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Abstract

Text-to-SQL aims to translate natural language001
queries into SQL statements, which is practi-002
cal as it enables anyone to easily retrieve the003
desired information from databases. Recently,004
many existing approaches tackle this problem005
with Large Language Models (LLMs), lever-006
aging their strong capability in understanding007
user queries and generating corresponding SQL008
code. Yet, the parametric knowledge in LLMs009
might be limited to covering all the diverse and010
domain-specific queries that require grounding011
in various database schemas, which makes gen-012
erated SQLs less accurate oftentimes. To tackle013
this, we propose constructing the knowledge014
base for text-to-SQL, a foundational source of015
knowledge, from which we retrieve and gener-016
ate the necessary knowledge for given queries.017
In particular, unlike existing approaches that018
either manually annotate knowledge or gener-019
ate only a few pieces of knowledge for each020
query, our knowledge base is comprehensive,021
which is constructed based on a combination022
of all the available questions and their associ-023
ated database schemas along with their rele-024
vant knowledge, and can be reused for unseen025
databases from different datasets and domains.026
We validate our approach on multiple text-to-027
SQL datasets, considering both the overlapping028
and non-overlapping database scenarios, where029
it outperforms relevant baselines substantially1.030

1 Introduction031

Text-to-SQL aims to transform natural language032

queries from users into Structured Query Language033

(SQL) statements, to interact with and retrieve the034

information from databases (Zelle and Mooney,035

1996; Xu et al., 2017; Yaghmazadeh et al., 2017;036

Cai et al., 2018), as illustrated in Figure 1 (A). This037

task has recently gained much attention since it al-038

lows non-experts to access and manipulate database039

1We will release code, requiring approval after acceptance.

information without needing to understand com- 040

plex database languages. In the meantime, Large 041

Language Models (LLMs) have shown impressive 042

capabilities in processing and generating text and 043

code, which have been further extended for text-to- 044

SQL (Rajkumar et al., 2022; Gao et al., 2024). 045

Despite their huge successes, transforming user 046

queries into SQL statements may still be challeng- 047

ing due to the need for specific domain knowledge 048

and an understanding of the underlying database 049

schemas, which poses a significant hurdle even for 050

the most advanced LLMs to achieve high accuracy 051

across diverse datasets (Li et al., 2023). For ex- 052

ample, consider a scenario where the user asks for 053

the query: "What is the WACC for Company X?". 054

To accurately translate this into an SQL statement, 055

the text-to-SQL model should understand the con- 056

cept and calculation of Weighted Average Cost of 057

Capital (WACC), which involves multiple factors 058

including the cost of equity, cost of debt, and the re- 059

spective proportions of each in the capital structure. 060

In addition, the model needs to comprehend the 061

specific schema of the financial database, where 062

relevant data is distributed across multiple tables 063

such as ’Equity’, ’Debt’, and ’Capital Structure’. 064

To tackle the aforementioned limitations due to 065

the lack of the domain-specific knowledge for SQL 066

generation, recent studies have proposed collecting 067

and annotating explicit knowledge, which is then 068

leveraged for SQL generation (Dou et al., 2022; 069

Li et al., 2023). However, while these approaches 070

substantially improve the performance of existing 071

text-to-SQL models, they rely on extensive human 072

annotations, which may be suboptimal (and nearly 073

impractical) to conduct for all queries considering a 074

diverse source of domain-specific knowledge from 075

numerous databases. To address this issue, recent 076

work proposes generating a few pieces of knowl- 077

edge for each query based on the query itself and 078

its relevant database schema (Hong et al., 2024) 079

(see Figure 1 (B)). However, although this method 080
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Figure 1: (A) Text-to-SQL aims to translate a user query into a SQL statement executable over a database, to access the desired
information. (B) Existing Text-to-SQL with Knowledge Generation approaches first generate the knowledge relevant to the
user query and then formulate the SQL statement with this generated knowledge. (C) Our Text-to-SQL with Knowledge Base
Construction approach builds the repository of the knowledge and then reuses the knowledge within it across multiple queries
and databases. (Right:) We observe that the knowledge in the training set of the text-to-SQL benchmark dataset (Li et al., 2023)
covers 21% of the knowledge required for test-time queries, and our constructed knowledge base further covers 50% of them.

demonstrates promise in automatic knowledge gen-081

eration, certain knowledge required for one query082

can be directly reused or provide insights for multi-083

ple queries within the same database, as shown in084

Figure 1 (Right). Also, this knowledge can be gen-085

eralizable to other queries for different databases.086

Motivated by these observations, this work pro-087

poses an automatic approach to build a knowledge088

base, designed to serve as a comprehensive reposi-089

tory of domain-specific knowledge for text-to-SQL090

and capable of providing knowledge for multiple091

queries with the same database and even across the092

different databases. To construct this knowledge093

base, we generate knowledge entries based on avail-094

able samples and their associated database schemas095

through LLM prompting, and then compile all of096

them together. During this prompting process, we097

provide LLMs with relevant examples to contex-098

tualize and guide the generation of useful knowl-099

edge in the right format that is further grounded in100

the database schema. Then, once constructed, the101

knowledge base allows for the retrieval of relevant102

knowledge for the given test-time query, which is103

then used alongside the query to formulate the SQL104

statement. Note that while ideally the knowledge105

base would cover all possible queries, it may not106

always do so. Nevertheless, the existing knowledge107

in it could still offer valuable insights for generat-108

ing the required knowledge for new queries. Thus,109

by leveraging similar knowledge from the knowl-110

edge base, we further prompt LLMs to produce the111

most suitable knowledge for the query at inference112

time. We call our method Knowledge-Augmented113

Text-to-SQL (KAT-SQL), depicted in Figure 1 (C).114

We experimentally validate the proposed KAT-115

SQL on two different text-to-SQL scenarios, in-116

volving both the overlapping and non-overlapping117

databases between training and test phases, show-118

ing that the proposed knowledge base construction-119

based text-to-SQL approach surpasses the exist- 120

ing (knowledge-augmented) text-to-SQL baselines. 121

We also assess the generalizability of our knowl- 122

edge base constructed from one dataset by apply- 123

ing it to different datasets that lack any annotated 124

knowledge, demonstrating that our knowledge base 125

is versatile and can effectively improve SQL gener- 126

ation for even unseen databases from other datasets. 127

2 Related Work 128

LLM-Powered Text-to-SQL LLMs have shown 129

remarkable performances across a wide range of 130

tasks (OpenAI, 2023; Anil et al., 2023; AI@Meta, 131

2024), including text-to-SQL, due to their strong ca- 132

pability in understanding natural language and gen- 133

erating structured code (Rajkumar et al., 2022; Gao 134

et al., 2024). Specifically, various studies have de- 135

veloped and advanced the prompting techniques for 136

text-to-SQL, for example, using Chain-of-Thought 137

(CoT) (Wei et al., 2022; Liu and Tan, 2023; Tai 138

et al., 2023), investigating sophisticated prompt de- 139

sign strategies (Chang and Fosler-Lussier, 2023), 140

and aggregating LLM-generated outputs from mul- 141

tiple prompts (Lee et al., 2024; Dong et al., 2023) 142

akin to self-consistency (Wang et al., 2023b). In 143

addition, another line of study proposes decompos- 144

ing the text-to-SQL problem into multiple subtasks, 145

and feeding the solutions of subtasks (from multi- 146

ple models or agents) into the LLM to derive the 147

final SQL statement (Gu et al., 2023; Pourreza and 148

Rafiei, 2023; Wang et al., 2023a). The knowledge 149

internalized in LLMs might however not be suffi- 150

cient to handle diverse queries, which oftentimes 151

requires grounding in the database schemas or addi- 152

tional domain-specific information for specialized 153

domains, which gives rise to the need for leverag- 154

ing external knowledge for text-to-SQL. 155

Knowledge-Augmented Text-to-SQL There are 156

a few recent studies that propose augmenting text- 157
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to-SQL models with explicit knowledge. Specif-158

ically, Dou et al. (2022) collect formulaic knowl-159

edge (e.g., Trade Balance = Exports – Imports)160

available from public resources such as finance161

reports and store the collected knowledge into a162

knowledge bank with proper human-involved post-163

processing. The text-to-SQL model then retrieves164

relevant knowledge for any given query from the165

knowledge bank and uses it to convert the query166

into the SQL statement. In addition, Li et al. (2023)167

release a large-scale benchmark dataset for the text-168

to-SQL task, where each question is associated169

with specific knowledge that is manually annotated170

by humans. Manual annotation is however costly171

and time consuming, requiring effort and expertise172

on the part of domain-experts. To address this chal-173

lenge, more recent work proposes automatically174

generating the knowledge based on the question175

and database schema, and utilizing this knowledge176

for text-to-SQL (Hong et al., 2024). In our work,177

instead of generating only a few pieces of knowl-178

edge for each question, we propose to construct a179

comprehensive knowledge base. This provides a180

repository of reusable knowledge that can be lever-181

aged across multiple queries, which can be further182

adapted to various databases over different domains183

in a scalable way, in contrast to existing work.184

Data Generation with LLMs The recent advent185

of LLMs has revolutionized the field of data gen-186

eration, as they can produce vast amounts of high-187

quality samples without costly human annotation.188

Specifically, several efforts around LLM-based syn-189

thetic data generation, such as Self-Instruct (Wang190

et al., 2023c), Alpaca (Taori et al., 2023), Evol-191

Instruct (Xu et al., 2023), Orca (Mukherjee et al.,192

2023), and InstructLab (Sudalairaj et al., 2024),193

propose generating a large number of samples from194

LLMs by prompting them. Also, motivated by the195

capabilities of LLMs in generating synthetic data196

and memorizing factual knowledge, some other197

work aims to populate an encyclopedic knowledge198

base like Wikidata (Vrandecic and Krötzsch, 2014)199

with LLMs (Alivanistos et al., 2022; Nayak and200

Timmapathini, 2023; Veseli et al., 2023). Most of201

the knowledge in such encyclopedic knowledge202

bases is however unsuitable for text-to-SQL since203

it is neither relevant to formulate SQL statements204

from user queries nor aware of database schemas205

necessary for the query conversion. Thus, unlike206

them, our approach stands apart as the first to auto-207

matically construct a text-to-SQL knowledge base.208

3 Method 209

In this section, we present Knowledge-Augmented 210

Text-to-SQL (KAT-SQL), an approach that auto- 211

matically constructs a knowledge base and utilizes 212

the relevant knowledge from it for text-to-SQL. 213

3.1 Problem Statement 214

We begin with formally explaining text-to-SQL and 215

the knowledge augmentation technique for it. 216

Text-to-SQL Text-to-SQL aims to translate a nat- 217

ural language query from a user into a syntactically 218

correct and semantically precise SQL statement. 219

Formally, let q be the user query (consisting of a 220

sequence of tokens) and D be the database schema 221

containing multiple tables and columns. Then, the 222

SQL generation model f can be represented as fol- 223

lows: s = f(q,D) where s is the SQL statement 224

(consisting of a sequence of tokens) that attempts 225

to retrieve the information requested by q over D. 226

In this work, we operationalize f with LLMs, 227

to harness their strong capability in understanding 228

the semantics of q and generating the correspond- 229

ing SQL code s, as follows: s = LLMθ(T (q,D)) 230

where θ is the model parameters and T is the 231

prompt template. Typically, the model parame- 232

ters θ remain fixed due to the high costs associated 233

with further fine-tuning of them and sometimes 234

their limited accessibility. Also, the prompt tem- 235

plate T serves as a structured format that outlines 236

the context, which includes task descriptions and 237

instructions as well as few-shot demonstrations, to 238

guide the model in generating accurate SQL codes. 239

Notably, while there have been great successes in 240

advancing the LLM itself and optimizing its usage 241

for text-to-SQL, such as using advanced prompting 242

techniques or breaking down the task into multiple 243

subtasks (Wei et al., 2022; Liu and Tan, 2023; Tai 244

et al., 2023; Gu et al., 2023; Pourreza and Rafiei, 245

2023; Wang et al., 2023a), these improvements 246

alone may not be sufficient to fully handle queries 247

that require the deep domain knowledge or precise 248

understanding of complex database schemas. In 249

other words, the internal parametric knowledge 250

of LLMs, while robust, may not fully encompass 251

the diverse range of query variations and database 252

structures, especially when these databases have 253

distinct schemas or certain specialized terminology. 254

Knowledge-Augmented Text-to-SQL To tackle 255

the aforementioned limitations, we focus on aug- 256

menting text-to-SQL with the knowledge relevant 257

to the query, providing valuable insights into the 258
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domain-specific terminology and complex database259

schemas. If we denote this knowledge as k, then260

the previous text-to-SQL process is redefined to261

incorporate it, as follows: s = LLMθ(T (q,k,D)).262

While there have been few studies that explore263

this knowledge-augmented text-to-SQL paradigm,264

there are still a couple of challenges. Specifically,265

Dou et al. (2022) and Li et al. (2023) propose col-266

lecting and annotating the explicit knowledge re-267

quired to convert queries into SQL statements. Yet,268

to operationalize, this annotation-based approach269

can be costly and time-consuming, especially when270

dealing with a large number of diverse queries. On271

the other hand, Hong et al. (2024) propose an auto-272

matic generation of knowledge, based on the ques-273

tion and its associated database schema. However,274

this method is still limiting as it generates only a275

few pieces of knowledge for each query without276

leveraging the potential for reuse. In contrast, since277

much of the knowledge used for one query can be278

applicable to multiple similar queries (See Figure 1,279

Right), we aim to design a more effective approach280

for knowledge augmentation, discussed below.281

3.2 Knowledge Base Construction282

To address the aforementioned limitations of ex-283

isting approaches in knowledge augmentation for284

text-to-SQL, we propose a novel approach to auto-285

matically construct a comprehensive and reusable286

knowledge base. Ideally, this can serve as a founda-287

tional resource, encapsulating diverse domain infor-288

mation and offering insights into various database289

schemas, to enhance the understanding of queries290

and their associated database structures.291

Formally, we design this knowledge base K as a292

collection of knowledge entries, each represented293

as a concise sentence, denoted as follows: k ∈ K.294

For instance, in the medical domain, one knowl-295

edge entry might be “Abnormal white blood cell296

count refers to WBC ≤ 3.5 or WBC ≥ 9.0”, which297

describes the abnormal range of white blood cell298

counts and its corresponding column name “WBC”299

in the database schema, applicable to queries re-300

lated to abnormal white blood cells. The next ques-301

tion to answer is then how to construct this knowl-302

edge base based on the available resources.303

In this work, we start with collecting all the exist-304

ing knowledge entries from the publicly available305

dataset (Li et al., 2023), which includes the knowl-306

edge and its related pair of query and database307

schema. Yet, while this initial collection can serve308

as the foundational layer of our knowledge base,309

it may not capture the full scope of the required 310

information. To address this gap, we propose an au- 311

tomatic knowledge base expansion technique that 312

leverages LLMs, which possess domain-specific 313

knowledge and the ability to comprehend the given 314

context (including instructions, codes, and database 315

structures) by generating additional knowledge en- 316

tries. Specifically, given the query and its associ- 317

ated database schema from the available datasets, 318

we prompt LLMs (along with a prompting template 319

T for knowledge generation) to produce the knowl- 320

edge, formulated as follows: k = LLM(T (q,D)), 321

and then store this knowledge k into the knowledge 322

base K. In addition, as it may be more accurate 323

and reliable to provide the LLM with relevant ex- 324

amples (which can help it understand the context, 325

nuances, and expectations of the desired output), 326

we further prepend the small number of relevant 327

examples into the prompt of LLM. It is worth noting 328

that these examples are comprised of the triplets of 329

the user queries, their associated database schemas, 330

and the knowledge they are derived from, and that 331

those triplets come from the existing dataset (used 332

to construct the initial knowledge base). Also, we 333

select only those highly relevant to the query based 334

on its embedding-level cosine similarities with sam- 335

ples from the existing dataset, calculated by MP- 336

Net (Song et al., 2020). This process can ultimately 337

enable the LLM to generate more precise and con- 338

textually appropriate knowledge for text-to-SQL. 339

In addition to this relevant example-based knowl- 340

edge generation approach, to further enrich the di- 341

versity and comprehensiveness of the knowledge 342

base, we implement a simple yet effective strategy 343

that involves sampling and permutation of few-shot 344

examples provided to the LLM. Specifically, for 345

the given query and its associated database schema, 346

instead of generating their corresponding knowl- 347

edge only once, we iteratively sample a different 348

set of relevant examples (provided to contextualize 349

the LLM) multiple times and further permute their 350

order. This can allow the LLM to explore differ- 351

ent contextual nuances and generate a wider range 352

of knowledge entries, with the goal of ultimately 353

increasing the robustness and applicability of the 354

knowledge base for a broader range of queries. 355

3.3 Text-to-SQL with Knowledge Base 356

Based on the LLM-powered knowledge base con- 357

struction process, we now have the knowledge base 358

K. Hereafter, the next question to answer is then 359

how to use this knowledge base for text-to-SQL. 360
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Algorithm 1 Knowledge-Augmented Text-to-SQL
Require: Dataset D containing query-schema pairs (q,D);

LLM model LLM; Prompt templates T
Ensure: SQL statement s for a given query q
1: Phase 1: Knowledge Base Construction
2: K ← {} ∪D ▷ Initialize knowledge base
3: for all (q,D) ∈D do
4: E ← Retrieve top-k relevant examples from D
5: knew ← LLM(Tgen(q,D, E)) ▷ Generate knowledge
6: K ← K ∪ knew ▷ Store knowledge
7: end for
8: Phase 2: Knowledge-Augmented SQL Generation
9: function KAT-SQL(q, D, K)

10: {ki}ji=1 ← Retrieve top-j knowledge from K
11: k′ ← LLM(Tref(q, {ki}ji=1,D)) ▷ Refine knowledge
12: s← LLM(Ttext-to-SQL(q,k

′,D)) ▷ Generate SQL
13: return s
14: end function
Figure 2: A simplified overview of the proposed KAT-SQL
method. Please see Algorithms 2 and 3 for detailed versions.

Given the extensive nature of K, containing a361

large number of entries, it is crucial to identify and362

retrieve the most pertinent entries for the query q.363

Formally, this process can be represented as fol-364

lows: {ki}ji=1 = Retriever(q,K). Also, this can365

be operationalized by calculating the embedding-366

level similarities between the query and all the367

knowledge entries in the knowledge base, then se-368

lecting the top-j similar entries {ki}ji=1, where em-369

beddings are obtained from a sentence embedding370

model (Karpukhin et al., 2020; Song et al., 2020).371

Moreover, to further enhance the retrieval accuracy,372

we train this embedding model with contrastive373

learning, which maximizes the similarity between374

the query and its relevant knowledge while min-375

imizing the similarities of others, denoted as fol-376

lows: − log exp(sim(q,k+)/τ)
exp(sim(q,k+)/τ)+

∑
k− exp(sim(q,k−)/τ)

,377

where sim(q,k) denotes the similarity measure be-378

tween query q and knowledge k, τ is the tempera-379

ture parameter, k+ is the relevant knowledge, and380

k− represents the set of irrelevant knowledge.381

Note that while the retrieved knowledge entries382

from K are relevant to the given query and can383

assist in SQL statement formulation, they may re-384

quire additional refinement to perfectly align with385

the query’s specific needs. For instance, if the user386

query pertains to abnormal data conditions, but the387

retrieved knowledge primarily focuses on normal388

data, a direct application of this knowledge could389

lead to inaccurate SQL generation. To address this390

issue, we further prompt the LLM to generate the391

knowledge tailored to the given query by consid-392

ering its relevant knowledge entries and database393

schema, as follows: k′ = LLM(T (q, {ki}ji=1,D)),394

where {ki}ji=1 is the knowledge retrieved from K.395

This refined knowledge k′ is subsequently used as396

input, along with the user query and its associated 397

database schema, to guide the text-to-SQL LLM 398

in generating a more accurate and contextually ap- 399

propriate SQL statement: s = LLM(T (q,k′,D)). 400

Please see Algorithm 1 for our overall approach. 401

4 Experimental Setup 402

4.1 Datasets and Tasks 403

Datasets To validate the efficacy of KAT-SQL, 404

we first use two widely used text-to-SQL bench- 405

mark datasets, namely BIRD (Li et al., 2023) and 406

Spider (Yu et al., 2018). Specifically, BIRD is a 407

recently released large-scale text-to-SQL dataset, 408

built on top of 95 distinct databases spanning 37 do- 409

mains. Additionally, each query in this dataset is as- 410

sociated with knowledge that is manually annotated 411

by humans, providing a useful prior for formulat- 412

ing SQL statements. Spider is another benchmark 413

dataset, built upon 200 databases across 138 do- 414

mains. Unlike BIRD, samples in Spider do not have 415

annotated knowledge for text-to-SQL. Lastly, we 416

consider a challenging real-world text-to-SQL data, 417

namely CSTINSIGHT, which is designed with ac- 418

tual customer queries over a data lakehouse with 419

34 tables without human-annotated knowledge. 420

Tasks/Scenarios We evaluate our KAT-SQL on 421

three realistic text-to-SQL tasks. First of all, we 422

consider the scenario where the prior information 423

about some samples and their associated knowl- 424

edge for each database is available, meaning that 425

the databases used in training samples overlap with 426

those in test samples (Overlap). We note that this 427

setting is practical, since annotating a few pairs of 428

questions and their corresponding knowledge for 429

each database in advance is feasible. In addition to 430

this, we test KAT-SQL with the existing benchmark 431

setup, which is more challenging since it assumes 432

there are no overlaps between databases during the 433

training and test phases (Non-Overlap). In other 434

words, no samples from the test-time databases 435

are available beforehand, which means the model 436

should be able to generalize to test-time queries 437

based on the schemas of test-time databases as well 438

as the samples and their associated knowledge from 439

the different (training-time) databases. Lastly, we 440

validate KAT-SQL on the most challenging sce- 441

nario, where there are no overlaps between the 442

databases used during training and testing, but also 443

no knowledge is available for both training and 444

test samples. This setup aims to test the model’s 445

ability to generalize (in the absence of any prior 446

knowledge about the dataset), allowing us to evalu- 447
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Table 1: Main results on text-to-SQL benchmark datasets across multiple scenarios, with the best results in bold.

BIRD (Overlap) BIRD (Non-Overlap) Spider CSTINSIGHT

Methods EX VES EX VES EX VES EX VES

No Knowledge 23.76 28.81 20.66 16.72 70.99 37.53 4.76 5.28
DELLM 34.70 33.15 24.64 19.27 72.44 42.90 11.90 12.02
KAT-SQL (Ours) 41.18 41.33 41.07 31.14 74.56 47.20 14.29 14.50
Oracle Knowledge 54.67 49.71 49.41 37.93 N/A N/A N/A N/A

ate how well our knowledge base constructed with448

one dataset performs on different datasets. Notably,449

since the Spider and CSTINSIGHT datasets have450

no available knowledge for all queries, we use them451

for the most challenging last scenario; meanwhile,452

we use the BIRD dataset for the first two scenarios.453

4.2 Baselines and Our Model454

We compare our KAT-SQL approach against rele-455

vant baselines that target our primary objective of456

improving knowledge-augmented text-to-SQL sys-457

tems, which vary in their usage of knowledge. We458

note that for the fairest comparison, we fix the LLM459

as the same for all methods, explained as follows:460

1. No Knowledge – which uses only the queries461

themselves to formulate the SQL statements with-462

out any additional knowledge. 2. DELLM – which463

generates the knowledge based on the query and464

its relevant database structures, and use this syn-465

thesized knowledge for text-to-SQL (Hong et al.,466

2024). 3. KAT-SQL – which is our model, building467

the knowledge base and utilizing the knowledge468

from it (with retrieval) for text-to-SQL. 4. Oracle469

Knowledge – which uses oracle knowledge anno-470

tated by humans, along with the queries to generate471

the SQL statements. This approach serves as an472

upper bound and is not directly comparable to other473

models due to its reliance on accurate, manually474

curated knowledge that is typically unavailable.475

4.3 Evaluation Metrics476

Following the standard evaluation protocols from477

prior work (Li et al., 2023; Hong et al., 2024), we478

use the following two metrics: 1) Execution Accu-479

racy (EX), which measures the ratio of generated480

SQL code that has the same execution results with481

ground-truth SQL code; 2) Valid Efficiency Score482

(VES), which considers the efficiency of generated483

SQLs by weighting them based on their relative484

efficiency improvement over ground-truth SQLs485

further multiplied by execution accuracy.486

4.4 Implementation Details487

We mainly use Llama-3 70B (AI@Meta, 2024) as488

the basis for text-to-SQL generation and knowl-489

edge generation across all baselines and our model490
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Figure 3: Results for coverage and relevance of knowledge
entries in the constructed knowledge base against gold knowl-
edge, with different numbers of knowledge generation steps.

variants for most experiments, for a fair compar- 491

ison, while we also experiment with other LLMs 492

in an analysis (Table 6) to see the robustness of 493

KAT-SQL. For the hyperparameters, except for the 494

temperature (which we set as 0.0 for reproducibil- 495

ity), we use its default values. In addition, for the 496

retriever, we use MPNet (Song et al., 2020), which 497

is based on dense retrieval; we train it with a batch 498

size of 128 and a number of training epochs of 30. 499

We provide the detailed prompts used to elicit the 500

knowledge and SQL generations in Appendix A. 501

5 Experimental Results and Analyses 502

Main Results We provide main results in Table 1, 503

which confirms that our KAT-SQL approach consis- 504

tently outperforms all baselines by large margins. 505

Specifically, while we observe some performance 506

improvement of the knowledge-augmented text-to- 507

SQL approach (namely DELLM, which generates 508

a few pieces of knowledge for each query) over the 509

baseline without knowledge augmentation, KAT- 510

SQL achieves even greater gains, demonstrating the 511

effectiveness of our knowledge base construction- 512

based text-to-SQL paradigm. However, the perfor- 513

mance of the (incomparable) model with the oracle 514

knowledge (annotated by human experts) remains 515

superior to all other approaches, which suggests po- 516

tential future opportunities for developing a more 517

advanced pipeline for knowledge generation. 518

Analysis on Knowledge Base To further under- 519

stand the coverage and relevance of the knowledge 520

within our knowledge base, we compare each piece 521

of knowledge required for test-time queries with 522

all the available entries in the knowledge base, as 523

a function of the number of knowledge generation 524

steps during knowledge base construction. For eval- 525

uation, we use two metrics: Exact Match, which 526
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Table 2: Results for knowledge generation with and without
the use of the Knowledge Base (KB), while varying the prompt
construction with and without the relevant few-shot examples.

Overlap Non-Overlap

KB Few-Shot EM SS EM SS

w/o KB Random 10.96 68.77 7.88 66.77
Retrieval 20.21 73.62 9.24 68.78

w/ KB Random 11.13 69.14 7.93 66.80
Retrieval 24.97 77.87 12.94 71.24

identifies whether the knowledge base contains527

an entry that precisely matches the knowledge re-528

quired for a given query, and Semantic Similarity,529

which assesses how closely related the most simi-530

lar entry (in the knowledge base) is to the required531

knowledge based on the embedding-level similar-532

ity. As shown in Figure 3, we observe that, under533

the Overlap setting, half of the knowledge entries534

needed for test-time queries are available in the535

knowledge base while the Semantic Similarity is536

around 90%, which demonstrates substantial cov-537

erage by our knowledge base. In addition, for the538

challenging setup where training and test databases539

are distinct, we still observe that 20% of the test-540

time knowledge entries are available in the knowl-541

edge base and that the Semantic Similarity exceeds542

80%, showing the utility of our knowledge base. Fi-543

nally, as we increase the number of knowledge gen-544

eration steps for each instance during knowledge545

base construction, we observe a corresponding im-546

provement in both coverage and relevance of our547

knowledge base, which supports the effectiveness548

of our expansion strategy to enrich its diversity.549

Analysis on Knowledge Generation Recall that550

we further refine the retrieved knowledge to make551

it more suitable for each query, in addition to con-552

structing the knowledge base and retrieving the rel-553

evant knowledge. Thus, to see how relevant the gen-554

erated knowledge is to the human-annotated gold555

knowledge with regards to the use of our knowl-556

edge base, we report comparison results according557

to Exact Match and Semantic Similarity (SS) in558

Table 2. We observe that when we retrieve the rele-559

vant knowledge from the knowledge base and then560

use it for knowledge generation, there are perfor-561

mance gains over the case where we do not leverage562

it, which indicates that the retrieved knowledge is563

helpful in formulating the necessary knowledge for564

test-time queries. We also provide few-shot exam-565

ples to guide the knowledge generation model in566

generating useful knowledge in the right format,567

and when we select them based on their similarities568

with the given query, we observe further gains in569

the quality of the generated knowledge.570

Table 3: Text-to-SQL results without using any knowledge,
based on the retrieved knowledge, and based on the refined
knowledge from the retrieved knowledge (Our KAT-SQL).

Settings Models EX

Overlap
KAT-SQL (Ours) 41.18
w/o Generation 38.94
w/o Retrieval & Generation 23.76

Non-Overlap
KAT-SQL (Ours) 41.07
w/o Generation 38.42
w/o Retrieval & Generation 20.66

Table 4: Retrieval results with different scenarios and models.

Settings Models MRR Top@3 Top@10

Overlap
BERT 0.5506 0.6621 0.8911
TAS-B 0.5630 0.6943 0.9035
TAS-B* 0.8288 0.9143 0.9765

Non-Overlap
BERT 0.2148 0.2692 0.4231
TAS-B 0.2364 0.3846 0.4615
TAS-B* 0.7565 0.8347 0.9210

Beyond evaluating the quality of the generated 571

knowledge by comparing it to the human-annotated 572

gold knowledge, we also examine the impact of 573

knowledge generation on downstream text-to-SQL 574

performance with and without the incorporation of 575

generated knowledge. As shown in Table 3, com- 576

pared to the results without the knowledge retrieval 577

and generation on both Overlap and Non-Overlap 578

settings, there are substantial improvements when 579

we incorporate the retrieved knowledge from our 580

knowledge base into the text-to-SQL generation 581

process. Furthermore, instead of directly using the 582

retrieved knowledge, refining this retrieved knowl- 583

edge yields additional improvements, underscor- 584

ing the importance of not only retrieving relevant 585

knowledge but also tailoring it to better align with 586

the specific needs of test-time queries. 587

Retrieval Analysis We also analyze the accuracy 588

of knowledge retrieval from our knowledge base 589

by reporting its retrieval performance in Table 4 590

according to Mean Reciprocal Rank (MRR) and 591

Top@K Accuracy. We observe that the retrieval ac- 592

curacy on the Overlap setting is higher than that on 593

the Non-Overlap setting, due to the less availability 594

of relevant knowledge required for test-time queries 595

in the Non-Overlap setting. Yet, when we replace 596

the knowledge base constructed from our approach 597

with the Oracle knowledge base (*), which includes 598

all the necessary knowledge for test-time queries, 599

the MRR on both settings reaches around 80%, in- 600

dicating the importance of expanding the coverage 601

of the knowledge base for accurate knowledge re- 602

trieval. The table also compares the performance of 603

different basis models for retrieval – BERT (Devlin 604

et al., 2019) and TAS-B (Hofstätter et al., 2021) – 605

with the latter being fine-tuned for retrieval. It can 606
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Table 5: Breakdown text-to-SQL results into overlapping and
non-overlapping domain settings between training (knowledge
base construction) and test (text-to-SQL evaluation) databases.

Models Overlap Non-Overlap

No Knowledge 22.85 16.20
DELLM 27.20 19.43

KAT-SQL (Ours) 49.37 24.19

be seen that the extra training of the model on re-607

trieval tasks aids in achieving superior performance608

for retrieving the knowledge for text-to-SQL.609

Generalization Analysis to Different Domains610

To see whether our knowledge base can be gener-611

alizable to databases of different domains (that are612

not overlapped with those for knowledge base con-613

struction), we breakdown the performance based on614

whether test databases share domains with training615

databases or belong to different domains (accord-616

ing to 37 domains categorized from Li et al. (2023)).617

As shown in Table 5, our KAT-SQL achieves sub-618

stantially higher performance when test databases619

overlap with training domains compared to those620

from unseen domains; however, even in the latter621

case, KAT-SQL still outperforms existing baselines.622

These results indicate that, while the lack of domain623

overlaps degrades the performance, our knowledge624

base still provides meaningful benefits for unseen625

domains, demonstrating its generalizability.626

Analysis with Different LLMs To evaluate how627

robust our KAT-SAL approach is across different628

LLMs, we conduct the additional analysis instan-629

tiating the text-to-SQL and knowledge generation630

models with other recent LLMs such as Granite631

34B (Mishra et al., 2024) and Mixtral 8x7B (Jiang632

et al., 2024); results are shown in Table 6. From633

this, we observe that KAT-SQL consistently out-634

performs all baselines regardless of the choice of635

LLMs, which demonstrates the effectiveness and636

versatility of our proposed approach.637

Finally, we augment the state-of-the-art text-to-638

SQL model (in the setting without oracle knowl-639

edge) on the BIRD leaderboard (Li et al., 2023),640

namely ExSL + granite-20b-code, using the knowl-641

edge generated from our proposed knowledge base642

construction-based approach. As shown in Table 7,643

we observe that the text-to-SQL model combined644

with our KAT-SQL approach establishes the new645

state-of-the-art performance, highlighting the value646

of our method as a powerful tool for text-to-SQL.647

Analysis on Efficiency While our primary focus648

is on improving the text-to-SQL accuracy through649

knowledge base construction and augmentation, we650

also consider the efficiency of our approach. It is651

Table 6: Text to SQL results with different LLMs.

LLMs Methods Overlap Non-Overlap

Llama
No Knowledge 23.76 20.66
DELLM 34.70 24.64
KAT-SQL 41.18 41.07
Oracle Knowledge 54.67 49.41

Granite
No Knowledge 25.83 17.75
DELLM 34.04 20.21
KAT-SQL 39.28 35.83
Oracle Knowledge 46.56 38.32

Mixtral
No Knowledge 11.75 10.58
DELLM 27.17 11.29
KAT-SQL 29.31 20.30
Oracle Knowledge 37.26 30.88

Table 7: Results of our KAT-SQL approach with the state-of-
the-art text-to-SQL model on the BIRD leaderboard.

Models EX

ChatGPT 24.05
ChatGPT + CoT 25.88
ExSL + granite-20b-code 51.69
ExSL + granite-20b-code w/ KAT-SQL (Ours) 57.56
ExSL + granite-20b-code w/ Oracle Knowledge 65.38

worth noting that the construction of the knowledge 652

base is performed offline and does not affect real- 653

time query processing; therefore, the extra compu- 654

tational overhead comes from retrieving relevant 655

knowledge and generating the SQL statement in re- 656

sponse to the query. In this regard, our retrieval pro- 657

cess accounts for only 2% of the overall generation 658

time, thanks to efficient search algorithm (Douze 659

et al., 2024), making its impact negligible. Also, 660

although incorporating knowledge into the text-to- 661

SQL pipeline increases the prompt length by 30%, 662

this overhead aligns with other knowledge augmen- 663

tation methods (such as DELLM) and does not in- 664

troduce additional latency specific to our approach. 665

Overall, each query is processed under 5 seconds. 666

Examples We provide examples for the knowl- 667

edge generation and text-to-SQL in Table 9 as well 668

as the entries in the knowledge base in Table 10. 669

6 Conclusion 670

In this work, we proposed a novel knowledge base 671

construction-based text-to-SQL approach called 672

KAT-SQL, based on the motivation that one piece 673

of knowledge can be reused across multiple queries 674

and databases. Our approach involves the creation 675

of the knowledge base from which relevant knowl- 676

edge is retrieved and utilized to generate SQL state- 677

ments from queries. Through extensive evaluations 678

on multiple datasets with two different scenarios, 679

we showed that our KAT-SQL outperforms rele- 680

vant knowledge-augmented text-to-SQL baselines. 681

In addition, our detailed analyses highlight the ef- 682

fectiveness of each component in the knowledge 683

generation and retrieval processes, but also the high 684

coverage and relevance of the entries in the base. 685
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Limitations686

In this work, we propose constructing a knowledge687

base and then leveraging it for text-to-SQL tasks,688

showcasing the clear advantages of constructing689

the knowledge base for text-to-SQL. However, as690

the performance gaps between the models with691

oracle knowledge and the generated knowledge692

from our knowledge base indicate, there is still693

room to improve the coverage of the knowledge694

base, which is a promising avenue for future work.695

Ethics Statement696

We recognize that any text-to-SQL system, includ-697

ing our proposed approach, may carry the inherent698

risk of generating SQL queries that may inadver-699

tently or intentionally access, modify, or delete700

sensitive information within a database. While this701

vulnerability is not exclusive to our method and is702

a well-known challenge in the broader field of text-703

to-SQL systems, it underscores the importance of704

implementing robust security measures and access705

controls before deploying such systems. Similar to706

this, safety is particularly crucial in our application,707

so as to avoid the risk of sensitive information be-708

ing stored in the knowledge base and subsequently709

being inappropriately reused.710
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A Prompts981

We provide the prompts used to elicit the knowl-982

edge generation and the SQL generation in Table 8.983

B Algorithms984

We provide the pseudo-code for knowledge base985

construction in Algorithm 2 and the pseudo-code986

for our full KAT-SQL approach in Algorithm 3.987

C Additional Experimental Results988

Knowledge Base Statistics The resulting knowl-989

edge base for the database overlapping and non-990

overlapping scenarios contains 86,254 and 117,328991

knowledge entries, respectively, which are greater992

than the original number of knowledge entries an-993

notated in the BIRD dataset, which is 12,751.994

Knowledge Base Construction Cost While the995

construction of the knowledge base is performed996

offline and does not impact real-time operations997

of text-to-SQL, we provide the cost to construct998

the knowledge base for our KAT2SQL approach999

to enable researchers to estimate resource require-1000

ments for scaling and implementation. Note that1001

the exact computational costs and time required for1002

knowledge base construction vary depending on1003

hardware types and configurations, and with four1004

H100 GPUs that can process 2K tokens per second1005

and generate 10 tokens per second for Llama 70B,1006

the time required to generate each knowledge entry1007

is around 2 seconds. Therefore, for the knowledge1008

base with 100K entries, the total generation time1009

would be 56 hours divided by the number of paral-1010

lel models (it completes in 7 hours with 8 models).1011

Retrieval over Different Knowledge Sources It1012

is worthwhile to note that, for text-to-SQL tasks, it1013

is crucial to consider the relationship between the1014

query and the database (in addition to the consider-1015

ation of the domain-specific knowledge for domain-1016

specific queries); therefore, using the unstructured1017

knowledge sources (such as web search) may not1018

be optimal for this purpose since they often lack the1019

structured, schema-specific information necessary1020

for accurately formulating SQL queries. Never-1021

theless, to further validate this claim, we perform1022

retrieval over Wikipedia, instead of performing re-1023

trieval over the constructed knowledge base, and1024

observe only the marginal performance gain (3%)1025

compared to the baseline without augmentation.1026
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Table 8: A list of prompts that we use for knowledge generation and SQL generation. It is worth noting that the variable inside
the parentheses {} is replaced with its actual values.

Types Prompts

Knowledge Generation

DB Schema: {Database Schema}

Question: {Few-Shot Question 1}
Evidence: {Few-Shot Evidence 1}

Question: {Few-Shot Question 2}
Evidence: {Few-Shot Evidence 2}

...

Question: {Few-Shot Question 10}
Evidence: {Few-Shot Evidence 10}

Question: {Target Question}
Evidence:

SQL Generation

DB Schema: {Database Schema}

Question: {Few-Shot Question 1}
Evidence: {Few-Shot Evidence 1}
SQL: {Few-Shot SQL 1}

Question: {Few-Shot Question 2}
Evidence: {Few-Shot Evidence 2}
SQL: {Few-Shot SQL 2}

...

Question: {Few-Shot Question 10}
Evidence: {Few-Shot Evidence 10}
SQL: {Few-Shot SQL 10}

Question: {Target Question}
Evidence: {Generated Knowledge}
SQL:

13



Algorithm 2 Knowledge Base Construction for KAT-SQL

Require: Dataset D containing query-schema-knowledge triplets (q,D,k); Prompt template T
Ensure: Knowledge base K

1: K ← {} ▷ Initialize an empty knowledge base
2: for all (q,D,k) ∈D do
3: K ← K ∪ k ▷ Add existing knowledge to the knowledge base
4: end for
5: for all query-schema pair (q,D) ∈D do
6: E ← Top-k relevant examples to the query q from D
7: for i = 1 to N do ▷ Iteratively expand knowledge
8: Eperm ← Permute examples E
9: knew ← LLM(T (q,D, Eperm)) ▷ Generate knowledge using LLM with examples

10: K ← K ∪ knew ▷ Store generated knowledge in the knowledge base
11: end for
12: end for

Algorithm 3 Knowledge-Augmented Text-to-SQL (KAT-SQL)

Require: Query q; Database schema D; Knowledge base K
Ensure: SQL statement s

1: function KAT-SQL(q, D, K)
2: {ki}ji=1 ← RETRIEVER(q, K) ▷ Retrieve relevant knowledge entries from K
3: Tref ← CREATEPROMPT(q, {ki}ji=1, D) ▷ Construct the prompt with retrieved knowledge
4: k′ ← LLM(Tref) ▷ Refine knowledge using LLM
5: Taug ← CREATEPROMPT(q, k′, D) ▷ Augment the prompt with refined knowledge
6: s← LLM(Taug) ▷ Generate SQL with knowledge augmentation
7: return s
8: end function
9: function RETRIEVER(q, K)

10: Compute embeddings for q and all knowledge entries k ∈ K
11: Retrieve top-j relevant knowledge entries {ki}ji=1 based on embedding similarities
12: return {ki}ji=1

13: end function
14: function CREATEPROMPT(q, k, D)
15: Construct the prompt template T using the query q, knowledge k, and database schema D
16: return T
17: end function
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Table 9: Case study of knowledge and SQL generation results from queries.

Example Query Generated Knowledge and SQL

Example 1

Which position has a
lower minimum salary,
Account Representative or
Trainee?

Generated Knowledge:
1) lower minimum salary refers to MIN(minsalary)
2) Account Representative and Trainee are position titles
Generated SQL:
SELECT positiontitle FROM position WHERE
positiontitle = ’Account Representative’ OR
positiontitle = ’Trainee’ ORDER BY minsalary
ASC LIMIT 1

Example 2

Among the employees
working at the office in
New York, how many of
them have a good job per-
formance?

Generated Knowledge:
1) New York refers to state = ’NY’
2) good job performance refers to performance =
’Good’
Generated SQL:
SELECT COUNT(*) FROM employee AS T1 INNER JOIN
location AS T2 ON T1.locationID = T2.locationID
WHERE T2.state = ’NY’ AND T1.performance =
’Good’

Example 3
For all patients born in
1982, state if their albumin
is within normal range.

Generated Knowledge:
1) albumin is within normal range refers to ALB between
3.5 and 5.5
Generated SQL:
SELECT CASE WHEN T2.ALB >= 3.5 AND T2.ALB <= 5.5
THEN ’normal’ ELSE ’abnormal’ END FROM Patient
AS T1 INNER JOIN Laboratory AS T2 ON T1.ID
= T2.ID WHERE STRFTIME(’%Y’, T1.Birthday) =
’1982’

Table 10: Examples of original and its similar constructed knowledge within the knowledge base.

Example Original Knowledge Constructed Similar Knowledge

Example 1
albumin is within normal range
refers to ALB between 3.5 and
5.5

1) albumin is outside the normal range refers to ALB
less than 3.5 or greater than 5.5
2) glucose is within normal range refers to GLU
between 70 and 100 mg/dL
3) Hemoglobin (Hb) is considered normal for males
if levels range from 13.5 to 17.5 g/dL

Example 2
Eligible free rate for K-12 = Free
Meal Count (K-12) / Enrollment
(K-12)

1) Eligible reduced-price rate for K-12 = Reduced-
Price Meal Count (K-12) / Enrollment (K-12)
2) Eligible free meal rate for students aged 5-17 =
Free Meal Count (Ages 5-17) / Enrollment (Ages
5-17)
3) Difference between K-12 and ages 5-17 en-
rollment = Enrollment (K-12) - Enrollment
(Ages 5-17)

Example 3 Slovakia can be represented as
Country = ’SVK’

1) France can be represented as Country = ’FRA’
2) Brazil can be represented as Country = ’BRA’
3) Monaco can be represented as Country = ’MCO’
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