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Abstract
Docker has transformed modern software development, enabling
thewidespread reuse of containerized applications. Currently, Docker
images are primarily distributed through centralized registries,
among which Docker Hub is the largest, allowing developers to
share and reuse images easily. The threats within these images also
spread through the supply chain via dependency relationships, pos-
ing risks to anyone using the image and all images built based on
it. However, it is unclear to what extent the threats within Docker
images are distributed and propagated.

In this paper, we investigate five potential security risks in
Docker images and propose a security analysis framework DITec-
tor based on these security issues. We then utilize DITector to
conduct a large-scale security measurement of the Docker image
ecosystem. We collect descriptions of over 12 million image repos-
itories from Docker Hub, construct an image dependency graph
based on the layer information of the images, and select two sets
of influential images based on their pull counts and dependency
weight, totaling 33,952 images. Our findings are alarming: 93.7% of
analyzed images contain known vulnerabilities, 4,437 images have
secret leaks, 50 images contain misconfigurations and 24 malicious
images. Furthermore, we identify 334 downstream images affected
by malicious images and uncover patterns of attack propagation
within the supply chain. We have discussed the measures to miti-
gate these issues, reported our findings to the relevant parties, and
received positive responses.

1 Introduction
Docker [11] has revolutionized the way applications are devel-
oped, deployed, and managed, becoming an integral part of modern
software engineering practices. It allows developers to package
applications with their dependencies into portable containers for
consistency across environments. This has resulted in complex sup-
ply chains where Docker images are frequently reused and built
upon by various developers and organizations.

A Docker registry is a centralized system used to store, man-
age, and distribute Docker images, making it a crucial node in the
Docker image ecosystem. Docker Hub [20] is the largest Docker reg-
istry, offering over 12.5 million official and community repositories,
attracting more than 9 million users worldwide [6] to contribute
over 20 billion image downloads per month [22].

In recent years, attacks on the Docker image ecosystem have
become increasingly frequent. Attackers scan for leaked keys or
software vulnerabilities in publicly available images, exploiting
these flaws to carry out attacks [13, 31, 42]. Moreover, some attack-
ers construct images that automatically execute malicious software,
especially mining software, and use centralized Docker registries
to spread these images, expanding the impact of the attack [1, 3, 4].

Several methods have been proposed to detect security threats
in Docker images, primarily scanning for known vulnerabilities

using public vulnerability datasets, including industry tools [2, 23,
43, 45] and academic work like DIVA [49]. Additionally, research
has addressed other threats such as sensitive parameters, malicious
files [9], and secret leakage [33]. However, existing methods are
not consistent in terms of analysis dimensions, time, and scale. The
selection patterns of datasets vary greatly, making it difficult to gain
accurate and comprehensive insights into the security situation of
the Docker image ecosystem through existing research. Moreover,
most methods analyze each image individually, neglecting the inter-
image dependency reuse relationships.

To address this issue, in this paper, we propose a large-scale se-
curity analysis framework called DITector (Docker Image Threat
detECTOR), and systematically evaluate the security status of the
Docker image ecosystem, covering fivemajor security threats within
images: software vulnerabilities, secret leaks, misconfigurations,
malicious files, and sensitive parameters that might be included in
the container startup commands provided by developers.

We collected information on over 12 million repositories, which,
to our knowledge, constitutes the largest image dataset to date.
Based on this, we built an image dependency graph, which allowed
us to identify and analyze 33,952 critical images for the security of
the Docker image ecosystem, including high-dependency-weight
images that had not been discussed in previous work.

We found 4,437 images with leaked secrets, 50 with misconfigu-
rations, and 24 malicious images. We investigated the propagation
of various threats, revealed 334 downstream images affected by the
malicious images, and examined intersections maintained by differ-
ent users. We highlight the need for enhanced security measures
and offer recommendations for the Docker community. We have
reported the issues to stakeholders and received positive feedback.
We will open-source part of the dataset and framework code to
inspire future work on the security of the Docker image ecosystem.

In summary, we have made the following contributions:
• We propose a frameworkDITector to measure the security

of the Docker image ecosystem. It identifies high-pull-count
images and high-dependency-weight images and detects
five types of security threats within them.

• We use DITector to conduct a large-scale measurement
of the security of the Docker image ecosystem. Our mea-
surement covers 33,952 critical images identified through
information on over 12 million repositories.

• Our findings indicate that various threats are widespread
within the Docker image ecosystem. We have disclosed
our discoveries to stakeholders and call for measures to
mitigate and prevent the emergence and spread of threats.

2 Background
2.1 Docker Image
Docker images are read-only templates for creating containers.
An image is a software package that contains everything needed

1
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to run an application. It consists of a series of read-only layers
and the necessary configuration for the container. Developers can
build and upload images to Docker registries, such as Docker
Hub, to store and share customized application images. Users can
use the docker pull command with an identifier formatted as
NAME[:TAG|@DIGEST] to download the particular image.

Docker Registry manages images using a repository-tag-image
hierarchy. Repositories contain multiple tags representing differ-
ent image versions, and each tag may include images for various
architectures and operating systems. An image is uniquely indexed
by a digest, and the same image can be referenced by multiple
tags. Docker registries are categorized into public and private, with
Docker Hub being the largest public registry, containing over 12
million repositories.

In the process of developing, publishing, and sharing Docker
images, three dimensions of information are introduced.

Description.Docker registries maintain descriptive information
about images, incorporating both basic information introduced by
the image itself and statistical information introduced by the Docker
registry. Classified by hierarchy, the information can be divided
into repository description, tag description, and image description.
It involves important indicative details. For example, the repository
description contains the repository’s registration date, description,
and pull count; while the image description includes instructions
for creating each layer of the image.

Content. A Docker image comprises several ordered layers
stacked on top of each other. Each layer represents a modification
to the file system. All layers are eventually mounted by UnionFS
to create a virtual file system visible within the container. The
content includes the application, code, libraries, configurations,
dependencies, system files, and other necessary components for
running the application. However, introducing these contents also
raises potential security concerns, such as vulnerable software,
misconfigured applications, or accidentally packaged secrets.

Metadata. Image metadata consists of the basic information
and configuration of an image. The configuration outlines the de-
fault settings and behavior for containers instantiated from this
image, which contributes to the predictability and reproducibility
of the containerized environment. However, this also introduces
additional security risks. For example, the ENTRYPOINT and CMD
are used to set the commands and arguments that the container
executes, which could be exploited by attackers to launch malware.

2.2 Docker Image Supply Chain
The process of building images may introduce dependencies be-
tween images, forming the Docker image supply chain. It is a subset
of the software supply chain, focusing on the dependencies between
Docker images and all aspects of Docker images. In addition to the
application, the image also contains all the content that supports
the operation of the application. The newly built image is the child
image (downstream image), and the dependent image is the parent
image (upstream image). The child image entirely reuses the con-
tent and configuration of the parent image, resulting in the potential
inheritance of risks from the parent image. Even if the parent image
has patched the threat, due to delayed synchronization or content
retention policies, the threat may still exist in child images built

before the repair and persist in Docker registries for an extended
period. Therefore, having in-depth insights into the Docker image
supply chain and ensuring the security of key image nodes in the
supply chain is crucial to ensuring the security of the entire Docker
image ecosystem.

3 Motivation and Problems
3.1 Motivating Case
Attackers are attempting to introduce complex call chains into
images to bypass threat checks. We have identified a Docker im-
age [51] more complex than typical malicious ones, introducing
docker-entrypoint.sh and baslat.py on the basis of an image
that installed XMRig [52]. It uses ENTRYPOINT to execute the Shell
script, of which the filename is a common entry filename of many
benign images. The script runs baslat.py, which in turn runs XM-
Rig in a loop with a wallet address. The image also declares the
opening of ports 443 and 17075 with EXPOSE, likely as a disguise.

We reported the findings to Docker Hub, which responded they
would review and remove the malicious image. However, by the
time we discovered the image, it had been uploaded for over two
years with over 30,000 downloads. The current threat detection on
Docker Hub is not comprehensive or timely enough. Therefore, in
this paper, we conducted a security measurement on Docker Hub
and assessed the security of the Docker image ecosystem.

3.2 Problem Scope
As the largest and public Docker registry, Docker Hub is a pivotal
component of the Docker image ecosystem. It offers an extensive
collection of official and community images for direct use or as
bases for new ones. Therefore, our study focuses on Docker image
security within Docker Hub. We assume attackers can build images
and push the images to Docker Hub as normal developers. They
can also pull, scan, and use public images as common users.

In this paper, we primarily focus on five types of threats present
in the three dimensions of image information, including sensitive
command parameters (in description), secret leakage (in description,
content, and configuration), software vulnerability (in content),
misconfiguration (in content), and malicious file (in content and
configuration).

4 Methodology
To measure the security status of the Docker image ecosystem, we
proposed DITector, which utilizes a crawler to extensively fetch
image description files from Docker Hub, extracts dependencies
between images from the descriptions, and constructs IDEA (Image
DEpendency grAph). DITector identifies important images within
the Docker image ecosystem based on image descriptions and IDEA.
It downloads image content and metadata on demand for threat
detection, aiming to discover security threats such as vulnerable
software, misconfigurations, malicious files, and secret leaks within
the images. The analysis framework is shown as Figure 1.

4.1 Data Collection
According to past research [12, 29], the average size of Docker
images exceeds 100 MB (calculated to be 220 MB based on our data),
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Figure 1: Overview of DITector.

posing significant bandwidth and storage pressure for downloading
and analyzing all images locally. Therefore, we first implement a
crawler to collect the image descriptions. The descriptions include
the pull counts of images in the repository and information about
the image layers, which can guide us to identify important images
in the ecosystem for further analysis.

The first step is to collect the names of a vast number of reposito-
ries. Docker Hub only provides an index file for official images [28].
For community images, Docker Hub offers an API [21] for retriev-
ing repositories. The API accepts strings with a length between 2
and 255 characters as keywords and returns a maximum of 10,000
repository records for each keyword. We implement a depth-first
search keyword generator to query community repositories. The
generator generates the next search keyword according to the cur-
rent keyword and the number of corresponding repositories. The
crawler then obtains the repository, tag, and image descriptions
with the name of each repository.

4.2 Image Dependency Graph Construction
The inheritance between images can be reflected in the image de-
scription, where the "layers" field of the child image contains that
of the parent image. These layers consist of both content layers that
include file modifications and configuration layers. The configura-
tion layers only record the Dockerfile [24] commands executed to
configure the image, and have no digests, with no file modification.

After collecting a substantial number of image descriptions, we
can identify image dependencies. In this study, we proposed IDEA
for constructing a Docker image dependency graph. IDEA uses
Layer node to represent a layer within the image. Each Layer node
can be uniquely indexed by the "id" attribute calculated through
layer descriptions.

𝐿𝑎𝑦𝑒𝑟𝑖 .𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝐿𝑎𝑦𝑒𝑟𝑖−1 .𝑖𝑑 + 𝐻𝑎𝑠ℎ(𝑙𝑎𝑦𝑒𝑟𝑐𝑜𝑛𝑡 .𝑑𝑖𝑔𝑒𝑠𝑡)) (1)

𝐿𝑎𝑦𝑒𝑟𝑖 .𝑖𝑑 = 𝐻𝑎𝑠ℎ(𝐿𝑎𝑦𝑒𝑟𝑖−1 .𝑖𝑑 + 𝐻𝑎𝑠ℎ(𝑙𝑎𝑦𝑒𝑟𝑐𝑜𝑛𝑓 .𝑐𝑜𝑚𝑚𝑎𝑛𝑑)) (2)

The calculation methods for the id of different layer types are
shown in Eq. 1 and 2. In the equation, "+" represents string con-
catenation, 𝑙𝑎𝑦𝑒𝑟𝑐𝑜𝑛𝑡 stands for content layer, and 𝑙𝑎𝑦𝑒𝑟𝑐𝑜𝑛𝑓 stands
for configuration layer. For a content layer, IDEA uses its digest
to calculate the Layer node id; for a configuration layer, it uses
its instruction to calculate the id. The node id of the current layer
is related to the ids of all layers below it so that the positional
information of layers within the image is stored in the node id. We
stipulate that 𝐿𝑎𝑦𝑒𝑟0 .𝑖𝑑 is empty, which means that the id of the
bottom layer of an image is calculated solely based on the current
layer.

IDEA uses edge 𝐿𝑎𝑦𝑒𝑟𝑖− > 𝐿𝑎𝑦𝑒𝑟 𝑗 to indicate that 𝐿𝑎𝑦𝑒𝑟𝑖 is
the direct underlying node of 𝐿𝑎𝑦𝑒𝑟 𝑗 in a certain image. It marks
the image name on the Layer node corresponding to its top layer.
Therefore, we can search upstream or downstream images of a
specified image along the chain of Layer.

4.3 Threat Detection Method
Based on the image descriptions and IDEA, we can identify image
nodes that are critical to the image ecosystem. We have identified
two types of critical nodes: (1) High-pull-count images. The security
threats within will directly affect the users of the images; (2) High-
dependency-weight images, where the security threats within may
propagate downstream to a wide range of images.

A threat detector is implemented in DITector to analyze these
images. The detector reuses existing detection results, including
analyzing only the descriptions that differ from previously analyzed
images with the same digest; for image content, the detector scans
for threats from the bottom layer to the top layer, reusing the
results of already scanned layers. The detector identifies five types
of security threats in different dimensions of the image information.

Sensitive Command Parameter. It uses regular expression
to extract the startup commands provided by developers from the
repository description and identifies five categories of sensitive
parameters that we have manually reviewed from the manual [19]
(see Appendix B), which cover major container security restriction
that might be bypassed through parameters: (1) breaking filesystem
isolation; (2) breaking network isolation; (3) breaking process isola-
tion; (4) breaking resource limitations; and (5) elevating container
runtime privileges.

Secret Leakage. Similar to prior work [9], we utilize Truffle-
Hog [47] to scan the leaked secrets within the images. The detector
uses TruffleHog to directly scan descriptions and configuration files,
and scan the content layer by layer.

Software Vulnerability. The detector uses Anchore [2], which
has been employed in previous work [18, 35], to perform Software
Composition Analysis (SCA) and vulnerability detection on images.
Anchore utilizes datasets like the NVD [38] as vulnerability sources
and supports the detection of all layers within the image.

Misconfiguration. We manually reviewed the configuration
manuals and identified insecure configurations for four popular
containerized database applications (including MongoDB, Redis,
CouchDB, and Elasticsearch), focusing mainly on unauthorized
access. The detector identifies configuration files within layers
based on keywords in the path and detects misconfigurations.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

The Web Conference 2025, Sydney, Australia,
Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Malicious File. For files executed by containers, the detector
locates the file path according to the image configuration and uses
an antivirus engine provided by our corporate partner, which is a
large cyber security company. Regarding malicious components
installed from third-party registries, we first established datasets
for malicious PyPI and npm packages, including those identified by
our corporate partner, and datasets established by Guo et al. [17]
and OpenSSF community [40]. The detector extracts components
installed by package management tools like pip and npm from
the image description and matches it against the dataset of mali-
cious packages. For suspicious components, it verifiesmaliciousness
based on file characteristics.

4.4 Implementation
We implemented the web crawler using Python’s Scrapy [44] pack-
age. We leveraged the Goroutine and Channel features of Golang to
implement the multi-threaded IDEA builder and the threat detector.
We used MongoDB [36] to store the collected descriptions and de-
tection results. We employed Neo4j [37] to store IDEA and execute
graph algorithms to calculate the image dependency weights and
identify upstream and downstream images of a specific image.

5 Evaluation
With the support of a wealth of image descriptions and IDEA, we
can evaluate the security status of the Docker image ecosystem
from a more macroscopic perspective. In this section, we outline the
experimental design, present the experimental results, and analyze
the findings to answer the following questions.

RQ1: How are images distributed in the image ecosystem?
RQ2: How is the distribution of various threats in the Docker

image ecosystem?
RQ3: How do threats propagate downstream along dependency

relationships, and to what extent?

5.1 Dataset
We adopted the crawler for a total of six months, starting in August
2023, until the number of repositories stabilized and no longer
increased significantly. Finally, we collected a total of 12,079,309
repository descriptions and 29,775,651 tag descriptions, including
175 official repositories and 117,676 tags associated with them,
which is the largest image dataset to our knowledge.

For the sake of efficiency in building the dependency graph, we
pre-selected two types of images with the most basic influence
for the Docker image ecosystem security to construct IDEA: (1) all
official images and (2) the top 10 most recently updated images from
repositories with at least 100 pulls. The final dependency graph
includes 433,613 official images and 3,238,990 community images,
consisting of 24,739,338 Layer nodes.

5.2 Docker Image Distribution (to RQ1)
We calculated the distribution of images based on the pull count of
repositories, as shown in Figure 2. The points on the line represent
the minimum, quartile, median, third quartile, and maximum val-
ues. The results indicate that official repositories have much higher
pull counts than those of community repositories. However, since
official images only account for less than 0.002% of all images, the

distribution of all repositories is almost identical to that of commu-
nity repositories. The most pulled repository is library/alpine,
with over 10 billion downloads. There are more than 90% reposito-
ries with pull counts of less than 100, indicating that they are only
lightly used by relevant organizations after being uploaded. Among
them, 4,405,608 repositories were never pulled, which means that
images within over 36% of repositories have never been used even
once after being uploaded.

We explored along the edge described in Section 4.2 on IDEA to
calculate the dependent weight (the number of images it depends
on) and dependency weight (the number of images that depend on
it) of each image in IDEA. Besides, since the same image can be
tagged multiple times, we deduplicated images that have upstream
or downstream images based on their digests and also deduplicated
upstream images based on their digests when calculating the de-
pendent weights. We did not deduplicate downstream images, as
threats may propagate to images with the same digest in differ-
ent repositories. The results are shown in Figure 3 and 4. In these
figures, ID represents the In-Degree (dependent weight), and OD
represents the Out-Degree (dependency weight).

The results show that over 80% of considered images have at
least one upstream image. Meanwhile, over 90% of the images
do not have downstream images. More than 75% of images with
downstream images have less than 10 downstream images. These
results demonstrate that the majority of images rely on a very small
proportion of all images. The images with high dependency weights
are crucial for ecosystem security. However, due to the limited data
scale, previous work [7, 9, 33, 49, 55] did not analyze these images.

Therefore, we identified two categories of images with signifi-
cant impact for in-depth analysis: (1) High-pull-count images.
The top 3 most recently updated tags for repositories with pull
counts greater than or equal to 1 million, which are likely to be
heavily used directly. (2) High-dependency-weight images. The
images with dependency weights greater than or equal to 10, where
threats within these images may propagate to a larger number of
downstream images. For high-dependency-weight images, we dedu-
plicated the images based on the image digests. Due to Docker’s
lack of support for downloading images with only digest, we se-
lected a representative image name for download detection among
all names. This means prioritizing official repositories or the ear-
liest updated tags, which are more likely to still be hosted in the
registry. Finally, we identified 20,673 high-pull-count images and
25,924 high-dependency-weight images.

5.3 Threat Distribution (to RQ2)
DITector downloaded high-pull-count images and high-dependency-
weight images via names with digests, and then analyzed these
images using the threat detector. We found that there are 151 inter-
sections between the two sets of images, and during our process of
crawling descriptions and analyzing images, 12,494 images became
unavailable, due to reasons including images being deleted, devel-
opers rebuilding new images to replace the original ones, etc. 75%
of the expired images belong to high-pull-count image set. In the
end, we analyzed 33,952 images. In this section, we evaluate the
detection results of various threats.

4
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5.3.1 Sensitive Command Parameter Distribution. We identified
sensitive parameters in the startup commands in repository de-
scriptions. The distribution of sensitive parameters of classified
statistics is shown in Figure 5, where High-DW represents high-
dependency-weight and High-PC represents high-pull-count.

The detected images come from 10,741 different repositories.
Among them, 1,795 images provided a startup command with pa-
rameters in their descriptions, accounting for 16.7%. Of these, 78.4%
of the images included sensitive parameters in the command. This
suggests that most developers do not provide usage commands for
their images, while repositories that do provide startup commands
are likely to use sensitive parameters in their commands.

It is worth noting that although we identified five sensitive pa-
rameters, we did not find parameters that are used to break resource
isolation, represented by –cgroupns, which supports running con-
tainers in the cgroup namespace of the host. This indicates that
developers expect containers to run in resource-constrained en-
vironments, and few users would take on the risk of a denial-of-
service attack introduced by parameters.

Although studies warn of serious security issues from using
–privileged to provide capabilities for containers [10, 41], we
found 103 repositories using it. Further investigation revealed that
these repositories are mainly used in scenarios where additional
privileges do need to be applied for containers, such as monitoring
the host, building images across platforms, and running Docker in
Docker. However, the –privileged may grant excessive permis-
sions, increasing the risk of container escape. It is recommended
to use –cap-add to explicitly add specific kernel capabilities as
needed [25].

5.3.2 Secret Leakage Distribution. We discovered leaked secrets
in 29,420 images, accounting for 86.7% of the images analyzed.
Since research has shown that TruffleHog has a low precision [5],
to reduce false positives caused by ambiguous rules and example
secrets, we verified the leaked secrets under the ethical constraints
described in Appendix A without actually calling API.

Precise Regular Expression (filter Imprecise). Upon review-
ing the source code, we filtered secret detectors from TruffleHog
that contain at least one exact rule. It means that the selected reg-
ular expressions are not generated by the built-in heuristic rule
generation method detectors.PrefixRegex and exhibit distinct
features. We ultimately selected 46 precise regular expressions re-
lated to 38 applications, including private keys, URIs (which contain
usernames and passwords), and API tokens. We further used the
expressions to filter the results.

Common Pattern (filter Pattern). Different types of secrets
have different common patterns that serve as templates or examples.
For private keys, TruffleHog ensures that the detection results are
parseable. Following the method outlined by Dahlmanns et al. [9],
we excluded private keys recorded in the kompromat project [48]
that had already been deemed public. For URIs, we did not find
a public dataset of example username-password pairs. Thus, we
used ChatGPT [39] to generate example username-password pairs
and excluded URIs with default addresses and common example
pairs. For API tokens, previous research has shown that example
tokens may be manually crafted [34], consisting of human-readable
characters such as "EXAMPLE", or patterned characters like "XXXXX"
or "ABCDE". Therefore, we excluded tokens that contain words with
example meanings, or substrings with a length of five or more
identical characters or sequential characters.

Leakage Frequency (filter Frequency). Two primary scenar-
ios can lead to a valid secret being detected multiple times across
various images: (1) The secret is leaked in a layer of an upstream
image, causing the secret to be also detectable in its downstream
images. (2) The secret is packaged multiple times by the same devel-
oper and released in different images. We consider secrets in other
cases to be either example keys or invalid keys. Therefore, for each
type of secret, we calculate the average number of times each secret
is detected (leak count) and the average number of layers that con-
tain the secret (leak layers). We consider a secret to be invalid if the
images that contain it come from at least 2 different users and meet
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either of the following conditions: 𝑙𝑒𝑎𝑘 𝑐𝑜𝑢𝑛𝑡 ≥ 2 ∗ 𝑙𝑒𝑎𝑘 𝑐𝑜𝑢𝑛𝑡𝑎𝑣𝑔 ,
or 𝑙𝑒𝑎𝑘 𝑙𝑎𝑦𝑒𝑟𝑠 > 𝑙𝑒𝑎𝑘 𝑙𝑎𝑦𝑒𝑟𝑠𝑎𝑣𝑔 . We excluded such invalid secrets
with a relatively high leakage frequency.

Table 1: Exclusion and distribution of leaked secrets.

Secret Type Invalid ValidImprecise Pattern Frequency
Private Key 0 71,256 35,752 10,570

URI 1,618 716,314 272,468 24,888
API Token 4,718,131 24,853 48,027 7,494

The exclusion and distribution of the secrets are as shown in
Table 1. Eventually, 99.3% of the detected secrets are invalid. We
verified 42,973 secrets which are distributed in 4,437 images. 24.8%
of the high-pull-count images and 7.3% of the high-dependency-
weight images contain leaked secrets, indicating that high-pull-
count images are more prone to leaking secrets compared to high-
dependency-weight images. The distribution of three types of se-
crets is similar in both types of images. URIs account for more than
half of the leaks, followed by private keys, with API tokens being
the least common.

Valid secrets have been found in the description, metadata, and
content of images. Among them, more than 99.6% of the secrets
are leaked through the image content. We found 122 secrets in the
image description, which indicates that attackers can obtain valid
secrets at a relatively low cost only by crawling and scanning a
large amount of image descriptions through the Docker registry
API, without actually downloading the images. These secrets are
all leaked in the instructions within the layers field of the image
description. All the secrets we found in the image metadata (a total
of 21) can be detected in the image description because they are
all set as environment variables through the ENV instruction. This
means that some developers tend to write secrets into environment
variables as they would in a host environment, which is insecure
for images and increases the risk of exploitation by attackers. We
have disclosed the findings to the image maintainers, with details
visible in Section 6.3.
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Figure 6: Image update time and vulnerability published time
within.

5.3.3 Software Vulnerability Distribution. Considering the efficiency
of the detection, we randomly selected 1,000 high-pull-count im-
ages and 2,000 high-dependency-weight images from the datasets
based on their quantity ratio for vulnerability detection. The results
show that all high-pull-count images contain software vulnerabil-
ities, with an average of 558 vulnerabilities per image, including
more than 17 critical vulnerabilities. In contrast, 90.6% of high-
dependency-weight images contain software vulnerabilities, but
each image contains an average of 1,022 vulnerabilities, including
more than 29 critical vulnerabilities. The average severity of vulner-
abilities in high-dependency-weight images is much higher than
that in high-pull-count images.

To investigate the impact of image update times on vulnerability
distribution, we further scanned the most recently updated images
in the repositories of high-dependency-weight images. In the en-
tirety of the 796 scanned images (with different images coming from
the same repository), 158 images belong to the high-dependency-
weight image set. The corresponding repositories have not been
updated after 2020, with an average of 788 known vulnerabilities
per image. This indicates that over a decade of development, many
foundational images on Docker Hub are either poorly maintained
or have been deprecated. The potential issues arising from the
vulnerabilities they contain deserve attention.

Studies have indicated that the number of vulnerabilities con-
tained in images is related to the operating systems they are based
on [35]. Therefore, we arranged the images of the same repository
according to the upload time and calculated the repair of vulner-
abilities based on the operating system. The results indicate that
the new images released in image repositories have a significant
repair situation for the vulnerabilities of the old images. On average,
each new image fixes 164 vulnerabilities, which is 35% more than
the number of vulnerabilities introduced. 60% of the new images
fix more vulnerabilities than they introduce, and 41% of them fix
existing vulnerabilities without introducing new ones.

For Docker images with complete time records, we compared
the update time of the images with the earliest and latest published
times of vulnerabilities within the images. The results are shown
in Figure 6. Among them, 83.5% of the images contain at least one
vulnerability that was published in 2024, which reminds developers
that they should regularly update the images to reduce the impact
of vulnerabilities. We found that 11.1% of the images were updated
before the disclosure time of the earliest vulnerability within them.
This means that these images did not contain any known vulner-
abilities at the time of their release. Additionally, we found that
vulnerabilities from 30 years ago may still exist within images. An
image updated in 2018 contained a critical vulnerability that was
published in 1988, and the repository for that image has ceased
maintenance since that update. This alerts users to thoroughly in-
spect images before using them, ensuring they understand and can
mitigate any security risks contained within.

5.3.4 Misconfiguration Distribution. We identified 557 misconfigu-
rations in 398 images. Since the configuration files packaged into
the image may not take effect in the container, we first checked
whether the files executed at container startup would run the cor-
responding applications. The results show that only 50 images run
the application, containing 103 files with misconfigurations. We
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audited the configuration files and found that over 93% of the mis-
configurations were unauthorized access issues caused by reusing
the official example configuration files of the related applications.

To assess the vulnerabilities of misconfigured images in real-
world scenarios, we identified services that might be created and
exposed using specific images based on data from our partner’s cy-
berspacemapping platform. Since users can publish a container port
to any host port, we filtered and validated the results based on the
distinct characteristics in the configuration files, without actually
exploiting the target systems. For instance, we found that the image
dtagdevsec/elasticsearch:dev sets xpack.security.enabled
as false in the default configuration file of ElasticSearch, which will
disable the security features, leading to unauthorized access. It also
declares the cluster name as tpotcluster and the node name as
tpotcluster-node-01. We discovered that the response from port
9200 of an IP address from Germany matches the characteristics
exactly, indicating that the service is likely implemented based on
this image. Further investigation revealed that the image points to
a honeypot project called T-Pot [46], where users are aware of and
accept this vulnerability exposure. We also found ports open for
services such as ElasticSearch and Redis that match the unique con-
figurations within other images. These findings suggest that images
with misconfigurations may have been used in the wild. Users may
face unauthorized access issues and potential data breaches if they
deploy containers using these images in production environments
without checking their specific configurations.

5.3.5 Malicious File Distribution. The default executed files from
31 images were detected as malicious, including 26 cryptocurrency
mining software or scripts, 4 proxy agents, and 1 adware. Among
the mining images, 15 directly execute XMRig, an open-source
mining software that can mine multiple cryptocurrencies, 6 use
scripts to set up XMRig, and 5 execute other mining software.

We inspected whether containers launched based on the image
would exhibit malicious behavior. For images that execute mining
software or scripts, we reviewed the image metadata, script files,
and configuration files of the software. We consider the image
configuring the mining pool or wallet for the mining software as
malicious, as the cryptocurrency mined by the containers will profit
the image maintainer. For other malicious software, we extracted
them from the image and ran them in a dedicated sandbox to verify
whether they showed malicious behavior.

We verified that 24 images are malicious, all of which are used for
mining. Among them, 18 configure the software by setting CMD, 5
configure it in the executed script, and 1 configures it through a con-
figuration file. Some findings are noteworthy. We found that user
servethehome removed the configuration for mining software in
the latest image of the repository monero_cpu_minergate, repur-
posing it as a template image only used as a mining tool. Besides, we
found that the same wallet address is used in the images maintained
by different users, such as ngaymaisang/ngaymaisang:latest
and thanhcongnhe/thanhcongnhe:latest. We further analyzed
other images maintained by the users and found that among the 11
images maintained by namespace thanhcongnhe, 9 execute a ma-
licious Python script named dao.py. The total pull count of these
images has been close to 100 million. Four kinds of mining software
are used in these images to mine three kinds of cryptocurrencies:

Monero (XMR), PacketCrypt (PKT), and Crypton (CRP). A specific
example can be found in Appendix C.

We tracked the PKT wallet and found that it started to generate
transactions right after the image was uploaded. The final income
was 594,615 PKT, approximately worth $900. We were unable to
track the XMR and CRP wallets due to their privacy policies. How-
ever, we observed a study [8] that revealed a batch of malicious
images, which have been removed from Docker Hub, using the
same wallet addresses as the malicious images we discovered. As of
2020 when that study was released, the wallet had already mined
525.38 XMR, which is now worth more than $90,000. This indicates
that the attacker has long begun to upload malicious images to
abuse the resources of the victimized host for mining and profiting.
Meanwhile, they registered different user names and repository
names to increase the scope of the attack and bypass supervision.

Additionally, no malicious packages installed from PyPI or npm
were found in the considered images. This indicates that attackers
are more inclined to directly implant custom malicious code into
Docker images rather than introduce other third-party repositories
to store malicious code.

5.4 Threat Propagation (to RQ3)
Based on the results of threat detection, we investigated the propa-
gation of various threats by searching downstream images of the
images containing threats on IDEA. Considering that descriptions
of upstream images are not reused, we only focus on the threats
that can be exposed in the image metadata and content.

Among images containing leaked secrets, 1,879 images have at
least one downstream image, of which over 93% are inherited by
images from different repositories. Due to the inheritance mecha-
nism of images, secrets cannot be fixed by new layers of the image.
Furthermore, the image may contain context that uses the secrets,
allowing attackers to easily exploit the secrets to launch attacks.
This means that the secrets have already spread outwards and
solidified into images maintained by other users, increasing the
possibility of the secrets being exposed.

The threats, including software vulnerabilities, misconfigura-
tions, and malicious files, can be mitigated at the top layer by
fixing the issues present in the lower layers. A significant finding is
that the maintainers of the downstream images built from images
containing malicious files are well aware of the mining software
installed in the upstream images. They have made mining configu-
rations that benefit themselves during inheritance and have created
a large number of repositories to expand their influence.

We have found 2 malicious images have downstream images.
One of them has 333 downstream images. By examining the digests
of images in different namespaces, we identified four groups of
Docker Hub users, within each of which at least one identical image
was maintained by different users, implying that the users in each
group might be controlled by a single maintainer. For each set, we
manually analyzed the same images uploaded by different users
and confirmed that all intersecting images were configured with
mining pool addresses or wallet addresses.

Based on the distribution of images within different groups, it can
be observed that different attackers have different choices between
creating more users or more repositories. However, overall, only

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

The Web Conference 2025, Sydney, Australia,
Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

a small number of images, usually just one, are uploaded to each
repository. For example, in one group we found that there were 192
images across 4 namespaces, with a single user named rini002
creating 127 repositories. Other attackers prefer to create a large
number of different users. In a group containing 11 namespace
groups, there were only 18 images, with 8 namespaces having
created only one repository each. The total downloads of these
images had exceeded 50 million, which may have already had a
huge impact. We reported our findings to the Docker Security Team,
as can be seen in Section 6.3.

6 Discussion
6.1 Limitation
As the largest, public and default registry, Docker Hub contains
complex interdependencies that make it a representative sample of
the Docker image ecosystem. Therefore, we focused our analysis on
Docker Hub images. A substantial amount of prior work has system-
atically analyzed the distribution of vulnerabilities within images,
and, additionally, most software vulnerabilities reported by current
tools are often not exposed or exploited within containers. There-
fore, we selected a subset of images from the dataset proportionally,
scanned their software vulnerabilities, and analyzed recently up-
dated images in the repositories of the high-dependency-weight
images to evaluate the software vulnerability fix cycle.

Moreover, we used several open-source tools, such as TruffleHog
and Anchore, to detect threats in the images. The accuracy, com-
pleteness, and reliability of our results are limited by the functional-
ities and capabilities of these tools. Future work could benefit from
the development of more advanced, customized tools to enhance
detection accuracy and reduce reliance on third-party solutions.

6.2 Mitigation
For image users, it is essential to use security tools to thoroughly
check for software vulnerabilities, malicious files, and other security
issues in the image before use. When deploying services such as
databases in containers, it is important to check the configuration
files of the image to prevent security issues like data leaks caused
by unauthorized access configurations.

Image maintainers should regularly update images and promptly
fix vulnerabilities to reduce the risk of exposure. Besides, it is im-
portant to use secret scanning tools to check whether the image
contains any valid secrets before publishing. This helps prevent
secrets from being leaked into the supply chain with the image,
where they could be discovered and exploited by attackers.

Docker registries should provide more security information for
users. Currently, popular image registries such as Docker Hub only
support SCA and vulnerability scanning for images. However, there
are still many other security risks in Docker images, such as privacy
leaks and malicious files, which can pose significant security threats
to both image maintainers and users. Comprehensive security anal-
ysis of images by Docker repositories is crucial for ensuring the
security of user systems and the security of the image ecosystem.

6.3 Responsible Disclosure
We disclosed our findings to stakeholders. For images leaking se-
crets, considering that the secrets exposed for a long time have

highly probably become obsolete, we extracted email addresses and
relevant GitHub project URLs from the repository descriptions and
layer instructions of the images created within one year before the
end of our crawling period, totaling 134, and attempted to contact
them. We received over 50 responses, confirming their status as
maintainers, expressing gratitude for our work, acknowledging and
fixing the secret leakage issues, or informing us that the secrets
were part of the container’s operation or were no longer in use.

For malicious images, we reported the list of discovered images
and the attackmechanism to the Docker Security Team.We received
a response appreciating our efforts, informing us that they would
analyze those images and whether this constitutes a large-scale
attack, and that they would take down the malicious images.

7 Related Work
Significant research has been conducted on Docker security. One
direction is to study the containers runtime security [27, 50, 53, 54],
including privilege escalation [30] and bypassing resource lim-
its [14–16]. Some studies focus on image security in Docker reg-
istries. Shu et al. [49] proposed DIVA employing Clair to detect
vulnerabilities in images from Docker Hub. Zerouali et al. [55] as-
sessed the vulnerabilities and bugs in Debian-based images. Liu et
al. [33] analyzed sensitive parameters, malicious files, and vulnera-
bilities in images. Liu et al. [32] investigated typosquatting attacks
on Docker registries. Dahlmanns et al. [9] studied the leakage of
private keys and API tokens in Docker registries and analyzed the
use of leaked secrets in the wild.

However, the analysis dimensions, time, and scale of the datasets
of these works are inconsistent, making it difficult to form a compre-
hensive understanding of the security status of the entire Docker
image ecosystem. Besides, previous work did not consider the de-
pendency relationships of images in the selection of the image
dataset and did not analyze the high-dependency-weight images in
the ecosystem. These have prompted our work to complement pre-
vious efforts, providing a more comprehensive view of the security
of the Docker image ecosystem.

8 Conclusion
In this paper, we propose a large-scale Docker image security analy-
sis framework, DITector, to systematically investigate the security
of the Docker image ecosystem. We collected extensive data from
Docker Hub, built a dependency graph IDEA, and identified two key
image categories: high-pull-count images and high-dependency-
weight images. We analyzed five types of threats within the images
and assessed the spread of threats based on IDEA. Our findings
show that threats are widespread and can propagate downstream
along the supply chain. We shared these insights with stakeholders,
receiving positive feedback. This study highlights the need for im-
proved Docker ecosystem security and provides recommendations
for image maintainers and the community.
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A Ethical Considerations
We take ethical considerations seriously and adopt ethical guide-
lines [26, 56] in our work. First, we restrict the access rate of the
crawling and downloading process to comply with Docker Hub’s
rate limits, ensuring it does not disrupt the normal operation of
Docker Hub. Second, we do not create vulnerabilities. All the in-
formation we use is publicly available, and all vulnerabilities dis-
covered were exposed before being detected. Moreover, we refrain
from hosting vulnerable images in public repositories. Instead, we
upload images only to private repositories under our own account
and remove them after experimentation. Third, we conduct the
validation process locally in a controlled environment. This means
we do not verify leaked secrets by actually calling with them, which
could potentially impact victims. We also do not create online con-
tainers to validate vulnerabilities, which might increase the risk
of attacks on the cloud platforms. Fourth, upon confirming the
threats, we have promptly disclosed our findings to the correspond-
ing parties and received feedback. Furthermore, we take measures
to ensure all crawled data and analysis results are stored in con-
trolled environments and are not leaked. These measures include
running experiments on hosts that are accessible only through MFA
(Multi Factor Authentication) login and not exposed to public net-
works, and ensuring databases can only be accessed through strong
passwords.

B Sensitive Parameters
Docker allows users to break resource isolation or capability re-
strictions by passing parameters when starting containers, enabling
containers with specific needs to work correctly. However, contain-
ers launched with these parameters can also provide convenience
for attackers. We manually reviewed the docker run manual [19]
and identified five categories of sensitive parameters: (1) breaking
filesystem isolation; (2) breaking network isolation; (3) breaking
process isolation; (4) breaking resource limitations; and (5) elevating
container runtime privileges. Details are as shown in Table 2.

Table 2: Identified sensitive parameters.

Parameter Description Category
–mount Mount a filesystem 1
–volume Bind mount a volume 1
–network Connect to a network 2
–publish Publish a container’s ports 2

–publish-all Publish all exposed ports 2
–ipc IPC mode 3
–pid PID namespace 3

–cgroupns Cgroup namespace 4
–device Add a host device 5
–cap-add Add Linux capabilities 5

–privileged Add extended privileges 5

C Malicious Images
We discovered that 9 images maintained within the namespace
thanhcongnhe were engaged in cryptocurrency mining using a
Python script named dao.py. For instance, the image thanhcongnhe

/lancuoicung:latest, which has been pulled over 4 million times,
downloads code files from the remote server and saves them in
the image. The Dockerfile command is shown in Listing 1, and the
code snippets are shown in Listing 2. The code first starts XMRig
in the background to mine XMR, and then starts PacketCrypt to
mine PKT.

Listing 1: Command for introducing malicious code.
1 /bin/sh -c wget https ://raw.githubusercontent.

com/giautoidi/giautoidi/beta/dao_cpu_100.py

-O /etc/dao.py

Listing 2: Code snippet for running mining software.
1 # Download and upda t e XMRig . . .
2 command_xmrig_default = ' −− a l g o randomx −o

4 5 . 8 . 1 4 6 . 1 0 2 : 4 4 3 −u 43
ZBkWEBNvSYQDsEMMCktSFHrQZTDwwyZfPp43
FQknuy4UD3qhozWMtM4kKRyrr2Nk66JEiTyp
fvPbkFd5fGXbA1LxwhFZf −p nq l −− t l s −−cpu −
max− t h r e a d s − h i n t =100 −− h t t p − h o s t = 0 . 0 . 0 . 0 −−
h t t p − p o r t =80 '

3 command = ' / o p t /% s /% s %s ' %( folder_xmrig ,

xmrig_name , command_xmrig_default)

4 if os.path.isfile( ' / u s r / b i n / s c r e e n ' ):
5 os.system ( ' s c r e e n −dmS %s %s ' %(xmrig_name

, command))

6 elif os.path.isfile( ' / u s r / b i n / nohup ' ):
7 os.system ( ' nohup %s & ' %command)

8 else:

9 os.system ( '%s & ' %command)

10
11 # Download and upda t e P a c k e tC r y p t . . .
12 command = ' / o p t /% s ann −p

p k t 1 q hw f 4 s 4 d 8 d v z e v 9 d c 4 l 7 q x z 8 v 0 t p e t f w 6 s 5
h0uv h t t p : / / p o o l . p k t e e r . com h t t p : / / p o o l .
p k t p o o l . i o / h t t p : / / p o o l . pk t . wo r l d / ' %

pkt_name

13 if os.path.isfile( ' / u s r / b i n / s c r e e n ' ):
14 os.system ( ' s c r e e n −dmS %s %s ' %(pkt_name ,

command))

15 elif os.path.isfile( ' / u s r / b i n / nohup ' ):
16 os.system ( ' nohup %s & ' %command)

17 else:

18 os.system ( '%s & ' %command)
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