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ABSTRACT

Sequential recommendation (SR) aims to suggest items users are most likely to
engage with next based on their past interactions. However, in practice, SR systems
often face the out-of-distribution (OOD) problem due to dynamic environmental
factors (e.g., seasonal changes), leading to significant performance degradation in
the testing phase. Some methods incorporate distributionally robust optimization
(DRO) into SR to alleviate OOD, but the sparsity of SR data challenges this. Other
approaches use random data augmentations to explore the OOD, potentially dis-
torting important information, as user behavior is personalized rather than random.
Additionally, they often overlook users’ varying sensitivity to distribution shifts
during the exploration, which is crucial for capturing the evolution of user prefer-
ences in OOD contexts. In this work, inspired by information bottleneck theory
(IB), we propose the Conditional Distribution Information Bottleneck (CDIB), a
novel objective that creates diverse OOD distributions while preserving minimal
sufficient information regarding the origin distribution conditioned on the user.
Building on this, we introduce a framework with a learnable, personalized data
augmentation method using a mask-then-generate paradigm to craft diverse and
reliable OOD distributions optimized with CDIB. Experiments on four real-world
datasets show our model consistently outperforms baselines. The code is available
at https://anonymous.4open.science/r/CDIB-51C8.

1 INTRODUCTION

Nowadays, recommendation systems are important in addressing information overload across various
applications, such as e-commerce, online retail platforms, and so on (Cen et al., 2020; Guy et al.,
2010). SR is one of the crucial topics focusing on capturing users’ dynamic interest to recommend
content that aligns with it more accurately (Hidasi et al., 2016; Kang & McAuley, 2018).

Nevertheless, most methods assume that the popularity distribution during training and testing is
independent and identically distributed, an unrealistic assumption in most cases (Zheng et al., 2021;
Zhang et al., 2023). In SR, popularity distribution can shift due to time-sensitive environmental
factors, leading to changes in user preferences (e.g., the World Cup boosting soccer jersey sales
or seasonal changes increasing T-shirt sales in summer and sweater sales in winter), which causes
performance degradation of the model during the testing phases.

Furthermore, we observe that different users have varying sensitivity to distribution shifts, leading
to different impacts from OOD scenarios. As shown in Figure 1, for blockbuster users who engage
with trending content, the model can adjust and continue providing relevant recommendations as
trends shift (①→③) due to its inherent bias toward popular items (Zhang et al., 2021). However, for
niche users who follow mainstream items less, despite the model capturing their preferences during
training, it often defaults to providing popular items when environmental factors change, likely due
to unfamiliar behavior patterns, misaligning with niche users’ true preferences (②→④).

To alleviate the OOD problem in SR, various models have been developed, employing techniques
such as reweighting (Wang et al., 2022b), causal inference (Wang et al., 2023b; He et al., 2022),
distributionally robust optimization (Yang et al., 2023b; Wen et al., 2022), and contrastive learning
(CL) (Liu et al., 2021; Xie et al., 2022; Yang et al., 2023a; Qiu et al., 2022).
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Interaction Sequence: 

[2129, 634, 8587, 11304, 

11457]

Target item: 799

Interaction Sequence: 

[13073, 15838, 9339, 2527, 

4787, 764, …, 15990]

Target item: 2096

Testing Distribution

Training Testing

Interaction Sequence: 

[10247, 7325, 8187, 16881, 

7702]

Target item: 14249

Training Distribution

Time

48

8

88

3

182

2131

popularity

Item

14249

90

4

22

5 5

799

2096

popularity

Item

Popular Item Niche Item Learned preferences of blockbuster (niche) user 1

2

3

4

Figure 1: ① and ② show the overall user preference distribution learned by SASRec (Kang &
McAuley, 2018) during training, along with learned blockbuster and niche user preferences, respec-
tively, while ③ and ④ display the corresponding distributions during testing. (Blockbuster user:
prefers mainstream items; Niche user: prefers mainstream items less.)1

However, existing methods have two main issues: (i) Methods like DRO in SR (Yang et al., 2023b)
optimize the model for the worst-case distribution within a family of distributions around the training
data, ensuring robustness to unknown distributions. However, the feasible distribution family for
DRO is inherently limited by the sparse nature of recommendation data (Wang et al., 2024). (ii) Data
augmentation models (e.g., CL methods (Qiu et al., 2022; Xie et al., 2022)) can expand the training
distribution but often rely on unguided or hand-crafted augmentations, risking the loss of important
interaction data while retaining noisy or irrelevant information for augmentation, misleading user
preference modeling. Additionally, they overlook users’ varying sensitivity to distribution shifts
mentioned above, which is essential for capturing the evolution of user preferences in OOD contexts.

To this end, inspired by IB theory (Gondek & Hofmann, 2003; Tishby & Zaslavsky, 2015; Alemi
et al., 2016; Lee et al., 2023; Choi & Lee, 2023), we propose the Conditional Distribution Information
Bottleneck (CDIB) that generates diverse distributions while preserving minimal sufficient information
from the original distribution conditioned on the user. It aims to introduce more interaction patterns
influenced by other time-sensitive environmental factors at training, enhancing performance on
unknown distributions. Specifically, CDIB diversifies the generated data by minimizing the mutual
information between original distribution D and generated distribution D̃ given the user features,
while retaining personalized critical information by maximizing the mutual information between
generated D̃ and the target items reflecting users’ preferences. To control the information flow
from D to D̃, we propose a mask-then-generate mechanism. First, we introduce a Learnable Mask
that adaptively identifies stable and sensitive items (e.g., comic book and soccer jersey during the
World Cup) in the interaction sequence based on their semantic relatedness. The sensitive items are
then perturbed and reconstructed using the proposed Distribution Generator, built on the latent
diffusion model (Ho et al., 2020; Rombach et al., 2022; Wang et al., 2023a). This process constrains
sensitive information transmission while enriching interactions by reconstructing unseen sensitive
items. Moreover, we provide theoretical analyses to justify the rationality of the generated D̃.

To summarize, this work makes the following contributions: (i) We introduce CDIB, which guides the
generation of diverse and reliable distributions with personalized information, and conduct theoretical
analyses to prove its rationality. (ii) We propose a mask-then-generate mechanism to constrain
sensitive information transmission and enrich sensitive item interactions for better performance in
OOD scenarios. (iii) Extensive experiments demonstrate the effectiveness and robustness of CDIB.

2 PRELIMINARIES

This section begins by outlining the SR scenario, including notations and the problem formulation
(Section 2.1). Then, we introduce the IB theory (Section 2.2), a well-established information theory.

1The concepts and definition of Blockbuster and Niche are derived from (Wen et al., 2022)
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2.1 SEQUENTIAL RECOMMENDATION PARADIGM

Notations. Denote with U (u ∈ U) the user set and with I (i ∈ I) the item set, where |U| and |I|
represent the number of users and items, respectively. Each user u is associated with a chronologically
ordered interaction sequence su = (i1u, · · · , iLu ), with L denoting the length of the sequence, and the
target is denoted as Y = {iL+1

u | u ∈ U}, where iL+1
u represents the next item to interact with by user

u. The collection of all interaction sequences is denoted as S (su ∈ S), which is further partitioned
into the training set Str comprising historical interactions, and the test set Ste containing future
interactions. Also, we denote the stable items as Xs and the (environmental-)sensitive items within
the interaction as Xe. Additionally, we define Dtr and Dte as the training and testing distributions.

Problem Formulation. Formally, the learning of sequential recommendation involves optimizing
the model ξ through empirical risk minimization on the training distribution Dtr (Kang & McAuley,
2018; Sun et al., 2019), which only involves ID features:

ξ∗ = argmin
ξ

ÊDtr

[
ℓ
(
ξ (su) , i

L+1
u

)]
= argmin

ξ

1

|Str|
∑

su∈Str

− log p
(
iL+1
u | ξ (su)

)
, (1)

where ξ(su) represents the hypothesis predicted by ξ, and p
(
iL+1
u |ξ (su)

)
denotes the probability of

ξ recommending iL+1
u to user u based on su. The optimized ξ∗ is then applied to the future task.

2.2 INFORMATION BOTTLENECK PRINCIPLE

The information bottleneck principle (Tishby & Zaslavsky, 2015; Alemi et al., 2016) is an approach
based on information theory designed to balance the trade-off between compressing a random
variable and preserving its minimum sufficient information about the target variable. It aims to find a
compact representation that retains as much information about the target as possible and discards the
target-irrelevant information.

Definition 2.1 (IB) Given input variable X, target Y, and bottleneck variable Z, respectively, the
IB aims to compress X to Z, while keeping the information relevant for Y:

min
Z

I(X;Z)− βI(Y;Z) (2)

where I(U;V) =
∑

u,v p(u, v) log
p(u,v)

p(u)p(v) is the mutual information between U and V, and β ∈ R
is a Lagrange multiplier balancing the two mutual information terms.

3 METHODOLOGY

In this section, we first formally propose the DIB principle in Section 3.1, a straightforward application
of IB to distribution generation, and then we propose the CDIB in Section 3.2, a novel method that
generates diverse and reliable distribution based on conditional mutual information. Then, we
introduce the overall model architecture and its optimization strategies with CDIB in Section 3.3.

3.1 DISTRIBUTION INFORMATION BOTTLENECK PRINCIPLE

In this section, we introduce the DIB, anchored in the IB. This principle facilitates the generation
of new distributions, represented as D̃ = (X̃s, X̃e), derived from the training distribution Dtr =

(Xs,Xe). With the DIB, while the D̃ preserves the stable elements within the Dtr, it introduces a
spectrum of sensitive elements, thereby enhancing the diversity of the data.

Definition 3.1 (DIB) Given original training distribution Dtr, target Y, and generated distribution
D̃, respectively, we define DIB as follows:

min
D̃

I(Dtr; D̃)− βI(Y; D̃) (3)

where β ∈ R is a Lagrange multiplier balancing the diversity and reliability of the D̃.

3
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DIB seeks to foster a variety of distributions D̃ that diverge from the original distribution by minimiz-
ing I (Dtr; D̃), while concurrently ensuring the preservation of critical information by maximizing
I (Y; D̃). It can be demonstrated that this leads to X̃s ≃ Xs and X̃e ̸∼ Xe, achieving a balance
between stability in stable elements and diversity in sensitive elements (cf. Appendix A.1).

3.2 CONDITIONAL DISTRIBUTION INFORMATION BOTTLENECK PRINCIPLE

Although DIB can generate a diverse and promising distribution D̃, the generation process of the
distributions is still not fully reliable due to the lack of constraints. Specifically, there is no certainty
that the distributions obtained from the minimization of DIB will represent those encountered in
the testing stage. It’s because X̃e can be generated in any direction that diverges from Xe as
long as it can minimize the I(Dtr, D̃). Furthermore, the straightforward application of DIB fails
to account for users’ sensitivity to OOD. More concretely, some users are readily influenced by
environmental factors like popular trends. In contrast, others display less susceptibility to such
influences. Consequently, the generation of X̃e should be personalized, suggesting that the generation
of D̃ should be more controlled. To this end, we introduce the CDIB, aiming to guide the personalized
generation of D̃ and steer it, to a certain extent, towards aligning with the testing distribution:

Definition 3.2 (CDIB) Given original training distribution Dtr, target Y, generated distribution D̃,
and user embeddings Γ respectively. The formulation of CDIB is as follows:

min
D̃

I(Dtr; D̃ | Γ)− βI(Y; D̃ | Γ) (4)

where I(U;V|W) =
∑

w p(w)
∑

u,v p(u, v|w) log
p(u,v|w)

p(u|w)p(v|w) is the mutual information between
U and V conditioned on W.

The first term, I(Dtr; D̃ | Γ), functioning as the conditional generation term, facilitates the person-
alized separation of D̃ from Dtr by minimizing the mutual information between them that takes
into account user features. The second term, I(Y; D̃ | Γ), serving as the conditional regularization
term, prompts the D̃ to preserve user-specific target-relevant information from the true labels. By
optimizing these two terms, D̃ includes the minimum sufficient personalized information about the
target, along with elements that account for user sensitivity. We further demonstrate that introducing
additional user features to generate a diverse distribution enhances the model’s generalizability.

Theorem 3.3 (Generalization Bound) Let ÊDtr
[ℓ(f ;Y)] be the empirical loss on the training set,

D be the unknown distribution, and ED[ℓ(f ;Y)] be the expected loss on D. Given any finite
hypothesis space F of models, suppose f ∈ [M1,M2], we have that with probability at least 1− δ:

ED[ℓ(f ;Y)] ≤ ÊDtr [ℓ(f ;Y)] + 2Rn(F) + (M2 −M1)

√
log 2

δ

m
(5)

where Rn(F) is the rademacher complexity of F , reflecting its capacity to model random noise
within a dataset, inherently linked to the dataset’s properties, and m is the amount of the user features.

The proof is presented in the Appendix A.2. Theorem 3.3 shows that an increased value of m results
in a tighter bound for ED[ℓ(f ;Y)], which is upper bounded by ÊDtr [ℓ(f ;Y)], thereby enhancing the
model’s generalizability in unknown distribution.

3.3 MODEL ARCHITECTURE AND OPTIMIZATION

In this section, we formally introduce the generation process for the distribution D̃ (Section 3.3.1).
Following this, we detail the optimization with the CDIB (Section 3.3.2).

3.3.1 GENERATION OF DISTRIBUTION D̃

Current graph IB-based approaches inject Gaussian noise into or mask insignificant nodes to control
the information flow from the original Dtr to the generated D̃ (Wei et al., 2022; Lee et al., 2023).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Forward Reverse
… …

Distribution Generator 𝒇𝜽𝟐
L𝐞𝐚𝐫𝐧𝐚𝐛𝐥𝐞 𝐌𝐚𝐬𝐤 𝒇𝜽𝟏

×
×

Multi-head 

Self-attention

Point-wise 

Feed-forward 

Network

Transformer Recommender 𝒇𝜽𝟑

User 

Feature

CDIB

𝑠𝑢

𝑑

𝐇𝑢

ǁ𝑠𝑢 𝐇𝑢
0 𝐇𝑢

𝑇 ෩𝐇𝑢
0

𝐇𝑢

෩𝐇𝑢

𝑞ℎ 𝑘ℎ

𝑣ℎ

× 𝐿

𝐘

𝐷

෩𝐷
× 𝐿

Gaussian NoiseSensitive Item Generated 

Distribution

Original 

Distribution

Stable Item Target Maximize (Minimize) 

e𝑢

𝐌𝑢

𝐮𝐬𝐞𝐫 𝒖

𝒉𝑢
𝑙

0

1

1

0

0

Interacted Item

Figure 2: The overall framework of CDIB: The learnable mask first masks the stable items, followed
by the distribution generator augmenting the sensitive items. Both original and augmented samples
are then fed into the recommender to obtain D and D̃, which are optimized using CDIB later.

However, these methods rely solely on a node’s embedding to determine significance, hard to perceive
the current interaction environment and distinguish between stable and sensitive items. Furthermore,
adding Gaussian noise often disrupts semantic integrity, and struggle to simulate OOD samples well.
Thus, we propose a mask-then-generate mechanism consisting of: (i) Learnable Mask-adaptively
discover sensitive items; (ii) Distribution Generator-perturb and reconstruct sensitive items.

Embedding Layer. Users and items are embedded into a d-dimensional latent space. For each
user u with interaction sequence su, we obtain a user embedding eu ∈ Rd and an item embedding
matrix Eu =

(
e1u, . . . , e

L
u

)
∈ RL×d, where elu represents the l-th item interacted by u. The set of

all user embeddings is denoted as Γ = {eu | u ∈ U} ∈ R|U|×d. To model temporal information,
we initialize a learnable position embedding matrix P = (p1, . . . ,pL) ∈ RL×d, commonly used in
sequence modeling (Devlin et al., 2018; Sun et al., 2019). The hidden representation for a sequence
is then computed as Hu = Eu +P, where hl

u ∈ Hu. To model the users’ sensitivity, we minimize
KL-divergence to align the user feature distribution with the interacted items’ popularity distribution:

Lcon = EDtr
[DKL(N (p (Γ) , I) ∥ N ((OY/

∑
OY), I))] , (6)

where OY represents the number of times each target has been observed, and p(·) is the sensitivity
estimator, which is implemented using an MLP.

Learnable Mask. Inspired by the InfoMax principle (Ye et al., 2023), we measure semantic related-
ness by assessing representation consistency within the interaction sequence. Sensitive items, with
uncertain behavioral patterns, often show lower semantic relatedness due to embedding differences
from other items. Thus, items with low semantic relatedness are classified as sensitive. We compute
this relatedness using an MLP parameterized by θ1, summarized as follows:

Mu =
[
M1

u, · · · ,Ml
u, · · · ,ML

u

]
, where Ml

u = σ
(
MLPθ1

(
hl
u ∥ ϕ (Hu) ∥ eu

))
, (7)

where ϕ(·) represents the interaction aggregation function, we have chosen to implement the mean
aggregation. σ(·) denotes the sigmoid function. To avoid Mu converging to trivial solutions 0, we
introduce a self-supervised regularization loss: Lmask = −

∑
u∈U

∑L
l=1 M

l
u. Also, the optimized

Lmask dynamically adjusts semantic relatedness based on the impact of masking on downstream
tasks, enabling adaptive masking in evolving SR scenarios.

Distribution Generator. After distinguishing stable and sensitive items, we perturb sensitive items to
compress stable information into D̃. Instead of simply injecting noise, we employ the diffusion model
paradigm (Rombach et al., 2022) to progressively add noise to sensitive item representations until
they approximate a normal distribution, followed by denoising to reconstruct unseen sensitive items
embeddings. These high-probability yet unobserved interactions mitigate dataset sparsity, improving
prediction accuracy. Concretely, we first mask the stable items by H0

u = Hu ⊙ Mu, where ⊙ is
the broadcasted element-wise product, and then we incrementally introduced Gaussian noise into it,
creating a sequence H1:T

u through T steps in a Markov chain, which can be formulated as follows:

q
(
Ht

u |Ht−1
u

)
= N

(
Ht

u;
√
1− βtH

t−1
u , βtI

)
, (8)

where N indicates the Gaussian distribution and βt ∈ (0, 1) specifies the scale of noise introduced
at each step t. Through the reparameterization trick and principle that the sum of two independent

5
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Gaussian noises is also Gaussian, Ht
u can be directly derived from H0

u as Ht
u =

√
ᾱtH

0
u+

√
1− ᾱtϵt,

with ϵt ∼ N (0, I) as the added noise, and ᾱt =
∏T

t′=1 (1− βt′). After that, CDIB iteratively remove
the noise from Ht

u to reconstruct Ht−1
u and ultimately recover the original sample H0

u:

pθ2
(
H0:T

u

)
= p

(
HT

u

)∏T

t=1
pθ2
(
Ht−1

u |Ht
u

)
, (9)

where p
(
HT

u

)
∼ N (0, I) and

∏T
t=1 pθ2

(
Ht−1

u |Ht
u

)
denotes the process of sequentially deduc-

ing Ht−1
u by reversing the estimated Gaussian noise from Ht

u via a lightweight MLP network
parameterized by θ2. The learning objective is thereby distilled to:

Ldiff =
∑T

t=2
Et,ϵ

[
∥ϵt − ϵθ2

(
Ht

u, t
)
∥22
]

, (10)

where ϵt represents the noise have been added to Ht−1
u in the forward process. Then, CDIB generate

unseen sensitive items by firstly corrupting H0
u via Equation (36), and executing reverse denoising on

corrupted representation via Equation (37) to obtain the rich sensitive elements denoted as H̃0
u, then

we obtain the generated sequence embedding as H̃u = H̃0
u +Hu ⊙ (1−Mu). Finally, the total loss

for generating H̃u is given by: Lgd = Lcon + Lmask + Ldiff .

Transformer Recommender. Using the Learnable Mask and Distribution Generator, we generate the
sequence embedding H̃u. Next, we apply a multi-head self-attention mechanism to refine both the
original embedding Hu and the generated embedding H̃u (Devlin et al., 2018; Vaswani et al., 2023):

Ḣu = φ

(∣∣∣∣∣∣H
h=1

H̄h
u

)
; H̄h

u = softmax
(
HuW

h
Q(HuW

h
K)T /

√
d/h

)
HuW

h
V , (11)

where φ(x) = GELU(Wx + b), and Ḣu ∈ RL×d is the refined item embedding, derived by
concatenating Hh

u ∈ RL×d/H and applying φ(·). The refined embedding of H̃u is denoted as
Ḧu. For both Ḣu and Ḧu, the last position vector represents the entire interaction sequence (Kang
& McAuley, 2018), denoted as ḣu and ḧu, respectively, with the same label (i.e., iL+1

u ). The
distributions of ḣu and ḧu are Dtr and D̃, respectively.

3.3.2 MODEL OPTIMIZATION WITH CDIB

Maximizing I(Y; D̃|Γ). Directly maximizing the conditional regularization term proves challenging.
Hence, according to (Choi & Lee, 2023), we instead derive and maximize the lower bound of
I(Y; D̃,Γ) via variational decomposition (cf. Appendix A.3), outlined as follows:

Proposition 3.4 (Lower bound of I(Y; D̃,Γ)) Given label Y, distribution D̃, and user features Γ:

I
(
Y; D̃,Γ

)
≥ EY,D̃,Γ

[
log pθ3

(
Y | D̃,Γ

)]
(12)

where log pθ3(Y | D̃,Γ) is the variational approximation of log p(Y | D̃,Γ).

Given that the generation process of D̃ incorporates user embeddings Γ as defined in Equation (7),
we have log pθ3(Y|D̃,Γ) = log pθ3(Y|D̃). Here, log pθ3(Y|D̃) represents a recommendation task,
where the input is the generated distribution ḧu ∈ D̃ and the output is the next interacted item
iL+1
u ∈ Y. We optimize it using the transformer recommender fθ3 with the objective defined in

Equation (1), employing cross-entropy loss over the full set of items, and the loss is denoted as Lreg.

Minimizing I(Dtr; D̃|Γ). To minimize the conditional generation term, we first employ the chain
rule for mutual information2, applying it as follows: I(Dtr; D̃|Γ) = I(Dtr; D̃,Γ)− I(Dtr;Γ). Notice
that I(Dtr; D̃,Γ) = I(Dtr; D̃) (cf. Appendix A.4). Intuitively, minimizing the first term personalized
drives D̃ away from Dtr, thereby fostering a diverse distribution exploration. Maximizing the second
term seeks to capture the personalized information from Dtr into Γ. Inspired by (Wei et al., 2022),
we adopt negative InfoNCE to estimate the mutual information (Gutmann & Hyvärinen, 2010) and

2Given the random variables X,V, and Z, then the chain rule gives I(X;V|Z) = I(X,Z;V)− I(Z;V).
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contrastive learning to minimize the I(Dtr; D̃|Γ). Specifically, for the I(Dtr; D̃), we treat the original
sequence embedding ḣu ∈ Dtr and the corresponding augmented sequence embedding ḧu ∈ D̃
as positive pairs, with in-batch instances serving as negative samples. For I(Dtr;Γ), the original
sequence embedding ḣu and the corresponding user embedding eu are considered positive pairs,
again with in-batch instances as negative samples. We define the contrastive loss as follows:

Lgen =
1

|U|
∑
u∈U

(
log

eϕ(ḣu,ḧu)/τ∑
u′∈U eϕ(ḣu,ḧu′ )/τ)

− log
eϕ(ḣu,eu)/τ)∑

u′∈U eϕ(ḣu,eu′ )/τ)

)
, (13)

where ϕ(·) denotes the similarity function and τ denotes the tunable hyper-parameter to adjust the
scale for softmax.

Overall Objective. Finally, we train the model using the specified final objective as follows:

Ltotal = Lpred + α1Lgd + α2 (βLreg + Lgen) , (14)

where Lpred is the primary recommendation loss, calculated by the fθ3 (which is also employed to
optimize the conditional regularization term), where the input is the training data (ḣu ∈ Dtr), and the
output is the next item interacted with. The α1, α2 represent tunable hyperparameters that balance
the significance of auxiliary losses. Ultimately, the trained fθ3 serves as the ξ∗ in the testing stage.

4 EXPERIMENT

Datasets. Our experiments are conducted on four real-world datasets, i.e., ML100K, Retail,
Beauty, and Sports. For each dataset, we chronologically select 80% of the historical interactions
of each user as the training set, 10% of those as the validation set, and the remaining 10% as the test
set. The detailed information is in Appendix E.1.

Baselines. We compare CDIB with nine methods from diverse research lines, covering (i) Naive
Sequential Recommendation Methods: GRU4Rec (Hidasi et al., 2016), Caser (Tang & Wang, 2018),
and SASRec (Kang & McAuley, 2018). (ii) Reweighting Methods: IPS (Schnabel et al., 2010).
(iii) DRO Methods: S-DRO (Wen et al., 2022) and DROS (Yang et al., 2023b). (iv) Diffusion-
based Augmentation Methods: DiffuASR-CG and DiffuASR-CF (Liu et al., 2023). (v) Contrastive
Learning (CL) Methods: CL4SRec (Xie et al., 2022), DuoRec (Qiu et al., 2022), and DCRec (Yang
et al., 2023a). The details are in Appendix E.3.

4.1 PERFORMANCE COMPARISON

Overall Performance Comparison. We assess the methods using the all-ranking protocol (He et al.,
2020), focusing on HR@10 and NDCG@10 metrics. The results are shown in Table 1, and we have
several observations: (i) The DRO and CL methods outperform naive sequential recommendation
models, demonstrating their effectiveness. Specifically, compared with SASRec, DROS shows
improvements on the ML100K and Sports, while DuoRec progresses on the Retail and Beauty.
However, IPS and S-DRO only achieve marginal improvements or perform worse, suggesting their
limitations when dealing with sparse data. (ii) The efficacy of CL methods appeared to be hindered on
the Sports, whose average interaction sequence length is the shortest. This indicates a sensitivity
to hand-crafted data augmentation, which may limit the success of CL methods. (iii) Our model
consistently outperforms the baseline models across all datasets, showing the effectiveness of the
learnable data augmentation method and the optimization strategy with CDIB, which can create
diverse and promising distributions and capture more robust information.

Robustness to Distribution Shift. To further evaluate the robustness of our model to distribution
shifts, we conduct experiments and compare its performance to that of representative models across
different time gaps on ML100K and Retail datasets. The results are shown in Figure 3, where T1
denotes the training stage, and T2 through T7 represents the testing stages, each with an increasing
time gap. As the gap size increases, the overall accuracy of the baseline models generally shows a
downward trend, highlighting the severe negative impact of temporal distribution shifts. For example,
SASRec’s performance drop 72.48% from T1 to T7 under the Retail datasets, whereas CDIB
remains more stable with the drop rate of 67.97%. We attribute it to the fact that generated distribution
allows the model to recognize and adapt to these OOD situations at the training stage.
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Table 1: Overall performance. The best results and second-best are in bold and underline. All
the numbers are percentage values with “%” omitted (mean±std). ♣ is the model’s variants in the
ablation study. The experiments are conducted 5 times.

Method MovieLens-100K Retail Amazon-Beauty Amazon-Sports

HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑
GRU4Rec 10.26±0.22 4.90±0.09 12.03±0.29 5.90±0.10 6.49±0.27 3.44±0.16 3.47±0.15 1.80±0.10

Caser 6.22±0.39 2.90±0.21 7.28±0.26 3.16±0.18 3.74±0.13 1.83±0.07 2.02±0.11 1.00±0.07

SASRec 10.96±0.12 4.84±0.05 19.78±0.14 8.67±0.07 8.64±0.13 4.29±0.06 4.76±0.05 2.22±0.02

IPS 10.97±0.10 4.85±0.03 19.65±0.16 8.60±0.08 8.71±0.08 4.31±0.03 4.74±0.07 2.21±0.03

S-DRO 10.90±0.13 4.82±0.05 19.70±0.20 8.64±0.09 8.63±0.14 4.27±0.06 4.74±0.07 2.22±0.02

DROS 11.30±0.11 5.23±0.06 18.79±0.16 8.65±0.07 8.33±0.13 4.14±0.10 4.81±0.07 2.32±0.06

DiffuASR-CG 11.18±0.22 5.13±0.07 20.31±0.21 8.84±0.09 8.33±0.12 4.13±0.10 4.70±0.09 2.19±0.04

DiffuASR-CF 11.24±0.21 5.19±0.06 20.51±0.23 8.97±0.12 8.46±0.12 4.26±0.08 4.79±0.14 2.23±0.05

CL4SRec 11.07±0.35 5.16±0.07 19.72±0.26 8.67±0.10 8.80±0.06 4.39±0.05 4.77±0.14 2.26±0.04

DuoRec 11.21±0.17 5.17±0.06 20.63±0.11 9.10±0.06 8.74±0.41 4.41±0.19 4.49±0.10 2.21±0.04

DCRec 10.63±0.50 4.50±0.34 20.22±0.31 8.82±0.11 7.99±0.38 3.90±0.24 4.08±0.39 1.97±0.16

w/o LM♣ 10.32±0.27 4.90±0.12 20.01±0.23 9.03±0.13 8.56±0.31 4.26±0.13 4.54±0.17 2.27±0.05

w/o DG♣ 11.59±0.16 5.53±0.12 20.82±0.16 9.37±0.04 9.06±0.15 4.60±0.06 4.92±0.21 2.40±0.08

w/o IB♣ 10.98±0.19 4.88±0.12 19.72±0.32 8.62±0.14 8.68±0.13 4.32±0.04 4.63±0.08 2.17±0.03

CDIB (Ours) 11.89±0.16 5.67±0.09 21.12±0.14 9.41±0.10 9.17±0.04 4.56±0.04 4.95±0.11 2.38±0.07

Figure 3: Model performance with respect to time gap on ML100K (left) and Retail (right), with
the time gap relative to T1 increasing from T1 to T7.

Performance on Different User Group. We investigated the model’s effectiveness across different
user groups on ML100K and Retail datasets as shown in Figure 4. We classify users as niche (U1),
diverse (U2→U4), or blockbuster (U5) users based on the proportion of popular items they interact
with, and the user conformity increases progressively from U1 to U5; a "blockbuster" user is inclined
to follow items that are currently trending, whereas a "niche" user seek to prefer long-tail items.
Beyond these two extremes, a "diverse" user group has a broad taste in both popular and long-tail
items. The experimental results reveal that the model’s effectiveness declines as user conformity
decreases, indicating the model’s vulnerability to the influence of item popularity while neglecting
individual user attributes. Throughout these tests, our model is basically superior to the baseline
models. We attribute this superior performance to our optimization strategy, which utilizes user
attributes to guide model optimization. This approach allows the model to better capture users’
personalized interest and recommend more relevant content.

Figure 4: Model performance with respect to user groups on ML100K (left) and Retail (right),
with user conformity increasing progressively from U1 to U5.
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4.2 SENSITIVITY ANALYSIS ON β

Figure 5: Sensitivity Analysis on β under ML100K and
Retail datasets.

In this section, we analyze the model’s
sensitivity to β, which controls the trade-
off between out-of-distribution exploration
and prediction accuracy. The results are
shown in Figure 5. Our observations are
as follows: (i) The model fails to converge
when β ≤ 1e1. This issue arises because
such low values of β encourage the model
to aggressively generate distributions be-
yond the training distribution’s scope with-
out preserving stable factors, thereby intro-
ducing harmful noise. (ii) As β increases from 1e1 to 1e3, performance improves. However, when β
reaches 1e4, performance declines, possibly due to the model’s excessive focus on prediction at the
expense of sufficient out-of-distribution exploration. Thus, a tailored β is needed to balance the two.

4.3 ABLATION STUDY

In this section, we explore the design rationale of sub-modules within our CDIB framework. We
remove key modules to implement three variants of CDIB: (i) “w/o LM”: CDIB without the learnable
mask, setting Mu = 1. (ii) “w/o IB”: CDIB without optimization with CDIB, using contrastive
learning with InfoNCE loss instead. (iii) “w/o DG”: CDIB without latent diffusion. Gaussian noise is
added to Hu to get H̃u (i.e., H̃u = N (0, I)⊙Mu +Hu ⊙ (1−Mu). From the results (Table 1),
we observe that: (i) Removing the learnable mask significantly degrades performance, underscoring
its essential role in identifying elements to be disturbed during data augmentation. Without this
component, the model may fail to capture genuine user interest reflected in the interaction sequence,
potentially leading to misguided model optimization. (ii) Removing latent diffusion for generating
distribution shows a performance decline. However, on the Beauty and Sports datasets, where
the average sequence length is the shortest, w/o DG performs better. (iii) The gap in performance
between CDIB and w/o IB highlights its effectiveness in guiding the distribution generation process
and boosting the model’s generalization. The performance of w/o IB closely matches that of SASRec,
which can be attributed to maximization of I(Dtr; D̃) in the standard contrastive learning with
InfoNCE loss. Specifically, Mu may converge on trivial solutions 0 to fulfill the CL task, leading to
Dtr = D̃. This indicates no OOD exploration, the same as SASRec.

4.4 VISUALIZATION OF BLOCKBUSTER AND NICHE USERS’ PREFERENCE

We visualized the interest distributions of blockbuster and niche users learned by CDIB on the
ML100K and Retail datasets during the testing stage. For both SASRec and CDIB, the preference
distributions of blockbuster users exhibit significant clustering, likely around popular items (hotspots).
However, for niche users, CDIB, compared to SASRec, shows a more uniform preference distribution
and is less influenced by popular items, indicating that CDIB effectively models niche users without
being affected by new trends, showing the rationality of our model design.

5 RELATED WORK

Sequential Recommendation is designed to predict the next item a user is likely to prefer based on
their interaction history. Traditional methods have leveraged Markov chains to capture first-order
item-to-item correlations through transition matrices (Rendle et al., 2010; He & McAuley, 2016).
With the development of deep learning, which excels at modeling complex sequential patterns, various
deep recommendation models have been developed. For instance, GRU4Rec (Hidasi et al., 2016)
employs Gated Recurrent Unit (GRU) units to model the temporal dynamics of interaction sequences.
SASRec (Kang & McAuley, 2018) and BERT4Rec (Sun et al., 2019) enhance computational efficiency
in lengthy sequences by incorporating self-attention mechanisms. More recently, inspired by selective
state space models (Gu & Dao, 2024), Mamba4Rec (Liu et al., 2024a) has been introduced, utilizing
the mamba framework to recommend items efficiently. Despite their capabilities, these models
often suffer performance declines when OOD occurs. To address this, CDIB introduces a user
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(a) Preferences learned by SASRec on ML100K (left two) and Retail (right two).

(b) Preferences learned by CDIB on ML100K (left two) and Retail (right two)

Figure 6: We visualize preference distributions using Gaussian kernel density estimation (KDE) in
R2 and von Mises-Fisher (vMF) KDE for angular data (i.e., arctan 2(y, x) for each point (x, y)).

feature-guided generation approach that proactively explores OOD scenarios during the training
phase, enhancing the model’s generalization capabilities.

Distributionally Robust Sequential Recommendation has recently attracted significant research
interest, which aims to train a model that performs well not only at the training stage but also at the
testing stage. Methods DRO (Schnabel et al., 2010; Bottou et al., 2013; Wang et al., 2022b; Yang et al.,
2023b; Wen et al., 2022) optimize the model for the worst-case distribution to improve the robustness.
For example, DROS (Yang et al., 2023b) unifies the DRO and sequential recommendation paradigms
to enhance model robustness against distribution shifts. Causal inference methods capture real causal
relationships but assume the causal graph is static (Wang et al., 2023b; He et al., 2022; Yang et al.,
2020; Wang et al., 2022a), these methods face challenges with sparse data. While contrastive learning
approaches seek to enrich the training data distribution through data augmentation (Liu et al., 2021;
Xie et al., 2022; Yang et al., 2023a; Qiu et al., 2022; Zhao et al., 2023), but hardly rely on the
hand-crafted data augmentation strategies. To fill the gap, we introduce the CDIB principle, using the
user features to guide the exploration of the other distribution.

Information Bottleneck with Conditional Information is also widely utilized. The CIB (Gondek
& Hofmann, 2003) theory has been applied in CGIB (Lee et al., 2023) to identify key structures in
molecules that predict interaction behaviors between graph pairs, focusing on important subgraphs.
Additionally, TimeCIB (Choi & Lee, 2023) extends the CIB to impute time series data, preserving
vital temporal information. To the best of our knowledge, CDIB marks the first use of CIB to guide
the distribution generation process. The detailed introduction of related works is in Appendix E.4.

6 CONCLUSION

In this work, to address the limitations of existing methods that struggle with sparse data or depend on
hand-crafted augmentations, we introduce CDIB, an innovative principle that guides the generation
of diverse and reliable distributions based on user features. Theoretical analyses demonstrate the
rationality of this approach. Building on CDIB, we propose a framework that employs a learnable
method to generate distributions for OOD exploration, guided by a conditional generation term
and a conditional regularization term. Extensive experiments on four public datasets confirm the
effectiveness and robustness of our model.
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A PROOFS

A.1 PROOF OF RATIONALITY OF DIB

Proof. Before the proof, we propose the following two assumptions:

(a) Xs and Ys follow the same distribution.

(b) Since D̃ is generated by latent diffusion model without introducing any information from Y, X̃e

and Ye are mutually independent.

Notice that Ys and Ye refer to the sensitive and stable features of the target item, respectively. For
instance, considering a pair of shorts, Ys would denote its stable features, such as the brand, while
Ye would indicate sensitive features like their status as a seasonal trend in summer.

We then obtain the fact that all stable factors and external factors are orthogonal. If this does not
stand, ∃ xs ∈ Xs, xe ∈ Xe s.t. corr(xs, xe) ̸= 0. When all external features other than xe remain
unchanged while xe changes, xs changes correspondingly. This contradicts with Xs is stable.

We are now ready to prove the proposition. With this fact, we can derive the following:

I(Dtr; D̃)− βI(Y; D̃)

= I(Xs,Xe; X̃s, X̃e)− βI(Ys,Ye; X̃s, X̃e)

= I(Xs; X̃s, X̃e) + I(Xe; X̃s, X̃e|Xs)− β(I(Ys; X̃s, X̃e) + I(Ye; X̃s, X̃e|Ys))

= I(Xs; X̃s, X̃e) + I(Xe; X̃s, X̃e,Xs)− I(Xe;Xs)−
β(I(Ys; X̃s, X̃e) + I(Ye; X̃s, X̃e,Ys)− I(Ye;Ys))

= I(Xs; X̃s, X̃e) + I(Xe; X̃s, X̃e)− β(I(Ys; X̃s, X̃e) + I(Ye; X̃s, X̃e))

= I(Xs; X̃s) + I(Xs; X̃e|X̃s) + I(Xe; X̃e) + I(Xe; X̃s|X̃e)−
β(I(Ys; X̃s) + I(Ys; X̃e|X̃s) + I(Ye; X̃e) + I(Ye; X̃s|X̃e))

= I(Xs; X̃s) + I(Xs, X̃s; X̃e)− I(X̃s; X̃e) + I(Xe; X̃e) + I(Xe, X̃e; X̃s)− I(X̃s; X̃e)−
β(I(Ys; X̃s) + I(Ys, X̃s; X̃e)− I(X̃s; X̃e) + I(Ye; X̃e) + I(Ye, X̃e; X̃s)− I(X̃s; X̃e))

= I(Xs; X̃s) + I(Xe; X̃e)− βI(Ys; X̃s)− βI(Ye; X̃e)

= γ1I(Xs; X̃s) + γ2I(Xe; X̃e)− βγ3I(X̃s;Ys)− βγ4I(X̃e;Ye)
(15)

The second equation is derived from the I(X,Y;Z,V) = I(X;Z,V) + I(Y;Z,V|X). The third
equation follows from I(Y;Z,V|X) = I(Y;Z,V,X) − I(Y;X). The fourth equation is based
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on the orthogonality of external and stable factors. The fifth equation is due to I(X;Z,V) =
I(X;Z) + I(X;V|Z). The sixth equation is derived from I(X;V|Z) = I(X,Z;V)− I(Z;V), and
the seventh equation also relies on the orthogonality of stable and external factors. Without losing
generality, we use γ1 through γ4 to represent them here.

With assumption (a), the equation I(Xs; X̃s) = I(X̃s;Ys) holds, thus

γ1I(Xs; X̃s)− βγ3I(X̃s;Ys) = (γ1 − βγ3)I(Xs; X̃s) (16)

With assumption (b), we have,
I(X̃e;Ye) = 0 (17)

Plugging equation 16 and 17 into 3, the original minimization objective is equivalent to:

min
D̃

(γ1 − βγ3)I(Xs; X̃s) + γ2I(Xe; X̃e) (18)

When γ1 − βγ3 < 0, I(Xs; X̃s) is maximized, effectively rendering X̃s ≃ Xs. Meanwhile, as
γ2 > 0, I(Xe; X̃e) is minimized, resulting in X̃e ̸∼ Xe. □

A.2 PROOF OF GENERALIZATION BOUND

Proof. Before delving into the proof process, we first introduce the definition of Rademacher
complexity and McDiarmid’s Inequality:

Definition A.1 (Rademacher complexity (Mohri, 2018)) Given a space Z and a fixed distribution
D defined on Z, let S = z1, . . . , zn be a set of examples drawn from i.i.d. from D. Furthermore, let
F be a class of functions f : Z → R, the empirical Rademacher complexity of F is defined to be:

R̂n(F) = Eσ

[
sup
f∈F

(
1

n

n∑
i=1

σif(zi)

)]
(19)

where σ1, . . . , σn are independent random variables uniform chosen from {-1,1}. The Rademacher
complexity of F is defined as:

Rn(F) = ED

[
R̂n(F)

]
(20)

Theorem A.2 (McDiarmid’s Inequality (Mohri, 2018)) Let X1, · · · , Xn be independent random
variables, all taking values in the set X . Let f: X1 × · · · × Xn → R be any func-
tion with the (c1, . . . , cn)-bounded difference property: ∀i,∀(x1, . . . , xn), x

′
i ∈ X , we have

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci. Then for any ϵ > 0,

P (f(X1, · · · , Xn)− E[f(X1, · · · , Xn)] ≥ ϵ) ≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
(21)

Now, let’s delve into the proof. In the CDIB framework, by introducing the i-th user feature
Γi, we generate multiple distributions D̃i(Γ) and combine them into a set D̃. Next, we denote
Φ(D̂(Γ)) = supf∈F ED[ℓ(f ;Y)]− ÊD̂[ℓ(f ;Y)], and we have:

Φ(D̃i(Γ))− Φ(Dtr(Γ)) ≤ sup
f∈F

ÊDtr [ℓ(f ;Y)]− ÊD̃i(Γ)
[ℓ(f ;Y)]

= sup
f∈F

f(ḣ, y)− f(ḧ, y)

m
≤ M2 −M1

m

(22)

The last inequality holds because CDIB is also trained on D̃. Since Φ satisfies the bounded difference
property, we can apply the McDiarmid’s Inequality to find:

P (Φ(Dtr)− EDtr
[Φ(Dtr)] ≥ ϵ) ≤ exp

(
− 2ϵ2∑m

i=1 (
M2−M1

m )
2

)
= exp

(
− 2ϵ2m

(M2 −M1)2

)
(23)
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Setting the above probability to be less than δ (i.e., exp
(
− 2ϵ2m

(M2−M1)2

)
= δ), we can solve that

ϵ = (M2 −M1)

√
log 2

δ

m , and we have determined that with probability at least 1− δ:

Φ(Dtr) ≤ EDtr
[Φ(Dtr)] + (M2 −M1)

√
log 2

δ

m
(24)

Since ED′ [ÊD′ [ℓ(f ;Y)]|Dtr] = ED[ℓ(f ;Y)] and ED′ [ÊDtr
[ℓ(f ;Y)]|Dtr] = ÊDtr

[ℓ(f ;Y)],
where D′ is a “ghost sample” independently drawn identically to Dtr, we can rewrite the expectation:

EDtr
[Φ(Dtr)] = EDtr

[
sup
f∈F

ED[ℓ(f ;Y)]− ÊDtr
[ℓ(f ;Y)]

]

= EDtr

[
sup
f∈F

ED′

(
ÊD′ [ℓ(f ;Y)]− ÊDtr

[ℓ(f ;Y)]
)] (25)

Since sup is a convex function, we can apply Jensen’s Inequality to move the sup inside the expecta-
tion:

EDtr

[
sup
f∈F

ED′

(
ÊD′ [ℓ(f ;Y)]− ÊDtr

[ℓ(f ;Y)]
)]

≤ EDtr,D′

[
sup
f∈F

ÊD′ [ℓ(f ;Y)]− ÊDtr
[ℓ(f ;Y)]

]
(26)

Multiplying each term in the summation by a Rademacher variable σi will not change the expectation
since E[σi] = 0. Furthermore, negating a Rademacher variable does not change its distribution.
Combining these two facts,

EDtr,D′

[
sup
f∈F

ÊD′ [ℓ(f ;Y)]− ÊDtr
[ℓ(f ;Y)]

]

= EDtr,D′

[
sup
f∈F

1

n

n∑
i=1

(f(h′, y)− f(ho, y))

]

= Eσ,Dtr,D′

[
sup
f∈F

1

n

n∑
i=1

σi (f(h
′, y)− f(ho, y))

]

≤ Eσ,D′

[
sup
f∈F

1

n

n∑
i=1

σif(h
′, y)

]
+ Eσ,Dtr

[
sup
f∈F

− 1

n

n∑
i=1

σif(h
o, y)

]

= 2Eσ,Dtr

[
sup
f∈F

1

n

n∑
i=1

σif(h
o, y)

]
= 2Rn(F)

(27)

The inequality is due to sup(A+B) ≤ supA+ supB. Substituting this bound into inequality 24
gives us exactly the Theorem 3.3. □

A.3 PROOF OF LOWER BOUND OF I(Y; D̃,Γ)

Proof. According to the chain rule of mutual information, the conditional prediction term I(Y; D̃|Γ)
can be decomposed as: I(Y; D̃|Γ) = I(Y; D̃,Γ)− I(Y;Γ). Intuitively, minimizing the I(Y;Γ) aims
to reduce the model’s capture of personalized interests, which is harmful to satisfying recommenda-
tions. Therefore, we only maximize the I(Y; D̃,Γ). Similar to the derivation process in (Choi & Lee,
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2023), we have:

I(Y; D̃,Γ) = EY,D̃,Γ

[
log

p(Y | D̃,Γ)

p(Y)

]

= EY,D̃,Γ

[
log

pθ3(Y | D̃,Γ)

p(Y)

]
+ ED̃,Γ

[
DKL(p(Y | D̃,Γ) ∥ pθ3(Y | D̃,Γ)

]
≥ EY,D̃,Γ

[
log

pθ3(Y | D̃,Γ)

p(Y)

]
= EY,D̃,Γ

[
log pθ3(Y | D̃,Γ)

]
+H(Y)

≥ EY,D̃,Γ

[
log pθ3(Y | D̃,Γ)

]

(28)

where H(Y) represents the entropy of Y and log pθ3(Y|D̃,Γ) denotes the variational approximation
of log p(Y|D̃,Γ). The first and second inequalities hold because of the non-negative inherent in
KL-divergence and entropy. So, the lower bound of I(Y; D̃,Γ) is EY,D̃,Γ[log pθ3(Y|D̃,Γ)]. □

A.4 PROOF OF I(Dtr; D̃,Γ) = I(Dtr; D̃)

Proof. Dtr is training distribution, D̃ is the generated distribution, and Γ is user features. Remind
that D̃ contains all the information of Γ due to its generation process involving Γ (see, Equation 7).
This implies that D̃ is a deterministic function of Γ, i.e., Γ = f(D̃) for some function f .

Since D̃ is a function of Γ, the joint distribution p(ḣu, ḧu, eu) can be expressed in terms of p(ḣu, ḧu)

and the deterministic relationship Γ = f(D̃). Thus, we can write:

p(ḣu, ḧu, eu) = p(ḣu, ḧu) · δeu,f(ḧu)
(29)

where δ is the Kronecker delta function, which is 1 if its arguments are equal and 0 otherwise.

The mutual information I(Dtr; D̃,Γ) is given by:

I(Dtr; D̃,Γ) =
∑

ḣu,ḧu,eu

p(ḣu, ḧu, eu) log
p(ḣu, ḧu, eu)

p(ḣu)p(ḧu, eu)
(30)

Given p(ḣu, ḧu, eu) = p(ḣu, ḧu) · δeu,f(ḧu)
, we can rewrite the mutual information as:

I(Dtr; D̃,Γ) =
∑

ḣu,ḧu

p(ḣu, ḧu) · δeu,f(ḧu)
log

p(ḣu, ḧu) · δeu,f(ḧu)

p(ḣu)p(ḧu, eu)
(31)

Since δeu,f(ḧu)
is 1 when eu = f(ḧu) and 0 otherwise, the term δeu,f(ḧu)

effectively restricts

the summation to the cases where eu = f(ḧu). Thus, p(ḧu, eu) in the denominator simplifies to
p(ḧu, f(ḧu)), which is equal to p(ḧu). The mutual information simplifies to:

I(Dtr; D̃,Γ) =
∑
ḣu

∑
ḧu

p(ḣu, ḧu) log
p(ḣu, ḧu)

p(ḣu)p(ḧu)
(32)

This proves that when D̃ contains all the information of Γ, the mutual information between Dtr and
the joint variables D̃ and Γ is equal to the mutual information between Dtr and D̃ alone. Intuitively,
knowing D̃ uniquely determines Γ, Γ provide no additional information about I(Dtr; D̃,Γ) beyond
what is already known about D̃. □
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B ADDITIONAL EXPERIMENTS

B.1 CASE STUDY

To verify the CDIB’s effectiveness in handling distribution shifts, similar to the case mentioned in
the introduction section (see Figure 1), we visualize the interest space learned by CDIB for different
users in both the training and testing stages. The result is shown in Figure 7. The result reveals that
compared with SASRec, CDIB is less influenced by new trending items (i.e., 634, 8587) or unseen
collaboration patterns when modeling the interest of niche users at the testing phase. This indicates
the capability of CDIB to capture the users’ true interest when faced with distribution shifts.

Interaction Sequence: 

[2754, …, 6529, 3133, 1137, 

4839, 4527, …, 2424]

Target item: 2131

Interaction Sequence: 

[2129, 634, 8587, 11304, 

11457]

Target item: 799

Interaction Sequence: 

[13073, 15838, 9339, 2527, 

4787, 764, …, 15990]

Target item: 2096

Testing Distribution

Interaction Sequence: 

[10247, 7325, 8187, 16881, 

7702]

Target item: 14249

Training Distribution

Time

90

4

22

5 5

799

2096

Item

Popular Item Niche Item

Training Testing

48

8

88

3

182

2131

popularity

Item

14249

Learned preferences of blockbuster(niche) user 

popularity

Figure 7: Visualization of the interest space learned by CDIB on Retailrocket dataset.

B.2 VISUALIZATION OF Mu

To explore the underlying mechanism of the learnable mask, we utilize heatmaps to visualize the
popularity of each item in the interaction sequences of six users from the RetailRocket dataset, along
with the corresponding 1−Mu obtained by the learnable mask. It is important to note that the higher
the 1−Mu value for an item, the less the model intends to interfere with it, suggesting these items
may reflect the user’s true interest. The visualization results are displayed in Figure 8. The results
show that for niche users (User 509, User 444, User 117), their interaction sequences predominantly
feature niche items, which often represent their unique interest. The learnable mask not only protects
popular items from being altered but also tends to shield these less common items from interference,
as highlighted by the blue dashed box. Conversely, for blockbuster users (User 168, User 107, User
161), who typically interact with trending topics, the learnable mask often identifies these popular
items as the users’ interest and refrains from modifying them, as indicated by the red dashed box.
Compared to traditional hand-crafted data augmentation methods, the learnable mask’s ability to
adaptively select items for augmentation is crucial. It can intelligently choose which items to enhance
based on user features without distorting the original user interest. This approach helps generate
more promising augmented samples and, to some extent, avoids introducing extraneous noise.

User 509

User 444

User 117

User 168

User 107

User 161

Item Index

Item Popularity 1 −𝐌𝑢

Item Index

Figure 8: The visualization of interacted items’ popularity and the corresponding 1−Mu.
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B.3 VISUALIZATION OF D̃

We visualize the representation space of some origin and augmented items to explore its inner mecha-
nisms. Specifically, we reduce the dimensionality of items within the users’ interaction sequences
and those enhanced by latent diffusion using t-SNE (Van der Maaten & Hinton, 2008), then visualize
their two-dimensional outcomes. Additionally, considering that β is a critical hyperparameter for
balancing the diversity and reliability of generated distribution, we also visualized the generation
results for different β values, as depicted in Figure 9. From the visualization results, it can be
concluded that at lower β values (i.e., 1e0, 1e1), feature collapse occurs in the generated items. This
collapse may happen because a small β shifts the model’s focus towards generating low similarity
distributions (minimizing I(Dtr; D̃|Γ), thereby neglecting the intrinsic features of the original dataset.
Such generated distributions can introduce unnecessary noise to the model, complicating its learning
process. Hence, the model performs poorly when β is small (see Section 4.2). As β increases, the
distribution generated by latent diffusion gradually aligns more closely with the original distribution
and retains a clustering effect of popular items to some extent, while the overall distribution becomes
more uniform, aiding the model’s learning process (Yu et al., 2022). When β reaches 1e4, there is no
distinguishable difference between the generated and original distributions. At this level, the model
prioritizes preserving the original data characteristics as much as possible (maximizing I(Y; D̃|Γ),
which limits the exploration of out-of-distribution scenarios and decreases overall effectiveness.

B.4 RESULTS ON DIVERSE AUGMENTATION METHODS

Within the scope of our ablation study, we added Gaussian noise to the original data for augmentation
rather than using diffusion-based augmentation techniques. We also conducted experiments with
random data augmentation strategies. Specifically, we performed random masking, cropping, and
reordering on the original interaction sequences to augment the data. The overall results are presented
in Table 2. It can be seen that our diffusion-based augmentation method performs better than the
other two techniques.

Table 2: Performance over diverse data augmentation methods.

Method MovieLens-100K Retailrocket Amazon-Beauty Amazon-Sports

HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑
random 11.09±0.22 5.08±0.13 19.84±0.17 8.76±0.11 8.98±0.17 4.42±0.05 4.90±0.18 2.30±0.10

Gaussian Noise 11.59±0.16 5.53±0.12 20.82±0.16 9.37±0.04 9.06±0.15 4.60±0.06 4.92±0.21 2.40±0.08

CDIB 11.89±0.16 5.67±0.09 21.12±0.14 9.41±0.10 9.17±0.04 4.56±0.04 4.95±0.11 2.38±0.07

B.5 SENSITIVITY ANALYSIS ON α1 AND α2

We have further added sensitivity analysis of hyperparameters for α1 and α2 on ml-100k and
retailrocket, respectively. Specifically, we evaluate our model by varying the α1 and α2 in {0.01,
0.1, 1.0, 5.0, 10.0}, respectively. The results are present in Table 3 and Table 4. We conclude our
observations as follows: (i) Optimal performance across both datasets is attained at α1 = 1.0, marking
a peak in performance that rises to it and then begins to decline. If α1 is set too low, the diffusion
model’s generative capabilities are diminished, potentially leading to the creation of noise samples
that can hinder model training. Conversely, if α1 is too high, the auxiliary task takes precedence in the
model’s optimization process, which can adversely impact the model’s recommendation capabilities.
(ii) Optimal model performance is consistently achieved at α2 = 1.0 across all datasets, after which
there is a notable decline in performance as α2 increases to 10.0, with pronounced effects on the
Retail dataset. This decrease may be due to the model’s overly focus on model performance on the
generated data distribution at higher α2 values, potentially obscuring the model’s capacity to extract
essential information from the original datasets’ distribution.
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Table 3: Sensitivity analysis on α1

α1
MovieLens-100K Retailrocket

HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑
0.01 11.91±0.19 5.58±0.13 20.92±0.15 9.28±0.12

0.1 11.76±0.17 5.59±0.14 20.96±0.15 9.38±0.11

1.0 11.89±0.16 5.67±0.09 21.12±0.14 9.41±0.10

5.0 11.16±0.14 5.30±0.08 21.10±0.15 9.44±0.13

10.0 10.99±0.17 5.12±0.12 20.98±0.12 9.40±0.11

Table 4: Sensitivity analysis on α2

α2
MovieLens-100K Retailrocket

HitRate ↑ NDCG ↑ HitRate ↑ NDCG ↑
0.01 11.11±0.18 4.92±0.14 19.69±0.15 8.58±0.12

0.1 11.44±0.17 5.19±0.11 20.28±0.15 8.81±0.13

1.0 11.89±0.16 5.67±0.09 21.12±0.14 9.41±0.10

5.0 8.42±0.14 3.81±0.07 16.00±0.13 7.83±0.12

10.0 5.73±0.13 2.63±0.6 5.13±0.15 2.50±0.13

(a) β = 1e0 (b) β = 1e1 (c) β = 1e2 (d) β = 1e3 (e) β = 1e4

Figure 9: The visualization of generated distribution w.r.t β.

B.6 APPROXIMATE PERCENTAGE OF VALUES OF 1 IN Mu

we record the percentage of values of 1 in Mu before and after adding the Lmask, the results are
shown in Table 5. As we can see, after the introduction of the Lmask, the percentage of values of 1 in
Mu increased from 0.0% to an average of 17.4%.

Table 5: approximate percentage of values of 1 in Mu

ML-100K Retailrocket Amazon-Beauty Amazon-Sports

w/o Lmask 0.0% 0.0% 0.0% 0.0%
w Lmask 13.5% 22.1% 15.5% 18.4%

B.7 RESULTS ON ML-1M DATASET

To demonstrate the effectiveness of the proposed CDIB, we conducted experiments on the larger ML-
1M dataset. The results, presented in Table 6, show that our method achieves the best performance.

Table 6: Performance on ML-1M. The best results and second-best are in bold and underline. All
the numbers are percentage values with “%” omitted (mean±std). The experiments are conducted 5
times.

GRU4Rec Caser SASRec IPS S-DRO DROS DCG DCF CL4SRec DuoRec DCRec CDIB

HitRate ↑ 17.79±0.06 14.84±0.14 18.61±0.08 18.33±0.04 17.92±0.09 19.21±0.08 18.79±0.09 18.81±0.11 18.66±0.12 18.97±0.06 18.11±0.10 20.57±0.07

NDCG ↑ 7.43±0.03 5.60±0.06 9.28±0.02 8.98±0.02 7.87±0.03 9.55±0.03 9.41±0.03 9.43±0.02 9.27±0.03 9.34±0.04 9.17±0.04 9.86±0.03

C IMPLEMENTATION DETAILS

The CDIB model is implemented using Pytorch 1.13.0 (Paszke et al., 2019) and Python 3.8.13. Ex-
periments are conducted using two NVIDIA GeForce RTX 3090 GPUs. To ensure a fair comparison,
we adopt the widely used experimental environment RecBole (Zhao et al., 2021). The parameters
are initialized using a Gaussian distribution N (0, 0.02) and optimized with the Adam optimizer at
a learning rate of 0.001. Moreover, we adopt the early-stop strategy to train the models and set the
maximum sequence length to 50. We run the codes for GRU4Rec, Caser, SASRec, and CL4SRec,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

which are reproduced by the RecBole team3. We also reproduce the implementations of IPS, S-DRO,
DROS, DuoRec, and DCRec to the RecBole environment.

C.1 ALGORITHM

The pseudo-algorithms for the training and inference stages of CDIB are presented in Algorithm 1
and Algorithm 2, respectively.

Algorithm 1: The Training Stage of the Proposed CDIB Algorithm
Input: user set U = {u}, item set I = {i}, interaction sequences Str, learning rate η, and batch

size B.
Output: trained recommender ξ∗.

1 Initialize all parameters;
2 while not converge do
3 Sample a batch {u}B1 and {su}B1 from Str

4 Embed users {u}B1 and items {su}B1 to get the corresponding embedding Γ and Hu

5 # Generating Distribution D̃
6 Calculate the mask Mu using the Learnable Mask
7 Mask the stable items by H0

u = Hu ⊙Mu

8 Forward diffusion process: N (Ht
u;
√
1− βtH

t−1
u , βtI)

9 Reverse diffusion process: p(HT
u )
∏T

t=1 pθ2(H
t−1
u |Ht

u)

10 Sample sensitive items to get diverse data H̃u = H̃0
u +Hu ⊙ (1−Mu)

11 Calculate the Lgd = Lcon + Lmask

12 # Optimizing with CDIB
13 Encode origin and augmented interaction sequence using Transformer Recommender
14 Obtain the overall loss: Ltotal = Lpred + α1Lgd + α2(βLreg + Lgen)
15 Update ξ to minimize Ltotal

16 end
17 return trained recommender ξ∗

Algorithm 2: The testing Stage of the Proposed CDIB Algorithm
Input: interaction sequences Ste, trained recommender ξ∗, and item set I.
Output: recommended items.

1 for su ∈ Ste do
2 return argmaxi∈I p(i|ξ∗(su))
3 end

C.2 HYPERPARAMETER

We tune the hyperparameters as follows: Batch Size ∈ {64, 128, 256, 512, 1024}; Dropout Rate ∈
{0.1, 0.3, 0.5, 0.7}; β ∈ {10, 100, 1000, 10000}. For a fair comparison, we standardized all common
hyperparameters across models and configured the unique hyperparameters according to the settings
provided by the corresponding authors. The hyperparameters settings of CDIB are present in Table 7.

C.3 DETAILS ABOUT Lpred AND Lreg

Lpred is a negative log-likelihood function of the expected next item iL+1 of an origin interaction
sequence su, where we adopt cross-entropy loss under the full set of items:

Lpred =
1

|U|

|U|∑
u=1

− log

(
exp(ḣu · eL+1

u )∑
i∈I exp(ḣu · ei)

)
(33)

3https://github.com/RUCAIBox/RecBole/tree/master/recbole/model/sequential_recommender
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Table 7: Hyperparameter specifications

Dataset ML-100K Retailrocket Amazon-Beauty Amazon-Sports

Optimizer Adam Adam Adam Adam
Batch Size 512 512 512 512

Learning Rate 0.001 0.001 0.001 0.001
Embedding Size 64 64 64 64

Hidden Size 256 256 256 256
Dropout Rate 0.5 0.5 0.5 0.5
Temperature τ 1.0 1.0 1.0 1.0

Lagrange multiplier β 1000 1000 1000 10000

where ḣu is the representation of the origin interaction sequence, eL+1
u is the embedding of the next

interacted item, and ei is the embedding of item i.

Lreg is the regularization loss, which encourages that essential information to the target item iL+1 is
preserved, where we utilized the cross entropy loss under the full set of items:

Lreg =
1

|U|

|U|∑
u=1

− log

(
exp(ḧu · eL+1

u )∑
i∈I exp(ḧu · ei)

)
(34)

where ḧu is the representation of the generated interaction sequence, eL+1
u is the embedding of the

next interacted item, and ei is the embedding of item i.

D COMPLEXITY ANALYSES

Time Complexity Analysis. For one batch of training data, the computational cost of the learnable
mask is O(4Ld), and the distribution generator is O(Ld + TLd2), which means the time cost of
generating new distribution by CDIB is O(5Ld + TLd2) in the training stage. With the attention
calculations, the time complexity of the transformer recommender is O(2L2hd + Lhd2), which
is also the total time cost in the testing stage. Moreover, the time complexity to compute Lgd is
O(L(2d + 1)), Lreg is O(|I|d), Lgen is O(2|U|d), and Lpred is O(|I|d), therefore, the total time
cost to compute the loss is O(L(2d+1)+ 2|I|d+2|U|d). Consider that |I| and |U| are much larger
than L empirically, the overall time complexity of CDIB is O((|I|+ |U|)d), which is affordable.

Space Complexity Analysis. Compared to the naive sequential recommendation model SAS-
Rec (Kang & McAuley, 2018), our CDIB uses extra parameters costs O(|B|d) to represent the users’
embeddings, which only occur in the training stage, and O(d2) to develop the learnable mask and
distribution generator, which is affordable. The running time and model size in the training stage
are shown in Table 8, and that of the testing stage is present in Table 9, where also present the
performance improvement compared with SASRec.

Table 8: Running time and Model size at the training stage

Dataset
SASRec DROS DCRec CDIB

Running
Time

Model
Size

Running
Time

Model
Size

Running
Time

Model
Size

Running
Time

Model
Size

ML-100K 00h 15m 02s 0.21 M 01h 48m 01s 0.21 M 01h 26m 55s 0.22 M 00h 37m 21s 0.42 M
Retail 01h 02m 32s 1.24 M 02h 25m 38s 1.24 M 06h 36m 12s 1.25 M 01h 19m 24s 2.80 M
Beauty 01h 03m 39s 0.87 M 01h 39m 34s 0.87 M 02h 11m 21s 0.89 M 01h 08m 40s 2.45 M
Sports 01h 34m 48s 1.27 M 03h 35m 04s 1.27 M 02h 42m 11s 1.29 M 00h 50m 38s 3.70 M

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 9: Running time, Model size and Performance Improvement at the testing stage

Dataset
SASRec DROS DCRec CDIB

Running
Time

Model
Size

Running
Time

Model
Size

Performance
Improvement

Running
Time

Model
Size

Performance
Improvement

Running
Time

Model
Size

Performance
Improvement

ML-100K 0.13s 0.21 M 0.12s 0.21 M ↑ 8.10% 0.14s 0.22 M ↓ 6.94% 0.12s 0.21 M ↑ 17.23%
Retailrocket 0.37s 1.24 M 0.45s 1.24 M ↓ 0.32% 0.43s 1.25 M ↑ 1.72% 0.38s 1.24 M ↑ 8.53%

Beauty 0.34s 0.87 M 0.32s 0.87 M ↓ 3.54% 0.38s 0.89 M ↓ 9.13% 0.31s 0.87 M ↑ 6.34%
Sports 0.47s 1.27 M 0.48s 1.27 M ↑ 4.41% 0.58s 1.29 M ↓ 11.34% 0.48s 1.27 M ↑ 7.29%

E DATASETS, BASELINES, METRICS, AND RELATED WORKS

E.1 DETAILED DATASETS DESCRIPTION

ML-100K. ML-100K is sourced from MovieLens4, a recommendation system and virtual community
website established by the GroupLens Research Project at the University of Minnesota’s School of
Computer Science and Engineering.

Retailrocket. The Retailrocket dataset was collected from a real-world e-commerce website5. We
utilize viewing sequences to train and test our model. Following the approach in (Yang et al., 2023b),
we exclude items interacted with fewer than five times to mitigate the cold-start issue. Additionally,
sequences shorter than three interactions are removed.

Amazon. The Amazon-Beauty and Amazon-Sports datasets compile user-item interactions from
Amazon6 in the Beauty and Sports product categories, respectively. Employing preprocessing similar
to that used for Retailrocket, we filter out items with fewer than five interactions and sequences
shorter than three. The statistics of our evaluation datasets are detailed in Table 10.

Table 10: Dataset statics

Dataset ML-100K Retailrocket Amazon-Beauty Amazon-Sports ML-1M

#Users 944 22179 22364 35599 6041
#Items 1683 17804 12102 18358 3417

#Interactions 100000 240938 198502 296337 999611
Avg. actions of users 106.04 10.86 8.87 8.32 165.50
Avg. actions of items 59.45 13.53 16.40 16.14 292.63

Sparsity 93.71% 99.94% 99.93% 99.95% 95.16%

E.2 DETAILED BASELINES DESCRIPTION

We compare CDIB with ten methods from diverse research lines, covering:

1. Naive Sequential Recommendation Methods: These methods have been effective techniques to
capture the evolving pattern of users’ interest.

• GRU4Rec (Hidasi et al., 2016): GRU4Rec utilizes the Gated Recurrent Unit (GRU) for session-
based recommendations, providing strong sequence modelling capabilities.

• Caser (Tang & Wang, 2018): Caser is a CNN-based approach that employs horizontal and
vertical convolutional filters to capture sequential patterns.

• SASRec (Kang & McAuley, 2018): SASRec applies a multi-head self-attention mechanism to
encode item-wise sequential correlations, suitable for long sequence data.

2. Reweighting Methods: These methods aim to develop a more unbiased and robust model by
adjusting the weight of each training instance.

• IPS (Schnabel et al., 2010): IPS re-weights each training instance with inverse popularity score
to eliminate popularity bias.

4https://movielens.org/
5https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset/
6https://www.amazon.com/
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3. DRO Methods: DRO Methods integrate the distributionally robust optimization (Hu & Hong,
2013) to the sequential recommendation to obtain a recommender with better generalization
ability.
• S-DRO (Wen et al., 2022): This model adds streaming optimization improvement to the Distri-

butionally Robust Optimization (DRO) framework to mitigate the amplification of Empirical
Risk Minimization (ERM) on popularity bias.

• DROS (Yang et al., 2023b): It introduces a carefully designed distribution adaption paradigm,
which considers the dynamics of data distribution and explores possible distribution shifts
between training and testing.

4. Diffusion-based Augmentation Methods: Diffusion-based Augmentation Methods utilize diffu-
sion technical to enrich the sparse training data to improve the model performance.
• DiffuASR (Liu et al., 2023): This model designs a Sequential U-Net to capture sequence

information while predicting the added noise. Additionally, two guiding strategies (DiffuASR-
CG and DiffuASR-CF) are implemented to steer DiffuASR, ensuring it generates items that
align more closely with the preferences in the original sequence.

5. Contrastive Learning Methods: CL methods adopt data augmentation to enhance the robustness
of recommenders.
• CL4SRec (Xie et al., 2022): CL4SRec employs random corruption techniques like cropping,

masking, and reordering to generate contrastive views.
• DuoRec (Qiu et al., 2022): DuoRec introduces supervised positive sampling to obtain high-

quality positive pairs.
• DCRec (Yang et al., 2023a): DCRec unifies sequential pattern encoding with global collabora-

tive relation modelling through adaptive conformity-aware augmentation.

E.3 DETAILED METRICS DESCRIPTION

We focus on top-N item recommendations and utilize two widely used metrics for evaluation: Hit
Rate (HR)@N and Normalized Discounted Cumulative Gain (NDCG)@N . These metrics are crucial
for assessing the recommendation accuracy at the top-N ranked positions (Kang & McAuley, 2018;
Yang et al., 2023a; Xia et al., 2023). The models are evaluated using an all-ranking protocol (He
et al., 2020), which provides a robust and comprehensive performance assessment. The metrics are
formally calculated as follows:

HR@N =

∑M
i=1

∑N
j=1 ri,j

M
; NDCG@N =

M∑
i=1

∑N
j=1 ri,j/ log2(j + 1)

M · IDCGi
(35)

where M denotes the number of tested users, ri,j = 1 if the j-th item in the ranked list for the i-th
user is positive, and ri,j = 0 otherwise. The numerator of NDCG@N is the discounted cumulative
gain (DCG) at N , and IDCGi is the ideal maximum DCG@N value for the i-th tested user.

E.4 MORE RELATED WORKS

Sequential Recommendation is designed to predict the next item a user is likely to prefer based on
their interaction history. Traditional methods have leveraged Markov chains to capture first-order
item-to-item correlations through transition matrices (Rendle et al., 2010; He & McAuley, 2016).
With the development of deep learning, which excels at modeling complex sequential patterns, various
deep recommendation models have been developed. For instance, GRU4Rec (Hidasi et al., 2016)
employs Gated Recurrent Unit (GRU) units to model the temporal dynamics of interaction sequences.
Caser (Tang & Wang, 2018) uses a time convolutional neural network (TCN) to account for both long-
term and short-term user interests in personalized recommendations. SASRec (Kang & McAuley,
2018) and BERT4Rec (Sun et al., 2019) enhance computational efficiency in lengthy sequences by
incorporating self-attention mechanisms. More recently, inspired by selective state space models (Gu
& Dao, 2024), Mamba4Rec (Liu et al., 2024a) has been introduced, utilizing the mamba framework
to recommend items efficiently. Despite their capabilities, these models often suffer performance
declines when OOD occurs. To address this, CDIB introduces a user feature-guided generation
approach that proactively explores OOD scenarios during the training phase, enhancing the model’s
generalization capabilities.
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Distributionally Robust Sequential Recommendation has recently attracted significant research
interest, which aims to train a model that performs well not only at the training stage but also at the
testing stage. Methods like reweighting and DRO (Schnabel et al., 2010; Bottou et al., 2013; Wang
et al., 2022b; Yang et al., 2023b; Wen et al., 2022) presume that the test dataset’s distribution can
be inferred from prior knowledge. For example, IPS (Schnabel et al., 2010) re-weight each instance
with the inverse propensity score, which implicitly assumes the testing distribution is uniform (Zhang
et al., 2023). DROS (Yang et al., 2023b) unifies the DRO and sequential recommendation paradigms
to enhance model robustness against distribution shifts but faces challenges with sparse data. Causal
inference methods capture real causal relationships but assume the causal graph is static (Wang et al.,
2023b; He et al., 2022; Yang et al., 2020; Wang et al., 2022a), while contrastive learning approaches
seek to enrich the training data distribution through data augmentation (Liu et al., 2021; Xie et al.,
2022; Yang et al., 2023a; Qiu et al., 2022; Zhao et al., 2023), but hardly rely on the data augmentation
strategies. What’s more, most of the existing models ignore the user’s sensitivity during the process
of distribution shift. To fill the gap, we introduce the CDIB principle, using the user features to guide
the exploration of the other distribution.

Information Bottleneck with Conditional Information has been increasingly utilized in recent
research. Various studies have adopted the information bottleneck (IB) principle by incorporating
conditional, aiming to extract information that aligns with specific objectives. The conditional
information bottleneck (CIB) theory (Gondek & Hofmann, 2003) has been applied in methods
such as CGIB (Lee et al., 2023) to identify crucial molecular structures that predict interactions
between graph pairs, with a focus on significant subgraphs. TimeCIB (Choi & Lee, 2023) extends
the CIB to time series data imputation, ensuring the preservation of essential temporal information.
Drawing inspiration from these precedents, CDIB employs CIB to steer the generation of distributions,
enhancing the model’s robustness. To the best of our knowledge, CDIB is the first application of CIB
to guide the distribution generation process.

Diffusion-based Augmentation Models Earlier approaches like Diff4Rec (Wu et al., 2023) and
DiffuASR (Liu et al., 2023) followed a three-step process: training the diffusion model, generating
new data with the diffusion model, and then training the recommendation model on new data, which
can lead to a disconnect between the generation and downstream tasks due to the discrete nature of
these stages, preventing the flow of gradient information. Our model, however, employs an end-to-end
training approach, which maintains the alignment between the generation and downstream tasks.
What’s more, in the SR scenario, interaction data is very sensitive (Ye et al., 2023), and there is a risk
of losing significant information during the data augmentation phase, which may compromise the
quality of the generated data, a concern overlooked in previous methods. Our model addresses this
by utilizing a learnable mask mechanism to safeguard critical interactions adaptively and is guided by
IB theory in the generation process.

F MECHANISM OF THE DIFFUSION MODEL

Diffusion Models have shown impressive generative performance across several domains, including
computer vision (Ho et al., 2020; Rombach et al., 2022), natural language processing (Austin et al.,
2021), and time series (Rasul et al., 2021; Shen & Kwok, 2023; Liu et al., 2024b). Generally, diffusion
models consist of two pivotal phases: the forward process and the reverse process. In the forward
process, Gaussian noise is incrementally introduced into the initial data sample x0 ∼ q(x0), creating
a sequence x1:T through T steps in a Markov chain, which can be formulated as follows:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (36)

where N indicates the Gaussian distribution and βt ∈ (0, 1) specifies the scale of noise introduced
at each step t. Through the reparameterization trick and principle that the sum of two independent
Gaussian noises is also Gaussian, xt can be directly derived from x0 as xt =

√
ᾱtx0 +

√
1− ᾱtϵt,

with ϵt ∼ N (0, I) as the added noise, and ᾱt =
∏T

t′=1(1− βt′) signifying the cumulative product of
noise scaling factors. The reverse process, conversely, aims to iteratively remove the noise from xt to
reconstruct xt−1 and ultimately retrieve the original sample x0. This is formulated as:

pθ(x0:T ) = p(xT )
∏T

t=1
pθ(xt−1|xt) (37)

where p(xT ) ∼ N (0, I) and
∏1

t=T pθ(xt−1|xt) denotes the process of sequentially deducing xt−1

by reversing the estimated Gaussian noise from xt via a neural network parameterized by θ. The
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diffusion model’s learning objective is thereby distilled to:

Lϵ =
∑T

t=2
Et,ϵ[||ϵt − ϵθ(xt, t)||22] (38)

where ϵθ(xt, t) represents the noise modeled to have been added to xt−1 in the forward process.
This mechanism enables the diffusion model to approximate complex data distributions and generate
high-quality samples, making it particularly effective for tasks requiring diverse and structured data
generation.

G NOTATION TABLE

Table 11: Notation Table

Notation Description
eu User embedding for user u
hl
u Embedding of the l-th item interacted by user u

Hu Hidden representation of user u’s interaction sequence
su Interaction sequence of user u
s̃u Masked interaction sequence
Mu Learnable mask applied to su
Ht

u Noised hidden representation Hu at the t-th step
H̃0

u Reconstructed hidden representation
H̃u Hidden representation of the generated interaction sequence
qh Query embedding of the h-th attention head
kh Key embedding of the h-th attention head
vh Value embedding of the h-th attention head

H LIMITATION AND FUTURE WORK

Although CDIB outperforms the baseline models, it currently relies solely on ID features to model
user attributes, and its ability to guide generating distributions is constrained by cold-start problems.
In future work, we plan to investigate using side information or multi-modal data to model user
attributes, which may help mitigate the cold start issues. Additionally, to maintain high computational
efficiency, we employ a lightweight MLP model as the backbone for the denoising process. While
the suitability of MLP for recommendation scenarios is not the focus of this work, it remains an
important question. Therefore, we will explore which architectures are both lightweight and effective
for recommendation scenarios, such as Mamba (Gu & Dao, 2024), in our future studies.
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