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Abstract—This paper proposes a novel fault diagnosis scheme
for rotating machinery based on meta-transfer learning and
test augmentation. The model-agnostic meta-learning (MAML)
framework is applied to the fault diagnosis problem by dividing
the training and testing tasks according to different operating
conditions, which allows the user to arbitrarily select the appro-
priate basic model according to the task requirements. Then, an
additional pre-training phase based on meta-transfer learning is
designed to improve the comprehensive performance, and a test-
ing stage is introduced to evaluate the generalization performance
of the hyperparameters of fine-tuned model. Experimental results
on the CWRU dataset demonstrate that the proposed scheme can
achieve high accuracy, stability, and efficiency in fault recognition
under cross-condition scenarios.

Index Terms—Fault diagnosis, rotating machinery, meta-
transfer learning, test augmentation, MAML

I. INTRODUCTION

Resource-intensive industries such as coal and steel are cur-

rently undergoing a transformation that focuses on improving

efficiency while removing outdated capacity, which is also

driving advances in intelligent automation solutions for the

transport industry. As the power source of logistics transporta-

tion and distribution system (LTDS), the operation data of

the motor contains a wealth of equipment fault information

and is the key to develop intelligent diagnostic system in

the field of modern LTDS. However, a significant challenge

in industry upgrading is devising effective fault diagnosis

algorithms amidst a scarcity of fault samples. Traditional fault

diagnosis algorithms for rotating machinery typically involve

an initial step of feature extraction from data, followed by

classification using a classifier, in which case, the diagnostic
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accuracy is heavily reliant on the compatibility among the

feature extraction algorithm, the classifier, and the original

dataset [1], [2]. With the evolution of information technology

in industrial devices, some statistical algorithms have been

successively applied to feature extraction, including short-time

Fourier transform (STFT) [3], wavelet transform [4], empirical

mode decomposition (EMD) [5], and Hilbert-Huang transform

(HHT) [6]. Successively, some robust machine learning al-

gorithms, such as k-nearest neighbors (KNN), support vector

machines (SVM) [6], and random forests [7], are employed to

identify specific fault classifications.

With the further development of computer hardware and

arithmetic power, ‘end-to-end’ deep learning algorithms have

been progressively applied to the field of fault diagnosis,

which can not only maintain a high recognition accuracy,

but also address the issues of low generalizability and high

expertise requirements associated with traditional diagnosis

algorithms. Some milestone results can be seen in [8]. In

recent years, benefiting from the vigorous development of deep

learning algorithms, how to effectively apply fault diagnosis

schemes to engineering practice has become a tricky challenge.

Against this backdrop, several researches have been carried out

successively to improve the generalization ability of diagnosis

algorithms and address the prevalent issue of insufficient

valid data. For example, Hasan et al. [9] achieved more

than 90% accuracy in cross-condition fault identification by

combining convolutional neural networks (CNNs) and transfer

learning. In [10], a novel scheme based on metric learning is

proposed for the intelligent diagnosis of rotating machinery,

and the feasibility of the sample less learning in engineering

practice is verified. Li et al. [11] proposed a model-agnostic

meta-learning based fault diagnosis method, which converts

raw signals under different operating conditions into time-
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frequency images, and then randomly samples them based on

the meta-learning architecture. On this basis, a novel strategy

of hierarchical recursive meta-learning for data reconstruction

is designed in [12], where the CWRU dataset is divided into

92 working conditions for experimental study, providing a new

solution to deal with the common problems of fewer samples

in real engineering.

The aforementioned research showcases the broad applica-

tion prospects and potential value of few-shot learning algo-

rithms based on deep learning in the field of fault diagnosis.

However, certain challenges still exist in practical applications,

such as the requirement for abundant source domain data

to train transfer learning-based diagnosis algorithms before

transferring to the target domain, and the stringent similarity

between source and target domain. Instead, the meta-learning

based fault diagnosis scheme is more in line with the needs

of engineering practice as it can overcome the effects of

unbalanced and insufficient data. However, most existing meta-

learning based results often focuses unilaterally on increasing

the number of training tasks [12], ignoring cross-condition

issues in engineering practice. Moreover, these studies tend

to over-rely on the original MAML framework and overlook

a key limitation: lack of validation sets that are important in

data analysis, which may affect the generalization ability of

the model and lead to overfitting of the final training results

when solving cross-condition diagnosis problems. Motivated

by the above statements, this paper proposes a novel MAML-

based scheme named Test-augmented meta-transfer learning

(TAMTL) for fault diagnosis of rotating machinery. The main

contributions are as follows.

• A MAML-based fault diagnosis algorithm is proposed,

and the training and testing tasks are divided according

to different conditions, which enhances the interpretabil-

ity of the framework and improves its effectiveness in

engineering applications.

• A pre-training step using meta-migration learning is de-

signed and added to the original model, which increases

the training speed and improves the stability of con-

vergence process during model training. Moreover, the

proposed scheme incorporates the advantages of transfer

learning and meta-learning to mine class-separated and

domain-invariant features.

• An additional testing stage is designed to assess the

generalization performance of the hyperparameters of

fine-tuned model. Experimental results on the CWRU

dataset demonstrate that the proposed scheme can achieve

high accuracy, stability, and efficiency in fault recognition

under cross-condition scenarios.

II. PRELIMINARIES

The MAML algorithm is one of the few-shot learning

algorithms proposed by Chelsea Finn et al. [13] in 2017, and

its core goal aims to quickly adapt to new tasks by relying on

a small amount of labelled data to train the model, with the

key advantage of being model-agnostic and can be used with

various deep learning models. The framework of the original

MAML model is shown in Fig. 1.
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Fig. 1. The original architecture of MAML.

As a typical meta-learning approach, MAML aims to train a

set of effective model parameters to replace the randomly ini-

tialized model parameters commonly used in traditional model

training. These parameters should allow rapid adaptation to

new tasks with minimal data updates and training iterations.

In summary, MAML mainly consists of a training task and a

testing task. Specifically, the role of the training task is to train

the model to obtain common initial parameters applicable to

a variety of tasks, while the testing task is used to evaluate

the generalizability of the model on new tasks. In addition, the

implementation process of the training task can be divided into

two parts: inner loop and outer loop. The parameter updates

and loss calculations performed in each task constitute the

inner loop, while the direct updating of the shared initial

parameters for all tasks constitutes the outer loop. The detailed

training process is as follows.

Firstly, initialize the model parameters θ. Then, for each

task Ti, the same network structure is employed for a few

rounds of training and parameter updates to obtain N sets of

task-specific parameter θ′i and loss function LossTi
(θ′i), which

are given by

θ′i = θ − α∇θLTi
(θ) (1)

LossTi
(θ′i) = − 1

Di
t

∑
(xj ,yj)∈Di

t

∑C

c=1
yj,c log(pθ(c|xj)) (2)

LossTi(θ
′
i) = − 1

Di
t

∑
(xj ,yj)∈Di

t

L(fθ′
i
(xj), yj) (3)

where α is the learning rate, LossTi
is the loss function for

each task, Di
t is the number of samples in the training set of

the i-th task, and L(fθ′
i(xj), yj) denotes the cost of the model

on a single sample xj and label yj under parameter .

Then, integrating the cost of N tasks yields the loss function

of the outer loop as

Lmeta(θ) =
∑N

i=1
LTi(θ

′
i) (4)

Subsequently, the initial parameter θ is updated by

θ = θ − β∇θLmeta(θ) (5)

where β is the learning rate of the outer loop.
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The above process is repeated for parameter iteration until

the termination condition is met and the resulting optimized

parameters are used for the test task. Then, after a few steps

of fine-tuning, the final model parameters derived from θ can

be used to evaluate generalization ability.

However, the following challenges still exist in applying

MAML framework to fault diagnosis problems.

• MAML was originally developed for datasets such as

Omniglot and Mini-Imagenet, which have numerous

classes with few samples per class. In contrast, fault diag-

nosis datasets are typically characterized by continuous-

time vibration signals with fewer categories. Previous

attempts to use MAML to fault diagnosis often failed

to ensure a clear separation between training and testing

data, thus hindering its cross-condition generalization and

reducing its practical utility.

• The original MAML framework relies on fine-tuning test

tasks to evaluate model performance. However, few-shot

training commonly leads to overfitting, and assessing

model performance based solely on test task accuracy

is not an effective measure of the generalizability of

initial parameters. Thus, additional evaluation methods

are needed to address this issue.

• MAML requires training on multiple tasks, which con-

sumes a lot of time and computing resources. For real-

world applications, it is critical to improve the speed of

model training and convergence efficiency while main-

taining fault identification accuracy.

Based on the above discussion, in the subsequent section,

we propose an improved diagnosis scheme to address the

issues of dataset applicability, evaluation methodology and

computational efficiency.

III. DESIGN OF THE TAMTL ARCHITECTURE

This section presents the design process of the proposed

TAMTL, which mainly involves three stages: model adapta-

tion, pre-training initial parameters, and test augmentation.

A. Model Adaptation

The embedded CNN algorithm in the original MAML archi-

tecture is primarily designed for processing two-dimensional

image data and is not suitable for the common one-

dimensional continuous-time domain data in the fault diagno-

sis field. Therefore, when adjusting the shape of the input data

in the original architecture, the basic model also needs to be

tuned. In this paper, the WDCNN proposed in [8] is used as a

basic model for the MAML framework. This algorithm utilizes

wide convolution kernels in the first convolutional layer to

better extract features and improve noise resistance, making it

suitable for directly processing one-dimensional time domain

data. The specific model structure is shown in Fig. 2, which

includes 5 convolutional layers, 5 pooling layers, and 1 fully

connected layer, followed by softmax for fault recognition

classification.

Additionally, the dataset is divided into training tasks and

testing tasks based on different operating conditions, ensuring

Number Network Layer Kernel Size/Stride Kernel Number Output Size Padding 
1 Convolution 1 64×1/16×1 16 128×16 Y 
2 Pooling 1 2×1/2×1 16 64×16 N 
3 Convolution 2 3×1/1×1 32 64×32 Y 
4 Pooling 2 2×1/2×1 32 32×32 N 
5 Convolution 1 3×1/1×1 64 32×64 Y 
6 Pooling 1 2×1/2×1 64 16×64 N 
7 Convolution 1 3×1/1×1 64 16×64 Y 
8 Pooling 1 2×1/2×1 64 8×64 N 
9 Convolution 1 3×1/1×1 64 6×64 N 

10 Pooling 1 2×1/2×1 64 3×64 N 
11 Full Connection 100 1 100×1  
12 Softmax 10 1 10  

Fig. 2. The network parameters of WDCNN.

that the training tasks handle data from a single operating

condition and focus on identifying fault types specific to that

condition. The testing tasks utilize data from completely differ-

ent operating conditions, ensuring the rigor and effectiveness

of the testing process. This treatment moves away from the

random selection of training tasks used in traditional MAML

architectures, enhances the interpretability of the model, and

clearly indicates the focus of the research: how to use limited

data from multiple operating conditions to improve the ability

of the inherent model to diagnose faults under new conditions.

Specifically, in the original MAML framework, the setting

is N -way, K-shot, where the model needs to learn to identify

N different categories with only K samples. However, in the

adjusted framework, since the load conditions of the rotating

machinery remain consistent within each training task, and the

types and quantities of faults to be classified are consistent,

N is fixed as the number of fault types for each operating

condition in the revised framework and is no longer a tunable

hyperparameter. Thus, we have:

Di
train = N ×K (6)

where the size of training set for task Ti is equal to the

number of categories multiplied by the number of samples

per category, and N is a fixed constant.

Then, the loss function of each task is given by

LCE(fθ(x), y) = −
∑C

c=1
yc log(pθ(c|x)) (7)

where C is the number of categories, yc is an indicator variable

that is 1 if the sample x belongs to category c, and 0 otherwise,

and pθ(c|x) is the probability predicted by the model under

parameters θ.

Substituting Eq. (6) and (7) into Eq. (2) yields the following

loss to calculate the cost function for tasks after determining

the basic model and task partitioning

LossTi
(θ′i)=−

∑N
n=1

∑K
k=1

∑C
c=1 yn,k,c log(pθ′

i
(c|xn.k))

NK
(8)

where xn,k and yn,k,c represent the input and indicator vari-

ables, respectively, for the k-th sample in the n-th category.

This section implements the adjustment of the original

MAML framework by defining the basic model and adapting
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the task partitioning to make it suitable for fault diagnosis in

rotating machinery.

B. Test Augmentation

The original MAML framework uses the parameter obtained

from training as the initial parameter for the testing tasks.

After fine-tuning with a small number of samples in the

testing tasks, the final model parameters are obtained, as

shown in Eq. (5). Moreover, the parameters fine-tuned with

few samples can be used to classify and recognize samples in

the query set of the testing tasks as a basis for adjusting the

hyperparameters and evaluating the framework performance.

Although the original MAML framework avoids overfitting

to some extent by cross-validating across multiple tasks, as

evidenced by the fact that the model performs well on query

sets across multiple tasks, the framework still suffers from

logical flaws and risk of overfitting due to the lack of a separate

validation set. Especially in the testing tasks, the limited data

used in the fine-tuning process further amplifies the possibility

of model overfitting, thus affecting its generalization ability.

To address this issue, this section introduces a method of test

augmentation into the adapted meta-learning architecture.

Specifically, while keeping the main structure of the ad-

justed meta-learning scheme unchanged, the original testing

tasks are first regarded as validation tasks, and the performance

of the trained model parameters on the validation tasks is

served as the basis for adjusting the hyperparameters. Then, a

dataset with the same operating conditions and sufficient fault

samples as the validation task is then fed into the initially fine-

tuned model parameters, and the recognition accuracy of the

fine-tuned parameters on that dataset will be used as a true

measure of the performance of the framework. The hyperpa-

rameters in the meta-learning framework mainly include the

learning rate β of the outer loop and the number of update

steps in the inner loop tasks. After completing the adaptive

adjustment of the meta-learning framework, the number of

tasks and the model structure are fixed. Therefore, the main

hyperparameters that need to be adjusted are concentrated on

the learning rate β of the outer loop and the number of update

steps in the inner loop tasks. The calculation process of these

two hyperparameters is given by
⎧⎨
⎩

αopt = argminαLval(θ
′(α))

Stepsopt = argminαLval(θ
′
Steps)

(9)

where αopt is the optimized learning rate, Stepsopt is the

optimized number of update steps, θ′(α) and θ′Steps represent

the model parameters under the corresponding conditions,

Lval(θ
′) is the loss on the validation set, which is given by

Lval(θ
′) =

1

|Dval|
∑

(x,y)∈Dval

L(fθ′(x), y) (10)

where Dval is the number of samples in the validation task,

and θ′ denotes the parameters obtained from fine-tuning pa-

rameter θ.

This design separates the adjustment of hyperparameters

from the evaluation of the framework performance, thereby en-

hancing the rigor of the scheme in experiments, and providing

a more intuitive and effective assessment of the generalization

performance of fine-tuned model parameters.

C. Pre-training Initial Parameters

After adjustment and test augmentation, the meta-learning

model still needs to undergo training on multiple tasks to

obtain a good initial starting point . However, due to the

introduction of the test augmentation step, training this meta-

learning framework consumes more time and computing re-

sources compared to the original MAML. In practical engi-

neering, this often implies higher economic and time costs.

Thus, in this section, a meta-transfer based pre-training step

is designed to speed up the training and reduce the time of

parameter convergence.

In meta-learning architectures without pre-training, the pa-

rameters θ initially input into the base model are randomly

initialized random numbers. We mix data with consistent fault

types under different operating conditions as simple CNN

training and validation data. One or two gradient updates are

performed, and the resulting model parameters are used as

the initial parameters to train the TAMTL framework. The

specific steps for combining similar fault types under different

operating conditions are shown in Fig. 3.

Fig. 3. Process diagram of similar types under different conditions.

As shown in Fig. 3, the original data divided into N oper-

ating conditions are reorganized, and each operating condition

contains the same M fault types. Then, each identical fault

type is extracted from different operating conditions to form a

new dataset. In this way, the new dataset consists of M fault

types. Subsequently, this composed new dataset is fed into the

selected basic model for several initial iterations.

The essence of using pre-trained parameters is to replace

several outer loop parameter updates in MAML with multiple

single CNN parameter updates, thereby saving resources and

training time. This approach ensures faster and more stable
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Fig. 4. Framework of the proposed TAMTL.

convergence of model parameters without increasing the num-

ber of training data or gradient updates.

IV. NUMERICAL EXPERIMENTS

This section validates the performance of the proposed

TAMTL scheme with the CWRU dataset.

A. Experimental dataset

This experiment will utilize the dataset from the Case

Western Reserve University (CWRU) Bearing Data Center.

The CWRU dataset is an open-source standard dataset that has

been widely used in the field of fault diagnosis. The device in

the CWRU dataset is the SKF6205 deep groove ball bearing,

and its data collection system is shown in Fig. 5.

Fig. 5. The data collection system of the CWRU dataset.

In this study, the sampling frequency of the data acquisi-

tion system is 12 kHz. The dataset includes four operating

conditions: 0HP, 1HP, 2HP, and 3HP. Under each operating

condition, there are 10 fault scenarios, consisting of three types

of defect locations (ball damage, outer race damage, inner race

damage) and three sizes of damage diameters (0.007 inch,

0.014 inch, and 0.021 inch), forming nine fault states and one

healthy state.

B. Experimental parameter configuration

Fig. 4 displays the TAMTL framework constructed using

drive-end vibration data (DE) selected from the dataset. Three

operational conditions, labeled as 0HP, 1HP, and 2HP, are uti-

lized as training tasks, while the data from the 3HP condition

is set as the testing task. Each task involves the classification

of the same set of 10 fault types, with the base model adjusted

to WDCNN. Before the formal training, the initial parameter

θ is set to those obtained after five pre-training epochs, and

the data for meta-transfer learning (pre-training) is segmented

from the original training tasks to ensure the total training

data remains unchanged. Finally, the performance metrics of

the framework are obtained through the test augmentation

part, where 1000 random samples are selected from the 3HP

condition for testing. The performance metrics are given by

Acc =
1

k

∑K

k=1
Acck (11)

V ar(Acc) =
1

K − 1

∑K

k=1

(
Acck −Acc

)2
(12)

where Acc and V ar(Acc) are the accuracy and variance of

fault recognition calculated from the samples extracted from

the testing task input with the parameters θ′ after fine-tuning.

The accuracy Acck of each experiment is defined as

Acck =
1

M

∑M

i=1
yM (fk(xi, θ

′
k) = yi) (13)

where fk is the model of the k-th experiment, θ′h denotes the

corresponding parameter after fine-tuning, M stands for the

number of samples in the testing set, and in this experiment,

we set M = 1000. yM is the indicator function. Addition-

ally, we introduce a well-established fine-tuning-based transfer

learning algorithm as the baseline algorithm.

C. Simulation Results

After setting up the framework, in each epoch, each task

consists of 5 training data and 10 validation data. The outer

loop learning rate is set to 1× 10−3. The parameters in each

training task are updated 3 times, and during fine-tuning within

training tasks, parameters are updated 8 times. The maximum

number of iterations is set to 30. TAMTL includes a pre-

training stage with 5 parameter update epochs. Therefore,
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Fig. 6. Comparison of fault recognition accuracy under three learning modes.

the testing values for the TAMTL will be recorded from the

classification accuracy starting from the 5th parameter update.

Fig. 6 shows the comparison of fault recognition accuracy

among transfer learning, meta-learning without pre-training,

and TAMTL under different parameter update epochs in a

single experiment. One can that the recognition accuracy of

all three schemes tends to plateau as the number of parameter

updates increases, eventually converging. Under the same

conditions of training data and parameter update times, transfer

learning demonstrates faster adaptation to new tasks than meta-

learning without pre-training. Before convergence, transfer

learning often achieves higher recognition accuracy than meta-

learning without pre-training. However, compared with meta-

learning without pre-training, the recognition accuracy of

transfer learning is slightly lower and unstable, and sometimes

there is a significant “negative transfer” phenomenon. In

contrast, the TAMTL framework incorporates the advantages

of transfer learning and meta-learning without pre-training,

achieving a balance. As shown in the figure, the test data for

TAMTL is recorded from the 5th parameter update onwards.

In the subsequent parameter update step, TAMTL exhibits the

highest stability and convergence accuracy.

Fig. 7 and Fig. 8 shows the confusion matrix and t-SNE

visualization results for models saved at 0, 5, and 20 gradient

update times. The first column of two figures shows the

models trained with transfer learning, with gradient update

frequencies of 0, 5, and 20 saved. Similarly, the second

and third columns depict the models trained without pre-

training and those trained with TAMTL, respectively, pro-

viding a more intuitive representation of the performance

of the three architectures. Among these results, the transfer

learning demonstrates faster training speed before reaching

the convergence of fault diagnosis accuracy, and the meta-

learning shows higher recognition accuracy and stability after

convergence. The proposed TAMTL integrates the advantages

of both transfer learning and meta-learning, offering not only

faster training speed but also balanced training accuracy and

stability.

The average accuracy and variance of fault recognition for

Fig. 7. Confusion matrices for the three learning modes.

Fig. 8. t-SNE visualization results for the three modes.

the TAMTL scheme are presented numerically based on five

repetitions of training with 20 parameter update iterations for

each of the three architectures, as shown in Fig. 9. When

all three models approach the accuracy convergence value,

TAMTL exhibits the highest average accuracy and the lowest

standard deviation, further confirming the previous conclu-

sions.

V. CONCLUSION

This paper proposes a novel fault diagnosis scheme for

rotating machinery based on meta-transfer learning and test

augmentation. It can divide training and testing tasks according

to different operating conditions, and an additional pre-training

and testing stage is designed to improve the comprehensive
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Fig. 9. The average fault recognition accuracy and standard deviation of the
three architectures.

performance. The supplementary testing stage addresses the

logical flaw of lacking validation tasks in the original MAML

framework, enhancing the rigor of performance evaluation.

Finally, experimental results on the CWRU dataset demon-

strate that the proposed scheme can achieve an average fault

recognition accuracy of 95% with a standard deviation of

0.0050 under conditions of limited total training samples.

Compared with transfer learning and meta-learning without

pre-training under the same amount of training data and num-

ber of parameter updates, TAMTL shows superior performance

in diagnosis accuracy, stability, and efficiency.
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