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ABSTRACT

Discrete diffusion models have demonstrated great promise in modeling various
sequence data, ranging from human language to biological sequences. Inspired
by the success of RL in language models, there is growing interest in further im-
proving the models by alignment with a certain reward. In this work, we propose
an offline preference optimization method to approach trajectory alignment for
discrete diffusion models. Instead of applying the reward on the final output and
backpropagating the gradient to the entire denoising process, we decompose the
problem into a set of stepwise alignment objectives by matching the per-step poste-
rior. This framework enables efficient diffusion optimization, is compatible with
arbitrary reward functions, and importantly, yields an equivalent optimal solution
under additive factorization of the trajectory reward. Experiments across multiple
domains including DNA sequence design, protein inverse folding, and language
modeling consistently demonstrate the superiority of our approach. Notably, it
achieves an up to 12% improvement over the most competitive RL-based baseline
in terms of predicted activity on DNA sequence design, and further improves the
GSM8K score from 78.6 to 81.2 on LLaDA-8B-Instruct for language modeling.

1 INTRODUCTION

Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) have
emerged as a powerful tool for modeling distributions and generating samples across an array of
modalities such as visual contents (Rombach et al., 2021; Saharia et al., 2022; Ho et al., 2022), natural
languages (Nie et al., 2025; Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024), and geometric
structures (Xu et al., 2022; Han et al., 2024b; Hoogeboom et al., 2022b), to name a few. Among
them, discrete diffusion models (Austin et al., 2021; Campbell et al., 2022; Lou et al., 2023; Sahoo
et al., 2024; Shi et al., 2024; Hoogeboom et al., 2022a), those that are in particular grounded on
masked discrete latent variables, have demonstrated remarkable promise for modeling sequence data
in discrete space, achieving superior performance on tasks ranging from DNA sequence design (Wang
et al., 2024; Gosai et al., 2023) and protein inverse folding (Campbell et al., 2024; Wang et al., 2024;
Hsu et al., 2022) to even text generation (Lou et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Zheng
et al., 2023; Gong et al., 2025) and chatbot (Nie et al., 2025; Ye et al., 2025).

Despite the promise, a critical question still remains unrevealed for discrete DMs: How to align
pretrained discrete diffusion models towards a target distribution, usually defined in the presence of
certain reward? Such problem has been of core interest in finetuning modern Large Language Models
(LLMs) (Brown et al., 2020; Achiam et al., 2023; Team et al., 2023), a paradigm usually referred
to as Reinforcement Learning with Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al.,
2020; Ouyang et al., 2022) or preference optimization (Rafailov et al., 2023; Ji et al., 2024). It is vital
in enhancing the applicability of the pretrained model on downstream tasks by biasing its distribution
towards that with higher rewards, e.g., higher enhancer activity for DNA sequence (Wang et al., 2024)
or helpfulness and harmlessness for chatbots (Rafailov et al., 2023; Ji et al., 2024; Bai et al., 2022).

Existing alignment literature is primarily based on the left-to-right autoregressive modeling of
sequences (Rafailov et al., 2023; Han et al., 2024a), and performing preference optimization is
particularly challenging for discrete DMs, which hold the fundamentally different factorization with a
Markov chain of sequence-level discrete random variables through a large number of diffusion steps.
Previous work explored using RL to fine-tune the model, but the inherent discrete representation
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makes it challenging to efficiently backpropagate the gradient to the entire sampling process, with the
reward typically computed upon the final output. Furthermore, this nature also makes it prohibitive to
efficiently compute exact likelihood and evaluate rewards when aligning the joint of latent variables
on the chain, leading to suboptimal performance (Wallace et al., 2024; Zhu et al., 2025b). The chained
sampling of discrete diffusion also makes online RL (Zhao et al., 2025) computationally exhaustive.

In this work, we propose a principled approach for preference optimization of discrete diffusion
models via stepwise decomposition. Our key innovation is to decompose the alignment of the entire
diffusion trajectory pθ(x0:T ) into a set of subproblems, each of which is responsible for aligning the
per-step factorized approximation of the posterior p̂θ(x0|xt), where x0 is clean sequence and xt is
the latent variable at diffusion step t. Our stepwise decomposition takes the advantage of leveraging
p̂θ(x0|xt) as the per-step alignment target, thus enabling both efficient and accurate likelihood
computation and reward evaluation defined on clean sequence x0. Furthermore, we also theoretically
reveal a novel connection between our stepwise decomposition alignment and the original problem
by showing that the optimally aligned posteriors p̂∗(x0|xt) induce a joint p∗(x0:T ) that is also an
optimal solution of the diffusion trajectory alignment objective, when the reward of the trajectory
takes an additive factorization over certain stepwise reward. In addition, we also develop a general
form to align the stepwise posterior p̂θ(x0|xt) that works with arbitrary reward models, as opposed to
previous preference optimization approaches (Rafailov et al., 2023; Wallace et al., 2024) specifically
tailored under certain simplified reward such as the Bradley-Terry model (Bradley & Terry, 1952).

Contributions. To sum up, we propose stepwise decomposition preference optimization (SDPO)
for offline finetuning of discrete diffusion models, with the following detailed contributions. 1. We
decompose the diffusion trajectory alignment problem into a set of subproblems that align the posterior
p̂θ(x0|xt) for each diffusion step, allowing for efficient and exact likelihood and reward evaluation.
2. We theoretically demonstrate the equivalence of SDPO and diffusion trajectory alignment through
the bridge of certain stepwise reward. 3. We derive a general loss function that jointly optimizes the
stepwise alignment problems under arbitrary reward functions. 4. We conduct extensive experimental
evaluations on three different tasks, namely DNA sequence design, protein inverse folding, and
language modeling. Our approach exhibits consistent enhancements, outperforming baselines by
a significant margin across all benchmarks. Notably, we obtain a remarkable 12% gain in terms
of predicted activity on the DNA sequence design, compared with the most competitive RL-based
method (Wang et al., 2024; Borso et al., 2025) tailored for finetuning discrete diffusion models.
Moreover, we adopt our approach to LLaDA-8B-Instruct (Nie et al., 2025), which further enhances
GSM8K 5-shot score from 78.6 to 81.2, further demonstrating its promise as large language models.

2 RELATED WORK

Discrete diffusion models. Discrete diffusion models, originally formulated in Austin et al. (2021);
Campbell et al. (2022); Hoogeboom et al. (2022a) and further extended by Lou et al. (2023); Sahoo
et al. (2024); Shi et al. (2024); Zhao et al. (2024), have attracted growing interest in particular for
modeling sequence data. Different from autoregressive models (Brown et al., 2020; Achiam et al.,
2023; Team et al., 2023), discrete diffusion models relax from the inherent left-to-right causal ordering,
allowing for more flexible modeling and parallel decoding (Xu et al., 2025; Zheng et al., 2025).
They have achieved remarkable performance on various tasks, ranging from biological sequence
design (Wang et al., 2024; Campbell et al., 2024) to human natural language modeling (Arriola et al.,
2025; Nie et al., 2025; Ye et al., 2025; Zheng et al., 2023). Despite the promise, how to perform
preference optimization on pretrained discrete diffusion models to align with certain reward still
remains a challenge, which we aim to address in this work.

Preference optimization for language models. Aligning language models with certain reward is a
core problem to enhance their utility (Ouyang et al., 2022). Initial approaches under the paradigm of
RLHF (Ouyang et al., 2022; Christiano et al., 2017) that employ RL-based algorithms (Schulman et al.,
2017) for alignment have been proposed and successfully adopted. Direct preference optimization
(DPO) (Rafailov et al., 2023) and subsequent works (Ethayarajh et al., 2024; Meng et al., 2024; Han
et al., 2024a; Ji et al., 2024; Lai et al., 2024) leverage pairwise or ranking-based preference dataset to
perform offline optimization that further address the optimization instability and complexity. Whilst
much progress have been made, they are developed upon autoregressive language models, while we
instead focus on discrete diffusion models with a substantially different probabilistic factorization.
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Diffusion alignment. Preference optimization has also been explored for diffusion models. The
pioneer attempt of Wallace et al. (2024); Yang et al. (2024) extend DPO to Gaussian diffusion and
is able to promote image quality. Li et al. (2024); Gu et al. (2024) further improve the performance
by employing different human preference modeling while Zhu et al. (2025b) proposes to align the
score function. There are also works that resort to RL (Fan et al., 2023; Black et al., 2024) or
directly backpropagating through differentiable reward (Clark et al., 2024; Prabhudesai et al., 2024).
Differently, we develop a principled objective for discrete diffusion which pose unique challenges due
to the discrete nature. Wang et al. (2024) approaches this problem through RL by backpropagating the
gradient via the Gumbel trick, which leads to optimization overhead. Recent works also derive under
pairwise preference based on DPO (Borso et al., 2025; Zhu et al., 2025a), resort to online sampling
and verification (Zhao et al., 2025; Yang et al., 2025), or perform optimization through posterior
matching (Rector-Brooks et al., 2025). Besides these training-based approaches, inference-time
guidance has also been explored for discrete diffusion to align sampling distributions. Nisonoff et al.
(2024) adapts classifier-guidance (Ho & Salimans, 2022) to discrete diffusion, while sequential Monte
Carlo (SMC)-based approaches (Wu et al., 2023; Phillips et al., 2024; Dou & Song, 2024) have also
been introduced for more effective guidance. However, these guidance-based methods usually induce
much higher sampling cost and easily suffer from suboptimal performance when the guidance signal
is insufficient. Critically, our approach instead offers a generalized optimization objective, does not
require online sampling at each iteration, and demonstrates enhanced performance.

3 PRELIMINARIES

Discrete diffusion models. Discrete diffusion models (Austin et al., 2021; Lou et al., 2023; Sahoo
et al., 2024; Shi et al., 2024) are a family of diffusion models with the latent variables residing in
the discrete space X with dimensionality m. With input data point x0, discrete diffusion features a
forward diffusion process in the form of Markov chain q(xt|x0) with

q(xt|x0) := Cat (xt;αtx0 + (1− αt)π) , (1)

where π is the vectorized representation of certain prior distribution Cat (·;π), and αt, usually
referred to as the noise schedule, is a decreasing function w.r.t. t satisfying that α0 = 1 and
αT = 0. The transition for any two timesteps 0 ≤ s ≤ t ≤ T that induces q(xt|x0) is specified as
q(xt|xs) = Cat

(
xt;αt|sxs + (1− αt|s)π

)
where αt|s = αt/αs.

Masked discrete diffusion models. Masked discrete diffusion models (Sahoo et al., 2024; Shi et al.,
2024; Lou et al., 2023; Austin et al., 2021) are discrete diffusion models when the prior π is in
particular instantiated as the absorbing state m := [0, · · · , 0, 1] where the last entry in m corresponds
to a special MASK token. The posterior has a simplified form (Sahoo et al., 2024; Shi et al., 2024):

q(xs|xt,x0) =

{
Cat(xs;xt) xt ̸= m,

Cat
(
xs;

αs−αt

1−αt
x0 +

1−αs

1−αt
m
)

xt = m.
(2)

The reversal pθ(xs|xt) is then parameterized by a neural network fθ(xt, t) that predicts x0 in Eq. 2,
which is optimized to approximate the posterior by minimizing the negative evidence lower bound
− log p(x0) ≤ LNELBO := Eq(xt|x0)

∑t=T
t=1

αt−αt−1

1−αt
log
(
x⊤
0 · fθ(xt, t)

)
.

Reinforcement learning with human feedback. At alignment stage, a pretrained model pθ(x|c)
is finetuned to maximize certain reward r(x, c) subject to a Kullback–Leibler (KL) divergence
regularization w.r.t. the reference model pref(x|c), leading to the following objective:

max
pθ

Ex,c [r(x, c)]− βDKL [pθ(x|c)∥pref(x|c)] , (3)

where c is some context such as a prompt and β is the balancing factor. The choice of the reward
model can be arbitrary, such as human or LLM-assisted preference labels (Ouyang et al., 2022;
Rafailov et al., 2023), or the predicted activity of the designed DNA sequence (Wang et al., 2024).
This KL-constrained optimization problem has the optimal solution (Peters & Schaal, 2007)

p∗(x|c) = 1

Z(c)
pref(x|c) exp

(
1

β
r(x, c)

)
, (4)

where Z(c) =
∑

x pref(x|c) exp
(

1
β r(x, c)

)
is the partition function that is intractable to evaluate.
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Problem formulation. In this work, we aim to develop an efficient offline alignment approach for
discrete diffusion models. Specifically, the algorithm directly operates on a pre-collected dataset
D = {(x0, c, r(x0, c))} on clean data x0 without relying on on-policy generations during finetuning.

4 METHOD

In this section, we detail our approach for aligning discrete diffusion models through stepwise
optimization. In § 4.1, we first revisit the problem of discrete diffusion alignment and investigate
the challenges. In § 4.2, we propose a novel stepwise decomposition approach for discrete diffusion
alignment. In § 4.3, we introduce a principled way to solve the stepwise alignment objective through
distribution matching. We offer additional in-depth analyses and discussions in § 4.4.

4.1 ALIGNING DISCRETE DIFFUSION MODELS

Different from autoregressive models that can evaluate pθ(x|c) efficiently in a single forward pass,
discrete diffusion models are grounded on a chain of random variables x0:T := [x0,x1, · · · ,xT ],
where the joint satisfies the Markovian factorization pθ(x0:T |c) = pθ(xT |c)

∏T
t=1 pθ(xt−1|xt, c).

The alignment objective in Eq. 3 is therefore extended to the entire chain (Wallace et al., 2024):

max
pθ

Epθ(x0:T |c),c [r̂(x0:T , c)]− βDKL [pθ(x0:T |c)∥pref(x0:T |c)] , (5)

where the reward r̂(x0:T , c) now considers the whole chain x0:T . We hence refer to the optimization
problem of Eq. 5 as diffusion trajectory optimization. Akin to Eq. 4, the optimal solution is

p∗(x0:T |c) =
1

Z(c)
pref(x0:T |c) exp

(
1

β
r̂(x0:T , c)

)
. (6)

However, the optimization problem in Eq. 5 poses several challenges. First, the expectation is taken
over the entire chain pθ(x0:T ), making it computationally expensive to estimate. Moreover, the
definition of the reward r̂(x0:T , c) requires reconsideration as it is supposed to operate on the entire
chain, while empirical rewards r(x0, c), e.g., human preference (Rafailov et al., 2023) or DNA
activity (Wang et al., 2024), are most commonly defined on the clean sequence x0. We will introduce
our stepwise decomposition approach that offers a simplified and tractable measure to solve Eq. 5.

4.2 DIFFUSION TRAJECTORY OPTIMIZATION THROUGH STEPWISE DECOMPOSITION

We propose a principled way to solve the problem by decomposing the trajectory optimization into a
set of subproblems, each of which corresponds to a stepwise alignment objective for the factorized
approximation of the posterior p̂θ(x0|xt, c) :=

∏L
i=1 p̂θ(x

(i)
0 |xt, c) (Shi et al., 2024; Austin et al.,

2021) at diffusion step 1 ≤ t ≤ T (see Fig. 1), where i is the token index and L is the sequence
length. To be specific, the set of subproblems is

max
p̂θ

Ep̂θ(x0|xt,c),c [r(x0, c)]− βtDKL [p̂θ(x0|xt, c)∥p̂ref(x0|xt, c)] , ∀1 ≤ t ≤ T, (7)

Figure 1: The flowchart of our SDPO.

where βt = β/w(t) is the stepwise regularization
reweighted by certain scheduler w(t). The optimal
solutions can be similarly derived as p̂∗(x0|xt, c) =

1
Z(c) p̂ref(x0|xt, c) exp

(
1
βt
r(x0, c)

)
for any t.

Such a formulation enjoys several unique benefits
compared with the trajectory alignment objective in
Eq. 5. First, the expectation over the entire chain
pθ(x0:T |c) has been decomposed into the stepwise
posterior p̂θ(x0|xt, c), which can be computed both
tractably and efficiently for discrete diffusion models.
Furthermore, by grounding on the clean data x0 in-
stead of intermediate latent variables xt, we can readily reuse the reward model r(x0, c) without
resorting to its biased estimates (Lu et al., 2023; Chen et al., 2024). More interestingly, we reveal a
critical connection between the stepwise decomposition alignment objective (Eq. 7) and the trajectory
optimization objective (Eq. 5), as stated in the theorem below:
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Theorem 4.1. The joint p∗(x0:T |c) induced by the optimal solutions {p̂∗(x0|xt, c)}Tt=1 of Eq. 7
is also the optimal solution of the trajectory alignment objective in Eq. 5, with the chain reward

r̂(x0:T , c) = β
∑T

t=1 rt(xt−1;xt, c) where rt(xt−1;xt, c) = log
Ep′

ref
(x0|xt−1,xt,c)

[exp( 1
βt

r(x0,c))]
Epref (x0|xt,c)[exp(

1
βt

r(x0,c))]
.

Proof is in Appendix A.1. Here p′ref(x0|xt−1,xt, c) :=
p̂ref (x0|xt)q(xt−1|x0,xt)

pref (xt−1|xt)
is the posterior of x0

w.r.t. a specific choice of xt−1, given xt. In the case of masked diffusion models, the posterior refers
to the factorized conditional p̂ref(x0|xt, c) constrained on the set of all possible x0 that share the
same decoded tokens with xt−1. Theorem 4.1 endorses our key finding that the intractable trajectory
optimization can be alternatively approached by jointly optimizing the stepwise alignment objectives,
under which the reward of the chain r̂(x0:T , c) is effectively an additive factorization of the stepwise
reward rt(xt−1;xt, c). More interestingly, the stepwise reward also has intuitive implications. At
each diffusion step t with the sampled xt, the denominator inside log is a constant and rt is therefore
distinguished fully by the numerator, a term that effectively assigns higher reward to those xt−1 who
are more likely to be obtained from the x0 with higher reward r(x0, c). Furthermore, the stepwise
rewards also serve as more fine-grained supervision that enables tractable alignment of each diffusion
step, while previous works that operate fully on the trajectory-level confer no per-step guarantee.

4.3 GENERALIZED STEPWISE ALIGNMENT THROUGH DISTRIBUTION MATCHING

While the stepwise decomposition has introduced clear benefits, it is still yet unclear how to optimize
p̂θ(x0|xt, c) towards the optimal solution p̂∗(x0|xt, c), particularly under arbitrary reward r(x0, c).
To this end, existing works seek to directly backpropagate the gradient from the reward model (Wang
et al., 2024), which inevitably incurs optimization overhead and instability, or to simplify the reward
into tractable forms such as the Bradley-Terry model (Wallace et al., 2024), which imposes additional
constraints. Differently, we propose to perform optimization based on the following objective:

Lt(θ) := Ext,c [DKL [p̃r(x0|xt, c)∥p̃θ(x0|xt, c)]] , (8)
where p̃r(x0|xt, c) ∝ p̂ref(x0|xt, c) exp(r(x0, c)) is the Boltzmann policy (Laidlaw & Dragan,
2022; Peters & Schaal, 2007) induced by the reward then reweighted by pref , while p̃θ(x0|xt, c) ∝
p̂ref(x0|xt, c)

(1−βt)p̂θ(x0|xt, c)
βt is similarly the reweighted model policy. The rationale of Eq. 8

lies in that the minimizer of this KL-divergence distribution matching (Han et al., 2024a; Ji et al.,
2024) problem is also the optimal solution of stepwise alignment (proof in Appendix. A.2):
Proposition 4.2. Let θ∗ = argminLt(θ) defined in Eq. 8. Then p̂θ∗(x0|xt, c) = p̂∗(x0|xt, c), the
optimal solution of the stepwise alignment objective in Eq. 7.

Besides the guaranteed equivalence of the optimal solution, the definition of p̃r also enables impor-
tance sampling by using pref as the proposal distribution, from which the offline preference datasets
are drawn. Expanding Eq. 8 with importance sampling (see Appendix. A.3), we have

Lt(θ) = −Ec,p̂ref (x0,xt|c)

[
exp(r(x0, c))

Zr(c)
log

exp(rθ(x0,xt, c, βt))

Zt
θ(xt, c, βt)

]
+ C, (9)

where rθ(x0,xt, c, βt) = βt (log p̂θ(x0|xt, c)− log p̂ref(x0|xt, c)) refers to the implicit re-
ward (Rafailov et al., 2023; Cui et al., 2025), Zr(c) = Epref (x0|c) exp(r(x0, c)) and Zt

θ(xt, c, βt) =

Ep̂ref (x0|xt,c) exp(rθ(x0,x
(i)
t , c, βt)) are the partition functions, and C is a constant irrelevant to θ .

Empirical form. We leverage Monte-Carlo to estimate Lt as well as the partitions using N samples
{(x(i)

0 ,x
(i)
t , c)}Ni=1 drawn from pref(x0,xt|c) for each c. In form, we employ

L̃N
t (θ) = −Ec

N∑
i=1

(
exp(r(x

(i)
0 , c))∑N

j=1 exp(r(x
(j)
0 , c))

· log exp(r̃θ(x
(i)
0 ,x

(i)
t , c, βt))∑N

j=1 exp(r̃θ(x
(j)
0 ,x

(j)
t , c, βt))

)
. (10)

Eq. 10 takes the form of cross-entropy loss (Ji et al., 2024; Lu et al., 2023) between the self-
normalized Boltzmann policies induced by r(x0, c) and r̃θ(x0,xt, c, βt). As N → ∞, the estimate
for the policy of r becomes unbiased, while an unbiased estimate of Zt

θ requires extensive sampling
from the posterior p̂ref(x0|xt, c) for each xt, which is highly prohibitive in the offline alignment
setup. In practice we still favor the simplified MC estimate in Eq. 10 which is efficient and performant.
We henceforth employ L̃N

t (θ) to solve each subproblem of Eq. 7. For the sample size N , we view it
as a hyperparameter that trades off between efficiency and bias, depending on the task and dataset.
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4.4 OVERALL OBJECTIVE

Since the final objective (Eq. 7) requires to jointly optimize for the subproblems across all diffusion
steps, at each iteration we randomly select a batch of diffusion steps, and optimize the corresponding
LN
t as per Eq. 10. Furthermore, since in offline settings the intermediate samples xt are not preserved,

we instead keep track of the clean samples x0 obtained from pref while approaching the corresponding
xt via the forward process q(xt|x0) at each training step. Putting all together we obtain our final loss

L(θ) = −Et,c,x0,q(xt|x0)

N∑
i=1

(
exp(r(x

(i)
0 , c))∑N

j=1 exp(r(x
(j)
0 , c))

· log exp(r̃θ(x
(i)
0 ,x

(i)
t , c, βt))∑N

j=1 exp(r̃θ(x
(j)
0 ,x

(j)
t , c, βt))

)
,

(11)

where r̃θ, by further leveraging the reversal factorized parameterization of masked diffusion mod-
els (Shi et al., 2024; Sahoo et al., 2024) and the definition βt = β/w(t), takes the following form:

r̃θ(x0,xt, c, βt) = β

(
log(x⊤

0 fθ(xt, t, c))

w(t)
− log(x⊤

0 fref(xt, t, c))

w(t)

)
. (12)

We note that our method applies to general discrete diffusion, but we choose to focus specifically on
the masked variant. Our final loss has several implications, which we will analyze below.

Pairwise preference data. Our loss possesses a generalized form w.r.t. the reward model r(x0, c)
and N , i.e., the number of samples for each context or prompt c. In particular, it subsumes the setting
in DPO where each prompt is provided with a pair of winning and losing completions (x(w)

0 ,x
(l)
0 ),

by setting N = 2 and leveraging Bradley-Terry (BT) model as the reward, i.e., r(x(w)
0 , c) = 0 and

r(x
(l)
0 , c) = −∞. We provide detailed derivations of our loss in this special case in Appendix A.4.

The role of w(t). The coefficient w(t) is initially introduced as the weight for the per-step reward
r̂t. Interestingly, from Eq. 12 we can also interpret w(t) as a factor that controls the scale of
log(x⊤

0 f(xt, t)), which is correlated to the number of masked tokens at step t. Therefore we set
w(t) = 1− αt to amortize the loss to each token, and empirically find this choice effective.

The role of β. Eq. 5 reveals that β controls the strength of the KL regularization w.r.t. the reference
distribution, which is also widely reflected in literature (Rafailov et al., 2023; Wallace et al., 2024).

Iterative labeling. Empirically we have also explored a variant of our approach that updates the
dataset with samples from the latest model and their corresponding rewards. We find this iterative
labeling generally favorable since more useful rewards are progressively provided for samples of
higher quality, as the training proceeds. We defer detailed justifications to § 5.4.

5 EXPERIMENTS

In this section, we perform empirical investigations of our approach on a wide suite of tasks and
benchmarks, including DNA sequence design (§ 5.1), protein inverse folding (§ 5.2), and language
modeling (§. 5.3). We provide ablation studies in § 5.4.

5.1 DNA SEQUENCE DESIGN

We aim to finetune our model to unconditionally generate DNA sequences that trigger gene expression
in targeted cell types. This is a task commonly seen in cell and gene therapy (Taskiran et al., 2024).

Experiment setup. We use a publicly available dataset (Gosai et al., 2023) that contains the measured
enhancer activity in ∼ 700k DNA sequences, each 200 base-pairs in length. Cell line activity is
measured for each sequence, quantified with massively parallel reporter assays (MPRAs) that record
the expression each sequence drives. The pre-trained masked diffusion language model (Sahoo et al.,
2024) is taken from Wang et al. (2024), trained on the entire enhancer dataset. The pre-trained
finetuning and evaluation reward models predict the HepG2 cell line activity in a sequence, also taken
from Wang et al. (2024) and trained on different splits of the dataset.

Baselines. We compare with the following baselines. Pretrained: the base pre-trained model (no
finetuning). Guidance methods: classifier guidance (CG) (Nisonoff et al., 2024), classifier-free
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Table 1: Model performance on DNA sequence design. Our approach generates sequences with
high activity measured by Pred-Activity and ATAC-Acc, while being natural-like by high 3-mer
and JASPAR correlations and likelihood. Results averaged across 3 random seeds with standard
deviations in parentheses. Numbers of baselines are taken from Wang et al. (2024).

Pred-Activity (med) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ JASPAR Corr ↑ App-Log-Lik (med) ↑ Entropy (med) ↑
Pretrained (Sahoo et al., 2024) 0.17 (0.04) 1.5 (0.2) -0.061 (0.034) 0.249 (0.015) -261 (0.6) 390 (6.2)
CG (Nisonoff et al., 2024) 3.30 (0.00) 0.0 (0.0) -0.065 (0.001) 0.212 (0.035) -266 (0.6) 12 (4.1)
SMC (Wu et al., 2023) 4.15 (0.33) 39.9 (8.7) 0.840 (0.045) 0.756 (0.068) -259 (2.5) 351 (6.5)
TDS (Wu et al., 2023) 4.64 (0.21) 45.3 (16.4) 0.848 (0.008) 0.846 (0.044) -257 (1.5) 340 (5.4)
CFG (Ho & Salimans, 2022) 5.04 (0.06) 92.1 (0.9) 0.746 (0.001) 0.864 (0.011) -265 (0.6) 363 (6.1)
D2-DPO (Borso et al., 2025) 2.97 (0.03) 35.6 (0.9) 0.944 (0.002) 0.883 (0.005) -252 (0.4) 362 (4.9)
VRPO (Zhu et al., 2025a) 4.60 (0.01) 15.8 (0.2) 0.838 (0.002) 0.865 (0.005) -255 (0.8) 289 (13.5)
DDPP-IS (Rector-Brooks et al., 2025) 4.07 (0.02) 50.0 (0.3) 0.711 (0.001) 0.723 (0.004) -253 (0.9) 378 (5.8)
DRAKES (Wang et al., 2024) 5.61 (0.07) 92.5 (0.6) 0.887 (0.002) 0.911 (0.002) -264 (0.6) 375 (5.2)
diffu-GRPO (Zhao et al., 2025) 5.86 (0.04) 33.0 (0.8) 0.783 (0.001) 0.903 (0.004) -245 (0.4) 310 (8.6)

SDPO 6.30 (0.003) 94.8 (0.01) 0.900 (0.003) 0.936 (0.003) -246 (0.5) 365 (4.4)

guidance (CFG) (Ho & Salimans, 2022) and two Sequential Monte Carlo-based methods (Wu et al.,
2023), namely SMC, where the proposal is the pretrained model, and TDS, where the proposal is
CG. D2-DPO (Borso et al., 2025) and VRPO (Zhu et al., 2025a): offline preference optimization
algorithms that adapt DPO to discrete diffusion. DRAKES (Wang et al., 2024): an online RL
algorithm that backpropagates the reward through the generated trajectory with Gumbel-Softmax.
diffu-GRPO (Zhao et al., 2025): a policy gradient-based approach for discrete diffusion. DDPP-
IS (Rector-Brooks et al., 2025): an importance sampling method to match the reward-tilted posterior.

Metrics. We use the metrics following the protocol in Wang et al. (2024) to evaluate the model’s
enhancer generation. 1. Pred-Activity. The enhancer activity level in the HepG2 cell line is predicted
by the evaluation reward model, trained on a held out evaluation set. 2. ATAC-Acc. We measure
the proportion of generated sequences with high chromatin accessibility. This metric is typically
correlated with the enhancer activity. 3. 3-mer Corr. We compute the 3-mer Pearson correlation
between the generated sequences and the sequences from the enhancer dataset with the top 0.1%
HepG2 activity. More natural, in-distribution sequences tend to have higher 3-mer Pearson correlation
values. 4. JASPAR-Corr. We compute potential transcription factor binding motifs in the generated
sequences with JASPAR transcription factor binding profiles (Castro-Mondragon et al., 2022), and
calculate the Spearman correlation of motif frequency between the generated samples and the top
0.1% sequences in the dataset with the highest activity. 5. App-Log-Lik. The approximated log-
likelihood of the generated sequences is computed with respect to the pre-trained model using the
discrete diffusion ELBO presented in Sahoo et al. (2024). This metric evaluates the naturalness of the
generations, as samples that over-optimize for the reward model tend to have worse log-likelihoods. 6.
Entropy. Sequence entropy is computed following Wang et al. (2024) to measure the sample diversity.

Results. Our method generates sequences that are both natural-like and have high predicted enhancer
activity. Notably, we are able to significantly outperform all previous baselines in the predicted HepG2
activity, while also achieving strong 3-mer Pearson and JASPAR correlation numbers, demonstrating
our method’s robustness to over-optimizing for the reward model. In particular, we outperform the
RL-based approach DRAKES by a significant margin of 12.3% in terms of predicted activity. The
ATAC accuracy, another metric correlated with HepG2 activity, provides further validation of the high
quality of our generated samples, as we see that other baselines, such as the SMC-based methods,
may achieve relatively higher predicted enhancer activity but suffer poor ATAC accuracy numbers.

Training efficiency. Besides the superior performance, another feature that worth highlighting for
SDPO is its training efficiency, since it does not require on-policy sampling at each training iteration.
We report the average wallclock time per training step, where DRAKES takes 6.02 sec, diffu-GRPO
takes 1.51 sec, and SDPO only takes 0.77 sec, which verifies the superior training efficiency of SDPO.

5.2 PROTEIN INVERSE FOLDING

For the protein inverse folding task, we finetune a pre-trained model that predicts the protein sequence
from a 3D structure. We aim to optimize the stability of the protein sequences.

Experiment setup. The pre-trained diffusion model uses the ProteinMPNN (Dauparas et al., 2022)
architecture and is trained using the methodology from (Campbell et al., 2024) on the PDB training
dataset from Dauparas et al. (2022). The finetuning and evaluation reward models are trained on
different splits of the Megascale (Tsuboyama et al., 2023) dataset. We take all checkpoints directly
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Table 2: Model performance on inverse protein folding. Our approach generates protein sequences
with high stability and desired structure. Results averaged across 3 random seeds with standard
deviations in parentheses. Numbers of baselines are taken from Wang et al. (2024).

Pred-ddG (med) ↑ %(ddG> 0) (%) ↑ scRMSD (med) ↓ %(scRMSD< 2)(%) ↑ Success Rate (%) ↑ Entropy (med) ↑
Pretrained (Campbell et al., 2024) -0.544 (0.037) 36.6 (1.0) 0.849 (0.013) 90.9 (0.6) 34.4 (0.5) 35.2 (8.1)
CG (Nisonoff et al., 2024) -0.561 (0.045) 36.9 (1.1) 0.839 (0.012) 90.9 (0.6) 34.7 (0.9) 34.6 (7.1)
SMC (Wu et al., 2023) 0.659 (0.044) 68.5 (3.1) 0.841 (0.006) 93.8 (0.4) 63.6 (4.0) 24.9 (6.9)
TDS (Wu et al., 2023) 0.674 (0.086) 68.2 (2.4) 0.834 (0.001) 94.4 (1.2) 62.9 (2.8) 24.9 (7.2)
CFG (Ho & Salimans, 2022) -1.186 (0.035) 11.0 (0.4) 3.146 (0.062) 29.4 (1.0) 1.3 (0.4) 8.4 (5.9)
D2-DPO (Borso et al., 2025) 0.500 (0.051) 66.4 (0.3) 0.909 (0.005) 93.6 (0.8) 61.0 (0.5) 41.7 (7.4)
VRPO (Zhu et al., 2025a) 0.548 (0.032) 61.1 (0.1) 0.883 (0.004) 93.5 (0.7) 56.6 (0.3) 39.1 (9.3)
DDPD-IS (Zhu et al., 2025a) -0.130 (0.047) 46.7 (0.8) 0.829 (0.008) 89.3 (0.6) 43.3 (0.5) 24.3 (7.6)
DRAKES (Wang et al., 2024) 1.095 (0.026) 86.4 (0.2) 0.918 (0.006) 91.8 (0.5) 78.6 (0.7) 33.3 (6.4)
diffu-GRPO (Zhao et al., 2025) 1.286 (0.021) 76.8 (0.3) 1.192 (0.005) 57.1 (0.8) 37.2 (1.4) 40.0 (7.8)

SDPO 1.400 (0.014) 87.1 (0.01) 0.938 (0.005) 88.9 (0.3) 75.5 (0.3) 42.3 (6.5)

from Wang et al. (2024). For finetuning our model, we use the curated Megascale training dataset
from Wang et al. (2024), which consists of ∼500k sequences with stability measurements.

Metrics. We use the following metrics (Wang et al., 2024) to evaluate the stability and naturalness of
the generated protein sequences. 1. Pred-ddG. The evaluation reward model predicts the ddG (change
in Gibbs free energy) of a sequence, which is a measure of the sequence’s stability. The finetuning
dataset does not overlap with the evaluation dataset, so the model does not train on proteins used for
evaluation. 2. scRMSD. The self-consistency root mean square deviation (scRMSD) measures the
ability of a sequence to fold into the desired structure. We use the pre-trained ESMFold (Lin et al.,
2023) model to compute the RMSD between the sequence’s predicted 3D structure and the original
backbone structure. 3. Success rate. We compute the success rate as the proportion of generated
sequences with Pred-ddG > 0 and scRMSD < 2. 4. Entropy. The sequence entropy is computed to
measure the sample diversity.

Results. Our method is able to generate sequences with high stability that still remain in-distribution.
We significantly outperform all baselines in the predicted ddG for stability, showing strong reward
optimization ability, while still producing natural-like samples with scRMSD values and overall
success rate comparable to the state-of-the-art DRAKES method. The policy-gradient based method
diffu-GRPO exhibits significant reward over-optimization with severe drop in metrics like Success
Rate. Notably, the inverse folding problem is particularly difficult due to lack of labeled data in the
curated Megascale dataset (only several hundred distinct 3D structure backbones). During evaluation,
the model conditions on new backbone configurations not seen during training. Thus, our method is
still able to generate high reward samples without over-optimizing in a limited-data setting.

5.3 LANGUAGE MODELING

Crucially, we also apply our approach to a large-scale discrete diffusion for natural language modeling,
demonstrating its efficacy towards preference optimization of large language diffusion models.

Experiment setup. We employ LLaDA-8B-Instruct (Nie et al., 2025), a large-scale instruction-
tuned chat model based on the masked diffusion framework, as the reference model. We use
UltraFeedback (Cui et al., 2023) dataset annotated by Meng et al. (2024) as the preference dataset,
and finetune the model on 8 Nvidia A100 GPUs. Detailed hyperparameters are deferred to Appendix.

Table 3: Results on finetuning LLaDA-8B-
Instruct using dataset from Cui et al. (2023).

Instruct D2-DPO diffu-GRPO SDPO

Alpaca- LC (%) 10.6 12.1 12.6 14.2
Eval 2.0 WR (%) 6.8 7.5 7.8 8.7

GSM8K 78.6 78.1 80.5 81.2
IFEval 52.9 53.8 53.5 55.1

Benchmarks and metrics. We compare our
finetuned model against the reference model on
three important language model benchmarks. 1.
GSM8K (Cobbe et al., 2021), which benchmarks
the math and reasoning capability of the model on
graduate school math problems. The metric is the
average accuracy of the answers. 2. IFEval (Zhou
et al., 2023), which measures the model’s capabil-
ity of following human natural language instruc-
tions. We report IFEval score, the average of prompt and instruction-level strict-accuracy. 3.
AlpacaEval 2.0 (Li et al., 2023; Dubois et al., 2024) that evaluates the chat response quality by
comparing against certain baseline model on a suite of prompts. The metrics on this benchmark are
the winrate (WR) and length-controlled (LC) winrate against GPT-4-Preview-1106.

Results. The benchmark results are presented in Table 3. By finetuning LLaDA-8B-Instruct using our
proposed SDPO, we observe a consistent and remarkable enhancement across all three benchmarks,
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Figure 2: Ablation studies of β in (a) DNA design, and (b) protein inverse folding experiment.

which underscores the efficacy of SDPO towards promoting the capability of mathematical reasoning,
instruction following, and chat quality of the discrete diffusion language model. Notably, our approach
improves GSM8K score from 78.6 to 81.2, surpassing the score of LLaMA-3-8B post-trained with RL
(c.f. Nie et al. (2025)). Furthermore, we obtain a relative improvement of 30.9% averaged across LC
and WR on AlpacaEval 2.0 benchmark, demonstrating the applicability of SDPO for building helpful
discrete diffusion-based chatbot. Our results on language modeling tasks open up new possibility
towards building performant large language diffusion models through preference optimization.

5.4 ABLATION STUDY

The effect of β. We study the effect of β in aligning models. As shown in Eq. 6, choosing a smaller
β generally increases the weight of the reward function and tunes the model further away from the
pretrained reference distribution. We verify this by two ablation studies on DNA sequence design and
protein inverse folding, fixing all hyperparameters except β. Fig. 2 shows that a lower β value results
in stronger reward guidance, resulting in greater Pred-Activity for DNA design, and greater Pred-ddG
values for protein inverse folding. Conversely, a larger β poses more regularization to the model and
thus the reward remains closer to the pretrained reference model. However, choosing too small a β
may also steer the model too far away from the reference model and result in unnatural sequences. As
shown in Fig. 2(a), the ATAC-Acc of the generated DNA sequences decreases as we over-optimizes
Pred-Activity with a small β, despite their being positively correlated for natural DNA sequences.

Table 4: Effect of sample size N in
the inverse protein folding task.

N Pred-ddG Positive Reward Prop.

2 0.529 0.624
10 0.924 0.749
25 1.119 0.759

100 1.061 0.765

The effect of N . We first investigate the effect of the sample
size N . The results in protein inverse folding task without any
iterative labeling are presented in Table 4. Notably, we observe
that as the value of N gradually increases, we effectively
reduces the variance in Monte-Carlo estimate performed by
Eq. 11, which is further supported by the increasing trend
in Pred-ddG. In particular, compared with N = 2 which
reflects the pairwise preference data setting adopted in DPO,
leveraging a comparatively larger N is more beneficial. The performance plateaus as N further
increases from 25 to 100, which is empirically not as favorable due to the memory overhead incurred.
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Figure 3: Ablation study of iterative labeling.

Iterative labeling. In § 4.4 we additionally intro-
duce a variant of our SDPO that leverages iterative
labeling to enhance performance. Specifically, during
training we iteratively generate 10,000 samples from
the model and label them using the reward model in
the DNA experiment. We then optimize the model
on these labeled samples using the same objective.
We demonstrate the advantage of such an approach
in Fig. 3. Compared with the baseline that does not
scale up the labeling on latest samples but always on
samples from the original model, we observe consis-
tent increment over 2 rounds of iterative labeling. In
particular, the predicted DNA activity improves by
a significant margin for SDPO with iterative labeling while the counterpart struggles in predicted
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Figure 4: (a) The reward curve w.r.t. the number of labeled samples throughout training. (b) The
correlation analysis between the induced trajectory reward r̂(x0:T , c) and the clean reward r(x0, c).

activity while also encountering a drop in ATAC accuracy, possibly due to overfitting. Furthermore,
our approach is also remarkably more labeling efficient compared with DRAKES that uses 128,000
additional labeling on the DNA task. The result implies that, on certain tasks when the reward model
is available, performing SDPO in an iterative manner with reward labeling will lead to improved
performance.

Convergence rate comparison. We also perform a systematic head-to-head comparison of the reward
convergence speed in Fig. 4a, where we plot the reward curve w.r.t. the number of labeled samples
throughout the training process. For a fair comparison with the on-policy baselines DRAKES and
diffu-GRPO, we implement a variant of SDPO, i.e., SDPO w/ Full Iter, that performs iterative labeling
after each training step. Notably, our SDPO with full iterative labeling achieves 6.2 Pred-HepG2 using
only 15k labeled samples, while DRAKES and diffu-GRPO only achieve 5.6 and 4.2 Pred-HepG2
with 25k labeled samples. SDPO without iterative labeling also exhibits fast convergence and high
reward efficiency.

Reward correlation analysis. Here we provide more in-depth analysis on the DNA task regarding
the relationship between the reward r̂(x0:T , c) defined in Theorem 4.1 and the original reward
r(x0, c). Specifically, we sample 50 trajectories from the pretrained model, the model after first stage
training, and the final model respectively, leading to 150 trajectories in total {x(i)

0:T }150i=1. For each
trajectory x

(i)
0:T , we evaluate its chain reward r̂(i) = r̂(x

(i)
0:T , c) using an unbiased MC estimator (see

Appendix B.5) and the original reward r(i) = r(x
(i)
0 , c). We then perform linear correlation analysis

for the set of datapoints {(r(i), r̂(i))}150i=1 and show the plot in Fig. 4b. Despite the MC estimation, we
observe a relatively strong positive correlation between the rewards with a Pearson correlation of
0.781. This indicates that the chain reward can be approximately viewed as r̂ ≈ a ·r+ b, which draws
an interesting connection between the reward-tilted distributions: pref(x0:T |c) exp( 1β r̂(x0:T , c)) ≈
pref(x0:T |c) exp( aβ · r(x0, c) +

b
β ) ∝ pref(x0:T |c) exp( 1

β/a · r(x0, c)). Therefore, this empirical
investigation interestingly reveals that our trajectory-level chain reward is an effective surrogate of the
original reward on x0 and, more importantly, our optimal reward-tilted distribution is also a decent
approximation of the original optimal reward-tilted distribution without notable bias introduced.

6 CONCLUSION

We present SDPO for preference optimization of discrete diffusion models by decomposing diffusion
trajectory alignment into a set of subproblems for each diffusion step. Crucially, we propose to align
the posterior p̂θ(x0|xt) for each step and draw an equivalence between the two objectives, with which
we further derive a principled loss function. Experiments on a wide range of tasks including DNA
sequence design, protein inverse folding, and language modeling consistently verify the efficacy
of SDPO, showing its potential towards building performant and applicable discrete diffusion models.
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The appendix is structured as follows.

• In Appendix A, we provide detailed proofs of the theorems presented in the main paper and
additional theoretical derivations.

• In Appendix B, we provide more experiment details and hyperparameters for the experiments
in the paper.

• In Appendix C, we present more experiment results and ablations.

• In Appendix D, we offer discussions on the limitations and broader impact of the proposed
approach.

A PROOFS

A.1 PROOF OF THEOREM 4.1

Theorem 4.1. The joint p∗(x0:T |c) induced by the optimal solutions {p̂∗(x0|xt, c)}Tt=1 of Eq. 7
is also the optimal solution of the trajectory alignment objective in Eq. 5, with the chain reward

r̂(x0:T , c) = β
∑T

t=1 rt(xt−1,xt, c) where rt(xt−1,xt, c) = log
Ep′

ref
(x0|xt−1,xt,c)

[exp( 1
βt

r(x0,c))]
Ep̂ref (x0|xt,c)[exp(

1
βt

r(x0,c))]
.

Proof. Leveraging Eq. 4, the optimal solution for each subproblem in Eq. 7 is given by

p̂∗(x0|xt, c) =
1

Zt(xt, c)
p̂ref(x0|xt, c) exp

(
1

βt
r(x0, c)

)
, ∀1 ≤ t ≤ T, (13)

where Zt(xt, c) =
∑

x0
p̂ref(x0|xt, c) exp

(
1
βt
r(x0, c)

)
= Ep̂ref (x0|xt,c)

[
exp

(
1
βt
r(x0, c)

)]
. The

transition kernels p∗(xt−1|xt, c) induced by the solutions can be derived as

p∗(xt−1|xt, c) =
∑
x0

p̂∗(x0|xt, c)q(xt−1|x0,xt), (14)

=
∑
x0

1

Zt(xt, c)
p̂ref(x0|xt, c) exp

(
1

βt
r(x0, c)

)
q(xt−1|x0,xt), (15)

= pref(xt−1|xt, c)
∑
x0

p̂ref(x0|xt, c)q(xt−1|x0,xt)

Zt(xt, c)pref(xt−1|xt)
exp

(
1

βt
r(x0, c)

)
, (16)

=
1

Zt(xt, c)
pref(xt−1|xt, c)

∑
x0

p̂ref(x0|xt, c)q(xt−1|x0,xt)

pref(xt−1|xt, c)
exp

(
1

βt
r(x0, c)

)
,

(17)

=
1

Zt(xt, c)
pref(xt−1|xt, c)Ep′

ref (x0|xt−1,xt,c)

[
exp

(
1

βt
r(x0, c)

)]
, (18)

where p′ref(x0|xt−1,xt, c) := p̂ref (x0|xt,c)q(xt−1|x0,xt)
pref (xt−1|xt,c)

. Specifically, Eq. 14 holds due to the x0-
parameterization of the transition kernel (see Austin et al. (2021); Shi et al. (2024)). Notably it
is straightforward to verify that p′ref(x0|xt−1,xt, c) is a properly normalized distribution since∑

x0
p′ref(x0|xt−1,xt, c) =

∑
x0

p̂ref (x0|xt,c)q(xt−1|x0,xt)

pref (xt−1|xt,c)
= p(xt−1|xt,c)

p(xt−1|xt,c)
= 1.
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Plugging it back into the Markovian factorization of the reverse process, we arrive at

p∗(x0:T |c) = p(xT )

t=T∏
t=1

p∗(xt−1|xt, c), (19)

= p(xT )

t=T∏
t=1

(
1

Zt(xt, c)
pref(xt−1|xt, c)Ep′

ref (x0|xt−1,xt,c) [r(x0, c)]

)
, (20)

= p(xT )

t=T∏
t=1

pref(xt−1|xt, c)

t=T∏
t=1

Ep′
ref (x0|xt−1,xt,c)

[
exp

(
1
βt
r(x0, c)

)]
Zt(xt, c)

, (21)

= pref(x0:T |c) exp

 T∑
t=1

log
Ep′

ref (x0|xt−1,xt,c)

[
exp

(
1
βt
r(x0, c)

)]
Zt(xt, c)

 , (22)

= pref(x0:T |c) exp

 T∑
t=1

log
Ep′

ref (x0|xt−1,xt,c)

[
exp

(
1
βt
r(x0, c)

)]
Epref (x0|xt,c)

[
exp

(
1
βt
r(x0, c)

)]
 , (23)

= pref(x0:T |c) exp

(
T∑

t=1

rt(xt−1,xt, c)

)
, (24)

= pref(x0:T |c) exp

 1

β
· β

T∑
t=1

rt(xt−1,xt, c)︸ ︷︷ ︸
r̂(x0:T ,c)

 , (25)

where rt(xt−1,xt, c) = log
Ep′

ref
(x0|xt−1,xt,c)

[exp( 1
βt

r(x0,c))]
Ep̂ref (x0|xt,c)[exp(

1
βt

r(x0,c))]
. Eq. 24 directly implies that the induced

distribution p∗(x0:T |c) is the optimal solution of the trajectory alignment objective in Eq. 5 with
r̂(x0:T , c) = β

∑T
t=1 rt(xt−1,xt, c), which concludes the proof.

A.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. Let θ∗ = argminLt(θ) defined in Eq. 8. Then p̂θ∗(x0|xt, c) is the optimal solution
of the stepwise alignment objective in Eq. 7.

Proof. Recall the definition of Lt(θ) in Eq. 8:
Lt(θ) := Ext,c [DKL [p̃r(x0|xt, c)∥p̃θ(x0|xt, c)]] . (26)

Since the KL-divergence is minimized when the two distributions are exactly matched, we have that
the optimal θ∗ satisfies

p̃r(x0|xt, c) = p̃θ∗(x0|xt, c). (27)
By leveraging the definition of p̃r and p̃θ, we have

1

Zr(xt, c)
p̂ref(x0|xt, c) exp(r(x0, c)) =

1

Zθ∗(xt, c)
p̂ref(x0|xt, c)

(1−βt)p̂θ∗(x0|xt, c)
βt , (28)

which simplifies to (
p̂θ∗(x0|xt, c)

p̂ref(x0|xt, c)

)βt

=
Zθ∗(xt, c)

Zr(xt, c)
exp(r(x0, c)), (29)

and finally gives us

p̂θ∗(x0|xt, c) =
1

Z ′(xt, c)
p̂ref(x0|xt, c) exp(

1

βt
r(x0, c)), (30)

where Z ′(xt, c) =
(

Zr(xt,c)
Zθ∗ (xt,c)

)1/βt

. The proof is therefore completed.
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A.3 PROOF OF THE LOSS IN EQ. 8

Here we provide the detailed derivation on how to derive Eq. 8 from Lt(θ) step-by-step.

We start from the definition of Lt(θ) in Eq. 7:

Lt(θ) = Ext,c [DKL [p̃r(x0|xt, c)∥p̃θ(x0|xt, c)]] , (31)

= Ext,c,x0∼p̃r(x0|xt,c)

[
log

(
p̃r(x0|xt, c)

p̃θ(x0|xt, c)

)]
, (32)

= Ec,(x0,xt)∼p̃r(x0,xt|c)

[
log

(
p̃r(x0|xt, c)

p̃θ(x0|xt, c)

)]
, (33)

= Ec,(x0,xt)∼p̂ref (x0,xt|c)

[
p̃r(x0,xt|c)
p̂ref(x0,xt|c)

log

(
p̃r(x0|xt, c)/p̂ref(x0|xt, c)

p̃θ(x0|xt, c)/p̂ref(x0|xt, c)

)]
, (34)

= Ec,(x0,xt)∼p̂ref (x0,xt|c)

[
exp(r(x0, c))

Ep̂ref (x0,xt|c) exp(r(x0, c))
log

(
p̃r(x0|xt, c)/p̂ref(x0|xt, c)

p̃θ(x0|xt, c)/p̂ref(x0|xt, c)

)]
,

(35)

= Ec,(x0,xt)∼p̂ref (x0,xt|c)

[
exp(r(x0, c))

Ep̂ref (x0|c) exp(r(x0, c))
log

(
p̃r(x0|xt, c)/p̂ref(x0|xt, c)

p̃θ(x0|xt, c)/p̂ref(x0|xt, c)

)]
,

(36)

= −Ec,(x0,xt)∼p̂ref (x0,xt|c)

[
exp(r(x0, c))

Zr(c)
log

(
1

Zt
θ(xt, c, βt)

(
pθ(x0|xt, c)

p̂ref(x0|xt, c)

)βt
)]

+ C,

(37)

where the last step extracts the constant C out of the numerator of log since it is irrelevant to θ.

Recalling the definition of the implicit reward, which is given by r̃θ(x0,xt, c, βt) =

βt(log pθ(x0|xt, c) − log p̂ref(x0|xt, c)), we have that
(

p̂θ(x0|xt,c)
p̂ref (x0|xt,c)

)βt

= exp(r̃θ(x0,xt, c, βt)).
Therefore, we can further simplify

Lt(θ) = −Ec,(x0,xt)∼p̂ref (x0,xt|c)

[
exp(r(x0, c))

Zr(c)
log

(
exp(r̃θ(x0,xt, c, βt))

Zt
θ(xt, c, βt)

)]
+ C, (38)

where C is a constant irrelevant to θ and Zr(c) and Zt
θ(xt, c, βt) are the partition functions.

A.4 DERIVATION OF SDPO LOSS IN THE DPO SETTING

Recall our proposed loss function L(θ):

L(θ) = −Et,c,x0,q(xt|x0)

N∑
i=1

(
exp(r(x

(i)
0 , c))∑N

j=1 exp(r(x
(j)
0 , c))

· log exp(r̃θ(x
(i)
0 ,x

(i)
t , c, βt))∑N

j=1 exp(r̃θ(x
(j)
0 ,x

(j)
t , c, βt))

)
,

(39)

with

r̃θ(x0,xt, c, βt) = β

(
log(x⊤

0 fθ(xt, t, c))

w(t)
− log(x⊤

0 fref(xt, t, c))

w(t)

)
. (40)

Here we derive a specific instance of L(θ) in the DPO pairwise preference setting, and draw connec-
tion of it to Wallace et al. (2024).

In particular, in DPO preference pair setting for each context c there are two completions, namely,
N = 2 in our case. Furthermore, one completion is labeled as the preferred (chosen) response
x
(w)
0 and the other as rejected sample x

(l)
0 . Since no explicit real-valued reward on the chosen and

rejected sample is provided, the Bradley-Terry (BT) model (Bradley & Terry, 1952) is adopted, which
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corresponds to, in our case, setting r(x
(w)
0 , c) = 0 and r(x

(l)
0 , c) = −∞. Under this specification,

L(θ) is simplified as

L(θ) = −Et,c,x0,q(xt|x0)[

exp(r(x
(w)
0 , c))

exp(r(x
(w)
0 , c)) + exp(r(x

(l)
0 , c))

· log exp(r̃θ(x
(w)
0 ,x

(w)
t ))

exp(r̃θ(x
(w)
0 ,x

(w)
t )) + exp(r̃θ(x

(l)
0 ,x

(l)
t ))

+
exp(r(x

(l)
0 , c))

exp(r(x
(w)
0 , c)) + exp(r(x

(l)
0 , c))

· log exp(r̃θ(x
(l)
0 ,x

(l)
t ))

exp(r̃θ(x
(w)
0 ,x

(w)
t )) + exp(r̃θ(x

(l)
0 ,x

(l)
t ))

],

= −Et,c,x0,q(xt|x0)

[
1

1 + 0
log

1

1 + exp(r̃θ(x
(l)
0 ,x

(l)
t )− r̃θ(x

(w)
0 ,x

(w)
t ))

+ 0

]
, (41)

= −Et,c,x0,q(xt|x0)

[
log

1

1 + exp(r̃θ(x
(l)
0 ,x

(l)
t )− r̃θ(x

(w)
0 ,x

(w)
t ))

]
, (42)

= −Et,c,x0,q(xt|x0) log σ
(
r̃θ(x

(w)
0 ,x

(w)
t )− r̃θ(x

(l)
0 ,x

(l)
t )
)
, (43)

where r̃θ(x
(w)
0 ,x

(w)
t ) is shorthand for r̃θ(x

(w)
0 ,x

(w)
t , c, βt) and similarly for the losing sample. Eq. 43

underscores an interesting connection of our loss to that of Wallace et al. (2024) specifically in the
DPO setting, since both share the same form of negative logsigmoid over the margin between the
implicit rewards of the winning and losing sample, with the difference being the definition of the
implicit reward (Eq. 12), depending on whether using Gaussian diffusion (Wallace et al., 2024) or
discrete diffusion as in this work. Notably, since we leverage a general formulation of stepwise
decomposition that reduces the problem to a stepwise distribution matching objective, we are able to
generalize to the setting with arbitrary number of samples and reward model, which is not revealed
in Wallace et al. (2024).

B MORE EXPERIMENT DETAILS

B.1 DNA SEQUENCE DESIGN

We use the pre-trained model and fine-tuning reward oracle from Wang et al. (2024) for finetuning
with SDPO. In the first stage of finetuning, we train on the original enhancer dataset (also used for
pre-training), without using re-labeled samples. In the next two stages, we generate 10000 samples
from the finetuned model, label the samples with the reward model, and continue finetuning on the
relabeled data. In all three stages, we use the original pre-trained checkpoint as the reference model.
We provide hyperparameter configurations in Table 5.

Table 5: Detailed hyperparameters for DNA design task.

Stage # relabeled samples β N # Epochs Learning Rate

Stage 1 0 0.92 25 10 9e-5
Stage 2 10k 0.4 200 2 1e-5
Stage 3 10k 0.064 918 2 7.4e-6

B.2 DETAILED HYPERPARAMETERS FOR PROTEIN INVERSE FOLDING TASK.

We also use the pre-trained model and fine-tuning reward oracle from Wang et al. (2024) for finetuning
with SDPO. Likewise, we finetune on the original pre-training dataset without re-labeling any new
samples. In the second stage, we re-label 12800 generated samples with the reward oracle, then
continue finetuning with SDPO. Differing in our setup from the DNA experiment, we find that
using the previously finetuned checkpoint as a reference model during Stage 2 results in superior
performance. We provide hyperparameter configurations in Table 6.
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Table 6: Detailed hyperparameters for protein inverse folding task.

Stage # relabeled samples β N # Epochs Learning Rate

Stage 1 0 0.047 25 9 5.7e-6
Stage 2 12.8k 0.063 200 5 8.5e-5

Algorithm 1 SDPO Training Algorithm
Input: Initial dataset D(0), pretrained discrete diffusion model pref and trainable model pθ .
1: for iter k = 0, · · · ,K do
2: for step l = 0, · · · , L do
3: Sample {(x(i)

0 , c)}Ni=1 ∼ D(k) for each prompt c in the batch
4: Sample x

(i)
t ∼ q(xt|x0) given x

(i)
0

5: Compute loss L(θ) via Eq. 11 ▷ SDPO loss
6: θ = θ − λ∇θL(θ) ▷ Gradient update
7: Generate D(k+1) via pθ(x0:T |c) = p(c)p(xT )

∏T
t=1 pθ(xt−1|xt, c) ▷ Optional iterative labeling

8: pref ← pθ ▷ Optional reference model update

Return: Optimized model pθ

B.3 LANGUAGE MODELING

We leverage the open-source checkpoint1 of LLaDA-8B-Instruct (Nie et al., 2025) as the base model
to perform our SDPO. We use UltraFeedback (Cui et al., 2023) dataset labeled by Meng et al. (2024)
as the finetuning dataset2. We operate in the pairwise setting with N = 2 on the dataset, with labeled
pairs of winning and losing samples with rewards. We use 8 Nvidia 80G A100 GPUs with DeepSpeed
enabled during finetuning, due to the scale of the model. We use per device batch size 2 and gradient
accumulation of 16 steps, leading to an effective global batch size of 256. We set the learning rate
to 1e-6 and β to 1.0 and train the model for 2 epochs. At inference time, we reuse the inference
hyperparameters adopted in Nie et al. (2025) for GSM8K without any additional tuning, which
include total length 256, block size 8, and total number of steps 256. For IFEval and AlpacaEval 2.0,
we keep the same set of hyperparameters except setting block size to 32. We always adopt the low
confidence remasking strategy, following Nie et al. (2025).

B.4 COMPLEXITY ANALYSIS

Computational and memory complexity. As an offline preference optimization approach, SDPO
is not bottlenecked by online data generation during training, and the offline data generation can
be fully parallelized. In detail, it is of O(NM(L2D + LD2)) for computational complexity and
O(NM(L2 + LD +D2)) for memory complexity, where N is the number of Monte-Carlo samples,
M is the number of attention blocks, L is sequence length, and D is the latent dimension. The
complexity comes from standard Transformer-based architecture, on top of which the coefficient
of is multiplied for Monte-Carlo estimation, making it irrelevant of diffusion steps. The inference
complexity remains unaffected.

B.5 ALGORITHM DETAILS

For completeness, we include the entire training algorithm in Alg. 1. We also include the MC
estimator (Alg. 2) to compute the trajectory-level reward rt used in our reward correlation analysis in
ablation study. Note that the function Constrain(x

(i)
0 ,xt−1) means setting every unmasked token in

xt−1 to the same place in x
(i)
0 with the same token value.

1https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct
2https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback
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Algorithm 2 SDPO Trajectory-level Reward Evaluation
Input: model pθ and pref , number of MC samples K, reward model r(·)
1: for step t = T, · · · , 0 do
2: Sample xt−1 ∼ pθ(xt−1|xt)

3: Sample {x(i)
0 }Ki=1 from p̂ref(x0|xt)

4: Estimate the denominator d = Ep̂ref (x0|xt)

[
exp

(
1
βt
r(x0, c)

)]
≈ 1

K

∑K
i=1 exp

(
1
βt
r(x

(i)
0 , c

)
5: x̃

(i)
0 ← Constrain(x

(i)
0 ,xt−1)

6: Estimate the numerator n = Ep′
ref

(x0|xt−1,xt)

[
exp

(
1
βt
r(x0, c)

)]
≈ 1

K

∑K
i=1 exp

(
1
βt
r(x̃

(i)
0 , c

)
7: Compute the stepwise reward rt = log n

d

Return: chain reward r̂ = β
∑

t rt

Table 7: Dataset size ablation results. Even in highly limited data settings (< 10% of original dataset),
SDPO achieves strong results.

Pred-Activity ATAC-Acc 3-mer Corr App-Log-lik

25k→ 20k relabeled 5.56 0.40 0.795 -237
50k→ 20k relabeled 6.02 0.756 0.793 -248
700k→ 20k relabeled 6.30 0.948 0.900 -246

Table 8: Detailed results on different values of β on DNA design task.

β Pred-Activity (median) ↑ Pred-Activity-std ATAC-Acc ↑ (%)

0.10 6.33 0.68 0.84
0.15 6.29 0.68 0.85
0.20 6.26 0.70 0.86
0.25 6.22 0.74 0.89
0.30 6.17 0.74 0.91
0.35 6.15 0.75 0.92
0.40 6.08 0.76 0.92
0.45 6.01 0.85 0.92
0.50 6.00 0.83 0.93
0.55 5.97 0.85 0.94
0.60 5.90 0.84 0.94
0.65 5.78 0.90 0.96
0.70 5.79 0.90 0.95

C MORE EXPERIMENT RESULTS

C.1 ABLATION STUDY ON DATASET SIZE

To study the effect of the data quantity on model performance, we perform an additional ablation on
the DNA sequence task in Table 7. Our results demonstrate that SDPO can achieve strong results
even in highly limited data settings, where the first stage of fine-tuning uses a small random subset of
the original training dataset (700k samples). We follow this with two stages of iterative re-labeling
and fine-tuning, according to our established setup.

C.2 MORE RESULTS ON β

We provide detailed ablation results on different values of β in Table 8 and Table 9 for DNA sequence
design and protein inverse folding tasks, respectively. We observe that when β becomes smaller,
which indicates less regularized distribution w.r.t. the reference distribution, the model is granted
more flexibility in optimization and generally achieves higher reward. Meanwhile, some other metrics
such as ATAC-Acc that relates to the stability of the generated sample will tend to drop due to
over-optimizing the model.
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Table 9: Detailed results on different values of β on protein inverse folding task.

beta Pred-ddG (median) ↑ Pred-ddG-std %(ddG>0) (%) ↑
0.05 1.026 1.001 0.742
0.10 1.119 1.093 0.760
0.25 0.348 1.176 0.569
0.50 -0.058 1.010 0.461
0.75 -0.350 1.215 0.430
1.00 -0.410 1.192 0.418

C.3 MORE RESULTS ON PROTEIN INVERSE FOLDING TASK

We provide additional experimental results on the protein inverse folding task, where we demonstrate
strong performance in both the re-labeling setting (a.k.a. iterative labeling) and the re-labeling-free
setting (only using the original dataset for finetuning). The results are depicted in Table 10. In this set
of experiments, we obtain the runs that achieve better balance between the target reward (Pred-ddG)
and other metrics, such as scRMSD and Success rate. In particular, the experiment with re-labeling
achieves better Pred-ddG (1.179) compared with the baseline DRAKES Wang et al. (2024) (1.095)
while obtaining better scRMSD and matching its success rate of 78.6%. Furthermore, we observe
that without iterative relabeling, SDPO can already obtain strong performance, which additionally
underscores the robustness of our design.

Table 10: Additional evaluation on the protein inverse folding task.

Stage # relabeled samples Pred-ddG (median) %(ddG)> 0 scRMSD (median) %(scRMSD)< 2 Success rate

w/o Re-labeling 0 1.165 85.5 0.936 90.5 77.0
w/ Re-labeling 12.8k 1.179 84.8 0.914 92.0 78.6

C.4 RESPONSE SAMPLES ON LLADA-8B-INSTRUCT

Here we present several text samples using the questions from GSM8K Cobbe et al. (2021). It is
observed that by employing our SDPO to LLaDA-8B-Instruct, the finetuned model exhibits clearer
reasoning logic and better presentation of the response.

Response Samples on GSM8K

Question [Few-shot Prompts] Janet’s ducks lay 16 eggs per day. She eats three for breakfast
every morning and bakes muffins for her friends every day with four. She sells the remainder at
the farmers’ market daily for $2 per fresh duck egg. How much in dollars does she make every
day at the farmers’ market?
Answer by LLaDA-8B-Instruct Nie et al. (2025)
Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast every morning, so she has 16
- 3 = ¡¡16-3=13¿¿13 eggs left. She bakes 4 eggs for her friends every day, so she has 13 - 4 =
¡¡13-4=9¿¿9 eggs left. She sells the remaining eggs at the farmers’ market for $2 per egg, so she
makes 9 * $2 = $¡¡9*2=18¿¿18 every day.
#### 18
Answer by LLaDA-8B-Instruct-SDPO (Ours)
To determine how much Janet makes every day at the farmers’ market, we need to follow these
steps:
1. Calculate the total number of eggs laid by Janet’s ducks per day. 2. Subtract the number of eggs
Janet eats for breakfast and bakes for her friends. 3. Calculate the number of eggs left for sale. 4.
Multiply the number of eggs left for sale by the price per egg to find her daily earnings.
Let’s go through these steps:
1. Janet’s ducks lay 16 eggs per day. 2. She eats 3 eggs for breakfast every morning. 3. She bakes
4 eggs for her friends every day.
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Now, let’s calculate the number of eggs left for sale:

16− 3− 4 = 9

So, Janet has 9 eggs left for sale each day.
Next, we multiply the number of eggs left for sale by the price per egg:

9× 2 = 18

Therefore, Janet makes $18 every day at the farmers’ market.
The final answer is 18

Response Samples on GSM8K

Question [Few-shot Prompts] Carlos is planting a lemon tree. The tree will cost $90 to plant.
Each year it will grow 7 lemons, which he can sell for $1.5 each. It costs $3 a year to water and
feed the tree. How many years will it take before he starts earning money on the lemon tree?
Answer by LLaDA-8B-Instruct Nie et al. (2025)
To determine how many years it will take for Carlos to start earning money on the lemon tree, we
need to calculate the net profit per year and then see how many years it will take for the net profit
to cover the initial cost of planting the tree.
1. **Calculate the net profit per year:**
- Revenue from selling lemons: 7 lemons * $1.5 per lemon = $10.50
- Cost to water and feed the tree: $3
- Net profit per year: $10.50 - $3 = $7.50
2. **Determine the number of years needed to cover the initial cost:**
- Initial cost of planting the tree: $90
- Net profit per year: $7.50
- Number of years needed: $90 / $7.50 per year = 12 years
Therefore, it will take Carlos 12 years to start earning money on the lemon tree.
Answer by LLaDA-8B-Instruct-SDPO (Ours)
First, let’s calculate the annual revenue from selling the lemons:
- The tree grows 7 lemons each year.
- Each lemon sells for $1.5.
- Annual revenue = 7 lemons * $1.5/lemmon = $10.5.
Next, let’s consider the annual cost of watering and feeding the tree:
- It costs $3 per year to water and feed the tree.
Now, let’s calculate the net annual profit:
- Net annual profit = Annual revenue - Annual cost
- Net annual profit = $10.5 - $3 = $7.5.
Finally, let’s determine how many years it will take for the net annual profit to cover the initial
cost of planting the tree:
- Number of years = Initial cost / Net annual profit
- Number of years = $90 / $7.5 = 12 years.
Therefore, it will take Carlos 12 years to start earning money on the lemon tree.

D DISCUSSIONS

Limitation. Our framework relies on the reward model while, in practice, such model may be noisy
or even harmful, which will potentially lead to undesired consequence.

Broader impact. As demonstrated in the paper, our approach can help finetune pretrained discrete
diffusion models for better alignment towards certain reward, which can have significant practical
impact in various domains, such as natural language modeling and biochemical sciences. Our
approach can serve as a critical building block towards designing useful DNA and protein sequences,
building helpful and harmless chatbots and even performant and effective large language model
agentic systems.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E THE USE OF LARGE LANGUAGE MODELS

We did not use Large Language Models for research ideation and paper writing in this work.
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