite expensive to use Y as the set of all
unique (real valued) training labels. So we simply discretize the labels by rounding them down to
integer values, and use Y = {0, 1, . . . , 400}. The integer labels are then mapped via Algorithm 1.

E.2 US CENSUS

The 1940 US Census can be downloaded from https://www.archives.gov/research/census/
1940. We predict the time that the respondent worked during the previous year (the WKSWORK1 field,
measured in number of weeks), based on the following input fields: the gender (SEX), the age (AGE),
the marital status (MARST), the number of children ever born to each woman (CHBORN), the school
attendance (SCHOOL), the employment status (EMPSTAT), the primary occupation (OCC), and the type
of industry in which the person performed an occupation (IND). We use only 50,582,693 examples
with non-zero WKSWORK1 field, and randomly partition the dataset into 80%/20% train/test splits. For
each evaluation configuration, we report the mean and std over 10 random runs. In each run, the
dataset is also partitioned with a different random seed.

Our deep neural network consists of a feature extraction module and 3 fully connected layers. The
feature extraction module can be described via the following pseudocode, where the vocabulary size
is chosen according to the value range of each field in the 1940 US Census documentation, and the
embedding dimension for all categorical features are fixed at 8.

Features = Concat([
Embedding{vocab_size=2}(SEX - 1),
AGE / 30.0,
Embedding{vocab_size=6}(MARST - 1),
Embedding{vocab_size=100}(CHBORN),
Embedding{vocab_size=2}(SCHOOL - 1),
Embedding{vocab_size=4}(EMSTAT),
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Embedding{vocab_size=1000}(OCC),
Embedding{vocab_size=1000}(IND),

])

The features vectors are mapped to the output via 3 fully connected layers with the output dimension
128, 64, and 1. The ReLU activation is applied after each fully connected layer, except for the output
layer.

We train the model by minimizing the MSE with L2 regularization 10−4, using the RMSProp opti-
mizer. We use learning rate 0.001 with cosine decay (Loshchilov & Hutter, 2017), batch size 8192,
and train for 200 epochs. For the RR-on-Bins mechanism, we use the recommended ε1 =

√
|Y|/n

in Theorem 7 to query a private prior, and with the remaining privacy budget, optimize the mean
squared loss via dynamic programming.

E.3 APP ADS CONVERSION COUNT PREDICTION

The app install ads prediction dataset is collected from a commercial mobile app store. The examples
in this dataset are ad clicks, and each label counts post-click events (aka conversions) happening in
the app after the user installs the app.

The neural network models used here is similar to the models used in other experiments: embedding
layers are used to map categorical input attributes to dense feature vectors, and then the concatenated
feature vectors are passed through several fully connected layers to generate the prediction. We use
the Adam optimizer (Kingma & Ba, 2015) and the Poisson regression loss (Cameron & Trivedi,
2013) for training. For the RR-on-Bins mechanism, we use the recommended ε1 =

√
|Y|/n in

Theorem 7 to query a private prior, and with the remaining privacy budget, optimize the mean
squared error via dynamic programming. Following the convention in event count prediction in ads
prediction problems, we train the loss with the Poisson log loss. We report the relative Poisson log
loss on the test set with respect to the non-private baseline.

F LABEL CLIPPING

The Laplace mechanism and staircase mechanism we compared in this paper could both push the
randomized labels out of the original label value ranges. This issue is especially severe for small ε’s,
as the range of randomized labels could be orders of magnitude wider than the original label value
range. Since the original label value range is known (required for deciding the noise scale of each
DP mechanism), we could post process the randomized labels by clipping to this range.

We compare the effects of clipping for both Laplace mechanism and staircase mechanism on the
Criteo dataset in Figure 6. In both case, this simple mitigation helps reduce the error significantly,
especially for smaller epsilons. So in all the experiments of this paper, we always apply clipping to
the randomized labels.

Figure 6 also shows the exponential mechanism (McSherry & Talwar, 2007), which is equivalent
to restricting the Laplace noises to the values that would not push the randomized labels out of the
original value range. In our case, we implement it via rejection sampling on the standard Laplace
mechanism. This algorithm avoid the boundary artifacts of clipping, but to guarantee the same level
of privacy, the noise needs to scale with 2/ε, instead of 1/ε as in the vanilla Laplace mechanism.
As a result, while it could be helpful in the low epsilon regime, in moderate to high ε regime, it is
noticeably worse than all other methods, including the vanilla Laplace mechanism due to the 2×
noise scaling with 1/ε.

G COMPARISON WITH RRWithPrior

In this paper, we extended the formulation of Ghazi et al. (2021a) from classification to regres-
sion losses. Here we provide a brief comparison between our algorithm (RR-on-Bins) and the
RRWithPrior algorithm from Ghazi et al. (2021a) on the US Census dataset. Instead of using multi-
stage training, we fit RRWithPrior in our feature-oblivious label DP framework, and use the same
privately queried global prior as the input to both RR-on-Bins and RRWithPrior. For RRWithPrior,
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Figure 6: MSE on the Criteo dataset, with or without postprocess clipping. (a) measures the error
introduced by each DP randomization mechanism on the training labels. (b) measures the test error
of the models trained on the corresponding private labels.

Privacy
Budget

MSE (Mechanism) MSE (Generalization)

RRWithPrior RR-on-Bins RRWithPrior RR-on-Bins

0.5 274.11 179.88 273.97 183.28
1.0 274.11 159.49 273.97 172.64
2.0 274.11 107.89 273.97 152.03
4.0 138.00 36.43 145.89 136.59
8.0 11.58 2.54 134.26 134.35
∞ 0.00 0.00 134.27 134.27

Table 2: MSE on the US Census dataset, comparing RR-on-Bins with RRWithPrior. The first block
(Mechanism) measures the error introduced by the DP randomization mechanisms on the training
labels. The second block (Generalization) measures the test error of the models trained on the
corresponding private labels. Note RRWithPrior was designed for classification loss (Ghazi et al.,
2021a), here we just ignore the numerical similarity metric and treat each integer label as a separate
category.

we simply treat each of the integer label values in US Census as an independent category during
the randomization stage. Once the private labels are obtained, the training stage is identical for both
algorithms. The results are shown in Table 2. Note the results are for reference purposes, as this is
not a fair comparison. Because RRWithPrior was designed for classification problems (Ghazi et al.,
2021a), which ignore the similarity metrics between different labels, while RR-on-Bins takes that
into account.
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