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ABSTRACT

Sequential recommendation (SR) aims to suggest items users are most likely to
engage with next based on their past interactions. However, in practice, SR systems
often face the out-of-distribution (OOD) problem due to dynamic environmental
factors (e.g., seasonal changes), leading to significant performance degradation in
the testing phase. Some methods incorporate distributionally robust optimization
(DRO) into SR to alleviate OOD, but the sparsity of SR data challenges this. Other
approaches use random data augmentations to explore the OOD, potentially dis-
torting important information, as user behavior is personalized rather than random.
Additionally, they often overlook users’ varying sensitivity to distribution shifts
during the exploration, which is crucial for capturing the evolution of user prefer-
ences in OOD contexts. In this work, inspired by information bottleneck theory
(IB), we propose the Conditional Distribution Information Bottleneck (CDIB), a
novel objective that creates diverse OOD distributions while preserving minimal
sufficient information regarding the origin distribution conditioned on the user.
Building on this, we introduce a framework with a learnable, personalized data
augmentation method using a mask-then-generate paradigm to craft diverse and
reliable OOD distributions optimized with CDIB. Experiments on four real-world
datasets show our model consistently outperforms baselines. The code is available
athhttps://anonymous.4open.science/r/CDIB-51C8.

1 INTRODUCTION

Nowadays, recommendation systems are important in addressing information overload across various
applications, such as e-commerce, online retail platforms, and so on (Cen et al.| [2020; |Guy et al.,
2010). SR is one of the crucial topics focusing on capturing users’ dynamic interest to recommend
content that aligns with it more accurately (Hidasi et al., 2016; | Kang & McAuleyl 2018).

Nevertheless, most methods assume that the popularity distribution during training and testing is
independent and identically distributed, an unrealistic assumption in most cases (Zheng et al.| 2021}
Zhang et al.| [2023). In SR, popularity distribution can shift due to time-sensitive environmental
factors, leading to changes in user preferences (e.g., the World Cup boosting soccer jersey sales
or seasonal changes increasing T-shirt sales in summer and sweater sales in winter), which causes
performance degradation of the model during the testing phases.

Furthermore, we observe that different users have varying sensitivity to distribution shifts, leading
to different impacts from OOD scenarios. As shown in Figure ([T} for blockbuster users who engage
with trending content, the model can adjust and continue providing relevant recommendations as
trends shift (®—®) due to its inherent bias toward popular items (Zhang et al.,2021). However, for
niche users who follow mainstream items less, despite the model capturing their preferences during
training, it often defaults to providing popular items when environmental factors change, likely due
to unfamiliar behavior patterns, misaligning with niche users’ true preferences (2—®).

To alleviate the OOD problem in SR, various models have been developed, employing techniques
such as reweighting (Wang et al.| [2022b), causal inference (Wang et al., [2023b; He et al., [2022),
distributionally robust optimization (Yang et al.,|2023bj Wen et al.,2022), and contrastive learning
(CL) (Liu et al., 2021}  Xie et al., 2022; [Yang et al.,|2023a} |Qiu et al., 2022).
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Figure 1: @ and @ show the overall user preference distribution learned by SASRec
during training, along with learned blockbuster and niche user preferences, respec-
tively, while @ and @ display the corresponding distributions during testing. (Blockbuster user:
prefers mainstream items; Niche user: prefers mainstream items less.ﬁ

However, existing methods have two main issues: (i) Methods like DRO in SR (Yang et al.,[2023b))
optimize the model for the worst-case distribution within a family of distributions around the training
data, ensuring robustness to unknown distributions. However, the feasible distribution family for
DRO is inherently limited by the sparse nature of recommendation data 2024). (ii) Data
augmentation models (e.g., CL methods (Qiu et al.}, 2022 [Xie et al.}[2022)) can expand the training
distribution but often rely on unguided or hand-crafted augmentations, risking the loss of important
interaction data while retaining noisy or irrelevant information for augmentation, misleading user
preference modeling. Additionally, they overlook users’ varying sensitivity to distribution shifts
mentioned above, which is essential for capturing the evolution of user preferences in OOD contexts.

To this end, inspired by IB theory (Gondek & Hofmann} 2003} [Lee et al., 2023} [Choi & Leel [2023];
[Tishby & Zaslavskyl 2013 [Alemi et al.,[2016), we propose the Conditional Distribution Information
Bottleneck (CDIB), a novel objective that generates diverse distributions while preserving minimal
sufficient information from the original distribution, conditioned on the user. It aims to introduce
more interaction patterns influenced by other environmental factors into model training, enhancing
performance on unknown distributions. Specifically, it consists of a conditional generation term
to diversify the generated OOD data considering the users’ varying sensitivity to distribution shift
and a conditional regularization term to preserve personalized critical information within the origin
distribution. What’s more, we provide theoretical analyses to justify the rationality of the generated
distribution. On top of it, we propose a framework comprised of two processes:

» We propose a data augmentation strategy that employs a learnable mask to adaptively mask stable
elements reflecting user interests (e.g., a comic book during the World Cup) from distortion, while
selecting elements sensitive to environmental factors (e.g., a soccer jersey during the World Cup) for
augmentation within the hidden space through a distribution generator based on a latent diffusion

model (Wang et al.}[2023a; Rombach et all, 2022} [Ho et al., [2020).

* Optimizing with CDIB: Given an original distribution D and a generated distribution D, CDIB
diversify D by minimizing the mutual information between D and D conditioned on user fea-
ture. Simultaneously, the model preserves personalized information by maximizing the mutual
information between D and the target, also conditioned on user feature.

To summarize, this work makes the following contributions: (i) We introduce CDIB, an objective
that guides the generation of diverse and reliable distributions, and conduct theoretical analyses to
prove its rationality. (ii) Based on the CDIB principle, we propose a framework which generates
the distribution with a learnable and personalized augmentation method. (iii) Extensive experiments
demonstrate the effectiveness and robustness of CDIB.

'The concepts and definition of Blockbuster and Niche are derived from 2022)
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2 PRELIMINARIES

This section begins by outlining the sequential recommendation scenario, including notations and the
problem formulation (Section[2.T)). Then, we introduce the IB theory (Section[2.2)).

2.1 SEQUENTIAL RECOMMENDATION PARADIGM

Notations. Denote with U (u € U) the user set and with Z (i € 7) the item set, where |I/| and |Z|
represent the number of users and items, respectively. Each user u is associated with a chronologically
ordered interaction sequence s, = (il,--- ,il), with L denoting the length of the sequence. The
collection of all interaction sequences is denoted as S (s, € S), which is further partitioned into the
training set Sy, comprising historical interactions, and the test set Sy, containing future interactions.
Also, we denote the stable elements as X, and the (environmental-)sensitive elements within the

interaction as X.. Additionally, we define D;,- and D;, as the training and testing distributions.

Problem Formulation. Formally, the learning of sequential recommendation involves optimizing
the model £ through empirical risk minimization on the training distribution D,,. (Kang & McAuley,
2018} Sun et al.,|2019), which only involves ID features:

&= argminfED“, [é (5 (Su)aiﬁﬂ)} = argmln |S | Z logp( bt € (s )) , (D
£ tr

5y EStr

where 7T represents the next item to interact with by user u, £(s,) represents the hypothesis

generated by &, and p (iﬁ“ |€ (su)) denotes the probability of ¢ recommending iZ+! to user u based
on s,. Subsequently, the derived £* is applied to the future task.

2.2 INFORMATION BOTTLENECK PRINCIPLE

The information bottleneck principle (Tishby & Zaslavskyl 2015} |/Alemi et al., 2016) is an approach
based on information theory designed to balance the trade-off between compressing a random
variable and preserving its minimum sufficient information about the target variable. It aims to find a
compact representation that retains as much information about the target as possible and discards the
target-irrelevant information.

Definition 2.1 (IB) Given input variable X, target Y, and bottleneck variable Z, respectively, the
IB aims to compress X to Z, while keeping the information relevant for Y :

minI(X; Z)-pI(Y;Z) ()

where I(U; V) = 3_ . p(u,v)log p(i)p(i) is the mutual information between U and V, and 3 € R

is a Lagrange multiplier balancing the two mutual information terms.

3 METHODOLOGY

In this section, we first formally introduce the distribution information bottleneck principle (DIB) in
Section[3.1] and then we propose the conditional distribution information bottleneck principle (CDIB)
in Section[3.2] Following the CDIB, we detail the overall architecture of the proposed framework and
its optimization strategies in Section[3.3]

3.1 DISTRIBUTION INFORMATION BOTTLENECK PRINCIPLE

In this section, we introduce the DIB, which is anchored in the IB. This principle facilitates the
generation of new distributions, represented as D = (X, X, ), derived from the training distribution

Dy = (X4, Xe). With the DIB, while the D preserves the stable elements within the Dy, it
introduces a spectrum of sensitive elements, thereby enhancing the diversity of the data.

Definition 3.1 (DIB) Given original training distribution Dy, target 'Y, and generated distribution
D, respectively, we define DIB as follows:

min I(Dy,; ) BI(Y; ’D) 3)
D
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where 5 € R is a Lagrange multiplier balancing the diversity and reliability of the D.

DIB seeks to foster a variety of distributions D that diverge from the original distribution by minimiz-

ing I(Dy,; D), while concurrently ensuring the preservation of critical information by maximizing

I(Y; D). It can be demonstrated that this leads to X, ~ X, and X, + X,, achieving a balance
between stability in stable elements and diversity in sensitive elements (cf. Appendix [A.T).

3.2 CONDITIONAL DISTRIBUTION INFORMATION BOTTLENECK PRINCIPLE

Although DIB can generate a diverse and promising distribution D, the generation process of the
distributions is still not fully controllable due to the lack of constraints. Specifically, there is no
certainty that the distributions obtained from the minimization of DIB will represent those encountered
in the testing stage. This is because X, can be generated in any direction that diverges from X, as
long as it can minimize the I (D, @) Furthermore, the straightforward application of DIB fails
to account for users’ sensitivity to OOD. More concretely, some users are readily influenced by
environmental factors like popular trends. In contrast, others display less susceptibility to such
influences. Consequently, the direction of X, generation should be personalized, suggesting that the

generation of D should be more controlled.

To this end, we introduce the CDIB, aiming to guide the personalized generation of D and steer it, to
a certain extent, towards aligning with the testing distribution:

Definition 3.2 (CDIB) Given original training distribution Dy, target Y, generated distribution D,
and user attributes I respectively. The formulation of CDIB is as follows:

min/(Dy,; D | T) — BI(Y; D | T) )
D

where I(U; VIW) =3 p(w) >, , p(u, v|w) log % is the mutual information between
U and V conditioned on W.

The first term, I(Dy,; D | T'), functioning as the conditional generation term, facilitates the person-
alized separation of D from D;, by minimizing the mutual information between them that takes
into account user features. The second term, /(Y ; D | '), serving as the conditional regularization
term, prompts the D to preserve user-specific target-relevant information from the true labels. By
optimizing these two terms, D includes the minimum sufficient personalized information about the
target, along with elements that account for user sensitivity. We further demonstrate that introduc-
ing additional user features to generate a diverse distribution contributes to enhancing the model’s
generalizability.

Theorem 3.3 (Generalization Bound) Let Kp, [((f;Y)] be the empirical loss on the training set,
D be the unknown distribution, and Ep[l(f;Y)] be the expected loss on D. Given any finite
hypothesis space F of models, suppose f € [My, Ms], we have that with probability at least 1 — §:

SN

. log

Ep[¢(f;Y)] < Ep,, [((f;Y)] + 2Rn(F) + (M — M) ®)

where R, (F) is the rademacher complexity of F, reflecting its capacity to model random noise
within a dataset, inherently linked to the dataset’s properties, and m is the amount of the user features.

The proof is presented in the Appendix[A.2] Theorem [3.3]shows that an increased value of m results

in a tighter bound for Ep[¢(f;Y)], which is upper bounded by Ep, [¢(f;Y)], thereby enhancing
the model’s generalizability in unknown distribution.

3.3 MODEL ARCHITECTURE AND OPTIMIZATION

In this section, we formally introduce the generation process for the distribution D, involving learnable
mask, distribution generator, and Transformer Recommender (Section [3.3.T)). Following this, we
detail the optimization with the CDIB (Section [3.3.2).



Under review as a conference paper at ICLR 2025

O Interacted Item O Stable Element O Sensitive Element ‘:'. Gaussian Noise Original Generated Target N Maximize (Minimize)
el o (X" """ . Distribution Distribution p )
5 1
| u o] |IC) | o —————— - - - ~ 1 1
! O !*] P | —»l LI |
115 [ O ! W on ) Gt s .
! H ' Forward Reverse 1 RS I 1 A 1
| O Ly 1 O ol > ... —_— ;b | x[oh 11 1
1 - H Vd g 11 VIRA y
1o 1 ! Point-wise !
: 0 [ | ! || DmidHizze Feed-forward : : D 0 !
h} 1 1 | Self-attention 1
Ly 1 Network
o=l ) Q) ! B . .
! s M s 1 1 H HT fHo! S e e e ! 1
o R R L2 K2 o _ ’
S H
Learnable Mask fg, Distribution Generator fg, u Transformer Recommender fq, CDIB

Figure 2: The overall framework of CDIB: The learnable mask first masks the stable elements, fol-
lowed by the distribution generator augmenting the sensitive elements. Both original and augmented
samples are then fed into the recommender to obtain D and D, which are optimized using CDIB later.

3.3.1 GENERATION OF DISTRIBUTION D

Embedding Layer. First, users and items are embedded into a d-dimensional latent space. Specifi-
cally, for user u and corresponding interaction sequence s,,, we obtain embedding vector e,, € R¢
to capture the user features and embedding matrix E,, = (ei, . el ) € RE%4 to model the item
semantic, where e/, is the [-th item interacted by user u, and denote T' = {e,, | Vu € U} € RIUIx4,
Also, we initialize a learnable position embedding matrix P = (py, ..., pr) € RY*? to model the
temporal information, which is widely used in sequence modeling (Devlin et al.,|2018};|Sun et al.|
2019). Thus, for a given sequence, we obtain the hidden representation H, = E,, + P (hﬁL eH,).
To model the users’ sensitivity to user features more effectively, we introduce a task based on the
KL-divergence to align the user feature distribution with the interacted items’ popularity distribution:

Loon =Ep,, [Dicr (N (0(D).1) | N(Ov/ Y 0x).D)]. ©

where Oy represents the number of times each target has been observed, and p(-) is the sensitivity
estimator, which is implemented using an MLP.

Learnable Mask Mechanism. We introduce a Learnable Mask that evaluates an item’s significance
within the interaction sequence considering user features as dictated by the CDIB principle. These
measures work together to mask stable elements adaptively. An MLP network parameterized by 6 is
employed to classify elements, summarized by the following formula:

M, = [ML, - , M., .-+ \ME], where M, = o (MLPy, (b, || ¢ (H,) | eu)), (7

where ¢(-) represents the interaction aggregation function, we have chosen to implement the mean
aggregation. o(+) denotes the sigmoid function, which scales the value of mask matrix M!, € R to (0,
1). To prevent M, from converging on trivial solutions O during the diffusion process in the follow-up,

) L L
we have formulated a self-supervised loss as a regularization: Lyask = — D0 211 M.

Distribution Generator. Considering the impressive generative performance of the diffusion
model (Rombach et al., 2022; Wang et al [2023a) and computational efficiency, we utilize la-
tent diffusion to generate more sensitive elements in the latent space. The core idea is to map all
sensitive elements to a normal distribution by continuously adding noise, then sample from that
distribution and denoise to generate a richer set of sensitive elements. Concretely, we first mask the
stable elements by Hg = H, ©® M,, where © is the broadcasted element-wise product, and then
we incrementally introduced Gaussian noise into it, creating a sequence H:T through 7T steps in a
Markov chain, which can be formulated as follows:

o (Y |G = (B VT=BHI A1), ®)

where N indicates the Gaussian distribution and 3, € (0, 1) specifies the scale of noise introduced
at each step ¢t. Through the reparameterization trick and principle that the sum of two independent
Gaussian noises is also Gaussian, HZ can be directly derived from Hg as HZ =/ o‘thg +1 — ey,

with ¢, ~ A (0, ) as the added noise, and a; = HtTf:1 (1 — By). After that, CDIB iteratively remove
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the noise from H, to reconstruct H!,~! and ultimately recover the original sample H?:
T
po (HYT) = p (H) [ [ po. (HL71 | HL). ©)
t=1

where p (HT) ~ N (0,1) and [T,_, pe, (H: ' | HY,) denotes the process of sequentially deduc-
ing H' ! by reversing the estimated Gaussian noise from H!, via a lightweight MLP network
parameterized by 6>. The learning objective is thereby distilled to:

T
Laigr = e [llee — o, (HL 1) ]3], (10)

t=2
where ¢, represents the noise have been added to H:~! in the forward process. Then, CDIB generate
the external factors by firstly corrupting H? via Equation 8} and executing reverse denoising on
corrupted representation via Equation |§It0 obtain the rich sensitive elements denoted as HY, then we
obtain the generated sequence embedding as H, = HY + H, ©® (1 — M,,).
Transformer Recommender. The effectiveness of the Transformer in learning sequential patterns
inspires us to use it for the main recommendation task (Devlin et al.| 2018}, |Vaswani et al.,[2023)). The
core component of the Transformer architecture is the multi-head self-attentive mechanism, which
can be formulated as follows:
H
H) =¢ H
h=1

H, W} (H,W)"
d/h

H"|; H" = softmax < > H, W/, (11)

where p(x) = GELU (Wx + b), and H? € RE*4 represents the refined embedding of the items.
This embedding is derived by concatenating H" € RZ*%/H then being calculated by ¢(-). We
also process the generated sequence embedding H, through the Transformer to obtain the refined
embedding HY. For both HY, and HY, the last position vector is considered as the representation
of the entire interaction sequence (Kang & McAuley, [2018), denoted as hS, and h, respectively.
They share the same labels (i.e., i-1). Notice that the distributions of all h? and hy are D;,. and D,
respectively. In the end, the total loss of generating distribution is Lyq = Leon + Limask + Lairs-

3.3.2 MODEL OPTIMIZATION WITH CDIB

Maximizing I(Y; 15\1‘). Directly maximizing the conditional regularization term proves challenging.
Hencq, according to (Choi & Leel 2023)), we instead derive and maximize the lower bound of
I(Y; D,T) via variational decomposition (c¢f. Appendix , outlined as follows:

Proposition 3.4 (Lower bound of I(Y; D, T)) Given label Y, distribution D, and user features T,
we have:

I (Y; D, r) >Ey 51 [1ogp93 (Y | D, r)} (12)
where log pg, (Y | D, T) is the variational approximation of log p(Y | D,T).

Given that the generation process of D incorporates the user features I' as specified in Equation
we have log pg, (Y |D,T') = log pg, (Y|D). Note that log py, (Y |D) essentially represents a recom-
mendation task, where the input is the generated distribution (hY, € D) and the output is the next
interacted item (iL*1 € Y). This suggests that the model is also trained to make recommendations
beyond the training distribution. We employ the Transformer recommender fy, to optimize this task
using the objective defined in Equation|[T] with the associated loss denoted as L.

Minimizing I(D;,; 15|1") To minimize the conditional generation term, we first employ the chain
rule for mutual informatio applying it as follows: I(Dy,.; D|T') = I(Dy,; D,T) — I(D,,; T'). Notice

2Given the random variables X, V', and Z, then the chain rule gives I(X; V|Z) = I(X, Z; V) — I(Z; V).
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that I(D;,; D, T') = I(Dy; D) (¢f. Appendix|A.4). Intuitively, minimizing the first term personalized
drives D away from D;,., thereby fostering a diverse distribution exploration. Maximizing the second
term seeks to capture the personalized information from D, into I'. Inspired by (Wei et al., |[2022),
we adopt negative InfoNCE to estimate the mutual information (Gutmann & Hyvérinen,2010) and
contrastive learning to minimize the I(Dy,.; D|T'). Specifically, for the I(D;,; D), we treat the original
sequence embedding h, € D,, and the corresponding augmented sequence embedding hy € D
as positive pairs, with in-batch instances serving as negative samples. For I(D;,.; "), the original
sequence embedding h¢, and the corresponding user embedding e, are considered positive pairs,
again with in-batch instances as negative samples. We define the contrastive loss as follows:

1 $(hf,hi)/T #(h3,e,)/T)
Lgen = = Z log ¢ — — log ¢ = )
U] S weu e®(hg,hy,)/7) > weu ed(hg,e,)/T)

ueU v

(13)

where ¢(-) denotes the similarity function and 7 denotes the tunable temperature hyper-parameter to
adjust the scale for softmax.

Overall Objective. Finally, we train the model using the specified final objective as follows:
Etotal = Epred + Oélﬁgd + a2 (ﬂ‘cr(zg + Egen) s (14)

where L,cq is the primary recommendation loss, calculated by the fp, (which is also employed to
optimize the conditional regularization term), where the input is the training data (hS, € Dy,), and the
output is the next item interacted with. The o4, ao represent tunable hyperparameters that balance
the significance of auxiliary losses. Ultimately, the trained fp, serves as the £* in the testing stage.

4 EXPERIMENT

Datasets. Our experiments are conducted on four public real-world datasets, i.e., MovieLens-100K,
Retailrocket, Amazon-Beauty, and Amazon-Sports. For each dataset, we chronologically select 80%
of the historical interactions of each user as the training set, 10% of those as the validation set, and
the remaining 10% as the test set. The detailed information is in Appendix [E.1]

Baselines. We compare CDIB with nine methods from diverse research lines, covering (i) Naive
Sequential Recommendation Methods: GRU4Rec Hidasi et al.|(2016), Caser Tang & Wang| (2018)),
and SASRec |Kang & McAuley| (2018). (ii) Reweighting Methods: IPS [Schnabel et al.|(2010). (iii)
DRO Methods: S-DRO Wen et al.| (2022) and DROS |Yang et al.| (2023b). (iv) Diffusion-based
Augmentation Methods: DiffuASR-CG and DiffuASR-CF (Liu et al.l 2023). (v) Contrastive
Learning (CL) Methods: CL4SRec Xie et al.[(2022)), DuoRec|Q1u et al.| (2022), and DCRec Yang
et al| (2023a)). The details are in Appendix [E.3]

4.1 PERFORMANCE COMPARISON

Overall Performance Comparison. We assess the methods using the all-ranking protocol He et al.
(2020), focusing on HR@ 10 and NDCG @ [0 metrics. The results are shown in Table m and we have
several observations: (i) The DRO and CL methods outperform naive sequential recommendation
models, demonstrating their effectiveness. Specifically, compared with SASRec, DROS shows
improvements on the ML-100K and Sports, while DuoRec progresses on the Retail and Beauty.
However, IPS and S-DRO only achieve marginal improvements or perform worse, suggesting their
limitations when dealing with sparse data. (ii) Additionally, the efficacy of CL methods appeared to
be hindered on the Sports, whose average interaction sequence length is the shortest. This indicates a
sensitivity to hand-crafted data augmentation, which may limit the success of CL methods. (iii) Our
model consistently outperforms the baseline models across all datasets, showing the effectiveness of
the learnable data augmentation method and the optimization strategy with CDIB, which can create
diverse and promising distributions and capture more robust information.

Robustness to Distribution Shift. To further evaluate the robustness of our model to distribution
shifts, we conduct experiments and compare its performance to that of representative models across
different time gaps. The results are shown in Figure[3] where T1 denotes the training stage, and T2
through T7 represents the testing stages, each with an increasing time gap. As the gap size increases,
the overall accuracy of the baseline models generally shows a downward trend, highlighting the
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Table 1: Overall performance. The best results and second-best are in bold and underline. All
the numbers are percentage values with “%”” omitted (mean-+std). & is the model’s variants in the
ablation study. The experiments are conducted 5 times.

\ MovieLens-100K Retailrocket Amazon-Beauty Amazon-Sports
| HitRatet NDCG? | HitRatet NDCGT | HitRatet NDCG1 | HitRate T NDCG 1
GRU4Rec 10.26+0.22  4.90+0.00 | 12.03+0.29 5.90+0.10 | 6.49+0.27 3.4410.16 | 3.47+0.15 1.80+0.10

Method

Caser 6.22+0.30  2.90+0.21 7.28+0.26  3.16+0.18 | 3.74+0.13  1.83+0.07 | 2.02+0.11  1.00+0.07
SASRec 10.96+0.12  4.8440.05 | 19.78+0.14  8.67+0.07 | 8.64+0.13 4.29+0.06 | 4.76+0.05 2.22+0.02
1PS 10.97+0.10  4.85+0.03 | 19.65+0.16  8.60+0.0s | 8.71+0.08 4.31+0.03 | 4.74+0.07 2.21+0.03
S-DRO 10.90+0.13  4.82+0.05 | 19.70+0.20 8.64+0.00 | 8.63+0.14 4.27+0.06 | 4.74+0.07 2.22+0.02
DROS 11.30+0.11  5.23+0.06 | 18.79+0.16  8.65+0.07 | 8.33+0.13 4.14+0.10 | 4.81+0.07  2.32+0.06

DiffuASR-CG | 11.18+0.22 5.13+0.07 | 20.31+0.21  8.84+0.09 | 8.33+0.12 4.13x0.10 | 4.70+0.00  2.19+0.04
DiffuASR-CF | 11.244+021  5.1940.06 | 20.51+0.23 8.97+0.12 | 8.46+0.12 4.26+0.08 | 4.79+0.14 2.23+0.05
CL4SRec 11.07+0.35  5.16+0.07 | 19.72+0.26  8.67+0.10 | 8.80+0.06 4.39+0.05 | 4.77+0.14  2.26+0.04
DuoRec 11.21x017  5.17+0.06 | 20.63+0.11  9.10+0.06 | 8.74+0.41 4.4110.19 | 4494010 2.21+0.04
DCRec 10.63+0.50 4.50+0.34 | 20.22+0.31  8.82+0.11 | 7.99+0.38  3.90+0.24 | 4.08+0.39 1.97+0.16
wio LM* 10.32+0.27  4.90+0.12 | 20.01+0.23 9.03+0.13 | 8.56+0.31 4.26+0.13 | 4.54+017 2.27+0.05
wlo LD* 11.59+0.16  5.53+0.12 | 20.82+0.16  9.37+0.04 | 9.06+0.15 4.60+0.06 | 4.92+021 2.40+0.08
wlo IB* 10.98+0.19  4.88+0.12 | 19.72+0.32  8.62+0.14 | 8.68+0.13 4.32+0.04 | 4.63+0.0s8 2.17+0.03
CDIB (Ours) | 11.89+0.16 5.67+0.09 | 21.12+0.14 9.41:0.10 | 9.17+0.02a 4.56+0.04 | 4951011 2.38+0.07

severe negative impact of temporal distribution shifts. For example, SASRec’s performance drop
72.48% from T1 to T7 under the Retailrocket datasets, whereas CDIB remains more stable with
the drop rate of 67.97%. We attribute it to the fact that generated distribution allows the model to
recognize and adapt to these out-of-distribution situations to a certain extent at the training stage.

ML-100K Retail

== coiB [ SASRec
[0 Cl4SRec [ DROS

== coiB [ SASRec
[l CL4SRec [ DROS

o
o

NDCG@10
o o
N IS
Drop Ratio

o
o

T1 T2 T3 T4 T5 T6 T7
Time Gap Time Gap

Figure 3: Models performance w.r.t time gap.

Performance on Different User Group. We investigated the model’s effectiveness across different
user groups as shown in Figure ] with U1 representing niche users and U5 representing blockbuster
users. User conformity increases progressively from U1 to US. The experimental results reveal that
the model’s effectiveness declines as user conformity decreases, indicating the model’s vulnerability
to the influence of item popularity while neglecting individual user attributes. Throughout these tests,
our model is basically superior to the baseline models. We attribute this superior performance to
our optimization strategy, which utilizes user attributes to guide model optimization. This approach
allows the model to better capture users’ personalized interest and recommend more relevant content.

ML-100K Retail

== 0B Em sAsRec 15.00f mm coB = saskec
= Cl4SRec =) DROS

[ ClL4SRec [ DROS

NDCG@10

Ul u2 u3 u4 us
User Group User Group

Figure 4: Models performance w.r.t user group.
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4.2  SENSITIVITY ANALYSIS ON 3

In this section, we analyze the model’s e —— Retail
sensitivity to 3, which controls the trade- s o 800 °
off between out-of-distribution exploration g0 b2 Ze0o By
and prediction accuracy. The results are  gso0 o € §aoo 10g
shown in Figure 5] Our observations are 2.00 “menly 200 e s
as follows: (i) The model fails to converge Loo pememed] —1h 000kt o

when 8 < lel. This issue arises because

such low values of /3 encourage the model

to aggressively generate distributions be- Figure 5: Sensitivity Analysis on 3 under ML-100K and
yond the training distribution’s scope with- Retailrocker datasets.

out preserving stable factors, thereby intro-

ducing harmful noise. (ii) As (3 increases from lel to 1e3, performance improves. However, when
reaches le4, performance declines, possibly due to the model’s excessive focus on prediction at the
expense of sufficient out-of-distribution exploration. Thus, a tailored [ is needed to balance the two.

4.3 ABLATION STUDY

In this section, we explore the design rationale of sub-modules within our CDIB framework. We
remove key modules to implement three variants of CDIB: (i) “w/o LM”: CDIB without the learnable
mask, setting M,, = 1. (ii) “w/o IB”: CDIB without optimization with CDIB, using contrastive
learning with InfoNCE loss instead. (iii) “w/o LD”: CDIB without latent diffusion. Gaussian noise is
added to H,, to get H, (ie., H, = N(0,]) oM, + H, ® (1 — M,). From the results (Table ,
we observe that: (i) Removing the learnable mask significantly degrades performance, underscoring
its essential role in identifying elements to be disturbed during data augmentation. Without this
component, the model may fail to capture genuine user interest reflected in the interaction sequence,
potentially leading to misguided model optimization. (ii) Removing latent diffusion for generating
distribution shows a performance decline. However, on the Beauty and Sports datasets, where the
average sequence length is the shortest, w/o LD performs better. (iii) The gap in performance between
CDIB and w/o IB highlights its effectiveness in guiding the distribution generation process and
boosting the model’s generalization. The performance of w/o IB closely matches that of SASRec,
which can be attributed to maximization of I(Dy,; ﬁ) in the standard contrastive learning with
InfoNCE loss. Specifically, M,, may converge on trivial solutions O to fulfill the CL task, leading to
Dy = D. This indicates no OOD exploration, the same as SASRec.

4.4 VISUALIZATION OF BLOCKBUSTER AND NICHE USERS’ PREFERENCE

We visualized the interest distributions of blockbuster and niche users learned by CDIB on the
MLIOOK and Retailrocket datasets during the testing stage. For both SASRec and CDIB, the
preference distributions of blockbuster users exhibit significant clustering, likely around popular
items (hotspots). However, for niche users, CDIB, compared to SASRec, shows a more uniform
preference distribution and is less influenced by popular items, indicating that CDIB effectively
models niche users without being affected by new trends, showing the rationality of our model design.

5 RELATED WORK

Sequential Recommendation is designed to predict the next item a user is likely to prefer based on
their interaction history. Traditional methods have leveraged Markov chains to capture first-order
item-to-item correlations through transition matrices (Rendle et al|2010; [He & McAuleyl 2016).
With the development of deep learning, which excels at modeling complex sequential patterns, various
deep recommendation models have been developed. For instance, GRU4Rec (Hidasi et al., [2016)
employs Gated Recurrent Unit (GRU) units to model the temporal dynamics of interaction sequences.
SASRec (Kang & McAuley,[2018)) and BERT4Rec (Sun et al.|[2019) enhance computational efficiency
in lengthy sequences by incorporating self-attention mechanisms. More recently, inspired by selective
state space models (Gu & Dao, [2024), Mamba4Rec (Liu et al., 2024) has been introduced, utilizing
the mamba framework to recommend items efficiently. Despite their capabilities, these models
often suffer performance declines when OOD occurs. To address this, CDIB introduces a user
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(a) Preferences learned by SASRec on m1100k (left two) and retail (right two).
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(b) Preferences learned by CDIB on ml1100k (left two) and retail (right two)

Figure 6: We visualize preference distributions using Gaussian kernel density estimation (KDE) in
R? and von Mises-Fisher (vMF) KDE for angular data (i.e., arctan 2(y, x) for each point (x, y)).

feature-guided generation approach that proactively explores OOD scenarios during the training
phase, enhancing the model’s generalization capabilities.

Distributionally Robust Sequential Recommendation has recently attracted significant research
interest, which aims to train a model that performs well not only at the training stage but also at the
testing stage. Methods DRO (Schnabel et al.| 2010; [Bottou et al., 2013; Wang et al.||[2022b}; Yang et al.|
2023bj Wen et al.| 2022)) optimize the model for the worst-case distribution to improve the robustness.
For example, DROS (Yang et al.l 2023b)) unifies the DRO and sequential recommendation paradigms
to enhance model robustness against distribution shifts. Causal inference methods capture real causal
relationships but assume the causal graph is static (Wang et al., [2023b}, [He et al.| 2022; Yang et al.,
2020; Wang et al.} |2022a)), these methods face challenges with sparse data. While contrastive learning
approaches seek to enrich the training data distribution through data augmentation (Liu et al.| 2021}
Xie et al.l 2022} [Yang et al. [2023a} |Qiu et al.| 2022} [Zhao et al., [2023)), but hardly rely on the
hand-crafted data augmentation strategies. To fill the gap, we introduce the CDIB principle, using the
user features to guide the exploration of the other distribution.

Information Bottleneck with Conditional Information is also widely utilized. The CIB (Gondek
& Hofmann, |2003) theory has been applied in CGIB (Lee et al.| [2023)) to identify key structures in
molecules that predict interaction behaviors between graph pairs, focusing on important subgraphs.
Additionally, TimeCIB (Cho1 & Leel 2023) extends the CIB to impute time series data, preserving
vital temporal information. To the best of our knowledge, CDIB marks the first use of CIB to guide
the distribution generation process. The detailed introduction of related works is in Appendix

6 CONCLUSION

In this work, to address the limitations of existing methods that struggle with sparse data or depend on
hand-crafted augmentations, we introduce CDIB, an innovative principle that guides the generation
of diverse and reliable distributions based on user features. Theoretical analyses demonstrate the
rationality of this approach. Building on CDIB, we propose a framework that employs a learnable
method to generate distributions for OOD exploration, guided by a conditional generation term
and a conditional regularization term. Extensive experiments on four public datasets confirm the
effectiveness and robustness of our model.

10
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A PROOFS

A.1 PROOF OF RATIONALITY OF DIB
Proof. Before the proof, we propose the following two assumptions:

(a) X, and Y, follow the same distribution.

(b) Since Dis generated by latent diffusion model without introducing any information from Y,
X, and Y. are mutually independent.

Notice that Y and Y refer to the sensitive and stable attributes of the target item, respectively. For
instance, considering a pair of shorts, Y ; would denote its stable features, such as the brand, while
Y. would indicate sensitive features like their status as a seasonal trend in summer.

We then obtain the fact that all stable factors and external factors are orthogonal. If this does not
stand, 3 25 € X,z € X, s.1. corr(zs,x.) # 0. When all external features other than x. remain
unchanged while z. changes, x4 changes correspondingly. This contradicts with X is stable.

We are now ready to prove the proposition. With this fact, we can derive the following:

= I(X87X€;X8a Xe) - ﬂ](Yeer; X97Xe)
= I(X 5 X, Xe) 4 1(Xe; X, X[ X)) = BU(Y 53 X, Xe) + 1(Ye; X, X[ YS)
:I(Xs;XS7 ~€)+I(XE7XSaX€7XS)_I(X€a s)_

)

15)

The second equation is derived from the I(X,Y;Z, V) = I(X;Z,V) + I(Y; Z,V|X). The third
equation follows from I(Y;Z, V|X) = I(Y;Z,V,X) — I(Y;X). The fourth equation is based
on the orthogonality of external and stable factors. The fifth equation is due to I(X;Z,V) =
I[(X;Z) + I(X; V|Z). The sixth equation is derived from I(X; V|Z) = I[(X,Z; V) — I(Z; V), and
the last equation also relies on the orthogonality of stable and external factors. Without losing
generality, we use 7y; through -4 to represent them here.

With assumption the equation /(X; X,) = I(X,; Y,) holds, thus

’Yll(Xs; Xs) - 5731(X5§Ys) = (71 - 573)I(X5;Xs) (16)

With assumption [(b)] we have,
I(Xe;Y) =0 (17)

Plugging equation [T6]and [I7into [3] the original minimization objective is equivalent to:

mgn(% — Bya)(Xg; Xs) + 72l(Xe; Xe) (18)

When v — By < 0, I(Xs; XS) is maximized, effectively rendering X, ~ X,. Meanwhile, as
vo > 0, I(X,;X,) is minimized, resulting in X, ¢ X.. O

14
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A.2 PROOF OF GENERALIZATION BOUND

Proof. Before delving into the proof process, we first introduce the definition of Rademacher
complexity and McDiarmid’s Inequality:

Definition A.1 (Rademacher complexity) Given a space Z and a fixed distribution D defined on Z,
let S = z1,..., 2z, be a set of examples drawn from i.i.d. from D. Furthermore, let F be a class of
Sfunctions f : Z — R, the empirical Rademacher complexity of F is defined to be:

Rn(F)=E; |sup O'Zf (z:) (19)
where 01, . . ., 0y, are independent random variables umform chosen from {-1,1}. The Rademacher
complexity of F is defined as:

Ra(F) = Ep [R(F)] (20)
Theorem A.2 (McDiarmid’s Inequality) Let X1, --- , X, be independent random variables, all
taking values in the set X. Let f: X1 X --- X X,, — R be any function with the (c1,...,c,)-
bounded difference property: Yi,N(x1,...,xn), 2 € X, we have |f(x1,..., %5 ...,2pn) —
flz, ... 2k, ... xn)| < ¢ Then for any € > 0,
2¢2
P (f(Xla e 7Xn) - ]E[f(Xh e aXn)] > 6) < exp (W) (21)
i=1¢

Now, let’s delve into the proof. In the CDIB framework, by introducing the i-th user feature
T';, we generate multiple distributions D;(T") and combine them into a set D. Next, we denote

®(D(I')) = sup ;e Ep[l(f; Y)] — Ep[£(f;Y)], and we have:
@(Di(T)) — ¥(Diy (1)) < sup B, [(F3 )] = Ep, ry [K(F: V)
= sup f(hovy)_f( ) < My — My (22)
feF m m

The last inequality holds because CDIB is also trained on D. Since ® satisfies the bounded difference
property, we can apply the McDiarmid’s Inequality to find:

P (®(Dy,) — Ep,, [®(Dy)] > €) < 2" 2¢m 23
r) — ‘ r)2e)lexp| —————5 | =exp|

) TP BB = O = O\ T aacan? ) TP\ T — )2 )

Setting the above probability to be less than d (i.e., exp (—7@55%)2) = §), we can solve that

€= (My — My)y/ lofr;l% , and we have determined that with probability at least 1 — ¢:

2
B(Dyy) < Ep,, [#(Dy)] + (My — M)y | 252 24)

m

Since Ep [Ep/[((f:Y)][Dy,] = Ep[(f;Y)] and Ep/[Ep,, [((f;Y)][Dir] = Ep, [((f:Y)],
where D’ is a “ghost sample” independently drawn identically to D;,., we can rewrite the expectation:

Ep, [®(Dy)] = Ep,, LﬁgED [L(f;Y)] - Ep,, [f(f;Y)]l

(25)
=Ep,, [Sup Ep/ (IED/ [0(f;Y)] — Ep, [£(f; Y)])]
feF

Since sup is a convex function, we can apply Jensen’s Inequality to move the sup inside the expecta-
tion:

Ep,, [Sup Ep (ED’ [6(f;Y)] — Ep,, if(f;Y)i)
feF

<Ep,, p lsup Ep [¢(f;Y)] - Ep,, [¢(f; Y)]]
feF
(26)
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Multiplying each term in the summation by a Rademacher variable o; will not change the expectation
since E[o;] = 0. Furthermore, negating a Rademacher variable does not change its distribution.
Combining these two facts,

sup Ep[6(f;Y))]
feF

EDtTvpl

—Ep,, [¢(f; Y)]]

—Ep, o lsup LS () - s, y>>]

FeF i3

=E; p,p |su o; ( ,y) — f(h°, 27
Dy, D Legnz b, y) — f( y))} 27)
< E,p |sup IoF , +E,p,. |sup —— o;
D[fng ’ DL DK >]
1
=2E, p,, |sup — oif(h°, = 2R, (F
D s ; f(h°y) (F)

The inequality is due to sup(A + B) < sup A4 + sup B. Substituting this bound into 1nequa11ty.
gives us exactly the Theorem[3.3]

A.3 PROOF OF LOWER BOUND OF I(Y;D,T)

Proof. According to the chain rule of mutual information, the conditional prediction term /(Y; 75|I‘)
can be decomposed as: I(Y;D|I') = I(Y; D,T') —I(Y;T). Intuitively, minimizing the I(Y; T') aims
to reduce the model’s capture of personalized interests, which is harmful to satisfying recommenda-

tions. Therefore, we only maximize the I(Y; @, T'). Similar to the derivation process in (Choi & Lee|
2023)), we have:

I(Y;D,T) =Ey 5 |log p(‘;(lg),l“)]
—Ey 5 |log W +Epp [ D (p(Y | D.T) || po, (Y | D)
>Ey 5 -log ]Ml @9
| p(Y)
=Ey 5 :logpgs (Y | 13,1“)} FH(Y)
>Ey 5 |logpe, (Y | D,T)]

where H(Y) represents the entropy of Y and log pg, (Y|D, T') denotes the variational approximation
of log p(Y|D,T'). The first and second inequalities hold because of the non-negative inherent in
KL-divergence and entropy. So, the lower bound of I(Y; D, T") is ]EY_’@’F[log po, (Y|D,T)]. |

A.4 PROOF OF I(Dy,; D,T) = I(Dy,; D)

Proof. Dy, is training distribution, D is the generated distribution, and I is user features. Remind
that D contains all the information of T' due to its generation process involving I' (see, Equatlon'
This implies that D is a deterministic function of T', i.e., I’ = f (D) for some function f.

Since D is a function of T, the joint distribution p(h2, h?, e, ) can be expressed in terms of p(h?, h9)
and the deterministic relationship I' = f(D). Thus, we can write:

p(hy, hi,e,) =p(hy, hi) e, rne) 29
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where 4 is the Kronecker delta function, which is 1 if its arguments are equal and 0 otherwise.

The mutual information I(D,,; D, T) is given by:

N p(ho’ hgveu)
I(D4; D, T) = h), h? e,)log ———+——— (30)
D)= 3, 8 N8 )y )
Given p(h{, h{,e,) = p(hj, hY) - b, fng), we can rewrite the mutual information as:
~ 0 p(hoahg)'(su, h,
[(Dy;D.T) = > p(hS.he) - O, ping) log —— 2l (1) 31)

o g
he h? p(hg)p(hi, e,)
Since e, f(ng) is | when e, = f(h{) and O otherwise, the term J rng) effectively restricts
the summation to the cases where e, = f(h¢). Thus, p(h¢, e, ) in the denominator simplifies to
p(hd, f(h?)), which is equal to p(h¢). The mutual information simplifies to:

. h° h9
I(Dy; D,T) Z Z p(h, h?) (5101;]’) (ﬁg)) (32)
hg h{ u u

This proves that when D contains all the information of I', the mutual information between D;,- and
the joint variables Dand I is equal to the mutual information between Dy, and D alone. Intuitively,
knowing D uniquely determines T, T" provide no additional information about (D, ; D, T') beyond
what is already known about D. O

B ADDITIONAL EXPERIMENTS

B.1 CASE STUDY

To verify the CDIB’s effectiveness in handling distribution shifts, similar to the case mentioned in
the introduction section (see Figure[T)), we visualize the interest space learned by CDIB for different
users in both the training and testing stages. The result is shown in Figure[7] The result reveals that
compared with SASRec, CDIB is less influenced by new trending items (i.e., 634, 8587) or unseen
collaboration patterns when modelling the interest of niche users at the testing phase. This indicates
the capability of CDIB to capture the users’ true interest when faced with distribution shifts.

= Popular Item = Niche Item << Learned preferences of blockbuster(niche) user *

Interaction Sequence: Q Interaction Sequence: a <\/>
[2754, ..., 6529,3133, 1137, [2129, 634, 8587, 11304,
4839,4527, ..., 2424] 11457]

Target item: 2131 Target item: 799

popularity 182 \ 4 popularity
Y 799
1 2
. 2 _20%
E T ] IR

Interaction Sequence: v
[10247,7325, 8187, 16881,
7702]

Target item: 14249

Interaction Sequence:
[13073, 15838, 9339, 2527,
4787,764, ..., 15990]
Target item: 2096

Training Distribution Testing Distribution

80 -60 -a0 -20 0 20 40 60 80

Figure 7: Visualization of the interest space learned by CDIB on Retailrocket dataset.

B.2 VISUALIZATION OF M,
To explore the underlying mechanism of the factor discriminator, we utilize heatmaps to visualize

the popularity of each item in the interaction sequences of six users from the RetailRocket dataset,
along with the corresponding 1 — MM, learned by the factor discriminator. It is important to note that
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the higher the 1 — M, value for an item, the less the model intends to interfere with it, suggesting
these items may reflect the user’s true interest. The visualization results are displayed in Figure 8]
The results show that for niche users (User 509, User 444, User 117), their interaction sequences
predominantly feature niche items, which often represent their unique interest. The factor discrimina-
tor not only protects popular items from being altered but also tends to shield these less common
items from interference, as highlighted by the blue dashed box. Conversely, for blockbuster users
(User 168, User 107, User 161), who typically interact with trending topics, the factor discriminator
often identifies these popular items as the users’ interest and refrains from modifying them, as
indicated by the red dashed box. Compared to traditional hand-crafted data augmentation methods,
the factor discriminator’s ability to adaptively select elements for augmentation is crucial. It can
intelligently choose which elements to enhance based on user attributes without distorting the original
user interest. This approach helps generate more promising augmented samples and, to some extent,
avoids introducing extraneous noise.

User 509

User 444 I: B
user 117 [ -
[ ]

Item Popularity

Figure 8: The visualization of interacted items’ popularity and the corresponding 1 — M,,.

B.3 VISUALIZATION OF 15

We visualize the representation space of some origin and augmented items to explore its inner mecha-
nisms. Specifically, we reduce the dimensionality of items within the users’ interaction sequences
and those enhanced by latent diffusion using t-SNE (Van der Maaten & Hinton| [2008)), then visualize
their two-dimensional outcomes. Additionally, considering that [ is a critical hyperparameter for
balancing the diversity and reliability of generated distribution, we also visualized the generation
results for different 3 values, as depicted in Figure [0] From the visualization results, it can be
concluded that at lower (8 values (i.e., 1e0, lel), feature collapse occurs in the generated items. This
collapse may happen because a small /3 shifts the model’s focus towards generating low similarity
distributions (minimizing I(Dy,; D|T"), thereby neglecting the intrinsic features of the original dataset.
Such generated distributions can introduce unnecessary noise to the model, complicating its learning
process. Hence, the model performs poorly when § is small (see Section[d.2)). As 8 increases, the
distribution generated by latent diffusion gradually aligns more closely with the original distribution
and retains a clustering effect of popular items to some extent, while the overall distribution becomes
more uniform, aiding the model’s learning process [2022)). When [3 reaches 1e4, there is no
distinguishable difference between the generated and original distributions. At this level, the model
prioritizes preserving the original data characteristics as much as possible (maximizing /(Y; D|T'),
which limits the exploration of out-of-distribution scenarios and decreases overall effectiveness.

B.4 RESULTS ON DIVERSE AUGMENTATION METHODS

Within the scope of our ablation study, we added Gaussian noise to the original data for augmentation
rather than using diffusion-based augmentation techniques. We also conducted experiments with
random data augmentation strategies. Specifically, we performed random masking, cropping, and
reordering on the original interaction sequences to augment the data. The overall results are presented
in Table 2] It can be seen that our diffusion-based augmentation method performs better than the
other two techniques.

B.5 SENSITIVITY ANALYSIS ON «; AND «vp

We have further added sensitivity analysis of hyperparameters for ; and as on ml-100k and
retailrocket, respectively. Specifically, we evaluate our model by varying the o; and as in {0.01,
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Table 2: Performance over diverse data augmentation methods.

Method |  MovieLens-100K Retailrocket Amazon-Beauty Amazon-Sports
| HitRatet NDCG1 | HitRatet NDCG? | HitRatet NDCG1 | HitRatet NDCG T
random 11.09+0.22  5.08+0.13 | 19.84+0.17 8.76+0.11 | 8.98+0.17  4.42+0.05 | 4.90+0.18  2.30+0.10
Gaussian Noise | 11.59+0.16  5.53+0.12 | 20.82+0.16  9.37+0.04 | 9.06+0.15 4.60+0.06 | 4.92+0.21 2.40+0.08
CDIB 11.89+0.16 5.67+0.00 | 21.12+0.14 9.41+o0.10 | 9.17+0.0a 4.56+0.04 | 4.95+0.11  2.38+0.07

0.1, 1.0, 5.0, 10.0}, respectively. The results are present in Table [3]and Table ] We conclude our
observations as follows: (i) Optimal performance across both datasets is attained at o; = 1.0, marking
a peak in performance that rises to it and then begins to decline. If «; is set too low, the diffusion
model’s generative capabilities are diminished, potentially leading to the creation of noise samples
that can hinder model training. Conversely, if o is too high, the auxiliary task takes precedence in the
model’s optimization process, which can adversely impact the model’s recommendation capabilities.
(ii) Optimal model performance is consistently achieved at ap = 1.0 across all datasets, after which
there is a notable decline in performance as a5 increases to 10.0, with pronounced effects on the
Retail dataset. This decrease may be due to the model’s overly focus on model performance on the
generated data distribution at higher ay values, potentially obscuring the model’s capacity to extract
essential information from the original datasets’ distribution.

Table 3: Sensitivity analysis on oy Table 4: Sensitivity analysis on as
o |  MovieLens-100K Retailrocket . |  MovieLens-100K Retailrocket
1 .

| HitRatet NDCGT | HitRatet NDCG T | HitRatet NDCG1 | HitRatet NDCG T
0.01 | 11.91+0.19 5.58+0.13 | 20.92+0.15  9.28+0.12 0.01 | 11.11+0.18  4.92+0.14 | 19.69+0.15  8.58+0.12
0.1 11.76+0.17  5.59+0.14 | 20.96+0.15  9.38+0.11 0.1 11444017 5.19+0.11 | 20.28+0.15  8.81+0.13
1.0 11.89+0.16  5.67+0.00 | 21.12+0.14  9.41+0.10 1.0 | 11.89+0.16 5.67+0.09 | 21.12+0.14 9.41+0.10
5.0 11.16+0.14  5.30+0.08 | 21.10+0.15 9.44+0.13 5.0 8.42+0.14  3.81x0.07 | 16.00+0.13  7.83+0.12
10.0 | 10.99+0.17  5.12+0.2 | 20.98+0.12  9.40+0.11 10.0 | 5.73+0.13 2.63+0.6 5.13+0.15  2.50+0.13

(a) B =1e0 (b) B = lel (c) B=1e2 (d) B =1e3 (e) B =1led
Figure 9: The visualization of generated distribution w.r.t 3.

B.6 APPROXIMATE PERCENTAGE OF VALUES OF 1 IN M,

we record the percentage of values of 1 in M, before and after adding the £, 45k, the results are
shown in Table E} As we can see, after the introduction of the £, 45k, the percentage of values of 1 in
M, increased from 0.0% to an average of 17.4%.

Table 5: approximate percentage of values of 1 in M,

\ML-IOOK Retailrocket Amazon-Beauty = Amazon-Sports

w/0 Liask 0.0% 0.0% 0.0% 0.0%
W Lonask 13.5% 22.1% 15.5% 18.4%

C IMPLEMENTATION DETAILS

The CDIB model is implemented using Pytorch 1.13.0 (Paszke et al.l[2019) and Python 3.8.13. Ex-
periments are conducted using two NVIDIA GeForce RTX 3090 GPUs. To ensure a fair comparison,
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we adopt the widely used experimental environment RecBole (Zhao et al.,[2021)). The parameters
are initialized using a Gaussian distribution A'(0, 0.02) and optimized with the Adam optimizer at
a learning rate of 0.001. Moreover, we adopt the early-stop strategy to train the models and set the
maximum sequence length to 50. We run the codes for GRU4Rec, Caser, SASRec, and CL4SRec,
which are reproduced by the RecBole teanﬂ We also reproduce the implementations of IPS, S-DRO,
DROS, DuoRec, and DCRec to the RecBole environment.

C.1 ALGORITHM

The pseudo-algorithms for the training and inference stages of CDIB are presented in Algorithm ]
and Algorithm [2] respectively.

Algorithm 1: The Training Stage of the Proposed CDIB Algorithm

Input: user set &/ = {u}, item set Z = {i}, interaction sequences Sy, learning rate 7, and batch
size B.
Qutput: trained recommender £*.

Initialize all parameters;
while not converge do
Sample a batch {u}¥ and {s,}? from S,
Embed users {u}} and items {s, } to get the corresponding embedding T" and H,,
# Generating Distribution D
Calculate the mask M, using the Factor Discriminator
Mask the stable factors by H?L =H, oM,
Forward diffusion process: N'(H!; /T — BH! 1, B,1)
Reverse diffusion process: p(HZ) Hz;l po, (H{THHY)
Sample external factors to get diverse data H, = ﬁg +H,0(1-M,)
Calculate the Lyq = Lcon + Lmask
# Optimizing with CDIB
Encode origin and augmented interaction sequence using Transformer Recommender
Obtain the overall 10ss: Liota1 = Lprea + 1 Lga + 2(BLreg + Lgen)
Update £ to minimize Lp1q;
end

return trained recommender £*

Algorithm 2: The testing Stage of the Proposed CDIB Algorithm

Input: interaction sequences Sy, trained recommender £*, and item set Z.
Qutput: recommended items.
for s, € S;. do
| return arg max; .7 p(i[£*(su))
end

C.2 HYPERPARAMETER

We tune the hyperparameters as follows: Batch Size € {64, 128,256,512, 1024}; Dropout Rate €
{0.1,0.3,0.5,0.7}; 8 € {10,100, 1000, 10000}. For a fair comparison, we standardized all common
hyperparameters across models and configured the unique hyperparameters according to the settings
provided by the corresponding authors. The hyperparameters settings of CDIB are present in Table 6]

3https://github.com/RUCAIBox/RecBole/tree/master/recbole/model/sequential_recommender
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Table 6: Hyperparameter specifications

Dataset ML-100K Retailrocket Amazon-Beauty = Amazon-Sports

Optimizer Adam Adam Adam Adam
Batch Size 512 512 512 512

Learning Rate 0.001 0.001 0.001 0.001
Embedding Size 64 64 64 64
Hidden Size 256 256 256 256
Dropout Rate 0.5 0.5 0.5 0.5
Temperature 7 1.0 1.0 1.0 1.0

Lagrange multiplier 3 1000 1000 1000 10000

C.3 DETAILS ABOUT Lypreq AND Lyg

Lpred 1s a negative log-likelihood function of the expected next item 7 ; of an origin interaction
sequence s,,, where we adopt cross-entropy loss under the full set of items:
U] L+1
1 exp(h - el ™h)
Lpred = = —log ( 4t (33)
: | ; 2 icrexp(h - )

L+1
u

where h is the representation of the origin interaction sequence, e
interacted item, and e; is the embedding of item ¢.

is the embedding of the next

L4 is the regularization loss, which encourages that essential information to the target item iy, is
preserved, where we utilized the cross entropy loss under the full set of items:
U]

1 exp(h? - eL+1)
Lreg = — —1 u__u 34
"= 2 Og(ziezexpm%'ei) ey

where hY is the representation of the generated interaction sequence, eZ*! is the embedding of the
next interacted item, and e; is the embedding of item .

D COMPLEXITY ANALYSES

Time Complexity Analysis. For one batch of training data, the computational cost of the factor
discriminator is O(4Ld), and the distribution generator is O(Ld + T Ld?), which means the time cost
of generating new distribution by CDIB is O(5Ld + T Ld?) in the training stage. With the attention
calculations, the time complexity of the Transformer Recommender is O(2L2 hd + Lhd2), which
is also the total time cost in the testing stage. Moreover, the time complexity to compute Lgq is
O(L(2d + 1)), Lreg 18 O(|Z|d), Lgen 18 O(2|U|d), and Lpreq is O(|Z|d), therefore, the total time
cost to compute the loss is O(L(2d + 1) + 2|Z|d + 2|U|d). Consider that |Z| and |I/| are much larger
than L empirically, the overall time complexity of CDIB is O((|Z| + [U|)d + T Ld?).

Space Complexity Analysis. Compared to the naive sequential recommendation model SAS-
Rec (Kang & McAuley, 2018)), our CDIB uses extra parameters costs O(|B|d) to represent the users’
attributes, which only occur in the training stage, and O(d?) to develop the factor discriminator
and distribution generator, which is affordable. The running time and model size in the training
stage are shown in Table[7] and that of the testing stage is present in Table[8] where also present the
performance improvement compared with SASRec.

E DATASETS, BASELINES, METRICS, AND RELATED WORKS

E.1 DETAILED DATASETS DESCRIPTION

ML-100K. ML-100K is sourced from MovieLenﬂ a recommendation system and virtual community
website established by the GroupLens Research Project at the University of Minnesota’s School of
Computer Science and Engineering.

*https://movielens.org/
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Table 7: Running time and Model size at the training stage

SASRec DROS DCRec CDIB
Dataset Running Model Running Model Running Model Running Model
Time Size Time Size Time Size Time Size

ML-100K 00h 15m 02s 021 M 01h48mO0ls 02IM O0lh26m55s 022M O00h37m2ls 042M
Retail 01h02m32s 124M 02h25m38s 1.24M 06h36m12s 125M O01h19m24s 2.80M
Beauty 01h03m39s 0.87M 01h39m34s 0.87M 02h1lm2ls 0.89M 01h08m40s 245M
Sports 01h34m48s 127M 03h35m04s 127M 02h42m1ls 1.29M 00h50m38s 3.70M

Table 8: Running time, Model size and Performance Improvement at the testing stage

SASRec DROS DCRec CDIB
Dataset Running Model Running Model Performance Running Model Performance Running Model Performance
Time Size Time Size Improvement Time Size Improvement Time Size Improvement
ML-100K 0.13s 021 M 0.12s  021M 18.10% 0.14s 0.22M 16.94% 0.12s 021 M 117.23%
Retailrocket ~ 0.37s 1.24M 0.45s 1.24M 10.32% 0.43s 1.25M 11.72% 0.38s 1.24M 18.53%
Beauty 0.34s 0.87M 032s 087M 13.54% 0.38s 0.89 M 19.13% 0.31s 0.87M 16.34%
Sports 0.47s 1.27M 0.48s 1.27M 1T 4.41% 0.58s 1.29M 1 11.34% 0.48s 1.27M 17.29%

Retailrocket. The Retailrocket dataset was collected from a real-world e-commerce websitefl We
utilize viewing sequences to train and test our model. Following the approach in (Yang et al., 2023b),
we exclude items interacted with fewer than five times to mitigate the cold-start issue. Additionally,
sequences shorter than three interactions are removed.

Amazon. The Amazon-Beauty and Amazon-Sports datasets compile user-item interactions from
Amazorﬂin the Beauty and Sports product categories, respectively. Employing preprocessing similar
to that used for Retailrocket, we filter out items with fewer than five interactions and sequences
shorter than three. The statistics of our evaluation datasets are detailed in Table

Table 9: Dataset statics

Dataset ML-100K Retailrocket ~Amazon-Beauty = Amazon-Sports
#Users 944 22179 22364 35599
#ltems 1683 17804 12102 18358
#Interactions 100000 240938 198502 296337
Avg. actions of users 106.04 10.86 8.87 8.32
Avg. actions of items 59.45 13.53 16.40 16.14
Sparsity 93.71% 99.94% 99.93% 99.95%

E.2 DETAILED BASELINES DESCRIPTION
We compare CDIB with nine methods from diverse research lines, covering:

1. Naive Sequential Recommendation Methods: These methods have been effective techniques to
capture the evolving pattern of users’ interest.
¢ GRU4Rec (Hidasi et al.,[2016): GRU4Rec utilizes the Gated Recurrent Unit (GRU) for session-

based recommendations, providing strong sequence modelling capabilities.
* Caser (Tang & Wang] [2018)): Caser is a CNN-based approach that employs horizontal and
vertical convolutional filters to capture sequential patterns.
* SASRec (Kang & McAuley, 2018): SASRec applies a multi-head self-attention mechanism to
encode item-wise sequential correlations, suitable for long sequence data.

2. Reweighting Methods: These methods aim to develop a more unbiased and robust model by
adjusting the weight of each training instance.

 IPS (Schnabel et al.;2010): IPS re-weights each training instance with inverse popularity score
to eliminate popularity bias.

Shttps://www.kaggle.com/datasets/retailrocket/ecommerce-dataset/
Shttps://www.amazon.com/
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3. DRO Methods: DRO Methods integrate the distributionally robust optimization (Hu & Hongj
2013) to the sequential recommendation to obtain a recommender with better generalization
ability.

* S-DRO (Wen et al} 2022): This model adds streaming optimization improvement to the Distri-
butionally Robust Optimization (DRO) framework to mitigate the amplification of Empirical
Risk Minimization (ERM) on popularity bias.

* DROS (Yang et al.,[2023b)): It introduces a carefully designed distribution adaption paradigm,
which considers the dynamics of data distribution and explores possible distribution shifts
between training and testing.

4. Diffusion-based Augmentation Methods: Diffusion-based Augmentation Methods utilize diffu-
sion technical to enrich the sparse training data to improve the model performance.

* DiffuASR (Liu et al) 2023)): This model designs a Sequential U-Net to capture sequence
information while predicting the added noise. Additionally, two guiding strategies (DiffuASR-
CG and DiffuASR-CF) are implemented to steer DiffuASR, ensuring it generates items that
align more closely with the preferences in the original sequence.

5. Contrastive Learning Methods: CL methods adopt data augmentation to enhance the robustness
of recommenders.

* CLA4SRec (Xie et al.,[2022)): CL4SRec employs random corruption techniques like cropping,
masking, and reordering to generate contrastive views.

* DuoRec (Quu et al.| [2022)): DuoRec introduces supervised positive sampling to obtain high-
quality positive pairs.

* DCRec (Yang et al.,2023a): DCRec unifies sequential pattern encoding with global collabora-
tive relation modelling through adaptive conformity-aware augmentation.

E.3 DETAILED METRICS DESCRIPTION

We focus on top-N item recommendations and utilize two widely used metrics for evaluation: Hit
Rate (HR)@ N and Normalized Discounted Cumulative Gain (NDCG)@ N. These metrics are crucial
for assessing the recommendation accuracy at the top-/NV ranked positions (Kang & McAuley, 2018}
Yang et al., |2023a} Xia et al} [2023)). The models are evaluated using an all-ranking protocol (He
et al., [2020), which provides a robust and comprehensive performance assessment. The metrics are
formally calculated as follows:

DD DAIETS M S i/ ogs (5 + 1)
HRON = === NDCG@N = W IDOG,

i=1

(35)

where M denotes the number of tested users, r; ; = 1 if the j-th item in the ranked list for the i-th
user is positive, and 7; ; = 0 otherwise. The numerator of NDCG@N is the discounted cumulative
gain (DCG) at N, and I DC'G} is the ideal maximum DCG@QN value for the i-th tested user.

E.4 MORE RELATED WORKS

Sequential Recommendation is designed to predict the next item a user is likely to prefer based on
their interaction history. Traditional methods have leveraged Markov chains to capture first-order
item-to-item correlations through transition matrices (Rendle et al., 2010; [He & McAuleyl 2016)).
With the development of deep learning, which excels at modeling complex sequential patterns, various
deep recommendation models have been developed. For instance, GRU4Rec (Hidasi et al., [2016)
employs Gated Recurrent Unit (GRU) units to model the temporal dynamics of interaction sequences.
Caser (Tang & Wang| 2018)) uses a time convolutional neural network (TCN) to account for both long-
term and short-term user interests in personalized recommendations. SASRec (Kang & McAuley,
2018)) and BERT4Rec (Sun et al., 2019) enhance computational efficiency in lengthy sequences by
incorporating self-attention mechanisms. More recently, inspired by selective state space models (Gu
& Daol 2024), Mamba4Rec (Liu et al.,[2024)) has been introduced, utilizing the mamba framework
to recommend items efficiently. Despite their capabilities, these models often suffer performance
declines when OOD occurs. To address this, CDIB introduces a user feature-guided generation
approach that proactively explores OOD scenarios during the training phase, enhancing the model’s
generalization capabilities.
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Distributionally Robust Sequential Recommendation has recently attracted significant research
interest, which aims to train a model that performs well not only at the training stage but also at the
testing stage. Methods like reweighting and DRO (Schnabel et al.,|2010; Bottou et al., 2013} |Wang
et al., [2022b; [Yang et al.l [2023b; |Wen et al., 2022) presume that the test dataset’s distribution can
be inferred from prior knowledge. For example, IPS (Schnabel et al.,[2010) re-weight each instance
with the inverse propensity score, which implicitly assumes the testing distribution is uniform (Zhang
et al.,[2023)). DROS (Yang et al., |2023b)) unifies the DRO and sequential recommendation paradigms
to enhance model robustness against distribution shifts but faces challenges with sparse data. Causal
inference methods capture real causal relationships but assume the causal graph is static (Wang et al.,
2023b; [He et al., 2022} |Yang et al.| [2020; |Wang et al.,[2022a)), while contrastive learning approaches
seek to enrich the training data distribution through data augmentation (Liu et al., 2021} |Xie et al.}
2022;|Yang et al.,2023a; |Qiu et al., 2022; |Zhao et al.|[2023)), but hardly rely on the data augmentation
strategies. What’s more, most of the existing models ignore the user’s sensitivity during the process
of distribution shift. To fill the gap, we introduce the CDIB principle, using the user features to guide
the exploration of the other distribution.

Information Bottleneck with Conditional Information has been increasingly utilized in recent
research. Various studies have adopted the information bottleneck (IB) principle by incorporating
conditional, aiming to extract information that aligns with specific objectives. The conditional
information bottleneck (CIB) theory (Gondek & Hofmann, [2003) has been applied in methods
such as CGIB (Lee et al.l 2023) to identify crucial molecular structures that predict interactions
between graph pairs, with a focus on significant subgraphs. TimeCIB (Choi & Lee} 2023) extends
the CIB to time series data imputation, ensuring the preservation of essential temporal information.
Drawing inspiration from these precedents, CDIB employs CIB to steer the generation of distributions,
enhancing the model’s robustness. To the best of our knowledge, CDIB is the first application of CIB
to guide the distribution generation process.

Diffusion-based Augmentation Models Earlier approaches like Diff4ARec (Wu et al., [2023) and
DiffuASR (Liu et al.,|2023)) followed a three-step process: training the diffusion model, generating
new data with the diffusion model, and then training the recommendation model on new data, which
can lead to a disconnect between the generation and downstream tasks due to the discrete nature of
these stages, preventing the flow of gradient information. Our model, however, employs an end-to-end
training approach, which maintains the alignment between the generation and downstream tasks.
What’s more, in the SR scenario, interaction data is very sensitive (Ye et al.,[2023), and there is a risk
of losing significant information during the data augmentation phase, which may compromise the
quality of the generated data, a concern overlooked in previous methods. Our model addresses this
by utilizing a learnable mask mechanism to safeguard critical interactions adaptively and is guided by
IB theory in the generation process. Visualization (cf. Appendix [B.2)) demonstrates that our model
can mitigate the data quality issues.

F LIMITATION AND FUTURE WORK

Although CDIB outperforms the baseline models, it currently relies solely on ID features to model
user attributes, and its ability to guide generating distributions is constrained by cold-start problems.
In future work, we plan to investigate using side information or multi-modal data to model user
attributes, which may help mitigate the cold start issues. Additionally, to maintain high computational
efficiency, we employ a lightweight MLP model as the backbone for the denoising process. While
the suitability of MLP for recommendation scenarios is not the focus of this work, it remains an
important question. Therefore, we will explore which architectures are both lightweight and effective
for recommendation scenarios, such as Mamba (Gu & Dao), [2024]), in our future studies.

24



	Introduction
	Preliminaries
	Sequential Recommendation Paradigm
	Information Bottleneck Principle

	Methodology
	Distribution Information Bottleneck Principle
	Conditional Distribution Information Bottleneck Principle
	Model Architecture and Optimization
	
	Model Optimization with CDIB


	Experiment
	Performance Comparison
	Sensitivity Analysis on 
	Ablation Study
	Visualization of Blockbuster and Niche Users' Preference

	Related Work
	Conclusion
	Proofs
	Proof of Rationality of DIB
	Proof of Generalization Bound
	
	

	Additional Experiments
	Case Study
	
	
	Results on Diverse Augmentation Methods
	
	

	Implementation Details
	Algorithm
	Hyperparameter
	Details about 

	Complexity Analyses
	Datasets, Baselines, Metrics, and Related Works
	Detailed Datasets Description
	Detailed Baselines Description
	Detailed Metrics Description
	More Related Works

	Limitation and Future Work

